
Access Control for Large Collections

H. M. GLADNEY
IBM Almaden Research Center

Efforts to place vast information resources at the fingertips of each individual in large user
populations must be balanced by commensurate attention to information protection. For
centralized operational systems in controlled environments, external administrative controls
may suffice. For distributed systems with less-structured tasks, more-diversified information,
and a heterogeneous user set, the computing system must administer enterprise-chosen access
control policies. One kind of resource is a digital library that emulates massive collections of
paper and other physical media for clerical, engineering, and cultural applications. This
article considers the security requirements for such libraries and proposes an access control
method that mimics organizational practice by combining a subject tree with ad hoc role
granting that controls privileges for many operations independently, that treats (all but one)
privileged roles (e.g., auditor, security officer) like every other individual authorization, and
that binds access control information to objects indirectly for scaling, flexibility, and reflexive
protection. We sketch a realization and show that it will perform well, generalizes many
deployed proposed access control policies, and permits individual data centers to implement
other models economically and without disruption.

Categories and Subject Descriptors: C.2.4 [Computer-Communication Networks]: Distrib-
uted Systems—distributed applications; distributed databases; D.2.0 [Software Engineer-
ing]: General—protection mechanisms; D.4.6 [Operating Systems]: Security and Protection;
H.2.0 [Database Management]: General; H.2.8 [Database Management]: Database Appli-
cations; H.3.5 [Information Storage and Retrieval]: Online Information Services; H.3.6
[Information Storage and Retrieval]: Library Automation—large text archives

General Terms: Management, Security

Additional Key Words and Phrases: Access control, digital library, document, electronic
library, information security

1. INTRODUCTION

Many projects are striving to make more information readily accessible.
Increased access must be balanced by constraining users to authorized data
[Hoffman and Moran 1986]. Adequate data security can be delivered by
knitting together components that either exist today or are under consider-
ation, except that no extant access control method combines everything

Author’s address: IBM Almaden Research Center, 650 Harry Road, San Jose, CA 95120-6099;
gladney@almaden.ibm.com.
Permission to make digital / hard copy of part or all of this work for personal or classroom use
is granted without fee provided that the copies are not made or distributed for profit or
commercial advantage, the copyright notice, the title of the publication, and its date appear,
and notice is given that copying is by permission of the ACM, Inc. To copy otherwise, to
republish, to post on servers, or to redistribute to lists, requires prior specific permission
and / or a fee.
© 1997 ACM 1046-8188/97/0400–0154 $03.50

ACM Transactions on Information Systems, Vol. 15, No. 2, April 1997, Pages 154–194.

needed. Existing, widely deployed access control tools are based on models
devised 15–20 years ago. These are inflexible, do not provide all the
functionality needed, and do not scale well to the collection sizes and user
populations wanted. The research literature has not yet included attempts
to cover all the requirements of practical systems (e.g., in Sections 3.1 and
4.2 below); in particular, common delegation patterns among office workers
are not fully solved.

One kind of information resource is a digital library to emulate a
document collection on paper and other physical media. (“Digital Library”
is suddenly much discussed [Fox et al. 1994; 1995]; a digital library is a
higher-level abstraction than a database, but might be implemented using
relational or OO databases.) For about six years we have been developing a
document storage subsystem, called DocSS, intended for clerical, engineer-
ing, and university libraries [Gladney 1993]. To make the access control
discussion-specific, we will cast it in the context of this library service; we
believe the approach, referred to as DACM (Document Access Control
Method) below, is suitable for other kinds of data collection.

1.1 Overview

Our objective is to define access control data structures that can scale from
small to very large collections, that permit decentralized administration of
privileges, that can accommodate different rule sets controlling a single
collection, that can model delegation patterns common in various organiza-
tions, that are as close to what users expect as possible (including conform-
ing to some standards), and that permit efficient implementations. We have
found a scheme that will be intelligible to end-users of document services.

Scaling to many objects is managed by having each object point to its
access control rule set represented as another object, just as object-oriented
languages and databases do to represent containment. Scaling to many
users is handled by emulating vertical delegation in organizational hierar-
chies, extended to permit privilege delegation from any to any other
node—up, down, or across the organization tree; this provides a way to
represent special administrative roles like “security officer.” Scaling to
many yes/no privilege decision points is handled by assigning positions in
long bitvectors; permission calculations become boolean operations on
bitvectors. These choices yield the other properties wanted; for instance,
access control objects point to their interpreters, allowing different rule
sets to protect objects within a single collection.

The core of the article is the semiformal model in Section 2, which
includes careful definitions of library, privilege, role, and other key terms.
This is first sketched and then built up from primitive concepts in Sections
2.2–2.5. An objective is that every privilege is traceable as a sequence of
delegations from a custodial user; the preferred model of delegation in the
organizational tree includes the following rules:

—a custodian has all privileges on all objects;

Access Control for Large Collections • 155

ACM Transactions on Information Systems, Vol. 15, No. 2, April 1997.

—creating new subordinate users is itself a privilege whose user can grant
only those privileges he himself has;

—any user can grant a subset of his or her privileges to another user; this
is a role which is only effective while the second user claims to be acting
for the first; the domain of a role is limited to the subtree rooted in the
role grantor node;

—a user’s privileges are the union of static privileges granted during user
creation and the current role privileges;

—a user’s privileges on an object are the intersection of his or her operator
privileges and the privileges granted in the access control object pointed
to by the object;

—ownership of an object is the privilege of binding an access control object;
and

—search for a privilege set is upward in the organizational tree until the
first hit.

This basic construction is implicitly biased toward discretionary access
control; an extension deals with mandatory access control and shows how
additional rule interpreters can be added to a basic implementation.
Section 3 makes the core discussion concrete; because access control data
are held in library objects, not much needs to be added to a digital library
to provide control.

As requirements are carefully described elsewhere, the key ones are
tabulated only very concisely before we plunge into the core description. A
more careful treatment occurs later in the article when it is shown how well
our model accommodates requirements specified by other workers. A dis-
cussion of costs focuses on what users have to learn and do to specify
controls; administrative chores are as little as possible for the granularity
of control wanted for the data at hand. The mechanisms for handling
scaling—particularly that any number of objects can share an access
control rule—create this economy. Economy of execution comes from the
bitvector representation of privileges and because searches are only up-
ward in a tree.

1.2 What Access Control Services Are Needed?

In principle, object access control is simply conformance to a rules array
which records the privileges allowed to each subject for each object. Such
an array is, however, impractical for even a small library because of the
human effort to manage it. We want to replace the array by much smaller
data structures which work well for both small (one user and a few hundred
objects) and large systems (thousands of users and many millions of
objects, which is what customers in insurance, banking, and taxation
operations tell us they need). It must support heterogeneous applications:
what a public service library needs (almost nothing) differs from what
governmental oversight of toxic waste disposal might demand, and both
differ from what an aircraft manufacturer needs.

156 • H. M. Gladney

ACM Transactions on Information Systems, Vol. 15, No. 2, April 1997.

Thus our objective is not to address the kind of requirements statement
that might originate from a single application class, but rather to devise a
broadly applicable model and implementation. The model will be deemed
successful if the differences between applications can be reflected in tables
without modifying tricky programs. In addition to well-known needs [Glad-
ney et al. 1975], a comprehensive scheme must provide the following:

—decentralized administration of resource pools, because for large pools no
single individual or department can know what controls are appropriate
for everything;

—certifiable behavior at resource pool boundaries, so that service offerers
can confidently enter explicit or implicit contracts to protect other
peoples’ data;

—smooth synthesis of mandatory and discretionary access control
[Chokhani 1992], as might be needed by a company with both military
and commercial work;

—support for generally accepted accounting principles, which require that
each person is limited to resources needed to discharge his or her
responsibilities (the principle of least privilege), that sensitive resources
are modifiable only in partial steps by independent users (separation of
authority as used for money management), and that outside auditors can
easily review user actions both retrospectively and prospectively;

—freedom to define what it means to be a specially privileged user, such as
an auditor; an enterprise might require its own definition of the opera-
tions associated with each such role and limit each instance to a limited
data scope;

—differentiation of user roles from individual user instances (e.g., “pay-
ments office manager” instead of “Jane Doe”);

—proxy support, in which a human user acting for another human tempo-
rarily gets partial privileges of the principal;

—fine granularity relative to operations, possibly with every operator
separately controllable; for instance, a library administrator should be
able to keep some users from destroying any objects, even those they
themselves created;

—as little clerical burden as possible, as experience shows that users
bypass controls which are tedious to administer; more precisely, propor-
tional burden in which owners who are content to protect most resources
similarly are not forced to specify control details needed by those wanting
differentiated protection;

—the possibility of high-performance implementation, e.g., adding less
than 5% to server elapsed time, compared to what uncontrolled service
uses; and

—upward compatibility from prior methods such as RACF [IBM 1985],
industry conventions such as OSF-DCE security [OSF 1991], and formal
standards such as POSIX security [ISO 1991].

Access Control for Large Collections • 157

ACM Transactions on Information Systems, Vol. 15, No. 2, April 1997.

1.3 Bounds of the Topic at Hand

This article is about access control; security is a bigger topic. We assume
that improved communication security, identity authentication, operating
system basics, and the like come from a combination of well-known and
emerging techniques. We further assume that certain key programs do
precisely what they are specified to do, no more and no less, and that
system components not discussed, working together with the access control
mechanism, ensure that these key programs are not altered or bypassed
except in approved ways. Our scope and jargon conform to the ISO security
framework [ISO 1992] which articulates the role and limitations of access
control.

We assume the protected objects are well-defined clumps of data; each
clump might have many internal links but has relatively few external links
significant to access control. Relational databases accessed by SQL are
outside this scope because query sets do not partition the information.
Document collections meet such restrictions imperfectly.

We limit ourselves to protection of the contents of widely shared data
servers. A library might be the archive for smaller object-oriented data-
bases, with each OO database acting as an archive cache, but we do not
consider the security implications.

Sensitivity to environmental factors—time of day, workstation identity,
and so on—is well understood. In a network whose data servers might run
different operating systems than clients, the interpretation context for such
factors is different from clients’ contexts. This creates a modeling and
programming language challenge, which we treat elsewhere [Gladney
1994].

A complete solution to distributed authorization management would
allow subject descriptors to be shared in the network so that each subject
would be described only once. Since to treat the topic would encounter
interprocess authentication and protocol problems not yet worked out, we
defer it.

We do not intend the current article to specify programming interfaces,
syntactic details, or much about implementation method. That will be most
evident in the discussion of access control records and the operators that
modify them. It also figures in scant attention to whether expert systems
technology can be used for the interpretation of access control lists (it can)
and in the very limited discussion of protection for persistent data created
by object-oriented languages. We carry the discussion just far enough that
the semantics for library protection and the substitution alternatives for
other applications are easily inferred.

2. A DOCUMENT ACCESS CONTROL MODEL

Security is conformance to proper authorizations for the movement of data
out of a store into other stores—the rest of the world in Figure 1—and for
changes made in this store responsive to instructions originating in other
stores; the distinguished store is sometimes called the protected resource(s).

158 • H. M. Gladney

ACM Transactions on Information Systems, Vol. 15, No. 2, April 1997.

Procedures which define the sole external interface to what is stored—
collectively called the resource manager—are part of the protected resource
and are responsive to commands—bit strings passed from outside. Since
distinct programs can effect the same state change set, we allude to each
equivalent procedure set as an operation which might be subject to access
control.

A library is a protected resource containing data sets called objects,
documents, or items below (depending on the context) and a catalog which
locates and describes each item in one or more records. Thus a library is a
specialized form of protected resource, and DocSS is a specific resource
manager.

