
Federated Database Systems for Managing Distributed,
Heterogeneous, and Autonomous Databases’

AMIT P. SHETH

Bellcore, lJ-210, 444 Hoes Lane, Piscataway, New Jersey 08854

JAMES A. LARSON

Intel Corp., HF3-02, 5200 NE Elam Young Pkwy., Hillsboro, Oregon 97124

A federated database system (FDBS) is a collection of cooperating database systems that
are autonomous and possibly heterogeneous. In this paper, we define a reference
architecture for distributed database management systems from system and schema
viewpoints and show how various FDBS architectures can be developed. We then define a
methodology for developing one of the popular architectures of an FDBS. Finally, we
discuss critical issues related to developing and operating an FDBS.

Categories and Subject Descriptors: D.2.1 [Software Engineering]: Requirements/
Specifications-methodologies; D.2.10 [Software Engineering]: Design; H.0
[Information Systems]: General; H.2.0 [Database Management]: General; H.2.1
[Database Management]: Logical Design--data models, schema and subs&ma; H.2.4
[Database Management]: Systems; H.2.5 [Database Management]: Heterogeneous
Databases; H.2.7 [Database Management]: Database Administration

General Terms: Design, Management

Additional Key Words and Phrases: Access control, database administrator, database
design and integration, distributed DBMS, federated database system, heterogeneous
DBMS, multidatabase language, negotiation, operation transformation, query processing
and optimization, reference architecture, schema integration, schema translation, system
evolution methodology, system/schema/processor architecture, transaction management

INTRODUCTION

Federated Database System

tern (DBMS), and one or more databases
that it manages. A federated database sys-
tem (FDBS) is a collection of cooperating

A database system (DBS) consists of soft- but autonomous component database sys-
ware, called a database management sys- tems (DBSs). The component DBSs are

’ The views and conclusions in this paper are those of the authors and should not be interpreted as necessarily
representing the official policies, either expressed or implied, of Bellcore, Intel Corp., or the authors’ past or
present affiliations. It is the policy of Bellcore to avoid any statements of comparative analysis or evaluation
of vendors’ products. Any mention of products or vendors in this document is done where necessary for the
sake of scientific accuracy and precision, or for background information to a point of technology analysis, or to
provide an example of a technology for illustrative purposes and should not be construed as either positive or
negative commentary on that product or that vendor. Neither the inclusion of a product or a vendor in this
paper nor the omission of a product or a vendor should be interpreted as indicating a position or opinion of
that product or vendor on the part of the author(s) or of Bellcore.

Permission to copy without fee all or part of this material is granted provided that the copies are not made or
distributed for direct commercial advantage, the ACM copyright notice and the title of the publication and its
date appear, and notice is given that copying is by permission of the Association for Computing Machinery. To
copy otherwise, or to republish, requires a fee and/or specific permission.
0 1990 ACM 0360-0300/90/0900-0183 $01.50

ACM Computing Surveys, Vol. 22, No. 3, September 1990

184 l Amit Sheth and James Larson

CONTENTS

INTRODUCTION
Federated Database System
Characteristics of Database Systems
Taxonomy of Multi-DBMS and Federated

Database Systems
Scope and Organization of this Paper

1. REFERENCE ARCHITECTURE
1.1 System Components of a Reference

Architecture
1.2 Processor Types in the Reference

Architecture
1.3 Schema Types in the Reference Architecture

2. SPECIFIC FEDERATED DATABASE
SYSTEM ARCHITECTURES
2.1 Loosely Coupled and Tightly Coupled FDBSs
2.2 Alternative FDBS Architectures
2.3 Allocating Processors and Schemas

to Computers
2.4 Case Studies

3. FEDERATED DATABASE SYSTEM
EVOLUTION PROCESS
3.1 Methodology for Developing a Federated

Database System
4. FEDERATED DATABASE SYSTEM

DEVELOPMENT TASKS
4.1 Schema Translation
4.2 Access Control
4.3 Negotiation
4.4 Schema Integration

5. FEDERATED DATABASE SYSTEM
OPERATION
5.1 Query Formulation
5.2 Command Transformation
5.3 Query Processing and Optimization
5.4 Global Transaction Management

6. FUTURE RESEARCH AND UNSOLVED
PROBLEMS

ACKNOWLEDGMENTS
REFERENCES
BIBLIOGRAPHY
GLOSSARY
APPENDIX: Features of Some

FDBS/Multi-DBMS Efforts

integrated to various degrees. The software
that provides controlled and coordinated
manipulation of the component DBSs is
called a federated database management
system (FDBMS) (see Figure 1).

Both databases and DBMSs play impor-
tant roles in defining the architecture of an
FDBS. Component database refers to a da-
tabase of a component DBS. A component
DBS can participate in more than one fed-
eration. The DBMS of a component DBS,

ACM Computing Surveys, Vol. 22, No. 3, September 1990

or component DBMS, can be a centralized
or distributed DBMS or another FDBMS.
The component DBMSs can differ in such
aspects as data models, query languages,
and transaction management capabilities.

One of the significant aspects of an
FDBS is that a component DBS can con-
tinue its local operations and at the same
time participate in a federation. The inte-
gration of component DBSs may be man-
aged either by the users of the federation
or by the administrator of the FDBS
together with the administrators of the
component DBSs. The amount of integra-
tion depends on the needs of federation
users and desires of the administrators
of the component DBSs to participate in
the federation and share their databases.
The term federated database system was
coined by Hammer and McLeod [19791 and
Heimbigner and McLeod [1985]. Since its
introduction, the term has been used for
several different but related DBS archi-
tectures. As explained in this Introduc-
tion, we use the term in its broader con-
text and include additional architectural
alternatives as examples of the federated
architecture.

The concept of federation exists in many
contexts. Consider two examples from the
political domain-the United Nations
(UN) and the Soviet Union. Both entities
exhibit varying levels of autonomy and
heterogeneity among the components (sov-
ereign nations and the republics, respec-
tively). The autonomy and heterogeneity is
greater in the UN than in the Soviet Union.
The power of the federation body (the Gen-
eral Assembly of the UN and the central
government of the Soviet Union, respec-
tively) with respect to its components in
the two cases is also different. Just as peo-
ple do not agree on an ideal model or the
utility of a federation for the political
bodies and the governments, the database
context has no single or ideal model of
federation. A key characteristic of a feder-
ation, however, is the cooperation among
independent systems. In terms of an FDBS,
it is reflected by controlled and sometimes
limited integration of autonomous DBSs.

The goal of this survey is to discuss the
application of the federation concept for
managing existing heterogeneous and au-

Federated Database Systems l 185

FDBS

FDBMS

. . .

Figure 1. An FDBS and its components.

tonomous DBSs. We describe various ar-
chitectural alternatives and components of
a federated database system and explore
the issues related to developing and oper-
ating such a system. The survey assumes
an understanding of the concepts in basic
database management textbooks [Ceri and
Pelagatti 1984; Date 1986; Elmasri and
Navathe 1989; Tsichritzis and Lochovsky
19821 such as data models, the ANSI/
SPARC schema architecture, database de-
sign, query processing and optimization,
transaction management, and distributed
database management.

Characteristics of Database Systems

Systems consisting of multiple DBSs, of
which FDBSs are a specific type, may be
characterized along three orthogonal di-
mensions: distribution, heterogeneity, and
autonomy. These dimensions are discussed
below with an intent to classify and define
such systems. Another characterization
based on the dimensions of the networking
environment [single DBS, many DBSs in a
local area network (LAN), many DBSs in
a wide area network (WAN), many net-
works], update related functions of partic-
ipating DBSs (e.g., no update, nonatomic
updates, atomic updates), and the types of
heterogeneity (e.g., data models, transac-

tion management strategies) has been pro-
posed by Elmagarmid [1987]. Such a
characterization is particularly relevant to
the study and development of transaction
management in FDBMS, an aspect of
FDBS that is beyond the scope of this
paper.

Distribution

Data may be distributed among multiple
databases. These databases may be stored
on a single computer system or on multiple
computer systems, co-located or geograph-
ically distributed but interconnected by a
communication system. Data may be dis-
tributed among multiple databases in dif-
ferent ways. These include, in relational
terms, vertical and horizontal database par-
titions. Multiple copies of some or all of the
data may be maintained. These copies need
not be identically structured.

Benefits of data distribution, such as in-
creased availability and reliability as well
as improved access times, are well known
[Ceri and Pelagatti 19841. In a distributed
DBMS, distribution of data may be in-
duced; that is, the data may be deliberately
distributed to take advantage of these ben-
efits. In the case of FDBS, much of the
data distribution is due to the existence of
multiple DBSs before an FDBS is built.

