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Abstract

The performance of distributed services is becoming
increasingly variable due to changing load patterns and
user mobility.  The two approaches to this problem,
cluster-based, scalable services and peer replication,
solve only part of the problem.  Cluster-based services
deal only with end-service variability, while peer repli-
cation compromises safety and precludes the ability to
offer bounds on consistency of updates.  We propose
fluid replication, automatic creation of replicas where
and when they are needed, as a solution to this problem.
In this paper, we present our mechanisms for finding
replica sites, balancing consistency and performance, and
maintaining client consistency when changing replicas.

1. Introduction
As distributed services scale, their performance be-

comes increasingly unpredictable.  There are three rea-
sons for this.  First, aggregate user interests tend to
change rapidly and unpredictably, placing varying de-
mands on services.  Second, changing patterns of de-
mand in the underlying network also lead to variable
performance, even if the demand for the service itself has
not changed.  Third, users are becoming increasingly
mobile; as they move, the costs of accessing their set of
preferred services change.

Unfortunately, users have little tolerance for varia-
tions in service time [33].  To provide more consistent
response, a service must address each of these causes.
One way to do so is through replication of the service
and its data in response to changing user demands and
resource availability.  This can increase system capacity,
decrease dependence on congested resources, or both.

Manual administration of replicas is clearly not up to
the task, though it presents useful heuristics one might
employ.  For example, one might place replicas on either
side of a slow network link [31]. Unfortunately, people
are simply too slow to keep pace with the rapid changes
in demand for resources.  Furthermore, administrators
often  dedicate resources to transient trouble spots; as
load decreases, those resources are not reclaimed.

Cluster-based, scalable services address some of the
sources of performance variability [6,8,26].  In this ap-
proach, services are deployed on a tightly coupled cluster
of machines.  When a service discovers heavy load, it
replicates itself elsewhere on the cluster, and the entry
point to the cluster redirects requests for load balancing.
This technique is effective when the end service is the
bottleneck, but does not address variability caused by
changing network demands or user mobility.

In contrast to this server-based approach, autono-
mous, peer-replicated systems place the responsibility for
replication with clients [13,18,36].  Each client caches a
subset of the data in which it is interested, and operates
on that local cache.  When peers encounter one another,
they exchange updates.

Peer-replicated systems address network- and mobil-
ity-induced variations in performance, but introduce
other problems. Update propagation depends on user
mobility patterns, and these are outside of system con-
trol.  Therefore, one cannot offer bounds on update con-
vergence or consistency.  Further, when a client overruns
its local caching resources — a possibility on light-
weight, low power devices — it must fall back to its
original, remote service, which may be expensive to
reach.  Finally, client machines are necessarily less
trustworthy than services [15], as they do not enjoy the
same administrative diligence.  Hence, updates that are
stored only on clients are more vulnerable to loss com-
pared to those stored on a server.

Our goal is to provide the safety and bounded con-
sistency of server-based approaches with the perform-
ance and efficacy of client-based schemes. We propose
fluid replication — the automatic creation of replicas
where and when they are most needed — as a way to
provide these properties.  In fluid replication, clients
monitor their observed performance in interacting with
the service.  When performance becomes poor through
increased network load or client mobility, a replica is
created to reduce the dependence upon the poor network
path.  Central to this approach is the WayStation: a serv-
ice node on which a replica may be created.  We view
fluid replication as a complementary approach to cluster-
based services; the former deals with network-induced
performance problems, while the latter addresses end-
service problems.



Fluid replication has the potential to provide several
tangible benefits.  It enables the automatic allocation of
network resources, balancing them to offered load at fine
grain through local, autonomous decisions.  It hides per-
formance problems endemic to large scale systems with
a wide range of capabilities and many mobile users.
These benefits accrue without unduly sacrificing consis-
tency, leaving updates vulnerable to loss, or limiting the
ability to offer bounds on update propagation.

There are several challenges that must be met to pro-
vide fluid replication.  First, one must have a way to de-
cide that a new replica is needed, and a mechanism to
select a WayStation on which to host it.  Once a replica
is established, one must balance the consistency and per-
formance seen when using that replica.  Finally, one
must reclaim WayStation resources in a way that pre-
serves the consistency properties that clients expect.