Access control is a custodial contract1 governing the relationship of the
store with the rest of the world. Specifically, it has to do with the execution
of operations which deliver information, or which change the state in a way
that potentially affects future information delivery. Access control is said to
be in effect if the store state permits any past action or future permission to
be traced to proper authority and if such permissions faithfully reflect an
articulated policy; in this the output stream is considered part of the state.
The store is said to have integrity if its state conforms to articulated
consistency rules. A subsystem which has integrity and access control is
said to be secure.

A reference monitor is a subsystem which records who may do what, i.e.,
what is authorized, and provides conforming yes/no decisions responsive to
queries by active system components. An access control mechanism neces-
sarily has portions in the resource manager as well as in the reference

1The contract is usually implicit, with the custodian offering “If you store your data with me, I
promise not to lose it and to ensure certain additional protections, viz.,”

Fig. 1. A protected resource and the rest of the world. The black portions describe any object
store; the grey portions are specific to Section 2.3 and to later sections of this article.

Access Control for Large Collections • 159

ACM Transactions on Information Systems, Vol. 15, No. 2, April 1997.

monitor, with the resource manager implementing the constraints defined
by the reference monitor. An ISO access control framework [ISO 1992]
delineates how to partition the functionality. The reference monitor for a
particular store can be embedded within the store itself or be part of
another protected resource; this distinction is unimportant in the current
chapter.

Access control calculations are evaluations of a boolean function B(u, r,
c, o, S, O, E)—the permission function—on the identity u and role r
claimed by a user who asks for execution of some operation c on an object o,
an object directory and object set O, and a subject graph S, all in the
protected resource environment E. (The notation used below is shown in
Table I, in which the domains of privilege sets, procedures, objects, sub-
jects, roles, enumerations, and booleans are respectively denoted by p, P, o,
s, r, e, and b.) Each tabulated row of this function is an access control rule.
In theory, evaluation is trivial. However, tabulating B(. . .) is impractical,
partly because of its size and partly because not all choices of the function
express reasonable policies. Particular choices of B(. . .) will be acceptable
if they allow all desired policies, will be efficient if some form for B(. . .) is
concise, and will help enterprises achieve resource integrity if they embody
policies wanted by every custodian.

2.1 Plan of Action

Everything that follows in this section deals with these problems. The size
is handled by aggregating subjects and, separately, objects into classes; the
constraint to useful policies is handled primarily by limiting interrelation-
ships of subjects. An objective of the overall scheme is easily understood
delegation rules in an implementation, for instance as in Section 3.4.

Before proceeding with the main business, we dispose of a technicality
that would otherwise clutter what follows. Before anything of value is
granted, a user identity check is made, possibly by calling an authentica-
tion server running Kerberos [Kohl 1991]. If this “logon” test succeeds, the
connect operation binds the session to a subject, i.e., creates a 1-to-1
mapping from the user u to some subject s. Thus we can drop the user
denotation u below and use the subject s it binds instead.

A privilege can be access to an operation or omission of some normally
required validity check or audit trail addition. Even though privilege and
permission are synonyms in normal usage, to help the reader distinguish
what is tabulated from what is calculated we use privilege for an express
access grant which is relatively persistent, i.e., a datum which is tabulated
as part of the access control information, and permission for a value
calculated by combining privileges, other resource state elements, and
transitory circumstances. Thus, a privilege is a durable part of the resource
state (in S or O) communicated by a resource manager command, and a
permission is an ephemeral value used more or less directly to control
execution.

The rules for deciding whether any privilege can be granted and for
combining privilege sets to determine whether to permit an action are the

160 • H. M. Gladney

ACM Transactions on Information Systems, Vol. 15, No. 2, April 1997.

same for most privileges. Changing object ownership (Section 2.6) is an
exception, as is the privilege of bypassing tests dependent on object
identifiers and contents, which is needed for maintenance activities such as
data backup.

Table I. Definitions of Symbols Used in Equations and Text and Their Domains

Function or
Object Data Domain Meaning or Intention

C {p} The set of all possible operation execution and other
privileges.

O {o} The set of all library objects, considered together with
all pertinent descriptors of those objects.

si s The ith subject, with sc denoting the custodian.
S {s} The set of all subjects, i.e., S [{siu i} si is defined}.
E {?} The protected resource environment, comprising

everything not explicitly mentioned but available
for decision evaluation.

g(s) s 3 s The parent (group) of the subject s in the static grant
hierarchy, typically associated with the subject’s
manager. The function g is complete, except that
g(sc) is not defined.

f(s) s 3 s The administrator who creates a subject s. The
function f is complete, except that f(sc) is not
defined.

m(s, r) s 3 r 3 s The subject who grants the role r to s. The function m
is partial.

g(s, r) s 3 r 3 s The root of the subject subtree whose owned objects
are granted for a proxy to s for role r. The function
g is partial.

o(o) o 3 s The owner of the object o.
a(o) o 3 o The access control object bound to the object o.
r(o) o 3 P The reference monitor bound to the object o.
d(o) o 3 b A flag which indicates whether the owner is

permitted to change which access controls a(o) and
r(o) are bound to the object o.

R(s) s 3 {p} The privilege set granted a subject s; s may use
operation k if and only if rk [R(s), i.e., C . R(s) [
{rklf(s) granted k to s}.

D(s, s9, s0, r) s 3 s 3 s 3 r 3 {p} The set of privileges that subject s grants to subject s9
for the role called r. The grant is limited to objects
owned by s0 and by s0 subordinates. D is complete,
taking the value {} for arguments for which
ProxyDefine has not been executed. D(s, s9, s0, r)
, C.

P(s, o) s 3 o 3 {p} The permission set of a subject s on an object o. P(s, o)
, C.

P(s, r, o) s 3 r 3 o 3 {p} The permission set of a subject s exercising the role r
on an object o. P(s, r, o) , C.

A(s, e, a) s 3 e 3 o 3 {p} The privilege set for the subject s in the access
control object a; the enumeration e indicates
whether the grant is to the subject itself, to the
group of the subject, to the owner, . . . A(s, e, a) is
partial, i.e., values are undefined for some subjects
in some access control lists. A(s, e, a) , C.

Access Control for Large Collections • 161

ACM Transactions on Information Systems, Vol. 15, No. 2, April 1997.

It is always possible to choose a function B9(. . .) which is insensitive to
objects and an auxiliary function B0(. . .), described below, so that

B~s, r, c, o, S, O, E!

; B9~s, r, c, S, E! ` B0~s, r, c, o, S, O, E! ` B~s, r, c, o, S, O, E!.

(1)

B9(s, r, c, S, E) describes a user’s permission to operations. B0(s, r, c, o,
S, O, E) can be any function which satisfies Eq. (1). Separating B9(s, r, c,
S, E) is useful because whenever it evaluates to FALSE there is no need to
evaluate the other factors on the right; for instance, if a certain user is not
permitted to update anything, there is no need to prevent him or her from
updating any particular object.

It is concise and efficient to handle all operations simultaneously by
working with functions evaluating to permission sets, such as B(s, r, o, S,
O, E) [{B(s, r, c, o, S, O, E)u c [C}. We replace Eq. (1) with the
following:

B~s, r, o, S, O, E!

; B9~s, r, S, E! ù B0~s, r, c, o, S, O, E! ù B~s, r, o, S, O, E) (2)

The rightmost array explodes as the numbers of subjects and objects get
very large. We show how to choose an economical B0(. . .) which makes it
unnecessary to compute the rightmost factor.

To accomplish this, we collect objects and subjects into classes;2 in fact,
collecting subjects into groups is done in many access list schemes and is
essential for POSIX compliance, as this security standard externalizes the
concept of user groups [ISO 1991]. Each access control list is part of
B0(. . .). A tabulation of access control rules would look something like the
following:

This relates objects and subjects to boolean vectors representing privileges.
(We leave out a column needed to express constraints dependent on the

2This is similar to how symmetry is used in physics. Symmetries in a function allow it to be
described more concisely than would otherwise be possible and are also closely related to what
we mean when we say we “understand” some behavior.

162 • H. M. Gladney

ACM Transactions on Information Systems, Vol. 15, No. 2, April 1997.

environment and subject and object attributes [Gladney 1994].) Aggregat-
ing subjects and objects into equivalence sets allows us to reexpress this as
a table with far fewer rows:

Here each first-column entry identifies an access equivalence set—a set of
objects that have the same access control information; the set of rows with
a common first column value is the access control list for the object class
identified. The second column variously identifies the user, the group in
which the user is a member, the owner of the object in question, etc. Which
interpretation is intended is indicated by the value in the third column.
public in the third column means that the privileges tabulated in the
fourth column are for anyone at all.

In some implementations and in external views presented to users for
inspection and editing, it is helpful to treat each access control list as an
attribute of the object identified in the first column, which we then call an
access control object. An access control object can be edited and otherwise
manipulated as other objects.

In summary, access control rules are compactly represented by collecting
them into equivalence sets, and portions are made externally accessible as
portions of ordinary objects; how the rules are represented internally is left
as an implementation choice (but Sections 3.3 and 4.3.2 make suggestions).
A permission function interprets the tabulated information, adding logic
which implements a widely accepted model of delegation.

2.2 Subjects, Roles, and Proxies

A subject is a potential resource user.3 Formally, a subject is a privilege set
for the store’s operation and data resources. Privileges are granted by other
subjects; each subject (except for one) has a parent and may have any

3Terms descriptive of human subjects, such as user, administrator, and auditor, are mapped
by data blocks in computing systems—data blocks which become bound to executing pro-
cesses. Relationships, such as manager of and auditor of, are mapped by cross-references
among these data blocks. Delegation, considered in the abstract, is realized as a directed
graph. Because the mappings are 1-to-1, the exposition can ignore the abstract-to-realization
dichotomy, as is customarily done. However, the reader should keep in mind that every
concept that follows is realized as a data structure whose correctness can be checked.

Access Control for Large Collections • 163

ACM Transactions on Information Systems, Vol. 15, No. 2, April 1997.

number of children, collectively called the group4 of that subject. The
subject graph is a delegation or grant hierarchy; we constrain it to a tree to
avoid ambiguities that might otherwise arise in calculating permissions.5

Rules which we will presently articulate constrain each subject to granting
only privileges which he or she has.

The root of the subject tree, called the custodian, is a surrogate for the
person6 offering storage services and committing to users the integrity and
security of data held. The custodian may be considered either to be acting
as an enterprise agent (the authoritarian view) or to be offering a service
for consideration (the contractual view7). The custodian has unconditional
access to everything in the store, i.e., no access control checks are per-
formed for a user logged on as the custodian, who is therefore analogous to
a UNIX superuser or a SQL database administrator.

Roles are task-oriented relationships which recur within a community;
examples are “is secretary to” and “is auditor for department.” A role is a
set of privileges required to accomplish a related set of tasks and is
represented by a named bitvector. For instance, a store administrator
allows subjects to connect to the store, defines their privileges, and admin-
isters some basic access control information; the custodian grants the
privileges needed to meet these responsibilities to each store administrator,
who is distinguished from other subjects only by having certain privileges
not commonly granted.

Roles are often assumed for limited durations to accomplish well-defined
task sets on circumscribed resources. Since users often find it convenient to
share role designations, their named bitvectors are tabulated by a store
administrator. However, an assumed role’s effective domain must be lim-
ited to resources controlled by the subject who grants the role; for instance,
the manager-secretary relationship may be homogeneous, but each man-
ager can grant resources only from his or her own pool. Thus, a proxy is a
subject’s authorization that another subject may use a specific subset of the
grantor’s privileges.