ACM Computing Surveys, Vol. 22, No. 3, September 1990

186 l Amit Sheth and James Larson

Database Systems
Differences in DBMS
-data models

(structures, constraints, query languages)
-system level support

(concurrency control, commit, recovery)
Semantic Heterogeneity

Operating System
-file systems
-naming, file types, operations
-transaction support
-interprocess communication

Hardware/System
-instruction set
-data formats 8 representation
-configuration

C
0
m
m
U
n
I
C
a
t
I
0
n

Figure 2. Types of heterogeneities.

Many types of heterogeneity are due to
technological differences, for example, dif-
ferences in hardware, system software
(such as operating systems), and commu-
nication systems. Researchers and devel-
opers have been working on resolving such
heterogeneities for many years. Several
commercial distributed DBMSs are avail-
able that run in heterogeneous hardware
and system software environments.

The types of heterogeneities in the da-
tabase systems can be divided into those
due to the differences in DBMSs and those
due to the differences in the semantics of
data (see Figure 2).

Heterogeneities due to Differences in DBMSs

An enterprise may have multiple DBMSs.
Different organizations within the enter-
prise may have different requirements and
may select different DBMSs. DBMSs
purchased over a period of time may be
different due to changes in technology. Het-
erogeneities due to differences in DBMSs
result from differences in data models and
differences at the system level. These are
described below. Each DBMS has an un-

derlying data model used to define data
structures and constraints. Both represen-
tation (structure and constraints) and lan-
guage aspects can lead to heterogeneity.

l Differences in structure: Different
data models provide different structural
primitives [e.g., the information modeled
using a relation (table) in the relational
model may be modeled as a record type
in the CODASYL model]. If the two rep-
resentations have the same information
content, it is easier to deal with the dif-
ferences in the structures. For example,
address can be represented as an entity
in one schema and as a composite attri-
bute in another schema. If the informa-
tion content is not the same, it may be
very difficult to deal with the difference.
As another example, some data models
(notably semantic and object-oriented
models) support generalization (and
property inheritance) whereas others do
not.

l Differences in constraints: Two data
models may support different con-
straints. For example, the set type in a
CODASYL schema may be partially
modeled as a referential integrity con-
straint in a relational schema. CODA-
SYL, however, supports insertion and
retention constraints that are not cap-
tured by the referential integrity con-
straint alone. Triggers (or some other
mechanism) must be used in relational
systems to capture such semantics.

l Differences in query languages:
Different languages are used to manipu-
late data represented in different data
models. Even when two DBMSs support
the same data model, differences in their
query languages (e.g., QUEL and SQL)
or different versions of SQL supported
by two relational DBMSs could contrib-
ute to heterogeneity.
Differences in the system aspects of the

DBMSs also lead to heterogeneity. Exam-
ples of system level heterogeneity include
differences in transaction management
primitives and techniques (including
concurrency control, commit protocols,
and recovery), hardware and system

ACM Computing Surveys, Vol. 22, No. 3, September 1990

software requirements, and communication
capabilities.

Semantic Heterogeneity

Semantic heterogeneity occurs when there
is a disagreement about the meaning, inter-
pretation, or intended use of the same or
related data. A recent panel on semantic
heterogeneity [Cercone et al. 19901 showed
that this problem is poorly understood and
that there is not even an agreement regard-
ing a clear definition of the problem. Two
examples to illustrate the semantic heter-
ogeneity problem follow.

Consider an attribute MEAL-COST of
relation RESTAURANT in database DBl
that describes the average cost of a meal
per person in a restaurant without service
charge and tax. Consider an attribute by
the same name (MEAL-COST) of relation
BOARDING in database DB2 that de-
scribes the average cost of a meal per per-
son including service charge and tax. Let
both attributes have the same syntactic
properties. Attempting to compare at-
tributes DBl.RESTAURANTS.MEAL-
COST and DBS.BOARDING.MEAL-
COST is misleading because they are
semantically heterogeneous. Here the
heterogeneity is due to differences in
the definition (i.e., in the meaning) of
related attributes [Litwin and Abdellatif
19861.

As a second example, consider an attri-
bute GRADE of relation COURSE in
database DBl. Let COURSE.GRADE de-
scribe the grade of a student from the set
of values {A, B, C, D, FJ. Consider another
attribute SCORE of relation CLASS in da-
tabase DB2. Let SCORE denote a normal-
ized score on the scale of 0 to 10 derived by
first dividing the weighted score of all ex-
ams on the scale of 0 to 100 in the course
and then rounding the result to the nearest
half-point. DBl.COURSE.GRADE and
DBB.CLASS.SCORE are semantically het-
erogeneous. Here the heterogeneity is due
to different precision of the data values
taken by the related attributes. For exam-
ple, if grade C in DBl.COURSE.GRADE
corresponds to a weighted score of all ex-

Federated Database Systems l 187

ams between 61 and 75, it may not be
possible to correlate it to a score in
DB2.CLASS.SCORE because both 73 and
77 would have been represented by a score
of 7.5.

Detecting semantic heterogeneity is a
difficult problem. Typically, DBMS sche-
mas do not provide enough semantics to
interpret data consistently. Heterogeneity
due to differences in data models also con-
tributes to the difficulty in identifica-
tion and resolution of semantic hetero-
geneity. It is also difficult to decouple
the heterogeneity due to differences in
DBMSs from those resulting from semantic
heterogeneity.

Autonomy

The organizational entities that manage
different DBSs are often autonomous. In
other words, DBSs are often under separate
and independent control. Those who con-
trol a database are often willing to let others
share the data only if they retain control.
Thus, it is important to understand the
aspects of component autonomy and how
they can be addressed when a component
DBS participates in an FDBS.

A component DBS participating in an
FDBS may exhibit several types of auton-
omy. A classification discussed by Veijalai-
nen and Popescu-Zeletin [19881 includes
three types of autonomy: design, commu-
nication, and execution. These and an ad-
ditional type of component autonomy
called association autonomy are discussed
below.

Design autonomy refers to the ability of
a component DBS to choose its own design
with respect to any matter, including

(a) The data being managed (i.e., the Uni-
verse of Discourse),

(b) The representation (data model, query
language) and the naming of the data
elements,

(c) The conceptualization or semantic
interpretation of the data (which
greatly contributes to the problem of
semantic heterogeneity),

ACM Computing Surveys, Vol. 22, No. 3, September 1990

188 l Amit Sheth and James Larson

(d)

(e)

(f)

k)

Constraints (e.g., semantic integrity
constraints and the serializability cri-
teria) used to manage the data,
The functionality of the system (i.e.,
the operations supported by system),
The association and sharing with other
systems (see association autonomy be-
low), and
The implementation (e.g., record and
file structures, concurrency control
algorithms).

Heterogeneity in an FDBS is primarily
caused by design autonomy among compo-
nent DBSs.

The next two types of autonomy involve
the DBMS of a component DBS. Commu-
nication autonomy refers to the ability of
a component DBMS to decide whether
to communicate with other component
DBMSs. A component DBMS with com-
munication autonomy is able to decide
when and how it responds to a request from
another component DBMS.

Execution autonomy refers to the ability
of a component DBMS to execute local
operations (commands or transactions sub-
mitted directly by a local user of the com-
ponent DBMS) without interference from
external operations (operations submitted
by other component DBMSs or FDBMSs)
and to decide the order in which to execute
external operations. Thus, an external sys-
tem (e.g., FDBMS) cannot enforce an order
of execution of the commands on a com-
ponent DBMS with execution autonomy.
Execution autonomy implies that a com-
ponent DBMS can abort any operation that
does not meet its local constraints and that
its local operations are logically unaffected
by its participation in an FDBS. Further-
more, the component DBMS does not need
to inform an external system of the order
in which external operations are executed
and the order of an external operation with
respect to local operations. Operationally,
a component DBMS exercises its execution
autonomy by treating external operations
in the same way as local operations.

Association autonomy implies that a com-
ponent DBS has the ability to decide
whether and how much to share its func-
tionality (i.e., the operations it supports)

and resources (i.e., the data it manages)
with others. This includes the ability to
associate or disassociate itself from the fed-
eration and the ability of a component DBS
to participate in one or more federations.
Association autonomy may be treated as
a part of the design autonomy or as an
autonomy in its own right. Alonso and
Barbara [1989] discuss the issues that are
relevant to this type of autonomy.