2. Impact of Networking Costs
To demonstrate the potential impact of increased

networking costs on common distributed services, we
examined the impact of latency and bandwidth con-
straints on a small distributed file system workload.  In
this experiment, an NFS [30] file server stored a small
source tree that was compiled by a client.  These two are
connected to each other through a host capable of net-
work trace modulation — the delaying of packets ac-
cording to a simple model of network performance [25].
The client compiled the source tree, storing objects on
the server, over four different networking scenarios: un-
modulated 10Mb/s Ethernet with negligible latency,
10Mb/s with 20 ms latency, 100Kb/s with negligible
latency, and 100Kb/s with 20 ms latency.

10Mb/s 100Kb/s
<1 ms 193 sec (3.0) 303 sec (3.2)
20 ms 986 sec (2.2) 1071 sec (2.8)

Table 1: Network Impact on NFS Benchmark

The results of this experiment are shown in Table 1.
Each cell shows the average running time over five trials,
with standard deviations reported in parentheses.  NFS
was specifically designed for local area networks, and it
is not particularly frugal in its use of them.  Even so, the
impact of moderately poor networking performance,
particularly latency, is severe.  Rather than forcing a re-
design of NFS to cope with such environments, fluid
replication admits the possibility of eliminating poor
network performance from the critical path.

3. Monitoring Network Performance
Fluid replication is a reactive mechanism.  It moni-

tors the performance of remote services, and when it
becomes poor, the system reacts by creating a replica in a

more advantageous location.  Service time might be
judged unacceptable for two reasons.  First, server-side
delays may increase due to server load.  In that case, the
best location at which to place new capacity is near the
overloaded service; existing cluster-based solutions do
precisely this.  Second, the costs to communicate with
remote services might increase.  In reaction to such in-
creases, the affected client must create a remote replica.

Client Server
treq

tenq

tdeq

tsvcd

t resp

t     request issued
t    request received

t    begin servicing request
t    response issued
t    response received

req

enq

deq

svcd

resp

Figure 1: Timing Client/Server Interactions

A client measures the elapsed time between the issu-
ance of a request to receipt of its response.  Services
measure the elapsed time from receipt of a request to
issuance of its response, and include this measure in the
response.  Reporting server-side time allows clients to
consider networking costs independently of service
variations.  Figure 1 illustrates these measurements.
Note that only elapsed times at a single host are meas-
ured.  Therefore, clocks need not be synchronized, but
for server-side and end-to-end costs to be comparable,
they must run at roughly similar rates.

These observations serve two purposes.  First, they
are used to establish a baseline, the performance that a
client expects under normal circumstances.  Second, cli-
ents use recent observations to derive a current estimate
of the costs to access a service, and compare that against
their baseline expectations.

Networking costs are divided into latency and band-
width.  Where available, clients may also track loss
measurements.  However, not all services expose loss
information; services that use reliable transport mecha-
nisms such as TCP or RPC coerce lost packets to high
latency, low throughput, or both.

To derive a model of these costs, clients must take
into account size of requests, size of response, and total
round trip time.  By using sequences of observations,
weighted over time, clients can build a model of these
costs with associated uncertainties.  This estimation
model is best provided as a middleware layer that clients
of common request-response protocols can use.

Baseline metrics are established through the low-
water marks of long-term observations.  The intuition



behind this is that the baseline measure should charac-
terize the best available service in order to determine
what performance is acceptable.  While it is unclear how
often a particular client might see ideal service, one
would expect the distribution to have a long tail, with a
cluster of observations near the ideal.  Once baselines are
established, one can place bounds beyond which per-
formance would be declared poor.

Accurately estimating network performance is an ex-
tremely difficult problem. This is particularly true for
hosts that are far apart in terms of network topography,
as traffic between them shows significant variability
[27].  Ideally, a good estimator of network performance
would be both agile as well as stable.  An estimator is
agile if it reacts quickly to true changes in network per-
formance.  An estimator is stable if it does not track tran-
sient changes in performance.

We are approaching the problem of agile, stable es-
timation from two directions.  First, we implicitly ac-
count for variance by putting less faith in individual ob-
servations when recent observations have not been sta-
ble.  Second, we explicitly report variance along with
estimates, so that it can be taken into account by algo-
rithm responsible for making replication decisions.