A role is the exercise of a proxy, limited to the duration of a session; a
user accesses a role by asking for it during logon. Connecting to a store is
establishing an association between a user and a subject and optionally a
role; for the period in which such a binding exists, the user gets the union
of the privileges of the bound subject and role. In line with the principle of
granting users only what they need to do their jobs (Section 1.2), we
restrict each to at most one role at any moment and provide no recursive

4Here the distinction between an individual subject and a group is minimized. The ability to
give privilege by virtue of being a group member is not lost. The structure can model the
relationships among managers and departments.
5Other access control systems work differently. For instance, RACF [IBM 1985] permits user
membership in several groups, but the user must declare which group he or she wants to
connect to at any moment. Certain restricted DACM structures and modes give the same
effect.
6See footnote 3.
7See footnote 1.

164 • H. M. Gladney

ACM Transactions on Information Systems, Vol. 15, No. 2, April 1997.

inheritance of privileges, because we find this sufficient to model the
requirements (Section 4.2).

2.3 Structure of Access Control Information

To articulate the class of functions B0(. . .) that are expressive enough to
satisfy Section 1.2, we define particular structure within the store of Figure
1, doing so for the class of protected resources called libraries. A library
consists of a subject set S, an object set O, a proxy set D which records role
grants from subject to subject, a directory which is the sole place recording
the object location (making it a point of control), an exported history L
which is a chronological sequence of records, and procedures which can be
invoked from outside to update the library and export information. (L
embeds a security log. Since we have nothing novel to say about logging or
audit, L is not referred to again.) Collectively the procedures embed a set C
of decision points which are resolved by permission function calls. An
environment E, a map from identifiers to values, makes available every-
thing else used in access control decisions.

An access control mechanism is part of such a library, consisting of one or
more reference monitors. Each reference monitor consists of part of the
description of subjects S, an object subset A called access control objects, a
role grant array D, a permission function, and procedures to maintain the
subject descriptions. Some reference monitor provides a binary value at
each of the decision points C. Any library action is caused by a user u who
may have claimed a role r; actions are permitted only if, at the time of the
request, u is bound to some member of ^S, D&, i.e., u is “logged on” as some
subject s possibly using some role r.

Permission calculations are evaluations of the set function B(s, r, o, S,
O, E) on the directory, the subject tree, access control objects, the environ-
ment, and the identity s and role r of the subject who asks for execution of
some decision point c [C, i.e., a requested calculation ^s, r, c, o& proceeds if
and only if B(s, r, c, o, S, O, E) evaluates to TRUE. It is convenient to
evaluate B(. . .) all at once for all c [C; the set of privileges B(s, r, o, S, O,
E) available to s on o is the subset of C for which B(. . .) evaluates to TRUE,
i.e., B(s, r, o, S, O, E) [{c uB(s, r, c, o, S, O, E) 5 TRUE}.

Subjects si [S form a tree with a root subject sc representing the
custodian. The model allows us to constrain subjects to be objects, i.e.,
require that S , O. Part of what describes subjects is a role grant
relationship D (see Section 2.4): proxies are a partial function m(s, r) from
subjects and roles onto subjects whose privileges are delegated:

m~s, r! 5 s9

is undefined

if ' ~s9, s, s0, r! } D~s9, s, s0, r! is defined

otherwise (3)

Objects o [O are accessible only via the library directory. They are
aggregated into sets with identical access constraints; the function a(o)

Access Control for Large Collections • 165

ACM Transactions on Information Systems, Vol. 15, No. 2, April 1997.

selects the access control object a [O bound to the object O. An access
control object can describe itself, i.e., a(o)5o is permissible, and a(o) is
partial, i.e., an object need not choose an access control object.

An access control object a contains a tabulation of privileges granted to
various subjects—an access control list. The function A(s, e, a) which
describes all the access control lists in a library is partial, i.e., values are
undefined for some subjects in some access control lists. We partition A(s,
e, a) among access control objects because doing so provides fast access to
the pertinent parts of B0(s, r, o, S, O, E) and because access control objects
are themselves convenient units of ownership. Privileges on objects do not
imply privileges on their access control objects.

2.4 Subjects’ Operation Privileges and Delegations via Roles

The protected object set, O, will be created by normal library operators.
Subjects and relationships among subjects are needed mainly for resource
management and must be created by operators provided just for this
purpose. The following description of constructors for a subject hierarchy
and a role delegation graph leaves out practical but well-known details of
authentication and conveniences unrelated to access control.

Part of each subject descriptor is a definition of the set of operations it is
privileged to use. Each subject is added to the access control information by
a function SubjectDefine: {s} 3 s 3 s 3 p 3 {s} from a subject tree to a
subject tree. Its other arguments denote, respectively, the new subject s, its
parent subject g(s), and a candidate operation privilege set O. The subject
creating s, denoted f(s), must be authorized to use the SubjectDefine
operation; this is what we mean by library administrator.

The privileges granted to s are not necessarily related to those of its
parent g(s) in the subject tree, but are limited to those of the library
administrator f(s). Suppose that s9 5 f(s) is the currently executing
subject, that r9 is the current role of the executing subject, and that m(s9,
r9) is the subject whose proxy is being used by s9. Then SubjectDefine
fails if the parent g(s) of the subject s being created is not in the pair of
trees rooted in s9 and m(s9, r9), i.e., a user can create a new subject only
downward in the subject tree, but this rule applies not only to his or her
own subordinate tree, but also to the subordinate tree of his or her current
proxy grantor. This can be used to enable upward administration of
subjects without granting any other privileges high in the tree. For in-
stance, the owner of the SALES node in Figure 2 could authorize his or her
subordinate BILL to manage the SALES subject tree.

Given a candidate set of privileges Q, the operation privileges granted to
s are defined by

R~s! 5 if~ f~s! ; sc! then ~C ù Q! else ~R~ f~s!! ù Q!, (4)

i.e., the custodian can authorize all operation privileges; any library
administrator can grant only the privileges he or she has. Here it is the
statically defined privilege R(f(s)) that determines R(s), not the calculated

166 • H. M. Gladney

ACM Transactions on Information Systems, Vol. 15, No. 2, April 1997.

(in Eq. (6)) administrator permission P9(f(s), r); an administrator is not
allowed to pass on any proxy powers that might enlarge the privileges of
the new subject beyond what the administrator himself has been granted
directly.

The delegation array D(s, s9, s0, r) records the privileges each subject s9
wants to grant some other subject s and the data domain within which this
grant is to be effective. ProxyDefine: {p} 3 s 3 s 3 s 3 r 3 p 3 {p}
updates a privilege set in D. Its other arguments denote, respectively, the
receiving subject s, the donor subject s9 5 m(s, r), the domain s0 5 g(s, r)
which is a subtree within which the delegation is valid, a name for the role
r being granted, and the candidate privilege set Q. Both g(s, r) and m(s, r)
must exist for this operation to succeed. g(s, r) is provided so that the
scope of delegation, a subset of the object space O, is conveyed. This space
is all objects owned by s9 and descendants of s9, a subordinate subject—
providing the means for a proxy to be limited to a subtree of the tree of the
grantor.

Granting can enlarge the portion of an organizational hierarchy (subtree
of the subject tree) to whose objects the grantee has access; it can include
tree portions that are subordinate to s9 but not already accessible to s. This
permits a custodian to grant administrative privileges to subjects low in
the tree, when these subjects are to administer objects high in the tree. For
instance, a security auditor, JOHN (Figure 2), could receive a proxy to
inspect but not change objects in an entire library even though this
individual, acting for himself, has broad functions only on a more limited
set of objects.

2.5 The Basic Permission Decision

The set of privileges P(s, r, o) available to s and o is the subset of C for
which B(. . .) evaluates to TRUE, i.e., P(s, r, o) [{c ub(s, r, c, o, S, O, E) 5

Fig. 2. Subject graph and delegation. For instance, the ordinary grant might be within the
SALES department, and the proxy grant might be assigned to an internal auditor, JOHN, who
is a member of an audit group temporarily assigned by the sales manager to audit the
machines group.

Access Control for Large Collections • 167

ACM Transactions on Information Systems, Vol. 15, No. 2, April 1997.

TRUE}. Since B(s, r, o, S, O, E) is evaluated in the environment of fixed S,
O, and E, these arguments can be taken as understood, writing explicitly
only what passes across the library interface and evaluating a function P(s,
r, o), defined below.

Permission pc(s, r, o) for subject s with role r to execute operation c on
item o is available only if the subject is permitted to the operation and
separately to the object, i.e., we rewrite Eqs. (1) and (2):

B~s, r, c, o, S, O, E! ; pc~s, r, o! [P~s, r, o! (5)

P~s, r, o! 5 P9~s, r! ù P9~s, r, o!

where P9~s, r! ; B9~s, r, S, E!

and P9~s, r, o! ; B0~s, r, o,S, O, E!

This says that the overall set of permissions is the intersection of this
subject’s operation permissions and his or her object permissions. The
operation permissions are

P9~s, r! 5 R~s! ø ~D~m~s, r!,s, g~s, r!, r! ù R~m~s, r!!, (6)

i.e., s has the union of the privileges granted when he or she was defined to
the library and those granted him or her in the assumed role r granted by
the principal m(s, r). What is inherited from m(s, r) is limited to
privileges that m(s, r) currently has. If a user s grants privileges to a user
s9, the effective grant is no greater than what s has when s9 exploits the
grant—rather than what s had at the time s granted to s9. Thus if the
privilege set of s is curtailed, the grant to s9 is also curtailed when it is next
recalculated. For the case in which either the proxy parent function m(s, r)
or the role domain function g(s, r) does not exist, the delegation array D is
defined to confer no privileges, i.e.,

D~s, s9, s0, r! 5 D~m~s9, r!,s9, s0, r!

5 $ %

if s 5 m~s9, r! & m~s9, r! is defined
& g~s9, r! is defined

otherwise
(7)

In the object-sensitive part P9(s, r, o) of Eq. (5), a subject gets access to
an object by being mentioned in that object’s access control object or by
having a parent, grandparent, . . ., whose group is mentioned, with the
lowest superior node in the delegation graph being the effective one. Let us
consider P9(s, r, o) from the bottom up.

Each access control object a contains a set of triples {^s, e, A(s, e, a)&}
defining the privileges of some set s of subjects. How the value s is to be
interpreted is indicated by the enumeration argument e; this denotes any of
es [“the subject s itself,” ea [“anyone at all,” ep [“the set of subjects
whose parents are the parent of s (the group of s),” eo [“the owner of the

168 • H. M. Gladney

ACM Transactions on Information Systems, Vol. 15, No. 2, April 1997.

object being controlled,” eg [“the group of the owner of the object being
controlled,” and so on.8 What we want is a function that evaluates to all
privileges if s is the custodian sc, to the owner’s privileges if the current
subject is the owner o(o) of the object o in question, to what is mentioned
explicitly for s if ^s, es& is found, and recursively up the group hierarchy
otherwise. An auxiliary function R(s, a, o) on a subject s, an access control
object a, and an object o expresses the desired behavior; if neither s nor an
ancestor of s is mentioned in a, R(s, a, o) evaluates to the empty set, i.e.,
nothing is granted to s.

R~s,a,o! 5 C

5 A~s, eo, a! ø Aall~a!

5 A~s, es, a! ø Aall~a!

5 G~s, a! ø Aall~a!

if s 5 sc

if s Þ sc & s 5 o~o! & A~s, eo, a! is defined

if s Þ sc & s Þ o~o! & A~s, es, a! is defined

otherwise
(8)

where the effect of public access privileges is reflected by

Aall~a! 5 A~ea, a!

5 $ %

if A~ea, a! is defined

otherwise.
(9)

The auxiliary function G(s, a) covers the possibility that s is not explicitly
mentioned in a, but that some ancestor of s is mentioned; it is defined by
the recursion

G~s, a! 5 $ %

5 A~s, ep, a!

5 G~ g~s!, o!

if s 5 sc

if s Þ sc & A~s, ep, a! is defined

otherwise.