A subset of the above types of autonomy
were also identified by Heimbigner and
McLeod [1985]. Du et al. [1990] use the
term local autonomy for the autonomy of a
component DBS. They define two types of
local autonomy requirements: operation
autonomy requirements and service auton-
omy requirements. Operation autonomy re-
quirements relate to the ability of a
component DBS to exercise control over its
database. These include the requirements
related to design and execution autonomy.
Service autonomy requirements relate to the
right of each component DBS to make de-
cisions regarding the services it provides to
other component DBSs. These include the
requirements related to association and
communication autonomy. Garcia-Molina
and Kogan [1988] provide a different clas-
sification of the types of autonomy. Their
classification is particularly relevant to the
operating system and transaction manage-
ment issues.

The need to maintain the autonomy of
component DBSs and the need to share
data often present conflicting require-
ments. In many practical environments, it
may not be desirable to support the auton-
omy of component DBSs fully. Two exam-
ples of relaxing the component autonomy
follow:

l Association autonomy requires that each
component DBS be free to associate or
disassociate itself from the federation.
This would require that the FDBS be
designed so that its existence and opera-
tion are not dependent on any single
component DBS. Although this may be a
desirable design goal, the FDBS may
moderate it by requiring that the entry
or departure of a component DBS must
be based on an agreement between the

ACM Computing Surveys, Vol. 22, No. 3, September 1990

Federated Database Systems l 189

Different architectures and types of
FDBSs are created by different levels of
integration of the component DBSs and by
different levels of global (federation) serv-
ices. We will use the taxonomy shown in
Figure 3 to compare the architectures of
various research and development efforts.
This taxonomy focuses on the autonomy
dimension. Other taxonomies are possible
by focusing on the distribution and heter-
ogeneity dimensions. Some recent publica-
tions discussing various architectures or
different taxonomies include Eliassen and
Veijalainen [19881, Litwin and Zeroual
[19881, Ozsu and Valduriez [19901, and
Ram and Chastain [19891.

MDBSs can be classified into two types
based on the autonomy of the component
DBSs: nonfederated database systems and
federated database systems. A nonfederated
database system is an integration of com-
ponent DBMSs that are not autonomous.
It has only one level of management,2 and
all operations are performed uniformly. In
contrast to a federated database system, a
nonfederated database system does not dis-
tinguish local and nonlocal users. A partic-
ular type of nonfederated database system
in which all databases are fully integrated
to provide a single global (sometimes called
enterprise or corporate) schema can be
called a unified MDBS. It logically appears
to its users like a distributed DBS.

A federated database system consists of
component DBSs that are autonomous yet
participate in a federation to allow partial
and controlled sharing of their data. Asso-
ciation autonomy implies that the compo-
nent DBSs have control over the data they
manage. They cooperate to allow different
degrees of integration. There is no central-
ized control in a federated architecture be-
cause the component DBSs (and their
database administrators) control access to
their data.

FDBS represents a compromise between
no integration (in which users must explic-
itly interface with multiple autonomous da-
tabases) and total integration (in which

* This definition may be diluted to include two levels
of management, where the global level has the author-
ity for controlling data sharing.

federation (i.e., its representative entity
such as the administrator of the FDBS)
and the component DBS (i.e., the admin-
istrator of a component DBS) and cannot
be a unilateral decision of the component
DBS.

l Execution autonomy allows a component
DBS to decide the order in which exter-
nal and local operations are performed.
Futhermore, the component DBS need
not inform the external system (e.g.,
FDBS) of this order. This latter aspect
of autonomy may, however, be relaxed by
informing the FDBS of the order of
transaction execution (or transaction
wait-for graph) to allow simpler and
more efficient management of global
transactions.

Taxonomy of Multi-DBMS and Federated
Database Systems

A DBS may be either centralized or distrib-
uted. A centralized DBS system consists of
a single centralized DBMS managing a sin-
gle database on the same computer system.
A distributed DBS consists of a single dis-
tributed DBMS managing multiple data-
bases. The databases may reside on a single
computer system or on multiple computer
systems that may differ in hardware, sys-
tem software, and communication support.
A multidatabase system (MDBS) supports
operations on multiple component DBSs.
Each component DBS is managed by (per-
haps a different) component DBMS. A
component DBS in an MDBS may be cen-
tralized or distributed and may reside on
the same computer or on multiple com-
puters connected by a communication sub-
system. An MDBS is called a homogeneous
MDBS if the DBMSs of all component
DBSs are the same; otherwise it is called a
heterogeneous MDBS. A system that only
allows periodic, nontransaction-based ex-
change of data among multiple DBMSs
(e.g., EXTRACT [Hammer and Timmer-
man 19891) or one that only provides access
to multiple DBMSs one at a time (e.g., no
joins across two databases) is not called an
MDBS. The former is a data exchange sys-
tem; the latter is a remote DBMS interface
[Sheth 1987a].

ACM Computing Surveys, Vol. 22, No. 3, September 1990

190 l Amit Sheth and James Larson

Multidatabase
Systems

Nonfederated
Database Systems

e.g., UNIBASE

Federated
Database Systems

/\
[Brzezinski et 784 \

Loosely Coupled Tightly Coupled
e.g., MRDSM
[Litwin 19851

/\
Single Multiple

Federation Fedsrations
e.g., DDTS e.g., Mermaid

[Dwyer and Larson 19871 [Templeton et al. 1987a]

Figure 3. Taxonomy of multidatabase systems.

autonomy of each component DBS is sac-
rificed so that users can access data through
a single global interface but cannot directly
access a DBMS as a local user). The fed-
erated architecture is well suited for mi-
grating a set of autonomous and stand-
alone DBSs (i.e., DBSs that are not sharing
data) to a system that allows partial and
controlled sharing of data without affecting
existing applications (and hence preserving
significant investment in existing applica-
tion software).

They involve only data in that component
DBS. A component DBS, however, does not
need to distinguish between local and global

To allow controlled sharing while pre-
serving the autonomy of component DBSs
and continued execution of existing appli-
cations, an FDBS supports two types of
operations: local and global (or federation).
This dichotomy of local and global opera-
tions is an essential feature of an FDBS.
Global operations involve data access using
the FDBMS and may involve data managed
by multiple component DBSs. Component
DBSs must grant permission to access the
data they manage. Local operations are
submitted to a component DBS directly.

will consist of heterogeneous component
DBSs. In the rest of this paper, we will use
the term FDBS to describe a heterogeneous
distributed DBS with autonomy of compo-
nent DBSs.

FDBSs can be categorized as loosely
coupled or tightly coupled based on who
manages the federation and how the com-
ponents are integrated. An FDBS is loosely
coupled if it is the user’s responsibility to
create and maintain the federation and
there is no control enforced by the feder-
ated system and its administrators. Other
terms used for loosely coupled FDBSs are
interoperable database system [Litwin and
Abdellatif 19861 and multidatabase system
[Litwin et al. 1982].3 A federation is tightly
coupled if the federation and its adminis-
trator(s) have the responsibility for creat-
ing and maintaining the federation and
actively control the access to component
DBSs. Association autonomy dictates that,
in both cases, sharing of any part of a
component database or invoking a capabil-
ity (i.e., an operation) of a component DBS
is controlled by the administrator of the
component DBS.

A federation is built by a selective and
controlled integration of its components.
The activity of developing an FDBS results
in creating a federated schema upon which
operations (i.e., query and/or updates) are
performed. A loosely coupled FDBS always
supports multiple federated schemas. A
tightly coupled FDBS may have one or
more federated schemas. A tightly coupled
FDBS is said to have single federation if it
allows the creation and management of
only one federated schema.* Having a single

3 The term multidatabase has been used by different

4 Note that a tightly coupled FDBS with a single

people to mean different things. For example, Litwin
[1985] and Rusinkiewicz et al. [1989] use the term

federated schema is not the same as a unified MDBS

multidatabase to mean loosely coupled FDBS (or in-
teroperable system) in our taxonomy; Ellinghaus et al.

but is a special case of the latter. It espouses the

[1988] and Veijalainen and Popescu-Zeletin [1988] use

federation concepts such as autonomy of component

it to mean client-server type of FDBS in our taxon-
omy; and Dayal and Hwang [1984], Belcastro et al.
[1988], and Breitbart and Silberschatz [1988] use it to
mean tightly coupled FDBS in our taxonomy.

operations. In moSt environment% the DBMS~, dichotomy of operations, and controlled
FDBS will also be heterogeneous, that is, sharing that a unified MDBS does not.

