
Opsis: A Distributed Object Architecture
Based on Bracket Capabilities

Mark Evered
School of Mathematical and Computer Sciences

University of New England, Armidale, 2351, Australia

Email: markev@mcs.une.edu.au

Abstract
The object-oriented access control in contemporary middleware
is inadequate in view of the sensitivity of data stored on the
internet and the growing threat from hackers and malicious
software. In this paper we present the Opsis system, an
architecture for distributed Java applications based on the strict
use of ‘bracket capabilities’. We describe the concept of
‘capability servers’ for supporting flexibility and transparency
of remote invocation and for allowing the migration of objects.
We demonstrate the power and simplicity of the system in an
example E-commerce application including the definition of a
form of secure electronic cheque1.

Keywords: security, internet, middleware, E-commerce

1 Introduction

Despite a growing threat, insufficient attention has been
paid to security constraints in middleware development.
OMG’s Corba (Blakley et al., 2000) and Microsoft’s
COM (Eddon, 1999) both include a form of access
control list (ACL) but these are add-on features which
remain limited and inflexible. Java’s security package
(Sun, 2000) focuses on the rights to be granted to foreign
code rather than access control between the components
of a distributed system. Much attention has been given to
encryption techniques but, while encryption is very
important, it protects only the communication and
authentication in the system. It provides only the basis for
a secure access control mechanism.

The components of a distributed system can be viewed as
objects, with each object containing persistent data
hidden by encapsulation and accessible via interface
methods. (This may, of course, simply be a façade around
a legacy software component such as a relational
database). One advantage of an object-oriented approach
is that the security can be based on the interface methods
of an object. This may be called object-oriented access
control. It provides a fine-grained semantic protection
(Evered, 2000) in contrast to the course-grained
read/write protection of traditional files and databases.
This means that the access rights can be based on

1 Copyright © 2002, Australian Computer Society, Inc. This
paper appeared at the 40th International Conference on
Technology of Object-Oriented Languages and Systems
(TOOLS Pacific 2002), Sydney, Australia. Conferences in
Research and Practice in Information Technology, Vol. 10.
James Noble and John Potter, Eds. Reproduction for academic,
not-for profit purposes permitted provided this text is included.

meaningful, high-level operations associated with the
object in the real world (Fig. 1).

Fig 1: A persistent object of type ‘Accounts’ for a set
of bank accounts

This idea goes back as far as Jones’ and Liskov’s
suggestion of a static type-based constraint mechanism
(Jones and Liskov, 1978) and it has been adopted in
contemporary middleware mechanisms. The COM
security mechanism, for example, does this by offering
‘per-method access control lists’ which record, for each
method, a list of users allowed to invoke that method
(Eddon, 1999). These kinds of mechanism limit the
access to an object by returning an error message if
certain methods are invoked. However, this is not the
only kind of access restriction which is possible or useful
in controlling access to a persistent object. In fact, even in
terms of per-method access control, the standard
mechanisms are not ideal since all the methods of the
object are still known to all the users even if they cannot
be called. Ideally, in a need-to-know security
environment, someone who is not allowed to invoke an
object should not know of the existence of that object and
someone who is not allowed to invoke a particular
method should not know of the existence of that method.

Some kinds of access control are not supported at all by
standard middleware. For example, what access to an
Accounts object should be given to the owner of an
individual account? As well as restricting access to the
methods balance, getName and transfer, we must
also ensure that only the right account is being accessed.
This means the parameters giving the account number of
the account to be accessed must be restricted to a
particular value.

In (Evered, 2001) the author has identified a number of
different kinds of access control which may be necessary

 deposit

balancegetName

setInterest

transfer

…

withdraw

newAccount

Persistent

Data

mailto:markev@mcs.une.edu.au

for specifying the security constraints associated with
different users of a system in accessing persistent objects.
These include:

• specifying that some methods should return an
access violation error

• specifying that an access violation error should
be returned for parameter values other than a
specified value

• restricting the type of the object as seen by a
client to exactly the allowed methods and
parameters

• enhancing the semantics of the object type with
logging of accesses and access attempts

• specifying state-dependent rules such as ‘access
only at specified times’ or ‘access allowed only
once’

In (Evered, 2002) we introduced the concept of a 'bracket
capability' as a simple security mechanism capable of
supporting these kinds of security constraint. In this paper
we present the Opsis system as a prototype middleware
architecture for internet-based object systems, based on
the strict use of bracket capabilities as object identifiers.