(10)

Eqs. (8), (9), and (10) show how to evaluate R(s, a, o), which is the
privilege set that access control object a awards to subject s for any object o
that a happens to protect. The conditions on the right-hand side ensure
that the expression for R(s, a, o) defines a partial function; they become a
trivial case statement in the permission evaluation program. The access
control list entry of any subject explicitly mentioned is selected preferen-
tially over any subject group entry that implies this subject, and among
groups the entry for the lowest one in the hierarchy is the one selected;
these preferences make it possible to define access control lists that deny
privileges selectively within a group. If there is a public privilege entry
A(ea, a), every subject gets at least these privileges.

Now a protects an object o if the catalog entry for o says that a is its
access control object, i.e., if a 5 a(o). Combining this with Eq. (9), we find

8The expressions beyond this point in the article will be kept concise by limiting them to the
first four values of this enumeration; the extension to other values is obvious.

Access Control for Large Collections • 169

ACM Transactions on Information Systems, Vol. 15, No. 2, April 1997.

the permissions on o awarded to s because of the position of s in the subject
tree S to be

P9~s, o! 5 R~s, a~o!, o!. (11)

This value is the direct permissions s has to use o; s also derives permis-
sions by virtue of acting in a role r if the grantor of r, or some parent of the
grantor of r, is mentioned in the access control list a 5 a(o). This
contribution is expressed by

P0~s, r, o! 5 D~m~s, r!, s, g~s, r!, r! ù R~m~s, r!, a~o!, o!

5 $ %

if q~s, r!

otherwise
(12)

in which the first factor on the right evaluates the privilege subset granted
by the delegator m(s, r) on o and where the qualification q(s, r) is

q~s, r! 5 ~m~s, r! is defined! & ~ g~s, r! is defined! &

~ ' ~s9, n [N! } ~s9 5 o~o!! & ~ gn~s9! 5 g~s, r!! .
(13)

The interpretation of the qualification q(s, r) is that permission is awarded
by a proxy only if there is a subject m(s, r) who has granted a proxy, if the
proxy grant defined a subject subtree within which it was valid, and if some
ancestor gn(s9) of the owner s9 5 o(o) is the subject group g(s, r) to which
privileges were granted. N is the set of natural numbers.

Finally, the permission of s on o, ready for substitution in Eq. (5), is

P9~s, r, o! 5 P9~s, o! ø P0~s, r, o!. (14)

Eqs. (5)–(14) express a complete function, so that evaluation order in a
reference monitor is unimportant. These superficially formidable functions
in fact do little more than express ordinary managerial delegation down an
enterprise hierarchy, extended by the temporary proxies, as illustrated in
Figure 2.

2.6 DACM with Mandatory Controls and Enterprise-Chosen Alternatives

Section 2.5 presumes that the single permission function described will
satisfy everyone; in fact, it assumes a discretionary control regime, even
though the distinction between this and what a mandatory control scheme
demands is not mentioned. Some enterprises may want to implement
special policies. Some operating systems implement different models which
their users will want to continue even if they are otherwise induced to
exploit DACM. This is accommodated by allowing any object o to select not
only an access control object a(o), but also a permission function r(o).

170 • H. M. Gladney

ACM Transactions on Information Systems, Vol. 15, No. 2, April 1997.

We therefore take up extensions needed to allow a single resource
manager to hold objects controlled by different rule classes. For some
control rules, only part of what is needed can be implemented within the
reference monitor; further restrictions are needed within the operations of
the resource manager. For instance, mandatory rules typically require that
a secret document be copied only into a document labeled as secret, top
secret, or some higher classification. In addition, mandatory control rules
require [Department of Defense 1985] labeling each item with a hierarchi-
cal status (e.g., “Secret”) and with an administrative domain (e.g., “Depart-
ment of the Navy”) and associating similar tokens with subjects; such
labels are supported (Section 3.3).

The fundamental mandatory access control (MAC) restriction is that
unprivileged subjects should not be able to cause information labeled at
some sensitivity L1 to become accessible to subjects labeled as having L2
permission unless L2 dominates L1 [ISO 1991]. One consequence is that,
under MAC rules, fixing who can do what to each object must be limited to
individuals other than the users of the objects—individuals commonly
called security officers; a discretionary access control (DAC) regime does not
demand such separation of authority. In DACM, this distinction between
MAC and DAC affects how object ownership is handled. Under DAC, an
object owner is understood to be a subject who is authorized to change the
object’s access controls. Under MAC, an object owner is merely the subject
on whose behalf an object is held.

DACM calculates permission to an object using a table and a procedure
bound by the object’s catalog entry—a level of indirection needed to allow
different rules for different objects, aggregation, and custodian-chosen
policies. If the access control object used as part of a MAC rule were to
allow anyone other than a security officer to update it, users could evade
the intention of mandatory control. Thus each object’s catalog record must
indicate whether DAC or MAC applies, and any storage manager operation
which changes ownership or access control bindings must enforce the
indicated rule.

The other aspects of MAC are particular limits on data changes and
disclosures [Bell 1975]—limits which must be implemented in the resource
manager. These include (1) binding security parameters closely to data
objects so that, when objects are copied, the security information becomes
part of the updated object and (2) limiting users to labeling objects into
certain security classifications. Since DACM neither adds to nor alters
such well-known practices, we do not discuss them further, but restrict
ourselves to what must be included in the reference monitor for ownership
and security officer privileges.

To what has already been defined, we add a boolean function d(o) which
indicates whether an object o is subject to mandatory (MAC) or discretion-
ary access control (DAC); this is a function d(o) on the object itself, rather
than part of an access control object. We represent d(o) by a value
tabulated within each object’s primary catalog and do the same for a(o),
which identifies the access control object protecting o, for o(o), which

Access Control for Large Collections • 171

ACM Transactions on Information Systems, Vol. 15, No. 2, April 1997.

identifies the owner of o, and for r(o), which identifies the permission
function to be used to interpret the access control information. Only o’s
owner or a security officer is permitted to change d(o), r(o), a(o), or o(o)
(the owner function). For objects subject to MAC, only a security officer
may change these bindings.

This leads us to reconsider the meaning of ownership, extending the
model slightly to accommodate what we think people expect. Under DAC,
since an object owner can change the access list to give himself or herself
any privilege (effectively limited to operations he or she has been allowed
by a library administrator), we allow everything directly; under MAC, this
shortcut is not permitted. The DAC shortcut (which can be used to enhance
performance) is expressed by replacing Eq. (5) by

P~s, r, o! 5 C

5 P9~s, r! ù P9~s, r, o!

if s 5 o~o! & d~o! 5 TRUE

otherwise.
(15)

Protected objects do not always need access control objects. For instance, an
object which should be equally accessible to everyone can bind a privilege
set and permission function to itself directly. This is actually more useful
than it might seem, because it can be used in conjunction with limiting
which operators each subject may use. This feature enables custodian-
defined fast paths; for instance, it could be used to implement the seman-
tics of UNIX file permission bits.

In summary, DACM behavior depends on whether or not a permission
function and/or an access control object is defined for the object o, as shown
in Table II. The access paths for information used in permission decisions
are collected in Figure 3, which suggests a relationship of DACM to
object-oriented computing models.

2.7 Embedding Access Control in Subsystems

A popular line of thought, exemplified by OSF-DCE [Kumar 1991], empha-
sizes a network of mutually supportive resource managers, each providing
a specialized service to multiple concurrent clients. Figure 1 is redrawn in
Figure 4 to emphasize how such resource managers embed themselves in
networks and interact. Each resource manager avoids reproducing what it
can get from siblings, calling them instead. Each resource manager distrib-
utes itself, hiding whether and how it uses the network from its callers.

Table II. Protection Depends on Existence of Function Portions

/ r(o) r(o)

/ a(o) Unprotected Protected if the catalog record for
o names a “special rule” in r(o)

a(o) ` (r(a(o)) Unprotected Protected using a(o) and r(o)
a(o) ` (r(a(o)) Protected using a(o)

and r(a(o))
Protected using a(o) and r(a(o)),

ignoring r(o)

172 • H. M. Gladney

ACM Transactions on Information Systems, Vol. 15, No. 2, April 1997.

Each resource manager encapsulates a protected resource, providing a
certified approximation to data quality management encompassed in the
ACID (Atomicity, Consistency, Integrity, Durability) properties [Gray and
Reuter 1993].

Fig. 3. Entity-relationship diagram describing access control data structures. An access
control object is a special case of an ordinary object.

Fig. 4. Client-server structure for a protected resource, being one way of providing isolation
demanded by Figure 1.

Access Control for Large Collections • 173

ACM Transactions on Information Systems, Vol. 15, No. 2, April 1997.

Since a library can catalog objects it does not itself hold, the figure
suggests that a DACM implementation could be used as an external
reference monitor for some other protected resource D. For this, a DACM
instance needs access to D’s subject and object descriptions. D must invoke
the reference monitor to create a surrogate object for each controlled
resource, to build access control objects, subject descriptors, and proxy
records, and to inquire whenever a permission is sought.

A DACM-protected library has been built with this structure, using SQL
database and file resource managers as the implementation vehicle. The
client-server separation provides the world/library isolation needed. If
DACM is to be used to protect the resources of an operating system (e.g.,
the file system) rather than the contents of a server subsystem, the
world/library isolation must be provided by executing critical portions of
the resource manager and the reference monitor with hardware protection.
As this is a well-known practice, it merits no further discussion.

3. IMPLEMENTATION WITHIN A DOCUMENT STORAGE SUBSYSTEM

DocSS mimics the simplest aspects of a conventional library, storing and
cataloging objects for the benefit of workstation clients. It controls where
library data are stored and manages distribution over local and wide-area
networks, encapsulating everything needed to implement custodial respon-
sibilities for enterprise data resources.

3.1 A Document Storage Subsystem

The library paradigm splits the world into the domain of the librarian and
the domain of each user. The librarian assumes custodial responsibility for
objects held for users’ benefits, making specific commitments about data
integrity and confidentiality. Access control rules are the articulation of

Fig. 5. Structure of a library service instance. The permission function is called by the
catalog server subroutines. Programs which maintain subject descriptions (SubjectDefine and
ProxyDefine) are primitive operations similar to ItemPartStore.

174 • H. M. Gladney

ACM Transactions on Information Systems, Vol. 15, No. 2, April 1997.

these commitments; since such rules must be protected similarly to the
library contents, we made them part of the library catalog.

In a layered software system (Figure 5), the document storage subsystem
layer avoids modeling, but is part of every access path to library data.
Client-server logic hides communications from other programs. A document
manager realizes a conceptual document and information web model—the
digital analog of a collection of reading materials. Typical document man-
agers—folder managers, computer-aided design tools, software library sys-
tems, and the like—interpret scanned and keyed data to create catalog
entries automatically, manage interrelationships among documents, facili-
tate the most common search methods, and help move information among
workers.

Catalog servers control access to each library, to library operations, and
to each item within a library. For instance, a subject who wants to discard
something needs permission to use the containing library, permission to
use. . . .Discard in that library, and discard permission on the item
selected. No privilege implies any other privilege, e.g., discard permission
does not imply retrieval permission. Library catalog queries are compiled
SQL programs for which access is managed exactly as for items.

A library item is a set of blobs associated for common administration. A
blob is a bit sequence which can represent the content of a page, a picture,
or any other data collection. All blobs in an item get the same protection.
Whenever a library catalog server routine attempts to touch an item, it
calls the permission function and implements its decision about granting or
denying the requested action. As every blob server access is mediated by
the catalog server, blob servers do not need their own access control
service. The parts of an access control implementation, described below, are
as follows:

—one or more permission functions, which are called as subroutines of
ItemPartStore, ItemPartRetrieve, . . ., depicted in Figure 5;

—tables describing subjects and proxies;
—client-server subroutines SubjectDefine and ProxyDefine to maintain

these tables;
—a few fields in each item’s primary catalog entry;
—a single table collecting access control lists; and
—facilities which permit custodians to replace or extend these parts.