3.1. Implicitly Accounting for Variance

Our basic approach is to provide a low-pass filter on
the estimations, much as TCP does in estimating round
trip times [17].  The general form of such a filter is:
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�
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This says that the new estimate is based on the old
estimate, adjusted by the current observation.  The term
D is the gain.  It determines how much influence the cur-
rent observation has over the new estimate.

Like TCP, our estimators report both the output of
this filter along with some measure of variance.  How-
ever, unlike TCP's RTT estimator, which uses a constant
gain, we vary the gain to bias either towards agility or
stability.  The method we use to assign gain borrows
from Kalman filters [10], which are more commonly
used in communications and controls.

If past observations have been relatively stable, it is
likely that they reflect the true state of the network be-
tween client and server.  Since such observations are
very accurate, one would increase the gain for the next
observation accordingly.  However, if past estimations
have been accurate predictors of future observations,
then the current observation has less to add, and the gain
should be decreased.  We measure stability of observa-
tion with a low-pass filter on the difference between con-
secutive observed values.  Accuracy of prediction is
similarly measured with a low-pass filter on the differ-
ence between an observation and its predicted values.

The gains on each of these filters are set to 1/8. Their
outputs are scaled to one another, and given equal weight
in setting the overall gain.

3.2. Explicitly Exposing Variance

For some services, variable performance has an im-
pact similar to consistently poor performance.  This will
be especially true for those services that interact with
users.  These services may wish to replicate to avoid
variance, even if the average behavior is acceptable.

To account for such services, we explicitly expose
the metric describing observation stability.  This is simi-
lar to TCP's use of both RTT estimates and deviation in
calculating retransmission timeout intervals.

4. Finding a WayStation
When a client discovers that it might benefit from

replica creation, it must find a WayStation that is close
enough to provide that benefit.  The performance pa-
rameters provided by the estimator, combined with the
expected gains from replication for a particular service,
bound how far a WayStation can usefully be.  We plan to
have clients find WayStations within this limit by a proc-
ess called distance-based discovery, a cost-limited multi-
cast issued by a client in search of a replica site.

WayStations are under the administrative control of
their owners, and are assumed to be managed as if they
were servers for that domain’s user population. WaySta-
tions will most often provide replica services to users
within that population, though they can serve mobile
users who are visiting that domain.  Servicing such users
depends on being able to authenticate them as valid
visitors, and users must also establish their trust in Way-
Stations; one could use a public-key infrastructure [14]
to provide for this capability. Taken together, the Way-
Stations form a confederation of cooperative servers.

In our model, WayStations belong to a particular
multicast group, and announce their presence to routers
through IGMP advertisement [7].  A distance-based
multicast to this group gives latency and bandwidth lim-
its.  When a router sees such a multicast, it forwards it
across links that have advertised recipients for that mul-
ticast group, but will not cause the declared limits to be
exceeded.  In order to support distance-based discovery,
routers must estimate the costs — latency and bandwidth
— to traverse the links to each of their neighbors.

Latency is an additive cost, but bandwidth is limited
only by the slowest link along the path.  Therefore, as
packets are forwarded the expected latency is subtracted
from the recorded latency limit. The recorded bandwidth
limit is left unchanged, but routers record the minimum
bandwidth of any traversed link. Any process that re-



ceives a cost-limited multicast is given total latency and
minimum bandwidth of the traversal.

Figure 2 illustrates distance-based discovery.  Boxes
represent hosts; circles are routers.  The lightly-shaded
host sends a discovery packet with a latency limit of 30;
latency estimates are given on each arc, and are additive.
Each router prunes paths that are estimated to be beyond
the requested bounds, and forwards along other links.
The heavily-shaded boxes are the two hosts that receive
this cost-limited request.
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Figure 2: Distance-Based Discovery (limit 30)

Distance-based discovery has several desirable prop-
erties.  First, routing decisions are made based on purely
local information.  Only the observations of data sent and
received from neighbors are needed for a router to decide
whether to prune or forward a request.  Second, since
each router estimates and applies costs independently,
clocks between routers do not need to be synchronized.
Third, messages are only routed to nodes that are within
requested bounds.  This is unlikely when using the time-
to-live field to limit hop counts as an approximation of
communication costs, since hop limits must be liberal to
find all candidates.  One way to avoid liberal hop limits
is to use an expanding ring search [34], starting with low
time-to-live values and increasing them to find a candi-
date.  Unfortunately, there are potentially many wasted
(albeit short) round-trips in such a scheme.