In the following section we briefly review the idea of
bracket capabilities. Section 3 describes the basic aims
and structure of the Opsis architecture. In sections 4 to 6
more detail is given on the role of capability servers,
object creation and bracketing respectively. In section 7
we show how the system can be used in an example E-
commerce environment, with capabilities representing a
form of secure electronic cheque. Section 8 reports on
related work and section 9 concludes the paper.

2 Bracket Capabilities

Our mechanism is based on object capabilities rather than
ACLs because capabilities enhance and simplify security
by unifying object naming with the protection mechanism
(Wilkes and Needham, 1979). A number of possible
alternatives have been suggested for implementing
capabilities. These include special architectures
(Rosenberg and Abramson, 1985), encryption (Mullender
and Tanenbaum, 1986) and sparse (or password)
capabilities (Anderson et al., 1986). We base our
mechanism on sparse capabilities since these require no
special architecture or costly encryption algorithms and
also because they alleviate the revocation problem. A
sparse capability generally consists of an object identifier
(for locating the object) together with a large (un-
guessable) random number (the password). The access
rights associated with the capability (that is, with that
particular random number) are not stored in the capability
itself but with the object being accessed, so can easily be
modified or revoked without access to the capability.

Our capabilities differ from traditional sparse capabilities
in that they contain not an object identifier, but an
identifier for a (capability) server which knows the
location of the object. This indirection allows for object
migration as well as flexibility in the communication
mechanism. These are both particularly important for

mobile applications. When a persistent object is created, a
capability for the object is created and registered with a
capability server.

The main distinguishing characteristic of bracket
capabilities is seen in the process of refinement, that is,
when the possessor of a capability wishes to grant a more
restricted view of the object to other users in the system.
This is done by a call to the refine method. Each
persistent object, as well as implementing an interface
such as Accounts also implements a number of
administrative methods such as deleteObject,
deleteCapability and refine. The refine
method in a bracket capability system has the form:

refCap = x.refine(interface, class);

where interface denotes the type with which the
persistent object ‘x’ is to be viewed when used via the
capability refCap and class denotes the class of an
object through which calls to the persistent object will
pass when invoked via refCap. The result of the
refine call is depicted in Fig. 2.

Fig 2: The result of the 'refine' operation

It can be seen that calls using the capability refCap are
directed through a kind of proxy or bracketing object of
class class. This bracketing object is stored together
with the persistent object in the same way that access
rights are stored with the object for traditional sparse
capabilities.

A copy of refCap can be given to the users who are to
have this kind of access. Traditional object-based
capabilities or ACLs in which access is restricted to
particular methods can easily be simulated with this
mechanism while other bracket classes can be used to
implement the full range of security constraints described
in the introduction, including restrictions on parameters,
logging of method calls and constraints based on time,
number of accesses etc. A bracketing class may have
more methods than those available in the view given by
the interface type. These extra methods can be used by
the creator of the capability for monitoring or altering the
bracketing such as to inspect logging information or to
revoke or alter access constraints.

Although the bracket capability mechanism allows

Bracketing
Object of type
‘class’interface

Object

Capability c

Capability cref

arbitrary bracketing classes, in a particular security
environment, we may want to limit the set of classes that
can be used as brackets. While still allowing users to
create more restricted views, we may want to specify
what kind of restriction they can impose. This is possible
since the bracketing is part of the security mechanism. In
fact, since the refine call is itself just a method call to
the persistent object, we can use the mechanism itself to
specify that, for some user, it can only be invoked with
certain values for the class parameter.

3 Opsis – Aims and Architecture

Opsis is a prototype system for constructing distributed
Java applications based on the mechanism of bracket
capabilities. The system consists of middleware for
connecting persistent objects distributed across the
internet and a set of utilities for constructing the
components of an application and specifying the security
constraints.

The two main aims of the system are:

• fine-grained access control through the use of
bracket capabilities as object identifiers

• flexibility and transparency in the mechanisms
used for both remote invocation and persistence

In order to gain access to an object, the object is ‘opened’
using a capability. For example, assuming the interface:

interface Accounts {

 void newAccount(int newKey, String name);

 void deposit(int key, int amount);

 void withdraw(int key, int amount)

 throws insufficientFunds;

 int balance(int key);

 String getName(int key);

 void setInterest(float rate);

 void transfer(int fromKey, int toKey,

 int amount)

 throws insufficientFunds;

}

for the Accounts object described above, the object can
be accessed with:

Accounts acc = (Accounts) cap.open();

int b=acc.balance(12345); // get the balance

 // of account number 12345

where cap is a variable of type Capability.