ACM Computing Surveys, Vol. 22, No. 3, September 1990

Federated Database Systems l 191

A type of FDBS architecture called the
client-server architecture has been dis-
cussed by Ge et al. [19871 and Eliassen and
Veijalainen [1988]. In such a system, there
is an explicit contract between a client and
one or more servers for exchanging infor-
mation through predefined transactions. A
client-server system typically does not al-
low ad hoc transactions because the server
is designed to respond to a set of predefined
requests. The schema architecture of a
client-server system is usually quite simple.
The schema of each server is directly
mapped to the schema of the client. Thus
the client-server architecture can be con-
sidered to be a tightly coupled one for
FDBS with multiple federations.

federated schema helps in maintaining uni-
formity in semantic interpretation of the
integrated data. A tightly coupled FDBS is
said to have multiple federations if it allows
the creation and management of multiple
federated schemas. Having multiple feder-
ated schemas readily allows multiple inte-
grations of component DBSs. Constraints
involving multiple component DBS, how-
ever, may be difficult to enforce. An orga-
nization wanting to exercise tight control
over the data (treated as a corporate re-
source) and the enforcement of constraints
(including the so-called business rules) may
choose to allow only one federated schema.

The terms federated database system and
federated database architecture were intro-
duced by Heimbigner and McLeod [1985]
to mean “collection of components to unite
loosely coupled federation in order to share
and exchange information” and “an orga-
nization model based on equal, autonomous
databases, with sharing controlled by ex-
plicit interfaces.” The multidatabase archi-
tecture of Litwin et al. [1982] shares many
features of the above architecture. These
definitions include what we have defined as
loosely coupled FDBSs. The key FDBS
concepts, however, are autonomy of com-
ponents, and partial and controlled sharing
of data. These can also be supported when
the components are tightly coupled. Hence
we include both loosely and tightly coupled
FDBSs in our definition of FDBSs.

MRDSM [Litwin 19851, OMNIBASE
[Rusinkiewicz et al. 19891, and CALIDA
[Jacobson et al. 19881 are examples of
loosely coupled FDBSs. In CALIDA, fed-
erated schemas are generated by a database
administrator rather than users as’in other
loosely coupled FDBSs. Users must be rel-
atively sophisticated in other loosely cou-
pled FDBSs to be able to define schemas/
views over multiple component DBSs.
SIRIUS-DELTA [Litwin et al. 19821 and
DDTS [Dwyer and Larson 19871 can be
categorized as tightly coupled FDBSs with
single federation. Mermaide [Templeton
et al. 1987131 and Multibase [Landers and
Rosenberg 19821 are examples of tightly
coupled FDBSs with multiple federations.

@ Mermaid is a trademark of Unisys Corporation.

Scope and Organization of this Paper

Issues involved in managing an FDBS deal
with distribution, heterogeneity, and au-
tonomy. Issues related to distribution have
been addressed in past research and devel-
opment efforts on distributed DBMSs. We
will concentrate on the issues of autonomy
and heterogeneity. Recent surveys on the
related topics include Barker and Ozsu
[1988]; Litwin and Zeroual [1988]; Ram
and Chastain [19891, and Siegel [1987].

The remainder of this paper is organized
as follows. In Section 1 we discuss a refer-
ence architecture for DBSs. Two types of
system components-processors and sche-
mas-are particularly applicable to FDBSs.
In Section 2 we use the processors and
schemas to define various FDBS architec-
tures. In Section 3 we discuss the phases in
an FDBS evolution process. We also dis-
cuss a methodology for developing a tightly
coupled FDBS with multiple federations.
In Section 4 we discuss four important
tasks in developing an FDBS: schema
translation, access control, negotiation, and
schema integration. In Section 5 we discuss
four tasks relevant to operating an FDBS:
query formulation, command transforma-
tion, query processing and optimization,
and transaction management. Section 6
summarizes and discusses issues that need
further research and development. The
paper ends with references, a comprehen-
sive bibliography, a glossary of the terms

ACM Computing Surveys, Vol. 22, No. 3, September 1990

192 l Amit Sheth and James Larson

used throughout this paper, and an appen-
dix comparing some features of relevant
prototype efforts.

1. REFERENCE ARCHITECTURE

A reference architecture is necessary to
clarify the various issues and choices within
a DBS. Each component of the reference
architecture deals with one of the impor-
tant issues of a database system, federated
or otherwise, and allows us to ignore details
irrelevant to that issue. We can concentrate
on a small number of issues at a time by
analyzing a single component. A reference
architecture provides the framework in
which to understand, categorize, and com-
pare different architectural options for de-
veloping federated database systems.
Section 1.1 discusses the basic system com-
ponents of a reference architecture. Section
1.2 discusses various types of processors
and the operations they perform on com-
mands and data. Section 1.3 discusses a
schema architecture of a reference archi-
tecture. Other reference architectures de-
scribed in the literature include Blakey
[19871, Gligor and Luckenbaugh [19841,
and Larson [19891.

1.1 System Components of a Reference
Architecture

A reference architecture consists of various
system components. Basic types of system
components in our reference architecture
are as follows:

Data: Data are the basic facts and in-
formation managed by a DBS.
Database: A database is a repository of
data structured according to a data
model.
Commands: Commands are requests
for specific actions that are either entered
by a user or generated by a processor.
Processors: Processors are software
modules that manipulate commands and
data.
Schemas: Schemas are descriptions of
data managed by one or more DBMSs. A
schema consists of schema objects and
their interrelationships. Schema objects
are typically class definitions (or data

structure descriptions) (e.g., table defi-
nitions in a relational model), and entity
types and relationship types in the
entity-relationship model.

l Mappings: Mappings are functions that
correlate the schema objects in one
schema to the schema objects in another
schema.

These basic components can be com-
bined in different ways to produce different
data management architectures. Figure 4
illustrates the iconic symbols used for each
of these basic components. The reasons for
choosing these components are as follows:

l Most centralized, distributed, and feder-
ated database systems can be expressed
using these basic components.

l These components hide many of the
implementation details that are not
relevant to understanding the im-
portant differences among alternate
architectures.

Two basic components, processors and
schemas, play especially important roles
in defining various architectures. The pro-
cessors are application-independent soft-
ware modules of a DBMS. Schemas are
application-specific components that de-
fine database contents and structure. They
are developed by the organizations to which
the users belong. Users of a DBS include
both persons performing ad hoc operations
and application programs.

1.2 Processor Types in the Reference
Architecture

Data management architectures differ in
the types of processors present and the
relationships among those processors.
There are four types of processors, each
performing different functions on data ma-
nipulation commands and accessed data:
transforming processors, filtering proces-
sors, constructing processors, and accessing
processors. Each of the processor types is
discussed below.

1.2.1 Transforming Processor

Transforming processors translate com-
mands from one language, called source

ACM Computing Surveys, Vol. 22, No. 3, September 1990

Federated Database Systems l 193

[Onuegbe et al. 1983; Zaniolo 19791,
allowing a CODASYL DBS to be proc-
essed using SQL commands.

l A program generator that translates SQL
commands into equivalent COBOL pro-
grams allowing a file system to be proc-
essed using SQL commands.

For some command-transforming pro-
cessors, there may exist companion data-
transforming processors that convert data
produced by the transformed commands
into data compatible with the commands
in the source format. For example, a data-
transforming processor that is the com-
panion to the above SQL-to-CODASYL
command-transforming processor is a table
builder that accepts individual database
records produced by the CODASYL DBMS
and builds complete tables for display to
the SQL user.

Figure 5(a) illustrates a pair of compan-
ion transforming processors. Using infor-
mation from schema A, schema B, and the
mappings between them, the command-
transforming processor converts com-
mands expressed using schema A’s descrip-
tion into commands expressed using
schema B’s description. Using the
same information, the companion data-
transforming processor transforms data
described using schema B’s description
into data described using schema A’s
description.

To perform these transformations, a
transforming processor needs mappings be-
tween the objects of each schema. The task
of schema translation involves transform-
ing a schema (schema A) describing data in
one data model into an equivalent schema
(schema B) describing the same data in a
different data model. This task also gener-
ates the mappings that correlate the
schema objects in one schema (schema B)
to the schema objects in another schema
(schema A). The task of command transfor-
mation entails using these mappings to
translate commands involving the schema
objects of one schema (schema B) into com-
mands involving the schema objects of the
other schema (schema A). The schema
translation problem and the command
transformation problem are further dis-
cussed in Sections 4.1 and 5.2, respectively.