The discovery packet contains the name of the serv-
ice it wishes to replicate in addition to cost bounds.  A
WayStation that receives this query responds with its
own name, the observed cost to reach this WayStation,
and whether or not that service already exists on the
WayStation.  The client can then select the closest Way-
Station, giving preference to any that have already begun
to populate the requested replica, taking advantage of
potentially hot caches.

Of course, networking costs to reach WayStations are
only part of the picture; the load on that WayStation is
also of concern.  There are two ways one might deal with
this.  First is to allow each WayStation to benefit from
cluster-based replication, isolating the problem of service
load from that of network load.  Second, one can incor-
porate service load and network costs into a single met-
ric.  However, doing so would be quite complicated.

We plan to build a prototype of this mechanism along
with simple heuristics to measure the costs between
routers.  Layering this capability atop network technolo-
gies such as ATM that provide flow control is straight-
forward; one can use the flow control messages to esti-
mate latency and provide bounds on the available
throughput.  Other interconnects will have to insert probe
messages to provide latency bounds, and use traffic
monitoring mechanisms such as Cisco's NetFlow [29] to
estimate the bandwidth available along each of its links.

5. Using a Replica
After selecting a WayStation, the client asks it to cre-

ate a replica of the service in question.  This involves no
data copying; the replica is populated lazily.  However,
the WayStation must inform the home service that the
replica is being created.  The home service uses this in-
formation to set up any state that it will need to manage
replica consistency.  Logically, each WayStation forms a
two-way replica with the home service; the service itself
manages the issues of multi-site, dynamic replication.

After establishing a replica on a WayStation, the cli-
ent directs all of its read and write requests to it.  If a
read request arrives that cannot be satisfied, the WaySta-
tion fetches the relevant data from the remote service on
demand.  If there is known locality in the access pattern,
the WayStation can exploit it by prefetching data where
appropriate.  For example, if a file system client asks for
the first block of a file, the WayStation may asynchro-
nously fetch the rest, as it is likely to be needed soon [1].
Writes are sent from the client to the WayStation as
normal, but may not be reflected back to the home serv-
ice immediately, depending on the consistency policy.
These writes form a virtual log at the WayStation.

The key to good performance in fluid replication is
choosing the appropriate consistency policy.  The client
created the replica in response to finding itself far from
its home service.  Distance-based discovery placed this
replica close to the client, and therefore the replica is also
very likely to be far from the home service.   Substantial
communication between the WayStation and remote
service would be the limit on performance.

Consistency mechanisms can be described along two
different dimensions: the strength of guarantees provided
by the mechanism and the frequency with which those
guarantees established. The latter is called the replica
maintenance interval.  Together, these two define the
way in which clients perceive the consistency of objects.

As a side effect of maintaining consistency, fresh
copies of data migrate from replica to replica. Schemes
can be further classified by how aggressively they
propagate data, and whether or not clients offer hints as
to how data should be propagated. Issues of data propa-
gation do not have any impact on the perceived consis-



tency of objects, only on the performance of using that
data.  Services specify a default consistency policy for
the data they provide, but clients can choose to weaken
or strengthen that policy based on their needs.  There-
fore, the system must handle conflicting consistency
mechanisms within a replica set.

5.1. Strength of Guarantee

There are three different strengths of guarantee that
fluid replication provides.  The simplest, and least pow-
erful, is last-writer.  In last-writer, no effort is made to
ensure that conflicts do not occur, nor are conflicting
updates detected.  Instead, during replica maintenance,
each replica notifies the other of any stale objects.  If one
replica has modified a stale copy, that modification may
supercede the intervening update from another site; the
order in which conflicting updates are applied is unde-
fined.  Each last-writer replica maintains an update log.
This is used to decide what changes need to be reflected
at a replica’s peer, avoiding a full replica scan during
consistency maintenance.  Last-writer consistency is
useful for services that do not offer a strict notion of con-
sistency, such as the Web [7] or NFS.  For example, dis-
semination of soft-state updates [8], or software releases
can be handled trivially and efficiently with this mecha-
nism.  It can also be useful in settings where updates are
used primarily as hints [21].