Each capability is a 128-bit value and consists of a 36-bit
capability-server identifier (CSID) and a 92-bit password.
The CSID identifies a server which knows the location of
the persistent object. The first 4 bits of the CSID specify
the protocol to be used to contact the server. Currently,
only one protocol is supported, with the remaining 32-bits
of the CSID specifying the IP number of the server. The
open operation on a capability leads to a look-up
operation on the server.

The Opsis architecture supports multiple mechanisms for
remote invocation and (orthogonally) multiple
mechanisms for persistence. In all cases, the mechanisms
used for the invocation and the persistence remain
completely transparent to a client. The path of a method
call from a client to a server object can be visualised as in
Fig 3.

Client System

Net

Persistence

Mgmt.

Capability Mgmt.

Communication Mgmt.

Client

Object

Persistent

Object

Server System

Fig. 3: A method call in Opsis

The communication management uses the appropriate
mechanism for passing the method call and parameters to
the remote system and returning a result. It supports
multiple concurrent invocations.

�The capability management on the client side is
responsible for providing the right view of the persistent
object to the client and for appending the capability used
to open the object to each method invocation as an extra
parameter. The capability management on the server side
is responsible for checking that the access proceeds only
as allowed for that capability. Nothing that can be done
on the client system can increase the access rights to the
remote object. The persistence management is
responsible for making the persistent data available and
shared, and presenting it in the form of an object of the
appropriate type.

The mechanisms for remote invocation currently
implemented are:

• Java's RMI

• a web-based CGI mechanism

• a mechanism using 'ssh', the secure shell
protocol

Currently implemented mechanisms for persistence are:

• Java's built-in light-weight persistence (using
inter-process communication to achieve sharing)

• wrapper objects around a ‘Postgres’ database

The (initial) mechanisms to be used for remote invocation
and persistence are specified when an object is created.
This is discussed further in section 5. The mechanism for
remote invocation is provided to the middleware by the
capability server when an object is opened. This is
discussed in more detail in the next section.

4 Capability Servers

In order for a client to access a remote persistent object,
certain information must be made available to it. This
includes the type of the object (ie. its interface), its
location, its name and the mechanism to be used in
remote invocations of the object's methods. All this
information is kept in capability servers rather than in the
capabilities themselves. The capability contains the
location of a server which is guaranteed to hold an up-to-
date copy of the information. For robustness and
efficiency, the information may be held in other servers
as well but these are not guaranteed to be up-to-date.
When an object is created, it is registered with a server
and the location of that server is stored in the top 36-bits
of the capability.

As well as simplifying the capabilities, the advantage of
this indirection is that the information can be changed
without affecting the capabilities themselves and
therefore transparently for the clients. This allows an
object to be moved easily to a new server and/or to be
accessed via a different invocation mechanism. In a
mobile application, for example, an object can be locked,
installed at a new location re-registered with the server
and then unlocked and calls will now be directed to the

new location.

Capability servers are given only the lowest 32-bits of the
capability’s password as an index rather than the whole
92-bits. This is because otherwise, the server would
essentially own a copy of the capability and therefore
have all the associated access rights.

A capability server is itself stored as a persistent object
and access to this object can be controlled just as for any
object in the system. The interface is defined as:

interface CapServer {

 void newObj(int cap,

 String typeName,

 String objName,

 String commMech,

 String location,

 String comment);

 void newCap(int cap,

 int oldcap,

 String view,

 String param,

 String comment);

 void movedObj(int cap,

 String objName,

 String commMech,

 String location);

 String lookup(int cap) throws CapNotFound;

 String getComment(int cap);

 void removeCap(int cap);

}

The newObj method is used to register a new object with
the server while the newCap method registers a new
capability for a known object. The view and param
parameters are explained in section 6. The comment
parameters are used to enter a description of the purpose
of the capability. The method movedObj is used for re-
registering an object which has been moved. The
lookup method is used by the client-side middleware
and returns a single string containing all the information
required for an invocation.

5 Object Creation

Once an object has been created, a capability can be used
to invoke the methods of the object. In any capability-
based system, however, an important question is how the
object can be created in the first place. In the system
described in (Evered, 2000), the author defined a special
purpose mechanism for object creation. This was
unsatisfactory for two reasons: firstly, the code creating a
persistent object took a different form from other
operations and, secondly, there was no way of restricting
the permission to create new objects.