3.2 Defining and Binding Subjects and Roles

Access to a library is by means of a ServiceConnect call, which claims a
subject identifier and a role and which is validated by a conventional
identification and authentication process. ServiceConnect returns a Lib-
Session handle which binds the subject and role to subsequent library
service calls.

SubjectDefine: LibSession TableAct SQLuserid Password Sub-
jectID SubjectID PrivilegeList ItemID StoreID ItemID Days allows a

Access Control for Large Collections • 175

ACM Transactions on Information Systems, Vol. 15, No. 2, April 1997.

library administrator to define a new user and his or her privileges, or to
modify them, and to assign subjects to subject-groups, e.g., to reflect an
organizational hierarchy. To the arguments essential for access control, it
adds conveniences such as defaults for obligatory catalog fields for new-
object creation. One of these indicates which access control object is
attached whenever the new subject creates a new object.

ProxyDefine: LibSession TableAct SubjectID SubjectID Privilege-
List SubjectID allows any user to grant a subset of his or her own
privileges to another subject, possibly limiting the effect to objects whose
owners are within a portion of the organizational hierarchy. A role name is
associated with this delegation. For instance, a manager might direct,
“Give Michelle, acting as SECRETARY (the role name), all my read
privileges for data owned by department XYZ.”

3.3 Library Catalog Schema

Only library catalog tuples that describe items, queries, subjects, and
proxies are pertinent for what follows. ITEMS is a view with a single record
for each item in the library; its fields pertinent to access control are

—when prefixed by the network identifier of the library, the key ITEM is
unique worldwide and in eternity;

—CONTAINER indicates which item “contains” the current one; cycles are
prohibited;

—OWNER identifies the subject which controls access to this item; how-
ever, see Section 2.6;

—two bits in ITEMFLAGS indicate how the ACCESSRULE field is to be
interpreted:

00—this is a privilege vector;
01—the field holds the identifier of an access control item;
10—the field identifies a special rule implemented by the reference

monitor;
11—the access control rule is found in the ITEMS record of the CON-

TAINER object.
—two bits in ITEMFLAGS select which reference monitor to use in decid-

ing access, with 00b choosing the reference monitor described in this
article;

—ITEMFLAGS indicates whether the item owner may change the OWNER,
SECURITY, ITEMFLAGS, and/or ACCESSRULE fields or whether this
may be done only by a security officer;

176 • H. M. Gladney

ACM Transactions on Information Systems, Vol. 15, No. 2, April 1997.

—ITEMFLAGS indicates whether the permission calculated for the item
itself is to be ANDed with the permission calculated for its container to
arrive at a final permission; this is recursive up the container hierarchy;
a folder manager can use this to derive document permissions from folder
permissions and to limit access to annotations to a subset of access on the
annotated object (this feature is outside the DACM model—a weakness);

—SECURITY is a data security label, e.g., “IBM Confidential.”
—ACCESSRULE identifies an access control object, a special ADF rule, or

a null.

Access control information in the table describing compiled library queries
is similar to that in ITEMS; since creating a query can expose any part of
the library catalog, this is a privilege which should be granted only to
administrators.

SUBJECTS describes subjects and subject groups:

—SUBJECT identifies whose library privileges are recorded;
—MANAGER identifies the group to which this subject belongs;
—PRIVILEGE defines the operations this subject may use and other

privileges, e.g., to bypass logging required of most subjects;
—SUBJECTDESC identifies an object which describes this subject;
—ACCESSRULE identifies the access control object to be automatically

attached to items this subject creates;
—SECURITY records the security clearance(s) of this subject;
—GRANTOR identifies, for audit purposes, which library administrator

created this subject.

The DELEGATION view defines roles as subsets of subject privileges and
the subjects which may exercise these roles. A principal may grant named
roles to several subjects (e.g., the custodian may authorize several different
subjects to act as auditors), and several principals may grant similarly
named roles to different subordinates (e.g., each manager may delegate to
several secretaries). When a subject claims a role, it is derived unambigu-
ously from a single principal (e.g., “agent for the purchasing manager”).

Access Control for Large Collections • 177

ACM Transactions on Information Systems, Vol. 15, No. 2, April 1997.

—PRINCIPAL identifies the subject whose privileges are partially granted
to the PROXY;

—PROXY identifies the subject who may adopt the role;
—ROLE identifies the role defined in this record;
—PRIVILEGE defines the subset of the principal’s privileges granted to the

proxy;
—PROXYSCOPE defines the scope granted—the resources of a subject

subtree;
—GRANTOR identifies which subject created this role.

A PrivilegeList represents a privilege set, encoded as a bitvector with each
position assigned to a library operator or other privilege. Thus privilege set
union and intersection are calculated by bitwise OR and AND respectively.

3.4 Delegation and Access Control Decisions

The rules for delegation are summarized by the following:

(1) The custodian is permitted every operation on every object. The custo-
dian can grant any privilege to any subject, including bypassing privi-
lege checks.

(2) The privileges of a subject are what is granted as part of admitting him
or her to library service with SubjectDefine.

(3) The permissions of a subject are the union of his or her privileges and
those of the role he or she successfully claims when connecting to the
library.

(4) When a subject grants a role, this is to another specific subject and is
limited to the objects owned by the subjects in a subtree.

(5) What is actually permitted when a role is exercised is a subset of the
privileges of the subject who granted it.

Items are grouped into sets with common access control lists by the
ACCESSRULE field in the ITEMS table; values in this field are the item
identifiers of access control objects. Each access control object is inter-
preted by a permission function which it selects (Section 2.6) by fields in its
catalog entry (Section 3.3) and must conform to rules specified by the
author of this permission function.

For the most part, permission to an item does not depend on other items
(apart from access control objects). However, if an item has a container, and
an ITEMS flag is set, no permission is given unless it is also given on the
container. A folder manager can use this to control access to documents
within folders and to annotations on documents.

An otherwise unrelated resource manager could use a DocSS library
instance as an external reference monitor. To enable DocSS for this, what
needs to be added to what is already defined (Section 3.2) is a Permission-
SetGet: LibSession ItemID 3 PrivilegeList operator which evaluates
permissions.

178 • H. M. Gladney

ACM Transactions on Information Systems, Vol. 15, No. 2, April 1997.

4. DISCUSSION

DACM will be seen to be extremely flexible. The proposed standard
implementation creates a decision logic more by the contents of tables than
by fixed programs. Standard DACM can be extended by modules that
realize different policy classes, with the possibility of using different
policies for portions of a single library. DACM will also be seen to be
efficient, both in new software needed and in execution overhead.

The client-server split, natural to library services, helps achieve protec-
tion. The programs and data that express and enforce library policies are in
storage pools inaccessible to users except by way of library interface
software, and thus themselves easily protected.

4.1 Flexibility, Extensibility, and Custom Reference Monitors

DACM treats subject relationships, subject-to-object relationships, and
operation relationships differently. It provides as much support as possible
for subject relationships, particularly aggregation, presuming that we know
enough about generic delegation rules to represent them in fixed data
structures and programs. Subject-to-object relationships are left to users,
who are provided only means for tabulating them—the collection of access
control lists A(s, e, a)—with aggregation over objects distributing admin-
istration to whomever is best qualified to govern each object set. Object
aggregation is not new [Gladney 1975], but is achieved differently (each
object points at its control object), a small change which confers critical
advantages (e.g., conformance to OO structuring).

In contrast to what it does for subjects, DACM avoids built-in operation
relationships. Such relationships built explicitly or implicitly into other
access control systems have invariably been unwelcome in some applica-
tions; for instance, the frequent assumption that write privilege should
imply read privilege is unsatisfactory for an audit trail. DACM implemen-
tations represent privilege sets by bitvectors easily managed in a resource
manager or higher-level software. An enterprise which wants to enforce
certain relationships can limit which privilege vector patterns are used.

Each stored object can bind both an access control object and a permis-
sion function and can choose its permission function either directly or via
its access control object. This allows us to enable different rules for disjoint
object sets. Thus a single object collection can mix access control policies,
combining old methods with new ones and MAC with DAC, to meet the
needs of different departments in a complex enterprise.

Access control sensitive to object contents is incomplete. Object and
subject attributes stored as part of library catalogs can be handled effi-
ciently. Constraints dependent on interrelationships of current object and
subject with the environment E and arbitrary properties of other objects
and subjects can be expressed as predicates stored in additional library
catalog columns. Because the resource manager, reference monitor, and
application programs are likely to be written by different people at differ-

Access Control for Large Collections • 179

ACM Transactions on Information Systems, Vol. 15, No. 2, April 1997.

ent times, how to represent and interpret such predicates is a new problem
which can be handled by a DACM extension [Gladney 1994].

DACM makes its decisions based solely on library catalog records and
primarily using only object identifiers. Content-sensitive access control
needs a more powerful mechanism than this or any prior work provides.
Needed controls are quite different for different enterprises, for different
kinds of objects, and for different object representations (e.g., how a
SmallTalk system might represent a tax return is different from any likely
SGML representation). One recourse is to have the standard reference
monitor implementation pass to an exit routine everything it receives, but
this would be no more than an evasion for something we do not know how
to handle.

4.2 Analysis of Delegation and Special Requirements

DACM proposes a quite specific delegation method; whether or not it is
sufficiently flexible for its intended domain will not be settled without
extensive peer review and consideration of many real-world situations. In
the meantime, two tests make functional acceptability plausible. We first
show DACM definitions of a few common administrative roles as specific
permissions. We then describe how DACM can implement somebody else’s
statement of delegation needs.

DACM roles emulate job descriptions. Roles carry names like “secretary”
because their instances are similar for all donor/donee pairs; here, “similar”
means “have (approximately) the same privilege vector mask.” Some exam-
ples of common meanings are shown here:

(1) Library administrator: permitted to administer subject definitions and
to bypass checks dependent on object identifiers, in order to execute
database backup and recovery.

(2) Departmental administrator: having the same privileges as a library
administrator, but only for objects owned by a particular department,
e.g., owned by subjects in a subtree of Figure 2.

(3) Auditor: permitted to inspect data owned by a subject subset, but
prevented from changing any data in the inspection domain.

(4) Secretary: permitted to a subset of the privileges of some other single
user.

The specific privileges of each role are likely to differ in different enter-
prises, but be uniform within each enterprise. Sharing privilege vector
templates will be common, with graphic screen interfaces to define tem-
plates (by way of a checklist) and to manage arcs in the delegation graph.
Long bitvectors are unacceptable for end-users; in our implementation
[IBM 1994] most users see only role names.

Moffett [1988] provides an independent opinion of the delegation pat-
terns needed (Table III). He also asks that access rules refer to organiza-
tional positions rather than to people. This is readily modeled by giving
over a subject identifier whenever an office incumbent changes, with the

180 • H. M. Gladney

ACM Transactions on Information Systems, Vol. 15, No. 2, April 1997.

Table III. Compliance to Delegation Needs

Behavior Called for by Moffett How to Model with DACM and DocSS

“give access control administration to
security administrators”

Shortly after a document is created, mark its
catalog record for MAC.

“give an access right if and only if the
recipient occupies a position in the
administrator’s organizational
domain and the resource falls in
the administrator’s resource
domain”; for instance, “give access
control administration of the
marketing department of XYZ Co.
to the security administrator in the
data processing department.”

Have the custodian give a proxy with security
officer privileges to a subordinate of the data
processing manager, naming the marketing
manager node as the top of the tree defining
this proxy’s domain.