The next strongest consistency guarantee is optimistic
[13,18].  In optimistic consistency, no effort is made to
prevent inconsistent operations. However, inconsistent
updates are reliably detected and not allowed to propa-
gate further.  This guarantee is useful for common file
system tasks, or any other workload where the incidence
of write-sharing between users is rare.

Optimistic replica sites maintain update logs,
stamped with logical clock time [20]; each cached object
retains its logical last-modified time.  During consistency
maintenance, the WayStation sends its log to the remote
service, which compares the two logs, using the logical
timestamps to check for serializability.  Serializable op-
erations are applied.  If an operation is judged to be non-
serializable, the service checks to see if the operation can
be resolved with either knowledge of the data structure
or by application-provided code [19].  If this is impossi-
ble, the object is marked in conflict.  Conflicting objects
must be resolved by hand before they can be used.

The final consistency level is pessimistic.  In pessi-
mistic, or strict, consistency, all operations are guaran-
teed to be serializable.  This guarantee is provided by
requiring a replica that wishes to update an object to first
acquire exclusive access to that object.  This is similar to
the consistency model provided by Sprite [1].  The per-
formance benefits of pessimistic consistency in fluid
replication are derived from locality in access patterns;
the more locality shown by update traffic, the better pes-

simistic replicas will perform compared to direct use of
the remote service.
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Figure 3: Comparing Consistency Guarantees

Figure 3 illustrates the difference between the three
consistency guarantees.  In each figure, a WayStation
and a remote service see concurrent requests to modify
the same object.  The topmost boxes are the object in its
original state.  The striped and solid boxes are new ver-
sions of that object, updated at the WayStation and
server respectively.  In last-writer semantics, either up-
date might take precedence over the other; the client
whose write is lost will never be notified of that fact.  In
optimistic semantics, the conflicting update is allowed to
occur, but the object is marked in conflict when update
logs are exchanged.  Pessimistic semantics prevents the
conflicting update, but at a performance cost; the second
mutator is forced to wait for the first to complete.

A central issue in providing last-writer or optimistic
replication is the size of update logs. Each node must
retain all log entries that mention updates that another
replica has not yet seen.  Such log records are necessary
for update propagation in last-writer and optimistic
schemes, and are also used for conflict detection for op-
timistic replicas.  However, there are two classes of op-
timizations that can be made; both depend on the notion
of a replica interval.

Let W be a WayStation that holds a replica from
server S.  From W’s creation until its destruction, it in-
teracts with S on k separate occasions, at times T1 … Tk.
A WayStation’s replica intervals are the k-1 periods be-
tween any two interactions; a service’s replica intervals
are defined as the periods between any two interactions
from any WayStations holding replicas of that service.

The first class of log optimizations are the elimina-
tion of redundant or self-canceling sets of operations
within a replica interval [18].  Redundant operations in-
clude updates to the same object; only the last update
need be maintained.  Self-canceling operations are simi-
lar.  For example, suppose a file is created and then de-
leted within a replica interval; from any other observer’s
point of view, it is as if those updates never occurred.



The second class of optimization is truncating a log’s
stable prefix; removing the log entries that are known to
be unnecessary from now on.  For a WayStation, the
stable prefix of the log is the portion before the last inter-
action with the remote service.  For the service, the sta-
ble prefix is defined as the portion of the log known to
all replicas.  It is the latest point of the log that is before
the most recent interactions from all replicas.  Because
all replicas are known to the service, it is easy to deter-
mine the stable prefix.

5.2. Frequency of Guarantee

Pessimistic consistency must be performed aggres-
sively, prior to each update.  However, optimistic and
last-writer schemes can vary the frequency with which
they exchange updates. This frequency is controlled in
concert by the WayStation and remote service.  Since
each WayStation interacts only with the remote service,
we can provide bounds on update propagation by re-
stricting the interval appropriately.

There are two considerations in selecting an ex-
change interval.  As update rates at the WayStation or the
remote service increase, updates should be exchanged
more frequently to reduce the chance of seeing stale data
or producing inconsistent updates.  However, as the net-
work path between replica sites degrades, one might
wish to defer exchanging updates to benefit from their
locality [1,18]. The degenerate case — infinite time to
exchange — can be used for data known to be read-only,
or data for which updates are not shared, such as mirror
sites.  How to best balance these concerns is an open
question, and one we are actively exploring.