This problem has been solved in Opsis by the
introduction of 'creator objects'. A creator object is
automatically created and registered with a capability
server when Opsis is installed at a location. A capability
for the creator object can then be given to a user to allow

the creation of objects at that location. Bracket capability
access control can be used to restrict how many and what
types of objects a particular user is allowed to create. The
interface of a creator object is defined as:

interface Creator {

 void addType(String typeName,

 String defImpl,

 String defPersMech,

 String defCommMech);

 void deleteType(String typeName);

 Capability create(String typeName,

 String comment);

 Capability create(String typeName,

 String impl,

 String persMech,

 String commMech,

 String comment);

}

An object can either be created with the default
implementation, persistence mechanism and invocation
mechanism for that object type at that location or with
explicitly specified mechanisms. The names for the
mechanisms are the names of Java classes used by the
creator object for setting up the new object. The creator
object registers each new object with a capability server
that is specified at the time the creator object is installed.

The creation of an Accounts object can be achieved by:

(Creator) c = (Creator) creatorCap.open();

Capability objCap = c.create("Accounts",

 "Branch xyz");

6 Administration and Refinement

As well as implementing a 'functional' interface such as
Accounts, every persistent object in Opsis also
implements the interface Secure which defines a set of
administrative operations. This is defined as:

interface Secure {

 void close();

 int lock();

 void unlock();

 void delete();

 long refineCap(String interf,

 String param,

 String comment);

 void deleteCap();

}

A call to the close method is not required but can be
used to indicate that an application has finished using the
object. The lock method prevents further calls to the
object and returns the number of processes still active in
the object. The delete method deletes the entire object
while the deleteCap method removes all rights for the
capability with which the object was opened (and also for
all capabilities derived from that capability).

As described in (Evered, 2002), the parameters to the
refine call are an interface and a class. In Opsis, this is
realised via the String parameter interf. This
assumes the existence of a Java interface type with the
name given in that parameter and a Java class with that
name followed by “Bracket”. So, for example, given the
interface type:

interface Account {

 int balance();

 String getName();

 void transfer(int toKey, int amount)

 throws insufficientFunds;

}

and an appropriate class AccountBracket the
following code creates a new capability which presents
the Accounts object to the user as if it were his/her
individual Account object.

(Secure) acc = (Secure) objCap.open();

Capability accountCap = acc.refine("Account",

 "12345", "Account 12345 at Branch xyz");

The server-side capability management maps the
capability to an instance of the class AccountBracket
and passes the call through this to supply the appropriate
account number for the call to the underlying Accounts
object.

Some bracketing classes may be hand-written but Opsis
contains utilities which allow the automatic generation of
the most common kinds of brackets. So, for example,
given the interface types Accounts and Account, the
class AccountBracket can be generated by using the
utility bracket as:

bracket Account Accounts key=PARAM

 fromKey=PARAM

This means that the key and fromKey parameters
which are required for Accounts but missing in
Account will be given the value passed to the
bracketing object as a parameter in the refine
operation (“12345” in the above example).

7 Example: Secure Electronic Cheques for
E-Commerce

We now give an example of a simple system using Opsis
for security in electronic funds management. At the
centre of the system is an object of the type Accounts
as described above. After creating this object, we have a
capability objCap for unrestricted access.

The first level of security is the logging of all accesses
and access attempts to the object. We can achieve this by
creating a new capability as:

acc = (Secure) objCap.open();

logCap = acc.refine("LoggedAccounts",

 "acclog",

 "Branch xyz (logged)");

where LoggedAccounts is a class for a bracketing
object which records the parameters, time and state of the
relevant account in a file (in this case a file called
acclog) and passes the call on to the Accounts
object. Only copies of the logCap capability and not the
original objCap capability will be further distributed in
the system.