Component Icon (with

Type Example)

Processor

Command

Data
<--ii->

Schema

Information

Mapping

Database

Figure 4. Basic system components of the data man-
agement reference architecture.

language, to another language, called target
language, or transform data from one
format (source format) to another format
(target format). Transforming processors
provide a type of data independence called
data model transparency in which the data
structures and commands used by one pro-
cessor are hidden from other processors.
Data model transparency hides the dif-
ferences in query languages and data for-
mats. For example, the data structures
used by one processor can be modified to
improve overall efficiency without requiring
changes to other processors. Examples of
command-transforming processors include
the following:

l A command transformer that trans-
lates SQL commands into CODASYL
data manipulation language commands

ACM Computing Surveys, Vol. 22, No. 3, September 1990

194 . Amit Sheth and James Larson

CA Schema B

(b)

Figure5. Transforming processors. (a) A pair of companion transforming processors.
(b) An abstract transforming processor.

Mappings are associated with a trans-
forming processor in one of two ways. In
the first case, the mappings are encoded
into the transforming processor’s logic,
making the transforming processor specific
to the schemas. Alternatively, the map-
pings are stored in a separate data structure
and accessed by the transforming processor
when converting commands and data. This
is a more general approach. It may also be
possible to generate a transforming proces-
sor for transforming specific commands
or data automatically. For example, an
SQL-to-COBOL program generator might
generate a specific data-transforming pro-
cessor, the generated COBOL program,
that converts data to the required form.

For the remainder of this paper we will
illustrate a command-transforming proces-
sor and data converter pair as a single
transforming processor as illustrated in
Figure 4(b). This higher-level abstraction
enables us to hide the differences between
a single data-transforming processor, a sin-
gle command-transforming processor, or a

command-transforming processor and data
converter pair.

1.2.2 Filtering Processor

Filtering processors constrain the com-
mands and associated data that can be
passed to another processor. Associated
with each filtering processor are mappings
that describe the constraints on commands
and data. These constraints may either be
embedded into the code of the filtering
processor or be specified in a separate data
structure. Examples of filtering processors
include the following:

Syntactic constraint checker, which
checks commands to verify that they are
syntactically correct.
Semantic integrity constraint checker,
which performs one or more of the follow-
ing functions: (a) checks commands to
verify that they will not violate semantic
integrity constraints, (b) modifies com-
mands in such a manner that when the

ACM Computing Surveys, Vol. 22, No. 3, September 1990

I Command Filtering
Processor

the Data Structures

(4

(b)

Figure 6. Filtering processors. (a) A pair of companion filtering processors. (b) An abstract filtering processor.

commands are interpreted, semantic in-
tegrity constraints will automatically be
enforced, or (c) verifies that data pro-
duced by another processor does not vi-
olate any semantic integrity constraint.

l Access controller, which verifies that the
user is permitted to perform the com-
mand on the indicated data or verifies
that the user is permitted to use data
produced by another processor.

Figure 6(a) illustrates two filtering pro-
cessors, one that controls commands and
one that controls data. Again, we will ab-
stract command- and data-filtering proces-
sors into a single filtering processor as
illustrated in Figure 6(b).

An important task that may be solved by
a filtering processor is that of view update.
This task occurs when the differences in
data structures between the view and the
schema is such that there may be more

than one way to translate an update com-
mand. We do not discuss the view update
task in more detail because we feel that a
loosely coupled FDBS is not well suited to
support updates, and solving this problem
in a tightly coupled FDBS is very similar
to solving it in a centralized or distributed
DBMS [Sheth et al. 1988a].

1.2.3 Constructing Processor

Constructing processors partition and/or
replicate an operation submitted by a single
processor into operations that are accepted
by two or more other processors. Construct-
ing processors also merge data produced by
several processors into a single data set for
consumption by another single processor.
They can support location, distribution,
and replication transparencies because a
processor submitting a command does not
need to know the location, distribution, and

ACM Computing Surveys, Vol. 22, No. 3, September 1990

196 . Amit Sheth and James Larson

<a>

(2 Schema A

(b)

iYGzA /Data Exoressed\

Figure 7. Constructing processors. (a) A pair of constructing processors. (b) An abstract constructing
processor.

number of processors participating in pro-
cessing that command.

Tasks that can be handled by construct-
ing processors include the following:

Schema integration: Integrating mul-
tiple schemes into a single schema
Negotiation: Determining what proto-
col should be used among the owners of
various schemas to be integrated in de-
termining the contents of an integrated
schema
Query (command) decomposition
and optimization: Decomposing and
optimizing a query (command) expressed
on an integrated schema
Global transaction management:
Performing the concurrency and atomic-
ity control

These issues are further discussed in Sec-
tions 4 and 5. Figure 7(a) illustrates a pair

ACM Computing Surveys, Vol. 22, No. 3, September 1990

of companion constructing processors. Us-
ing information from schema A, schema B,
schema C, and the mappings from schema
A to schemas B and C, the command de-
composer uses the commands expressed us-
ing the schema A objects to generate the
commands using the objects in schemas B
and C. Schema A is an integrated schema
that contains a description of all or parts
of the data described by schemas B and C.
Using the same information, the data
merger generates data in the format of
schema A objects from data in the formats
of the objects in schemas B and C.

Again we will abstract the command par-
titioner and data merger pair into a single
constructing processor as illustrated in
Figure 7(b).

1.2.4 Accessing Processor

An accessing processor accepts commands
and produces data by executing the

Federated Database Systems l

commands against a database. It may ac-
cept commands from several processors
and interleave the processing of those com-
mands. Examples of accessing processors
include the following:

l A file management system that executes
access procedures against stored file

l A special application program that ac-
cepts commands and generates data to be
returned to the processor generating the
commands

l A data manager of a DBMS containing
data access methods

l A dictionary manager that manages ac-
cess to dictionary data

Figure 8 illustrates an accessing processor
that accepts data manipulation commands
and uses access methods to retrieve data
from the database.

Issues that are addressed by accessing
processors include local concurrency con-
trol, commitment, backup, and recovery.
These problems and their solutions are ex-
tensively discussed in the literature for cen-
tralized and distributed DBMSs. Some of
the issues of adapting these problems to
deal with heterogeneity and autonomy in
the FDBSs are discussed in Section 5.4.

1.3 Schema Types in the Reference
Architecture

In this section, we first review the standard
three-level schema architecture for central-
ized DBMSs. We then extend it to a five-
level architecture that addresses the
requirements of dealing with distribution,
autonomy, and heterogeneity in an FDBS.

1.3.1 ANSIISPARC Three-Level Schema
Architecture

The ANSI/X3/SPARC Study Group on
Database Systems outlined a three-level
data description architecture [Tsichritzis
and Klug 19781. The three levels of data
description are the conceptual schema, the
internal schema, and the external schema.

A conceptual schema describes the con-
ceptual or logical data structures (i.e., the
schema consists of objects that provide a
conceptual- or logical-level description of
the database) and the relationships among

Figure 8. Accessing processor.

those structures. It is an attempt to de-
scribe all data of interest to an enterprise.
In the context of the ANSI/X3/SPARC
architecture, it is a database schema as
expressed in the data definition language
of a centralized DBMS. The internal
schema describes physical characteristics of
the logical data structures in the conceptual
schema. These characteristics include in-
formation about the placement of records
on physical storage devices, the placement
and type of indexes and physical represen-
tation of relationships between logical rec-
ords. Much of the description in the
internal schema can be changed without
having to change the conceptual schema.
By making changes to the description in
the internal schema and making the cor-
responding changes to the data in the da-
tabase, it is possible to change the physical
representation without changing any appli-
cation program source code. Thus it is
possible to fine tune the physical represen-
tation of data and optimize the perfor-
mance of the DBMS in providing database
access for selected applications.

Most users do not require access to all of
the data in a database. Thus they do not
require access to all of the schema objects
in the conceptual schema. Each user or
class of users may require access to only a
portion of the database. The subset of the
database that may be accessed by a user or
a class of users is described by an external
schema. Because different users may need
access to different portions of the database,
each user or a class of users may require a
separate external schema.

In terms of the above constructs, filtering
processors use the information in the ex-
ternal schemas to control what data can be

ACM Computing Surveys, Vol. 22, No. 3, September 1990

198 . Amit Sheth and James Larson

Filtering
Processor n

Transforming
Processor

Internal m
Accessing
Processor

Figure 9. System architecture of a centralized DBMS.

accessed by which users. A transforming
processor translates commands expressed
using the conceptual schema objects into
commands using the internal schema ob-
jects. An accessing processor executes the
commands to retrieve data from the phys-
ical media. A system architecture consist-
ing of both processors and schemas of a
centralized DBS is shown in Figure 9.