The chief pitfall in selecting a replica maintenance
interval is scalability.  Because all WayStations are repli-
cas of the remote service, that service must see all of
their updates.  However, without fluid replication, each
service would be dealing with clients directly.  Since
multiple clients may use the same WayStation for up-
dates, and optimizations can be applied per-WayStation,
this may actually improve the scalability of the remote
service.  Services can also use cluster-based techniques
to further enhance scalability.  Finally, one can imagine a
hierarchy of replica sites if scalability is of chief concern,
but doing so while providing update bounds requires
careful thought.

5.3. Update Propagation

When a replica site discovers that its peer has up-
dated an object that it stores, it can either invalidate its
copy of the object, or it can aggressively retrieve the
object from its peer.  The best alternative depends on a
number of factors: the locality of updates, the degree and
frequency of sharing, and the performance of the net-
work path between replicas.  The replication system can
monitor these, and pick the option that best fits current

access patterns.  When applications have some special
knowledge of data access patterns, they can offer hints
by tagging data with expected migration patterns, similar
to the annotations offered by Munin [4].  As with selec-
tion of maintenance interval, the decision of whether to
invalidate or propagate depends on information from the
remote service and the WayStation.  This allows the
propagation of data to be done strictly for performance
reasons, and need not impact the performance along the
critical path of any clients.

5.4. Handling Mechanism Conflicts

The default consistency scheme for data is chosen by
the home service based on service semantics and ex-
pected data access pattern.  However, clients that use
WayStation replicas can ask for different consistency
mechanisms when appropriate.  Each set of WayStations
with the same strength of guarantee forms a consistency
class.  Thus, each replica set can have three replica
classes: last-writer, optimistic, and pessimistic semantics.
This allows WayStations to degrade their class when
stronger guarantees are too expensive to provide.  It also
allows a client to provide session semantics [35] when
changing from one WayStation to another; this is de-
scribed in more detail in Section 6.

When conflicts arise between replica classes, the
stronger guarantee prevails.  For example, a replica with
a last-writer class and a pessimistic class will always
guarantee that the pessimistic class’ updates supercede
those of the last-writer class.  This preserves stronger
guarantees by placing the burden of dealing with incon-
sistency with weaker classes, where it is already deemed
acceptable.

One question is whether or not each class must fur-
ther divide itself; for example, should isolated groups of
WayStations use strict consistency within them, but
weaker consistency between them.  This can only be
answered through experimentation and use.  The range of
possible inter-class and intra-class conflicts, and the ac-
tions taken when they arise, are summarized in Table 2.

conflict btwn last-writer optimistic pessimistic

last-writer
either 

persists, no 
guarantee

optimistic 
persists, no 

conflict

pessimistic 
persists

optimistic conflict

pessimistic 
persists, 
optimistic 
conflicts

pessimistic
updates 

serialized

Table 2: Handling Mechanism Conflicts



6. Destroying and Migrating Replicas
There are two reasons why a WayStation replica

might be destroyed.  First, the client may cease to be
interested in that replica’s data.  Second, the client might
move closer to another WayStation or the home service.

The former case is easy to deal with.  WayStations
can monitor the usage statistics of their replicas.  Those
that have not been used recently can be marked dormant
as soon as their changes have been reflected to the cen-
tral service.  A busy WayStation can reclaim the re-
sources of dormant replicas when necessary.

Handling a moving client is more difficult.  When a
client moves, it must see client-consistent updates; if a
client performs an update, it should be persistent from
the client's point of view, according to the consistency
rules in effect. This problem is illustrated in Figure 4.

The client first updates an object on its WayStation,
and then moves to a second WayStation.  If the first rep-
lica is using optimistic or last-writer semantics, the client
may not see its own prior update, since the departure
WayStation has not yet propagated it to the service.

Individual clients expect client-consistent updates.
Put another way, no one should know more about a cli-
ent’s updates than that client does. In the Bayou termi-
nology, this is known as read-your-writes session se-
mantics [35].  Pessimistic consistency schemes provide
client-consistency automatically; more relaxed schemes
may not.  To provide client-consistency, a client must
ask its WayStation to discontinue replication on its be-
half on departure.  Conceptually, the departure WaySta-
tion must then propagate all uncommitted updates to the
remote service before allowing the client to begin using a
new replica site.  Since this can be quite expensive, there
are several optimizations that one might make.