Next we can create a capability for an individual bank
account holder. For account number 12345, this can be
achieved as described in the previous section with:

acc = (Secure) logCap.open();

accountCap = acc.refine("Account", "12345",

 "Account 12345 at Branch xyz");

Finally, the account owner may wish to provide a
restricted access to his/her account so that another
account owner can transfer a certain amount, say $100,
out of the account as a payment. The capability for such
an access is in fact a secure electronic cheque. As well as
fixing the amount, we must ensure that this capability can
only be used once. We can achieve this as:

acc = (Secure) accountCap.open();

chequeCap = acc.refine("Cheque", 100,

 "Payment for your services");

where Cheque is defined as:

interface Cheque {

 void transfer(int toKey)

 throws insufficientFunds;

}

and ChequeBracket is a bracketing object which
ensures that the right amount is being transferred and,
additionally, calls the deleteCap method to ensure that
the cheque cannot be used a second time. The electronic
cheque can be deposited in an account, say account
23456, by the code:

Cheque c = (Cheque) chequeCap.open();

c.transfer(23456);

Clearly, the destination account could also be fixed if
desired, or, by using a bracket such as
MonthlyDebitBracket instead of
ChequeBracket, the same mechanism could be used
to create a capability for regular transfers rather than a
once-off payment.

8 Related Work

As mentioned above, Corba (Mowbray and Zahavi, 1995)
and COM+ (Eddon, 1999) both include the possibility of
a per-method, role-based access control list for limiting
the access of users to objects. In some cases, fixed forms
of rule-based access, such as access at certain times of
day, are supported. These correspond only to simple,
special cases of access control. No direct equivalent of
the logging and parameter restrictions as required for the
above E-commerce example are supported. No direct
equivalent of a restricted view type is supported for
hiding the existence of unallowed methods and
parameters from the users. In both of these middleware
technologies, the use of ACLs instead of capabilities
makes the security mechanism an add-on feature rather
than fundamental and detracts from the security.

Object capabilities have been used in a number of
research systems, most notably the Monads system
(Rosenberg and Abramson, 1985) but these capabilities
require architectural support (or at least a special
operating system kernel) and so are not appropriate for
heterogeneous networks. In a previous project, the author
has developed a capability-based mechanism for
heterogeneous distributed applications (Evered, 2000).
Like the Monads system and the ACL approaches of
Corba and COM, however, this supported only simple
per-method access control.

The concept of ‘bracketing’ for applying access
constraints has been suggested both as a programming
language construct (Keedy et al., 2000) and as a form of
‘design pattern’ (Gamma et al., 1995). The suggested
programming language approach is interesting in
supporting the reuse of the bracketing code but it does not
allow modification of the interface to the underlying
object and, being integrated into the type system of the
language, it is a static mechanism.

One use of the proxy design pattern is as a protection (or
access) proxy. In this case, the interface is identical to the
underlying object. The proxy decides whether the access
can proceed and returns an error if it should not. Simple
per-method access control can be realised by this kind of
protection proxy. A proxy object which maintains a log of
access attempts could be seen as a kind of decorator
pattern (though this is most often seen as a graphical
decoration) since it maintains the original functionality
while enhancing it with a logging and reporting
functionality. Bracketing objects which modify the
interface offered to a client cannot be seen as strict
proxies. They can be seen as special cases of the adapter
pattern but whereas an adapter is usually used to provide
the view the client would like to have of the underlying
object, in these cases the adapter is providing the view the
client is allowed to have.

The concept of providing a user with a restricted view of
persistent data is reminiscent of database systems.
Database views are attribute-oriented and not method-
oriented, however, and do not support the flexible kinds
of access control demonstrated in our example. This is
true even for object-oriented databases (Mishra and Eich,
1994). Brose (1999) describes a ‘view-based’ mechanism

for Corba but this is again simply a kind of language-
based per-method access control. It does not hide the
unallowed methods and does not support views involving
parameter restrictions.

9 Conclusion

The object-oriented access control in contemporary
middleware is inadequate in view of the sensitivity of
data stored on the internet and the growing threat from
hackers and malicious software. These security
mechanisms are not integrated at a fundamental level and
are capable of enforcing only simple kinds of access
control. The access control in a distributed object system
should ideally enforce a strict need-to-know view of the
persistent objects and should support more complex
forms of security restriction including logging of accesses
and restrictions on parameter values.

In this paper we have described the Opsis system, an
architecture for Java applications composed of objects
distributed across the internet. The main feature of the
system is the strict use of bracket capabilities as object
identifiers. Bracket capabilities are a new protection
mechanism for distributed object systems. They associate
a capability for an object with a type which defines a
client's view of that object and with a nesting of
bracketing objects through which the underlying object is
to be accessed. The other important aspect of Opsis is the
flexibility and transparency of the mechanisms used for
remote invocation and for persistence.

The definition of a standard interface Secure for
persistent objects in Opsis allows the use of bracket
capabilities not only for the application-related methods
of an object but also for administrative operations. This
includes the management of which bracketing objects can
be used in a particular security environment and the
control of the creation as well as the use of persistent
objects.