“allow particular users to particular
resources”

Use SubjectDefine as defined in Section 2.4.

“giver (must have) authority over the
resources to which he is giving
access (and) authority to give access
to the recipient”

This is the essence of Eqs. (6) and (12).

“designate a security administrator
with no line authority, but with the
authority to administer data on
behalf of line management . . .
without access to the data”

Create a user with the security officer attribute
and permitted to read catalog entries, but not
to retrieve objects or to make any updates
apart from changing which access control
object is bound to objects, limiting this security
officer to a departmental domain.

“distinguish among ownership (total
control), grant-right (permission to
give access right to a third party),
and access-right to perform a
specific operation on a particular
resource instance”

Section 2.6 defines what is meant by ownership
under MAC and DAC rules; access-right is
permission to an ordinary object; grant-right is
permission to update an access control object.

“a manager should be able to specify
the people under his or her control
who form an organizational domain
and grant access control authority
over this domain to a security
administrator”

Have a library administrator give the
departmental manager a proxy, limited to the
domain of his department and containing the
SubjectDefine privilege.

“(a mandatory policy is that) only
specified operations (transactions)
can be invoked on authorized
resources”

The essence of this is that subjects should be
restricted to domains and be restricted to
certain operations; both are supported.

Moffett implicitly makes use of the
common practice that resource
domains are realized by a
hierarchical file directory which
parallels the organizational
structure.

Use the DocSS container relationship to create
a structure isomorphic to the subject graph, or
alternatively use the owner field, with some
owners being groups.

“A library custodian should be able to
control access as a function of
document type. For example, (s)he
should be able to limit the creation
of a class of items to a particular
department in an enterprise.”

With an object-oriented resource manager, this
can be achieved by controlling the class object;
for other resources, it requires extensions
[Gladney 1994].

Access Control for Large Collections • 181

ACM Transactions on Information Systems, Vol. 15, No. 2, April 1997.

simple flourish of a password-change ceremony. In this, we take Moffett
literally—that there are no privileges granted to individuals in their own
right, since they are allowed to use information only as enterprise agents.
If, instead of this, subjects are to draw on resources both in their own
rights and as enterprise agents, an extra level of indirection must be added
to how a subject is bound to a library session.

Another needs analysis appears in an unpublished specification prepared
by a Swiss bank in 1988; from this we extract and answer points not yet
addressed in this section (see Table IV).

4.3 What Does DACM Cost?

In order of decreasing importance, we consider the cost in user time to
exploit DACM, the overhead DACM adds to a storage subsystem without
access control, and the development cost. (The cost of implementation is a
vendor’s issue only.)

Ordinary computer users mostly become aware of security machinery
indirectly. They are commonly aware of access control because they have to
understand it and to do something to take advantage of it. We must
demonstrate that the DACM model can easily be taught to end-users, that
managing controls requires a modest effort and can be delegated to the
users who best know what protection each resource pool deserves, and that
DACM imposes next to no new database administrator duties.

Run-time overhead and responsiveness are more important for clerical
applications (such as handling tax returns and welfare paperwork) than for
engineering and knowledge worker applications. Some proposed digital
library applications require 10,000 object accesses/hour or more and may
require 100,000 evaluations of Eq. (14) to achieve that; banking applica-
tions may require 103 this pace.

4.3.1 Economy of Administration. How easy end-users find DACM will,
of course, depend on the quality of screen interfaces, including how well
they display the subject graph. That is outside the scope of this article,
which limits itself to the external effect of the underlying semantics and
recommended implementation. We note the following:

—library administration can be as centralized or decentralized as is
wanted;

—each user community and each individual user can choose as little or as
much control differentiation as is wanted; access control objects are
readily attached to objects and reflect subject groupings which parallel
typical organizations;

—delegation, both hierarchical and proxy/role, mimics patterns familiar to
users; access control lists are understood by many users and easily
explained to others;

—access control data are managed similarly to other library data; applica-
tion programmers need to understand only three new operations;

182 • H. M. Gladney

ACM Transactions on Information Systems, Vol. 15, No. 2, April 1997.

Table IV. Compliance to a Banker’s Needs

Behavior Wanted by Swiss Bank
How to Model with DACM and

DocSS

Document Ownership in the Library:
“authorization . . . must dynamically react
to . . . corporate organization changes. . . .
(permit) an end-user to create, archive,
and retrieve protocols of his or her
branch, but not on a division level or for
other branches . . .”

Changes are either SQL database
updates to ITEM table fields or
updates of access control
objects. The kind of delegation
called for can be represented by
DACM structures.

Different Types of End-Users: “to let
access to shared corporate documents
(from outside), e.g., from foreign branches
or customers, (might require) . . . both
technical checks (e.g., network identity of
request originator) and policy or legal
checks (e.g., data import/export
legislation) . . .”

The checks called for are neither
addressed nor precluded by
DACM. They are likely to
require extensions of DocSS
along anticipated lines
[Gladney 1994].

Authorization Checking: “authorization
of deputies is changed to that of the
delegating end-user for the duration of
the delegated task. This change of
authorization is limited to the documents
associated with the notification.”

This requires some elaboration of
the access control objects and
permission function discussed
and tight time-of-change to
time-of-use constraints.

Delegating the Delegation: “if permitted
by the original delegating end-user,
further delegation to another end-user
should be allowed. If so, the original
delegating end-user should be informed
about this if requested.”

DACM provides this for
hierarchical delegation, but
precludes propagation of a
proxy delegation because this
feature is not known to be safe.

Authorization Checking Algorithm: “. . .
deny document access if no match occurs
between the document properties (or the
properties of its group) associated with a
qualifying document and the user
properties and his or her workplace(s)
properties . . .”

With added attributes in the
SUBJECTS table (Section 3.3)
and possibly other library
catalog tables, this is possible
with proposed DACM
extensions [Gladney 1994].

Deputy Authorization for Private
Drawer: “protect ‘strictly personal’
documents.”

It is not clear that the strictest
interpretation of this is either
possible or, in fact, appropriate
in a corporate database.

Exclude Lists: support “ ‘exclude lists’ . . .
in which any document which matches
. . . any of the properties of the exclude
lists is subject to special treatment.
(There exists a need for a very fast
interrupt mechanism to immediately
overrule all existing access authorizations
granted.) . . . It is not feasible to mark all
the involved documents, for two reasons:
volumes (i.e., time to find out) in the
library and—more important—more
documents of this type may continue to
flow into the corporation or are generated
in the business processes. . . .”

This is neither provided nor
precluded by DACM as defined.

Access Control for Large Collections • 183

ACM Transactions on Information Systems, Vol. 15, No. 2, April 1997.

—a library service can define any number of distinct privileges and can
leave enforcing implied relationships to higher-level software; people
readily understand boolean vectors, and commonly used patterns can be
provided as named templates;

—changing an access control list is similar to any other document-editing
task;

—administrators can arrange that most users get access controls attached
automatically to the objects they create and can leave other administra-
tion to technicians.

—users can readily determine why any particular action was or will be
denied or allowed; since delegation patterns are explicit (Figure 3),
audits can be effected with simple utility programs acting on the security
log L;

—in our DocSS-embedded implementation, no new computer operation or
database administration tasks are imposed by DACM. Neither new

Table IV—continued

Behavior Wanted by Swiss Bank
How to Model with DACM and

DocSS

Differentiation in Staple Management
Authority: “ ‘staple’ and ‘unstaple’ must
be separately authorizable, i.e., they must
be assignable to different end-users,
because end-users with the authority to
add (staple) commentary texts to
documents may very well not be
authorized to remove and delete
(unstaple) commentary texts from
documents.”

Presuming that the resource
manager defines staple and
unstaple operations, they can be
separately controlled. The
DocSS LinkItem operation and
LINKS table [Gladney 1993]
could be used to implement
staple support.

Limit Users by Data Type: limit the
creation of a class of items to a particular
department in an enterprise, or more
generally, limit a user’s access as a
function of document attributes.

This is supported in the product
implementation of DocSS [IBM
1994].

Redaction and Differential Control for
Annotations: force placing an opaque
mask over portions of a page when it is
displayed, to provide a measure of
confidentiality with regard to the
underlying information. Control who can
annotate an object.

These needs are not met by what
is described in this article.

Changing Rules: conditions/policies for
access control may change over time, but
such changes must not lead to changes in
the contents of stored objects or in their
catalog entries (e.g., by reclassification).

This is similar to unanswered
questions about versions in
object-oriented databases: what
to do about old instances when
methods in the underlying class
definition change. It has been
addressed neither in this article
nor anywhere we know.

184 • H. M. Gladney

ACM Transactions on Information Systems, Vol. 15, No. 2, April 1997.

databases, nor new backup and recovery tasks, nor additional manuals
are needed.

In summary, the DACM model mimics conventional office patterns so
closely that external interfaces and jargon can readily be designed for
computer novices; users can choose different behavior for different circum-
stances and can change specific rules whenever they want without unex-
pected side effects; and access management is so similar to other operations
that it imposes few extra administrative chores.

4.3.2 Economy of Execution. Evaluation of the access decision (B(s, r,
c, o, S, O, E) in Section 2.5) is almost trivial. Equations (11) and (12) each
express a short walk from a tree branch toward its root; the rest is merely
some existence checks and boolean vector arithmetic. The cost of locating
access control information is negligible because the root linkage is in each
object’s main catalog record. The potential performance degradation is the
I/O overhead required to fetch access lists.

There follows a plausibility argument that a DACM implementation can
make execution overhead small in all practical circumstances and imper-
ceptible in many interesting applications. Its essence is that DACM data
structures will always be small and heavily reused so that caching is
feasible and effective. This will be the case because the size and number of
access control lists will be determined by the human time needed to create
them; DACM helps users by minimizing redundancy in these data.

—Each user’s operation privileges are fetched as part of library session
creation and held for the duration of the session; they are checked before
accessing objects, saving time in the case of failed checks and costing
next to nothing otherwise.

—At the option of the library custodian, any subject is permitted without
further check any operation he or she has on objects he or she owns.

—Many objects will be protected by generic rules, e.g., in a public library,
every object will have read privileges for most people and update privi-
leges only for librarians. In such a library, fewer than 10 access control
objects will describe the protection pattern for most of the collection.

—The worst case would be an application in which every user created his or
her own access control lists. We believe that most users will create fewer
than 10 lists with fewer than 10 subjects or groups in each, i.e., a large
access control object collection will comprise 100 3 Nu table entries for
Nu users, using less than 1MB for 1000 users.

Caching will be very effective, particularly caching of evaluated permis-
sions [Gladney 1994] which has been implemented in an extension to the
user description block in each library session [IBM 1994]. We find that
retrieving the access control list for the first item in an access equivalence
set contributes 10–15% to the library server delay to retrieve item catalog
information. Within a library session, subsequent access to equivalence set
members imposes no perceptible overhead.

Access Control for Large Collections • 185

ACM Transactions on Information Systems, Vol. 15, No. 2, April 1997.

4.3.3 Economy of Implementation. The DocSS framework can be used
to create a different kind of library by changing catalog schema and a few
subroutines. Implementing DACM this way costs us less than 7000 lines of
C program and a few SQL table additions. Everything else needed already
existed in an earlier version of the library.

This implementation runs on OS/MVS under the CICS transaction man-
agement subsystem and on OS/2. Porting to UNIX is under way; the cost of
porting has been found to be imperceptible as DACM is less than 10% of
the library catalog server and has no I/O interfaces apart from ANSI-
standard SQL calls.