1.3.2 A Five-Level Schema Architecture for
Federated Databases

The three-level schema architecture is ad-
equate for describing the architecture of a
centralized DBMS. It, however, is inade-
quate for describing the architecture of an
FDBS. The three-level schema must be ex-
tended to support the three dimensions of
a federated database system-distribution,
heterogeneity, and autonomy. Examples of
extended schema architectures include a
four-level schema architecture in Mermaid
[Templeton et al. 1987131, five-level schema
architectures in DDTS [Devor et al. 1982b]
and SIRIUS-DELTA [Litwin et al. 19821,
and others [Blakey 1987; Ram and
Chastain 19891. We have adapted these
architectures for our five-level schema ar-

ACM Computing Surveys, Vol. 22, No. 3, September 1990

chitecture for federated systems shown in
Figure 10. A system architecture consisting
of both processors and schemas of an FDBS
is shown in Figure 11.

The five-level schema architecture of an
FDBS includes the following:

Local Schema: A local schema is the con-
ceptual schema of a component DBS. A
local schema is expressed in the native data
model of the component DBMS, and hence
different local schemas may be expressed
in different data models.

Component Schema: A component
schema is derived by translating local sche-
mas into a data model called the canonical
or common data model (CDM) of the FDBS.
Two reasons for defining component sche-
mas in a CDM are (1) they describe the
divergent local schemas using a single rep-
resentation and (2) semantics that are
missing in a local schema can be added to
its component schema. Thus they facilitate
negotiation and integration tasks per-
formed when developing a tightly coupled
FDBS. Similarly, they facilitate negotia-
tion and specification of views and multi-
database queries in a loosely coupled
FDBS.

Federated Database Systems . 199

I
Local

Schema
bb b

Figure 10. Five-level schema architecture of an FDBS.

onstructinq Processor onstructing Processor
I

onstructina Processor

Filtering Processor Filtering Processor Filtering Processor

(F) (F) (Campon:nt)
Transforming Processor Transforming Processor

I)’
Figure 11. System architecture for an FDBS.

The process of schema translation from schema objects. Transforming processors
a local schema to a component schema use these mappings to transform com-
generates the mappings between the com- mands on a component schema into com-
ponent schema objects and the local mands on the corresponding local schema.

ACM Computing Surveys, Vol. 22, No. 3, September 1990

200 l Amit Sheth and James Larson

Such transforming processors and the com-
ponent schemas support the heterogeneity
feature of an FDBS.

Export Schema: Not all data of a com-
ponent DBS may be available to the fed-
eration and its users. An export schema
represents a subset of a component schema
that is available to the FDBS. It may in-
clude access control information regarding
its use by specific federation users. The
purpose of defining export schemas is to
facilitate control and management of asso-
ciation autonomy. A filtering processor can
be used to provide the access control as
specified in an export schema by limiting
the set of allowable operations that can be
submitted on the corresponding component
schema. Such filtering processors and the
export schemas support the autonomy fea-
ture of an FDBS.

Alternatively, the data available to the
FDBS can be defined as the transactions
that can be executed by a component DBS
(e.g., [Ge et al. 1987; Heimbigner and
McLeod 1985; Veijalainen and Popescu-
Zeletin 19881). In this paper, however, we
will not consider that case of exporting
transactions.

Federated Schema: A federated schema
is an integration of multiple export sche-
mas. A federated schema also includes the
information on data distribution that is
generated when integrating export sche-
mas. Some systems use a separate schema
called a distribution schema or an allocation
schema to contain this information. A con-
structing processor transforms commands
on the federated schema into the com-
mands on one or more export schemas.
Constructing processors and the federated
schemas support the distribution feature of
an FDBS.

There may be multiple federated sche-
mas in an FDBS, one for each class of
federation users. A class of federation users
is a group of users and/or applications per-
forming a related set of activities. For ex-
ample, in a corporate environment, all
managers may be one class of federation
users, and all employees and applications
in the accounting department may be an-
other class of federation users. A concept

ACM Computing Surveys, Vol. 22, No. 3, September 1990

similar to that of federated schema is rep-
resented by the terms import schema
[Heimbigner and McLeod 19851, global
schema [Landers and Rosenberg 1982J,
global conceptual schema [Litwin et al.
19821, unified schema, and enterprise
schema, although the terms other than im-
port schemas are usually used when there
is only one such schema in the system.

External Schema: An external schema
defines a schema for a user and/or appli-
cation or a class of users/applications. Rea-
sons for the use of external schemas are as
follows:

l Customization: A federated schema
can be quite large, complex, and difficult
to change. An external schema can be
used to specify a subset of information in
a federated schema that is relevant to the
users of the external schema. They can
be changed more readily to meet chang-
ing users’ needs. The data model for an
external schema may be different than
that of the federated schema.
Additional integrity constraints:
Additional integrity constraints can also
be specified in the external schema.
Access control: Export schemas pro-
vide access control with respect to the
data managed by the component data-
bases. Similarly, external schemas pro-
vide access control with respect to the
data managed by the FDBS.

A filtering process analyzes the com-
mands on an external schema to ensure
their conformance with access control and
integrity constraints of the federated
schema. If an external schema is in a dif-
ferent data model from that of the federated
schema, a transforming processor is also
needed to transform commands on the ex-
ternal schema into commands on the fed-
erated schema.

Most existing prototype FDBSs support
only one data model for all the external
schemas and one query language interface.
Exceptions are a version of Mermaid that
supported two query language interfaces,
SQL and ARIEL, and a version of DDTS
that supported SQL and GORDAS (a
query language for an extended ER model).

Federated Database Systems 201

Future systems are likely to provide ing local schema. The additional semantics
more support for multimode1 external are supplied by the FDBS developer during
schemas and multiquery language interfaces the schema design, integration, and trans-
[Cardenas 1987; Kim 19891. lation processes.

Besides adding to the levels in the
schema architecture, heterogeneity and au-
tonomy requirements may also dictate
changes in the content of a schema. For
example, if an FDBS has multiple hetero-
geneous DBMSs providing different data
management capabilities, a component
schema should contain information on the
operations supported by a component
DBMS.

The five-level schema architecture
presented above has several possible
redundancies.

An FDBS may be required to support
local and external schemas expressed in
different data models. To facilitate their
design, integration, and maintenance, how-
ever, all component, export, and federated
schemas should be in the same data model.
This data model is called canonical or com-
mon data model (CDM). A language asso-
ciated with the CDM is called an internal
command language. All commands on fed-
erated, export, and component schemas are
expressed using this internal command
language.

Redundancy between external and
federated schemas: External schemas
can be considered redundant with feder-
ated schemas since a federated schema
could be generated for every different
federation user. This is the case in the
schema architecture of Heimbigner and
McLeod [19851 (they use the term import
schema rather than federated schema). In
loosely coupled FDBSs, a user defines the
federated schema by integrating export
schemas. Thus there is usually no need
for an additional level. In tightly coupled
FDBSs, however, it may be desirable to
generate a few federated schemas for
widely different classes of users and to
customize these further by defining ex-
ternal schemas. Such external schemas
can also provide additional access
control.

Database design and integration is a
complex process involving not only the
structure of the data stored in the databases
but also the semantics (i.e., the meaning
and use) of the data. Thus it is desirable to
use a high-level, semantic data model [Hull
and King 1987; Peckham and Maryanski
19881 for the CDM. Using concepts from
object-oriented programming along with a
semantic data model may also be appropri-
ate for use as a CDM [Kaul et al. 19901.
Although many existing FDBS prototypes
use some form of the relational model as
the CDM (Appendix), we believe that fu-
ture systems are more likely to use a se-
mantic data model or a combination of an
object-oriented model and a semantic data
model. Most of the semantic data models
will adequately meet requirements of a
CDM, and the choice of a particular one is
likely to be subjective. Because a CDM
using a semantic data model may provide
richer semantic constructs than the data
models used to express the local schemas,
the component schema may contain more
semantic information than the correspond-

Redundancy between an external
schema of a component DBS and an
export schema: If a component DBMS
supports proper access control security
features for its external schemas and if
translating a local schema into a compo-
nent schema is not required (e.g., the data
model of the component DBMS is the
same as CDM of the FDBS), then the
external schemas of a component DBS
may be used as an export schema in the
five-level schema architecture (external
schemas of component DBSs are not
shown in the five-level schema architec-
ture of Figure 10).
Redundancy between component
schemas and local schemas: When
component DBSs uses CDM of the
FDBS and have the same functionality,
it is unnecessary to define component
schemas.