The first optimization depends on the fact that the
client itself may have cached some of its most recent

updates.  To capture this notion, the client maintains a
log suffix, the log timestamp such that the contents of all
updates stamped with later times are known to the client.
As updated data are evicted from the cache, the log suf-
fix pointer moves forward through the log.

When notifying a WayStation of its departure, the
client sends its current log suffix.  The departure Way-
Station is then responsible for immediately propagating
pre-suffix updates.  It can purge post-suffix updates, and
have the client replay them at the arrival WayStation
after being given its release.  Since the arrival WaySta-
tion was chosen based on its proximity to the client, this
replay operation will be fast.

The second optimization is based on the observation
that the arrival WayStation is likely to be closer to the
departure WayStation than the remote service; this will
be true if the client has not moved far in terms of net-
work topography.  In these cases, the departure WaySta-
tion is free to send its update log and file contents to the
arrival WayStation.  This defers the expense of commit-
ting changes to the remote service to some time after the
client changes replica sites.

Neither of these optimizations is guaranteed to im-
prove performance in all situations; the actual gains de-
pend on relative communications costs.  However, given
the mechanisms to establish replicas and choose Way-
Stations, they hold promise.  The main concern is the
effect on consistency of these optimizations; they defer
previously issued updates to a later logical time.  There
are issues with doing so correctly that we must address.

The final optimization makes use of the consistency
class mechanism to defer even more work from the criti-
cal path of replica handoff.  Rather than propagate
changes, the departure WayStation can promote the con-
sistency scheme to pessimistic, and invalidate modified
replicas at the home service rather than force an update.

WayStation 2

Home Service

WayStation 1

WayStation 2

Home Service

WayStation 1

WayStation 2

Home Service

WayStation 1

(a) update on WS1 (b) move to WS2 (c) fetch stale object

Figure 4: Violating Client-Consistency



This exchange of status information is fast, and will
allow data propagation to be overlapped with other
client operations.  Note that the use of consistency
classes allows this change to affect only the perform-
ance of the arrival and departure WayStations without
penalizing replica sites that choose weaker consistency
guarantees.  Also, this optimization, unlike the first
two, changes neither the currency of updates nor their
position in logical time.

7. Current Status
This work is in its infancy; we are only beginning

to implement and experiment with these ideas.  Our
current focus has been on network estimation filters
and the construction of a simple prototype to explore
the performance space.

The client's network estimation service forms the
core of fluid replication; without good estimators, the
system will adapt sluggishly, capriciously, or both.
While we have only tentative results for the quality of
our estimator, they are promising.  We are able to track
changes in bandwidth and latency with good agility,
but our estimators do suffer from some instability.  The
exposure of estimate error alleviates this, and we be-
lieve that incorporating it into the decision algorithm
will allow us to make much better decisions about rep-
lica instantiation.

Our prototype consists of a WayStation, client, and
server to add fluid replication to NFS.  We are incorpo-
rating the two extremes of consistency: last-writer with
an infinite write-back interval, and immediate write-
through.  When completed, it will allow us to better
understand the gains possible for replication of this
service, and help us tune the decision algorithm.

8. Related Work
The idea of using replication to improve the per-

formance of wide-area systems is certainly not new.
Grapevine [31] was the first distributed system that
used replication with weak consistency to provide good
performance and scalability.  It also served as the gene-
sis of fluid replication.  The observation that replicas
should be placed at either end of a slow link led us to
wonder how to position replicas automatically.

Cluster-based, scalable distributed services focus
on replication within a tightly coupled cluster to adapt
to changing client load.  Typically, they focus on soft-
state replicas [8] or provide back-end storage that is
shared across the cluster [26].  This minimizes the
overhead of consistency maintenance, though more
recent systems have explored dynamic content [6].
These systems provide good scalability in cases where
the end-service is the performance bottleneck, but do
not deal with other sources of performance problems.