4.4 Prior Work and Future Possibilities

As far as we know, no prior practical implementations target the kind of
information resources and scales some customers are requesting—108

objects and 104 users for a library with 104 object accesses per hour. (The
largest current application still has under 106 objects; library size is limited
by maximal relational DB size, but we do not know what will limit practical
size.) Little fundamentally new work has affected products since the more
popular access control schemes were devised over a decade ago. Those
which are widely deployed on IBM machinery, or likely to be widely
deployed—RACF, built-in SQL access control, AS/400 object-oriented con-
trols, and the POSIX and DCE evolution of UNIX file controls—are
implemented so that extraction for broader contexts would be impractical.
What can be learned from these subsystems is not significantly extended by
products in other environments. None of these tools has been prepared to
bridge from commercial security practices to military ones.

It is nevertheless instructive to consider the semantics of several prior
schemes relative to the problem at hand, not only to answer “Why not just
extend scheme XYZ?”, but also to show it plausible that DACM coverage
could be broad.

4.4.1 Access Control for File Systems. RACF [Gladney et al. 1975] is the
earliest commercially successful and surviving tool based on access control
lists. The access control list for a protected object is in a special catalog and
is found via the data set name; object grouping is accomplished by wild-
cards in the names which bind access control lists. This name orientation
apparently has unfortunate consequences; the behavior under copying and
moving objects can be unexpected by users. Specifically, we have been told
by IBM customers that the generic data set profile scheme implemented by
wildcards confuses users and has unexpected effects. For instance, suppose
the generic profile ABC.DE*.TEXT was put into effect by one user and that
another, without checking, puts into effect a profile named
ABC.DEF*.TEXT and denying access to the first user; the first user is
likely to be surprised and annoyed when jobs which previously ran are
suddenly rejected as violating security. While DACM could emulate RACF,
we deem it undesirable to carry forward its name orientation.

186 • H. M. Gladney

ACM Transactions on Information Systems, Vol. 15, No. 2, April 1997.

OS/400 file access control is different: controls are bound to objects rather
than to object names. Each object and each subject have associated tokens
used as tickets [Saltzer and Schroeder 1975]; the access decision is made by
comparing tokens, looking for matches. (This rule is somewhat different in
mandatory control systems, which require [Bell and Padulo 1975] that
subjects’ organizational domains contain objects’ domains and that sub-
jects’ authorization levels exceed document sensitivity levels.) When an
object is copied or moved, its tickets accompany it—a much more desirable
behavior than RACF provides. We intend to take up such ticket-based
control in the future.

POSIX and OSF-DCE access control directions call for [ISO 1991] modest
extensions of UNIX file permission bits, to which they add control lists
based on users and groups, without nesting of groups. Aggregation into
access equivalence sets is limited to the aggregation into directories. They
support neither user-to-user delegation nor fine-grained control of adminis-
trative privileges.

POSIX edicts only the traditional read/write/execute permissions, but
permits an implementation any number of other control bits. The commen-
tary in the draft standard discloses uneasy compromises to maintain
compatibility with old systems, e.g., a difficult-to-understand purpose and
semantics for ACL_MASK_OBJ entries [ISO 1991]. We find “the expecta-
tion that POSIX conforming systems will wish to extend the functionality
defined in this standard to meet particular, specialized needs. For these
reasons, flexibility in the POSIX_MAC requirements while still conforming
. . . is an important objective” [ISO 1991]. This leaves enough freedom to
permit vendors to make mutually incompatible extensions.

The obligatory part of POSIX is a subset of DACM, i.e., the contents and
bindings of DACM access lists can be chosen to conform to a minimal
implementation. Alternatively, any DACM data structure without proxy/
role exploitation conforms to the more general POSIX definition.

4.4.2 Access Control in Relational Databases. SQL access control [Grif-
fiths and Wade 1976] does not seem extensible to controlling documents
and similar objects because it is deliberately constrained to conform to the
relational model. Implementations are integrated into database manage-
ment systems to an extent that reuse is practical only by superposing a new
layer of software, more or less as DACM does.

One aspect of SQL access control needing discussion is how users
propagate authority. The SQL rule is much simpler than the DACM rule:
the owner of an object can grant to other subjects not only the basic
relational operations but also the privilege of granting any received permis-
sion to further subjects. However, access revocation seems to present
problems [Fagin 1978], and the delegation patterns described in Section 4.2
are not modeled. It has been carefully considered [Gagliardi et al. 1989]
relative to GRANT with GRANT support. One objective has been to
represent the delegation graph relationally with only additive propagation
(no denial of a privilege). Allowing only the sole owner of an object to grant

Access Control for Large Collections • 187

ACM Transactions on Information Systems, Vol. 15, No. 2, April 1997.

privilege is easy to control but too restrictive. The alternative of allowing
each grantee to propagate privileges received causes owners to lose control
so that they cannot be held responsible for enterprise resources. To solve
that, Leiss [1983] proposed to bound privilege propagation horizontally and
vertically.

Fagin [1978] proposed that revocation of a grant should leave the DB in a
state equivalent to the one in which the grant was never made; this
requires a grant timestamp record because a revoked subject might have
received the privilege from different sources and granted it further on. If he
or she granted the privilege before receiving it from any other source, then
the grantee should be revoked, and only in this case. This leads to
situations in which the revoker needs to be fully aware of side effects,
depending on definitions entered by other users. A variation [Gagliardi et
al. 1989] lets a revokee’s grant persist if he or she received the privilege
from at least one other source. This risks grant cycles in which the source
of privilege becomes obscure. DACM can thus not span all delegation
policies and avoids some of the pitfalls by narrower rules.

4.4.3 Access Control in Object-Oriented Databases. “Object” in the cur-
rent article is a primitive concept, being a set of bitstrings associated with
a single identifier. Sophisticated object models are represented by several
database implementations, but recent reports [Butterworth et al. 1991]
hardly mention access control.

DACM structure follows object-oriented practice in that access control
information is bound to an object by having the object point to an access
control object and by having the access control object point to its interpre-
tation method. We believe this makes DACM applicable along the following
lines:

—one or more classes would define access control information management;
an instance of such a class would be what we have called an access
control object;

—any object needing protection would bind an access control object as an
attribute, by calling a polymorphic ObjectBindAccessInformation opera-
tor during its creation; such a binding would persist until explicitly
changed;

—the object would deny sensitive actions until a subject and pertinent
environmental objects were bound with an ObjectGetCurrentUser opera-
tion invoked in an ObjectOpen method; this binding would last only for
the current user-database connection;

—an access check would be a message passing the current subject and an
integer to the associated access control object; such messages would be
issued by the protected object’s sensitive methods, i.e., implemented
conventionally as part of the class definition of the protected object;

—the integer mentioned would select a PrivilegeList position (Sections 2.1
and 3.3), i.e., the meaning of PrivilegeList slots would depend on the
applicable object class.

188 • H. M. Gladney

ACM Transactions on Information Systems, Vol. 15, No. 2, April 1997.

The author of every class would define its controls, with the same flexibility
and responsibility for access control as he or she has for any other part of
the class definition. Whether or not such an approach could be fleshed out
to a complete and coherent solution is yet to be examined.

Rabitti [Rabitti et al. 1991] has started to address object-oriented autho-
rization by proposing a scheme (called RACM below) which propagates
implicit authorizations along class- and instance-nesting hierarchies. The
objective is to make it “unnecessary to store all authorizations explicitly;
the authorization mechanism can compute authorizations from a minimal
set of explicitly stored authorizations . . .” Propagation forces distinctions
between strong and weak authorizations (the weak ones can be overridden)
and between unstated and negative authorizations—distinctions unneeded
in other access control schemes. Because it exploits class and object
hierarchies, RACM is currently limited to object-oriented systems; in
contrast, DACM does not assume interobject relationships.

Comparing these two approaches raises interesting questions. For in-
stance, RACM Setof-X-Instances objects hold authorizations for all X
instances except those holding overriding specifications; however for a class
like memorandum it is unlikely that a majority of instances will share a
single authorization list, i.e., it is doubtful that RACM offers space
economy over DACM. Rabitti makes clear how class authorizations might
relate to instance authorizations for engineering databases, in which the
individual users who define classes commonly work in some proximity to
those who exploit the classes, but does not touch on what seems more likely
for massive clerical applications, viz., that class authors have no direct
communication with end-users, and end-users manipulate only instances,
not class objects.

Possibly RACM and DACM ideas can be combined for OO databases, but
doing so is beyond the scope of the current article. However, it seems
plausible that DACM can be used for object-oriented databases with
implementation following the usual style of object-oriented programming.

4.4.4 Other Kinds of Delegation and Composite Subjects. The delegation
scheme described does not show how to control a process working for some
user other than the one who started it and accessing resources authorized
to the former user, e.g., a server commanded to print named contents of a
database. This problem was not addressed because it did not appear among
the topics raised by our users and because the DocSS design allows a
secure channel (based on cryptographic protocols [Janson 1992] for third-
party authentication and digital signature certification) from each library
client to the library catalog server. (In our digital-library work, such a
secure channel has neither been cost-justified nor implemented, so in fact
end-users and data custodians must assume that the library client code has
not been tampered with; no one has raised this as a practical concern for
the current applications and user sets.)

Delegation in DACM is from user to user and relatively static. Abadi
[Abadi et al. 1993] has recently analyzed delegation formally, concentrating

Access Control for Large Collections • 189

ACM Transactions on Information Systems, Vol. 15, No. 2, April 1997.

on user-to-network-node delegation and node-to-node delegation, pointing
out that the meaning of delegation results from the combination of the
contents of access control lists and the behavior of delegators and delegates
and concluding that the meaning of delegation is a matter of policy or
convention. In general, delegation can be expressed as subject composition
and becomes computationally complex. In this context, delegation in what
we term the standard DACM model is a particular policy which is interest-
ing because it captures common business needs efficiently both from a user
perspective and for computation.

Starting with Karger [1985], the topic of delegation has received careful
attention [Erdos and Pato 1993]. Although an authorization management
system pretending completeness must embody this, we can defer doing so
until we extend beyond user-to-user delegation with secure channels from
users to trusted servers.

4.5 What Makes the DACM Design Economical and Flexible?

DACM combines independent simple measures, applying four well-known
design principles: let data structures follow the users’ external world
model; put rules into tables rather than into procedures; use recursion,
with self-reference for termination; add a level of indirection whenever
information is too tightly bound.

For a distributed-resource manager it defines the database and proce-
dure kernel for the authorization component of a protection system. From
the most specialized and functionally complete level to the most general
framework, it consists of the following:

—embedded DACM to be part of and protect a digital library service;
—standard DACM, with tables and a permission function which satisfy a

wide variety of commercial and some military requirements; the basic
version depends only on subject and object identifiers; an extended
version will be sensitive to subject, object, and environmental attributes;

—structure to replace the standard reference monitor with custom rules
which can ignore, use, or extend the standard subject and object tables;
distinct reference monitors can coexist, even within and applied to a
single data collection;

—DocSS infrastructure to provide all the linkages needed to employ the
former components in remote authorization servers.

To understand the essential structure, scaling properties, and extensibility
of standard DACM, the reader is encouraged to focus on the object
relationships depicted in Figure 3 and the partitioning that allows distrib-
uted administration without loss of accountability. Economy comes from
the following elements:

—permissions are unions of static privileges and role privileges; operation
privileges are granted down a subject tree, with any grant being a subset
of the grantor’s privileges at the time of grant; proxy privileges may be

190 • H. M. Gladney

ACM Transactions on Information Systems, Vol. 15, No. 2, April 1997.

granted across the subject tree, with such a grant being a subset of the
grantor’s privileges at the time when the role is claimed;

—the delegation tree is rooted in a custodian, who has all privileges; there
is no distinction between users and groups;

—administrative operations, such as subject creation, are ordinary library
operations; access control information is controlled and administered as
other information;

—a cumulative effect of these three measures is identical semantics for all
kinds of global administrators, departmental administrators, and indi-
vidual delegations;

—grouping of objects, subjects, and operations is by table entries rather
than by code or by isomorphism with operating system structure like
UNIX file directories;

—fields in each object select its access control object and its permission
function; the syntax and interpretation of access control information are
fixed by the author of the handling permission function; and

—privileges are represented as bitvectors, with interpretation by the
service routines of the resource manager for the object(s) protected.