We have described the concept of capability servers.
These are used to hold the information a client needs in
order to access an object using a certain capability,
including its location, the view type for that capability
and the required form of remote invocation. Capability
servers allow the capabilities themselves to be simple
128-bit values and support transparent changes such as
migration of the objects as required by mobile
applications.

Finally, we have demonstrated the power and simplicity
of the system in controlling the access within an example
E-commerce application including the definition of a
form of secure electronic cheque.

References

ANDERSON, M., POSE, R.D., WALLACE, C.S. (1986):
A Password-Capability System, The Computer
Journal, 29,1, pp.1-8.

ATKINSON, M.P., JORDAN, M.J., DAYNES, L.
SPENCE, S. (1996): Design Issues for Persistent Java:
a Type-Safe Object-Oriented, Orthogonally Persistent

System, Proc. 7th Intl. Workshop Persistent Object
Systems, Cape May.

BLAKLEY, B., BLAKLEY, R., SOLEY, R.M. (2000):
CORBA Security: An Introduction to Safe Computing
with Objects, Addison-Wesley.

BROSE, G. (1999): A View-Based Access Control
Model for CORBA, in: Jan Vitek, Christian Jensen
(eds.), Secure Internet Programming: Security Issues
for Mobile and Distributed Objects, LNCS 1603,
Springer.

EDDON, G. (1999): The COM+ Security Model Gets
You Out of the Security Programming Business,
Microsoft Systems Journal, Nov.

EVERED, M. (2000): A Two-Level Architecture for
Semantic Protection of Persistent Distributed Objects,
Proc. Intl. Conf. on Software Methods and Tools,
Wollongong.

EVERED, M. (2001): Type Operators for Role-based
Object Security, WiP, 3rd IFIP/ACM Intl. Conf. on
Distributed Systems Platforms - Middleware,
Heidelberg.

EVERED, M. (2002): Bracket Capabilities for
Distributed Systems Security, Proc. 25th Australasian
Computer Science Conference, Melbourne.

GAMMA, E. ET AL. (1995): Design Patterns, Addison-
Wesley.

GOSLING, J., JOY, B. AND STEELE, G. (1996): The
Java Language Specification, Reading, MA: Addison-
Wesley.

HARRISON, M.A., RUZZO, W.L., ULLMAN, J.D.
(1976): Protection in Operating Systems,
Communications of the ACM, 19, 8.

JOSHI, J.B.D. ET AL. (2001): Security Models for Web-
based Applications, Communications of the ACM, 44,
2.

JONES, A. AND LISKOV, B. (1978): A language
extension for expressing constraints on data access.
Communications of the ACM, 21(5):358-367, May.

KEEDY, J.L. AND VOSSEBERG, K. (1992): Persistent
Protected Modules and Persistent Processes as a Base
for a More Secure Operating System, Proc. 25th
Hawaii International Conference on System Sciences,
IEEE Computer Society Press, S. 747-756.

KEEDY, J.L., ET AL. (2000): Software Reuse in an
Object Oriented Framework: Distinguishing Types
from Implementations and Objects from Attributes,
Proc. Sixth International Conference on Software
Reuse, Vienna.

MISHRA, P. AND EICH, M.H. (1994): Taxonomy of
views in OODBs, Proc. ACM Computer Science
Conference.

MORRISON, R., BROWN, A.L., CARRICK, C. ET AL.
(1989) The Napier Type System, Proc. 3rd Intl.
Workshop on Persistent Object Systems, Newcastle.

MULLENDER, S.J., TANENBAUM, A.S. (1986) The
Design of a Capability-Based Distributed Operating
System, Computer Journal, 29,4, pp.289-299.

MOWBRAY, T.J. & ZAHAVI, R. (1995): The Essential
Corba - Systems Integration Using Distributed Objects,
Wiley, New York.

ROSENBERG, J., ABRAMSON, D.A. (1985): The
MONADS Architecture: Motivation and
Implementation, Proc. First Pan Pacific Computer
Conference, p. 4/10-4/23.

SUN MICROSYSTEMS INC. (2000):. Java Security
Architecture, http://java.sun.com/products/jdk/1.2/docs
/guide/security/spec/security-spec.doc.html

WILKES, M.V., NEEDHAM, R.M. (1979): The
Cambridge CAP Computer and its Operating System,
North Holland.

http://java.sun.com/products/jdk/1.2/docs