Figure 12 shows an example in which
some of the schema levels are not used. No
external schemas are defined over Feder-
ated Schema 2 (all of it is presented to all

ACM Computing Surveys, Vol. 22, No. 3, September 1990

202 l Amit Sheth and James Larson

Figure 12. Example FDBS schemas with missing schemas at some levels.

federation users using it). Component
Schema 2 is the same as the Local Schema
2 (the data model of the Component DBMS
2 is the same as the CDM). No export
schema is defined over Component Schema
3 (all of it is exported to the FDBS).

An important type of information asso-
ciated with all FDBS schemas is the map-
pings. These correlate schema objects at
one level with the schema objects at the
next lower level of the architecture. Thus,
there are mappings from each external
schema to the federated schema over which
it is defined. Similarly, there are mappings
from each federated schema to all of the
export schemas that define it. The map-
pings may either be stored as a part of the
schema information or as distinct objects
within the FDBS data dictionary (which
also stores schemas). The amount of dic-
tionary information needed to describe a
schema object in one type of schema may
be different from that needed for another
type of schema. For example, the descrip-
tion of an entity type in a federated schema
may include the names of the users that
can access it, whereas such information is
not stored for an entity type in a compo-
nent schema. The types of schema objects

in one type of schema may also vary from
those in another type of schema. For ex-
ample, a federated schema may have
schema objects describing the capabilities
of the various component DBMSs in the
system, whereas no such objects exist in
the local schemas.

Two important features of the schema
architecture are how autonomy is preserved
and how access control is managed. These
involve exercising control over schemas at
different levels. Two types of administra-
tive individuals are involved in developing,
controlling, and managing an FDBS:

l A component DBS administrator (com-
ponent DBA) manages a component
DBS. There is one component DBA5 for
each component DBS. The local, com-
ponent, and export schemas are con-
trolled by the component DBAs of the
respective component DBSs. A key man-
agement function of a component DBA

’ Here a database administrator is a logical entity. In
reality, multiple authorized individuals may play the
role of a single (logical) DBA, or the same individual
may play the role of the component DBA for multiple
component DBSs.

ACM Computing Surveys, Vol. 22, No. 3, September 1990

Federated Database Systems l 203

.

is to define the export schemas that spec-
ify the access rights of federation users
to access different data in the component
databases.
A federation DBA defines and manages a
federated schema and the external sche-
mas related to the federated schema.
There can be one federation DBA for
each federated schema or one federation
DBA for the entire FDBS. Each federa-
tion DBA in a tightly coupled FDBS is a
specially authorized system administra-
tor and is not a federation user. In a
loosely coupled FDBS, federated schemas
are defined and maintained by the users,
not by the system-assigned federation
DBA. This is further discussed in Sec-
tion 2.1.

2. SPECIFIC FEDERATED DATABASE
SYSTEM ARCHITECTURES

The architecture of an FDBS is primarily
determined by which schemas are present,
how they are arranged, and how they are
constructed. In this section, we begin by
discussing the loosely coupled and tightly
coupled architectures of our taxonomy in
additional detail. Then we discuss how sev-
eral alternate architectures can be derived
from the five-level schema architecture by
inserting additional basic components, re-
moving all basic components of a specific
type, and arranging the components of the
five-level schema architecture in different
ways. We then discuss assignment of com-
ponents to computers. Finally, we briefly
discuss four case studies.

2.1 Loosely Coupled and Tightly Coupled
FDBSs

With the background of Section 1, we dis-
cuss distinctions between the loosely cou-
pled and tightly coupled FDBSs in more
detail.

2.1.1 Creation and Administration of Federated
Schemas

The process of creating a federated schema
takes different forms. In a loosely coupled
FDBS, it typically takes the form of schema
importation (e.g., defining “import sche-

mas” in Heimbigner and McLeod [1985]),
defining a view using a set of operators
(e.g., defining “superviews” in Motro
and Buneman [1981]), or defining a view
using a query in a multidatabase lan-
guage ([Czejdo et al. 1987; Litwin and
Abdellatif 19861; see Section 5.1). In a
tightly coupled FDBS, it takes the form of
schema integration ([Batini et al. 19861; see
Section 4.4).

A typical process of developing federated
schemas in a loosely coupled FDBS is as
follows. Each federation user is the admin-
istrator of his or her own federated schema.
First, a federation user looks at the avail-
able set of export schemas to determine
which ones describe data he or she would
like to access. Next, the federation user
defines a federated schema by importing
the export schema objects by using a user
interface or an application program or by
defining a multidatabase language query
that references export schema objects. The
user is responsible for understanding the
semantics of the objects in the export sche-
mas and resolving the DBMS and semantic
heterogeneity. In some cases, component
DBMS dictionaries and/or the federated
DBMS dictionary may be consulted for ad-
ditional information. Finally, the federated
schema is named and stored under account
of the federation user who is its owner. It
can be referenced or deleted at any time by
that federation user.

A typical scenario for the administration
of a tightly coupled FDBS is as follows. For
simplicity, we assume single (logical) fed-
eration DBA for the entire tightly coupled
FDBS. Export schemas are created by ne-
gotiation between a component DBA and
the federation DBA; the component DBA
has authority or control over what is in-
cluded in the export schemas. The federa-
tion DBA is usually allowed to read the
component schemas to help determine
what data are available and where they are
located and then negotiate for their access.
The federation DBA creates and controls
the federated schemas. External schemas
are created by negotiation between a fed-
eration user (or a class of federation users)
and the federation DBA who has the
authority over what is included in each

ACM Computing Surveys, Vol. 22, No. 3, September 1990

204 l Amit Sheth and James Larson

external schema. It may be possible to in-
stitute detailed and well-defined negotia-
tion protocols as well as business rules (or
some types of constraints) for creating,
modifying, and maintaining the federated
schemas.

Based on how often the federated sche-
mas are created and maintained as well as
on their stability, an FDBS may be termed
dynamic or static. Properties of a dynamic
FDBS are as follows: (a) A federated
schema can be promptly created and
dropped; (b) there is no predetermined pro-
cess for controlling the creation of a feder-
ated schema. As described above, defining
a federated schema in a loosely coupled
FDBS is like creating a view over the sche-
mas of the component DBSs. Since such a
federated schema may be managed on the
fly (created, changed, dropped easily) by a
user, loosely coupled FDBSs are dynamic.
A tightly coupled federation is almost al-
ways static because creating a federated
schema is like database schema integration.
A federated schema in a tightly coupled
FDBS evolves gradually and in a more con-
trolled fashion.

2.1.2 Case for Loosely Coupled FDBS

A loosely coupled FDBS provides an inter-
face to deal with multiple component
DBMSs directly. A typical way to formulate
queries is to use a multidatabase language
(see Section 5.1). This architecture has the

- following advantages:

l A user can precisely specify relationships
and mappings among objects in the ex-
port schema. This is desirable when the
federation DBA is unable to specify the
mappings in order to integrate data in
multiple databases in a manner meaning-
ful to the user’s precise needs [Litwin
and Abdellatif 19861.

l It is also possible to support multiple
semantics since different users can im-
port or integrate export schemas differ-
ently and maintain different mappings
from their federated schemas to export
schemas. This can be a significant advan-
tage when the needs of the federation
users cannot be anticipated by the fed-

eration DBA [Litwin and Abdellatif
19861.

An example of multiple semantics is as
follows. Suppose that there are two export
schemas, each containing the entity SHOE.
The colors of SHOE in one component
schema, schemal, are brown, tan, cream,
white, and black. The colors of SHOE in
the other component schema, schema2, are
brown, tan, white, and black. Users defin-
ing different federated schemas may define
different mappings that are relevant to
their applications. For example,

l User1 maps cream in his federated sche-
mas to cream in schema1 and tan in
schema2,

l User2 maps cream in her federated
schema to tan or cream in schema1 and
tan or white in schema2.

Proponents of the loosely coupled archi-
tecture argue that a federated schema cre-
ated and maintained by a single federation
DBA is utopian and totalitarian in nature
[Litwin 1987; Rusinkiewicz 19871. We feel
that a loosely coupled approach may be
better suited for integrating a large number
of very autonomous read only databases
accessible over communication networks
(e.g., public databases of the types dis-
cussed by Litwin and Abdellatif [19861).
User management of federated schemas
means that the FDBMS can do little to
optimize queries. In most cases, however,
the users are free to use their own under-
standing of the component DBSs to design
a federated schema and to specify queries
to achieve good performance.