5. CONCLUSIONS

The users of almost every computer network want access to more informa-
tion. Broad access to huge collections must be tempered by prudent
controls. The interesting information services have diverse applications
and users ranging from clerks with routine tasks to professional staff with
wide-ranging needs; authorization services must have unprecedented flexi-
bility. Asset administration must be distributed, even for individual collec-
tions, as close to automatic as possible and comprehensible and convenient
for ordinary users.

We have described a scheme for digital libraries. DACM complements
other essential protection tools and comes closer to meeting known require-
ments (Section 1.2) than prior work; we have identified shortfalls explicitly
and are optimistic that upward-compatible extensions will solve them. The
other tools needed—communication security, authentication of process
identities, and basic storage and operating system measures—will come
from a combination of well-known and emerging techniques. DACM imple-
mentations can readily comply with all pertinent standards and can
emulate prior methods. The scheme for privilege delegation is novel, and
the ability to mix different control models within a single protected
resource is unique.

DACM scales well, allowing as little or as much control differentiation as
is wanted, up to the ridiculous extreme of indicating which of several
hundred privileges each of many thousand users has on each of many
million objects. Librarians with simple requirements can specify them
quickly, possibly without consulting with end-users. Users can mix fine
differentiation for critical resources with uniform controls for most of a

Access Control for Large Collections • 191

ACM Transactions on Information Systems, Vol. 15, No. 2, April 1997.

collection. Lightly protected resources do not suffer any performance or
administrative burden because sensitive resources happen to exist. At the
low extreme, the sole user and custodian of a private library needs to
specify nothing and will experience no perceptible DACM overhead.

The abstract problem solved is finding symmetries in a permission
function B(s, r, c, o, S, O, E) to allow its concise expression without losing
any desired distinctions. We teach how to represent important differences
among subjects, objects, operations, and relationships for economical de-
scription, storage, and calculation of B(s, r, c, o, S, O, E).

A DACM subset is implemented in the library portion of a distributed
image/document service [IBM 1994]. As no affordable experiment can test
and demonstrate everything claimed, we must wait for user communities
and document collections to grow sufficiently to validate complete achieve-
ment of our scale, usability, and performance objectives.

Massive data collections are not only extremely valuable assets, but also
at risk from deliberate and accidental misuses; they will present tempting
targets. We have no wish to exaggerate the importance of computer crime.
However, whatever one estimates the risks to be, it seems prudent and
socially positive to minimize temptation by raising barriers, provided that
these do not impede legitimate access and are not a nuisance to administer.
We believe that DACM improves safety without being obtrusive.

ACKNOWLEDGMENTS

The DACM design would not have been possible without correspondence
and conversations with Charlie Cree, Rene Furegati, Paul Hudecek, Stan
Kurzban, Anne Lescher, Marcel Schlatter, Curt Symes, Adrian Walker, and
Eldon Worley. That these communications occurred at widely separated
intervals over six years has not made them less effective.

The implementation embedded within DocSS was started by Tom Bur-
ket, John DiClemente, and Mike Vitale with the support and encourage-
ment of Ken Fisher and Karl Schubert. They contributed to the practical
design, together with Arjun Mendhiratta and Kevin McBride, who also
built the latest version and provided information about it for this article.

REFERENCES

ABADI, M., BURROWS, M., LAMPSON, B., AND PLOTKIN, G. 1993. A calculus for access control in
distributed systems. ACM Trans. Program. Lang. Syst. 15, 4, 706–734.

BELL, D. E. AND LAPADULA, L. J. 1975. Secure computer system: Unified exposition and
multics interpretation. MIRTRE Corp., Bedford, Mass. Also available as NTIS AD-A023588.
National Technical Information Service, Springfield, Va. (1976).

BUTTERWORTH, P., OTIS, A., AND STEIN, J. 1991. The GemStone object database management
system. Commun. ACM 34, 10 (Oct.), 50–63.

CHOKHANI, S. 1992. Trusted products evaluation. Commun. ACM 35, 7 (July), 64–76.
CLARK, D. C. AND WILSON, D. R. 1987. A comparison of commercial and military security

policies. In Proceedings of the IEEE Security and Privacy Symposium. IEEE, New York.
DEUX, O. 1991. The O2 system. Commun. ACM 34, 10 (Oct.), 34–49.
DEPARTMENT OF DEFENSE. 1985. Trusted computer system evaluation criteria. DOD 5200.28

STD, National Computer Security Center, U.S. Department of Defense, Washington, D.C.

192 • H. M. Gladney

ACM Transactions on Information Systems, Vol. 15, No. 2, April 1997.

ERDOS, M. E. AND PATO, J. N. 1993. Extending the OSF DCE authorization system to
support practical delegation. In Proceedings of the PSRD Workshop on Network and
Distributed System Security. 93–100.

FAGIN, R. 1978. On an authorization mechanism. ACM Trans. Database Sys. 3, 3, 310–375.
FOX, E. A., AKSCYN, R. M., FURUTA, R. K., AND LEGGETT, J. J., Eds. 1994. Proceedings of

Digital Libraries ’94. Springer-Verlag, Berlin.
FOX, E. A., AKSCYN, R. M., FURUTA, R. K., AND LEGGETT, J. J. 1995. Digital libraries. Com-

mun. ACM 38, 4 (Apr.), 22–28.
GAGLIARDI, R., LAPIS, G., AND LINDSAY, B. G. 1989. A flexible and efficient database authori-

zation facility. IBM Res. Rep. RJ 6826, IBM, San Jose, Calif.
GLADNEY, H. M. 1978. Administrative control of computing service. IBM Syst. J. 17, 151.
GLADNEY, H. M. 1993. A storage subsystem for image and records management. IBM Syst.

J. 32, 3, 512–540.
GLADNEY, H. M. 1994. Condition tests in data server access control. IBM Res. Rep. RJ 9244,

IBM, San Jose, Calif.
GLADNEY, H. M., WORLEY, E. L., AND MYERS, J. J. 1975. An access control mechanism for

computer resources. IBM Syst. J. 14, 212.
GRAY, J. AND REUTER, A. 1993. Transaction Processing: Concepts and Techniques. Morgan

Kaufmann, San Mateo, Calif.
GRIFFITHS, P. P. AND WADE, B. 1976. An authorization mechanism for a relational database

system. ACM Trans. Database Syst. 1, 3, 242–255.
HOFFMAN, L. J. AND MORAN, L. M. 1986. Societal Vulnerability to Computer System Fail-

ures. Vol. 5, Computers and Security. Elsevier Science, Amsterdam, 211–217.
IBM. 1985. Resource Access Control Facility (RACF) general information manual. Systems

Ref. Lib. GC28-0722, IBM, San Jose, Calif.
IBM. 1991. Image and Records Management (IRM) general information guide. IBM Sys-

tems Ref. Lib. GC22-0027, IBM, San Jose, Calif.
IBM. 1994. IBM ImagePlus VisualInfo general information and planning guide. IBM Sys-

tems Ref. Lib. GK2T-1709, IBM, San Jose, Calif.
ISO. 1991. Information technology—Portable Operating System Interface (POSIX)—secu-

rity interface. ISO/IEC JTC 1/SC22/WG15 N046R1 P1003.6 Draft 12, International Stan-
dards Organization, Geneva, Switzerland.

ISO. 1992. Information retrieval, transfer and management for OSI: Access control frame-
work. ISO/IEC JTC 1/SC 21/WG 1 N6947 Second CD 10181-3. International Standards
Organization, Geneva, Switzerland.

JANSON, P. 1992. Security and management services in open networks and distributed
systems. IBM Res. Rep. RZ 2274, IBM, San Jose, Calif.

KARGER, P. A. 1985. Authentication and discretionary access control in computer networks.
Comput. Networks ISDN Syst. 10, 1, 27–37.

KOHL, J. T. 1991. The evolution of the Kerberos authentication service. In Proceedings of
the EurOpen Conference, Unix Open Systems in Perspective. IEEE Computer Society Press,
Los Alamitos, Calif., 295–313.

KUMAR, R. 1991. OSF’s distributed computing environment. IBM AIXpert 2, 22–29.
LAMB, C., LANDIS, G., ORENSTIEN, J., AND WEINREB, D. 1991. The ObjectStore database

system. Commun. ACM 34, 10 (Oct.), 50–63.
LAMPSON, B., ABADI, M., BURROWS, M., AND WOBBER, W. E. 1991. Authentication in distrib-

uted systems: Theory and practice. Oper. Syst. Rev. 25, 5, 165–182.
LAMPSON, B., ABADI, M., BURROWS, M., AND WOBBER, W. E. 1992. Authentication in distrib-

uted systems: Theory and practice. ACM Trans. Comput. Syst. 10, 4 (Nov.), 265–308.
LEBOWITZ, G. 1992. An overview of the OSF DCE distributed file system. IBM AIXpert 3,

(Feb.), 55–64.
LEE, T. M. P. 1988. Using mandatory integrity to enforce “commercial” security. In Proceed-

ings of the 1988 IEEE Symposium on Security and Privacy. IEEE, New York, 140–146.
LEISS, E. 1983. Authorization systems with grantor-controlled propagation of privileges. In

Proceedings of Spring COMPCON ’83. IEEE Computer Society Press, Los Alamitos, Calif.

Access Control for Large Collections • 193

ACM Transactions on Information Systems, Vol. 15, No. 2, April 1997.

LINN, L. 1990. Practical authentication for distributed computing. In Proceedings of the
1990 IEEE Symposium on Research in Security and Privacy. IEEE, New York, 31–40.

LOHMAN, G. M., LINDSAY, B., PIRAHESH, H., AND SCHIEFER, K. B. 1991. Extensions to Star-
burst: Objects, types, functions, and rules. Commun. ACM 34, 10 (Oct.), 94–109.

MOFFETT, J. D. AND SLOMAN, M. S. 1988. The source of authority for commercial access
control. Computer 21, 2 (Feb.), 59–69.

OSF. 1991. Distributed Computer Environment (DCE) Version 1.0: Application Develop-
ment Reference. Open Software Foundation, Cambridge, Mass.

RABITTI, F., BERTINO, B., KIM, K., AND WOELK, D. 1991. A model of authorization for
next-generation database systems. ACM Trans. Database Syst. 16, 1, 88–131.

RICHARDSON, J., SCHWARZ, P., AND CABRERA, L.-F. 1992. CACL: Efficient fine-grained protec-
tion for objects. IBM Res. Rep. RJ 8894, IBM, San Jose, Calif.

SALTZER, J. H. AND SCHROEDER, M. D. 1975. The protection of information in computer
systems. Proc. IEEE 63, 9, 1278–1308.

SILBERSCHAT, A., STONEBRAKER, M., AND ULLMAN, M., Eds. 1991. Database systems: Achieve-
ments and opportunities. Commun. ACM 34, 10 (Oct.), 110–120.

STONEBRAKER, M. AND KEMNITZ, G. 1991. The PostGres next generation database manage-
ment system. Commun. ACM 34, 10 (Oct.), 78–92.

VARADHARAJAN, V., ALLEN, P., AND BLACK, S. 1991. An analysis of the proxy problem in
distributed systems. In Proceedings of the 1991 IEEE Symposium on Research in Security
and Privacy. IEEE, New York, 255–275.

Received March 1993; revised January 1994; accepted December 1994

194 • H. M. Gladney

ACM Transactions on Information Systems, Vol. 15, No. 2, April 1997.