Several distributed systems have used an optimistic
consistency scheme to provide file and database access
to mobile clients; such clients experience significant
variation in the networking costs incurred in accessing
distributed services.  Ficus [13] and Bayou [36] rely on
a peer-to-peer replication model.  In this model, each
node stores a replica, and pairs of nodes exchange up-
dates when they encounter one another.  This provides
eventual consistency, but cannot bound time to conver-
gence. JetFile [12] also provides a peer-to-peer model,
but allows peers to find each other by IP multicasts that
are global rather than directed only to nearby neigh-
bors.

Bayou's use of update logs and replica management
[28] is in many ways similar to that proposed here.
However, in Bayou these mechanisms must all work
with arbitrary replication topologies.  Restricting their
use to pair-wise interactions between WayStations and
servers is likely to simplify them significantly in addi-
tion to providing the foundation for bounded conver-
gence.

Coda [18,23] provides a cluster-based replication
model, but allows clients to hold long-term, second-
class replicas. These replicas, stored solely on clients,
are subject to the decreased safety and security offered
by them.  Coda also has mechanisms to deal with weak
connectivity [23], but they require potentially expen-
sive interactions with remote services.

Web caches take advantage of locality in HTTP re-
quests to provide better performance to clients using
them [22].  These caches are limited to the consistency
mechanisms provided by the Web, and are passive;
they do not accept updates from clients.  We know of
no systems that allow clients to transparently migrate
between caches as the costs of communication change.

WebOS [37], a set of abstractions for building
wide-area applications, is complimentary to our own
work in many ways.  WebOS' naming, security, and
process control mechanisms could serve as the founda-
tion for implementing fluid replication.  In fact, one of
the applications chosen to demonstrate the benefit of
the WebOS abstractions is a simpler form of fluid rep-
lication called Rent-A-Server.  WebOS also provides a
wide area file system that supports last-writer seman-
tics for general file access, along with stronger consis-
tency for server-push and append-only data.  While
WebOS concentrates on the building blocks one might
use to create an automatic replica management system,
our concern is that system itself.

Distributed shared memory systems take advantage
of locking mechanisms to optimize data movement and
invalidation [2,11,16].  Programs that correctly lock
data see pessimistic consistency semantics.  Munin [4]
enables cooperative applications to annotate data to



expose application knowledge to further optimize data
movement. Khazana [5] is a distributed middleware
service that provides an abstraction similar to distrib-
uted shared memory; a flat, byte-addressable space
shared by all participating nodes.  It is structured to
allow easy experimentation with consistency protocols,
reflecting each lock and update request on behalf of a
client to a local consistency manager.  To date,
Khazana has explored only pessimistic consistency,
though the consistency manager architecture it uses [3]
could serve as a useful testbed to explore schemes with
weaker guarantees.

GeoCasting [24] provides broadcasts that are lim-
ited to a physical area.  Distance-based discovery com-
bines this idea with schemes that estimate point-to-
point network costs to broadcast based on network
distance rather than physical location.  There are sev-
eral systems that provide network performance estima-
tion services, including IDMaps [9], the Network
Weather Service [38], and SPAND [32].  However,
they tend to be geared towards problems such as the
mirror selection problem: how to chose among a
known set of servers with which the client has had little
recent interaction.  Our problems differs from this one
in two ways.  Clients that must estimate performance to
a server they are already using have substantial knowl-
edge on which to base a decision.  When that client
must select a WayStation, it may have no idea where
candidates might be found; this is particularly true for
mobile clients.

9. Conclusion
Fluid replication promises to address the sources of

many performance problems in large scale, wide-area,
distributed systems.  It reacts to changes in demand for
services and resources by automatically replicating
those services when and where necessary.  These repli-
cas are placed on WayStations — service nodes in the
infrastructure that provide replication services.

There are several areas in which fluid replication
will make novel contributions.  It provides local
mechanisms to dynamically estimate and react to
changing network conditions.  It explores techniques
for local resource discovery and provisioning, and im-
plements and compares a rich set of coexisting consis-
tency mechanisms.  Finally it provides a framework to
adaptively set parameters for consistency management.

In addition to providing improved performance for
distributed services, fluid replication will be a useful
tool in reducing administrative costs for large installa-
tions.  By automatically provisioning services based on
client demand and resource availability, we can best
take advantage of prevailing conditions for distribution
and sharing of data.
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