2.1.3 Case for Tightly Coupled FDBS

The loosely coupled approach may be ill
suited for more traditional business or cor-
porate databases, where system control (via
DBAs that represent local and federation
level authories) is desirable, where the users
are naive and would find it difficult to
perform negotiation and integration them-
selves, or where location, distribution, and
replication transparencies are desirable.
Furthermore, in our opinion, a loosely

ACM Computing Surveys, Vol. 22, No. 3, September 1990

coupled FDBS is not suitable for update
operations. Updating in a loosely coupled
FDBS may degrade data integrity. When a
user of a loosely coupled FDBSs creates
a federated schema using a view definition
process, view update transformations are
often not determined. The users may not
have complete information on the compo-
nent DBSs and different users may use
different semantic interpretations of the
data managed by the component DBSs (i.e.,
loosely coupled FDBSs support multiple
semantic interpretations). Thus different
users can define different federated sche-
mas over the same component DBSs, and
different transformations may be chosen
for the same updates submitted on different
federated schemas. Similar problems can
occur in a tightly coupled FDBS with mul-
tiple federations but can be resolved at the
time of federated schema creation through
schema integration. A federation DBA cre-
ating a federated schema using a schema
integration process can be expected to have
more complete knowledge of the compo-
nent DBSs and other federated schemas.
In addition to the update transformation
issue, transaction management issues need
to be addressed (see Section 5.4).

A tightly coupled FDBS provides loca-
tion, replication, and distribution transpar-
ency. This is accomplished by developing a
federated schema that integrates multiple
export schemas. The transparencies are
managed by the mappings between the fed-
erated schema and the export schemas, and
a federation user can query using a classical
query language against the federated
schema with an illusion that he or she is
accessing a single system. A loosely coupled
system usually provides none of these
transparencies. Hence a user of a loosely
coupled FDBS has to be sophisticated to
find appropriate export schemas that can
provide required data and to define map-
pings between his or her federated schema
and export schemas. Lack of adequate se-
mantics in the component schemas make
this task particularly difficult. Let us now
discuss two alternatives for tightly coupled
FDBSs in more detail.

In a tightly coupled FDBS with a single
federation, all export schemas are inte-

Federated Database Systems l 205

grated to develop a single federated schema.
Sometimes an organization will insist on
having a single federated schema (also
called enterprise schema or global concep-
tual schema) to have a single point of con-
trol for all data sharing in the organization
across the component DBS boundaries. Us-
ing a single federated schema helps in de-
fining uniform semantics of the data in the
FDBS. With a single federated schema, it
is also easier to enforce constraints that
cross export schemas (and hence multiple
databases) then when multiple federated
schemas are allowed.

Because one federated schema is created
by integrating all export schemas and be-
cause this federated schema supports data
requirements of all federation users, it may
become too large and hence difficult to
create and maintain. In this case, it may
become necessary to support external sche-
mas for different federation users.

A tightly coupled FDBS with multiple
federations allows the tailoring of the use
of the FDBS with respect to multiple
classes of federation users with different
data access requirements. Integrations of
the same set of schemas can lead to differ-
ent integrated schemas if different seman-
tics are used. Thus this architecture can
support multiple semantics, but the seman-
tics are decided upon by the federation
DBAs when defining the federated schemas
and their mappings to the export schemas.
A federation user can select from among
multiple alternative mappings by selecting
from among multiple federated schemas.
When an FDBS allows updates, multiple
semantics could lead to inconsistencies. For
this reason, federation DBAs have to be
very careful in developing the federated
schemas and their mappings to the export
schemas. Updates are easier to support in
tightly coupled FDBSs where DBAs care-
fully define mappings than in a loosely
coupled FDBS where the users define the
mappings.

2.2 Alternative FDBS Architectures

In this section, we discuss how processors
and schemas are combined to create various
FDBS architectures.

ACM Computing Surveys, Vol. 22, No. 3, September 1990

206 . Amit Sheth and James Larson

2.2.1 A Complete Architecture of a Tightly
Coupled FDBS

An architecture of a tightly coupled FDBS,
shown in Figure 11, consists of multiple
basic components as described below.

l Multiple export schemas and filter-
ing processors: Any number of exter-
nal schemas can be defined, each with its
own filtering processor. Each external
schema supports the data requirements
of a single federation user or a class of
federation users.

l Multiple federated schemas and con-
structing processors: Any number of
federated schemas can be defined, each
with its own constructing processor. Each
federated schema may integrate different
export schemas (and the same export
schema may be integrated differently in
different federated schemas).

l Multiple export schemas and filter-
ing processors: Multiple export sche-
mas represent different parts of a
database to be integrated into different
federated schemas. A filtering processor
associated with an export schema sup-
ports access control for the related com-
ponent schema.

. Multiple component schemas and
transforming processors: Each com-
ponent schema represents a different
component database expressed in the
CDM. Each transforming processor
transforms a command expressed on the
associated component schema into one or
more commands on the corresponding
local schema.

2.2.2 Architectures with Missing Basic
Components

There are several architectures in which all
of the processors of one type and all sche-
mas of one type are missing. Several ex-
amples follow.

l No transforming processors or com-
ponent schemas: All of the local sche-
mas are described in a single data model.
In other words, the FDBS does not sup-
port component DBSs that use different
data models. Hence there is no need for

component schemas. Mermaid [Temple-
ton et al. 1987b] falls into this category.‘j
No filtering processors or export
schemas: All of the component schemas
are integrated into a single federated
schema resulting in a tightly coupled sys-
tem in which component DBAs do not
control what users can access. This ar-
chitecture fails to support component
DBS autonomy fully. UNIBASE [Brze-
zinski et al. 19841 is in this category, and
hence it is classified as a nonfederated
system.
No constructing processor: The user
or programmer performs the constructing
process via a query or application pro-
gram containing references to multiple
export schemas. The programmer must
be aware of what data are available in
each export schema and whether data are
replicated at multiple sites. This archi-
tecture, classified as a loosely coupled
FDBS, fails to support location, distri-
bution, and replication transparencies. If
data are copied or moved between com-
ponent databases, any query or applica-
tion using them must be modified.

In practice, two processors may be com-
bined into a single module, or two schemas
may be combined into a single implemen-
tation schema. For example, a component
schema and its export schemas are fre-
quently combined into a single schema with
a single processor that performs both trans-
formation and filtering.

2.2.3 Architectures with Additional Basic
Components

There are several types of architectures
with additional components that are exten-
sions or variations of the basic components
of the reference architecture. Such compo-
nents enhance the capabilities of an FDBS.
Examples of such components include the
following:

l Auxiliary schema: Some FDBSs have
an additional schema called an auxiliary

‘Its design, however, has provisions to store model
transformation information and attach a transforming
processor.

ACM Computing Surveys, Vol. 22, No. 3, September 1990

Federated Database Systems l 207

schema that stores the following types of
information:

.

Data needed by federation users but
not available in any of the (preexisting)
component DBSs.
Information needed to resolve incom-
patibilities (e.g., unit translation tables,
format conversion information).
Statistical information helpful in per-
forming query processing and optimi-
zation.

Multibase [Landers and Rosenberg
19821 describes the first two types of
information in its auxiliary schema,
whereas DQS [Belcastro et al. 19881 de-
scribes the last two types of information
in its auxiliary schema. Mermaid [Tem-
pleton et al. 1987133 describes the third
type of information in its federated
schema. As illustrated in Figure 13, the
auxiliary schema and the federated
schema are used by constructing proces-
sors. It is also possible to consider the
auxiliary schema to be a part (or sub-
schema) of a federated schema.
Enforcing constraints among com-
ponent schemas: As illustrated in Fig-
ure 14, an FDBS can have a filtering
processor in addition to a constructing
processor between a federated schema
and the component schemas. The filter-
ing processor enforces constraints that
span multiple component schemas. The
constructing processor, as discussed be-
fore, transforms a query into subqueries
against the component schemas of the
component DBSs. Integrity constraints
may be stored in an external schema or
a federated schema. The constraints may
involve data represented in multiple ex-
port schemas. The filtering processor
checks and modifies each update request
so when data in multiple component da-
tabases are modified, the intercomponent
constraints are not violated. This capa-
bility is appropriate in a tightly coupled
system in which constraints among mul-
tiple component databases must be en-
forced. An early description of DDTS
[Devor et al. 1982aJ suggested enforce-
ment of semantic integrity constraints
spanning components in this manner.

.

“‘“““‘;” Schema)

Figure 13. Using an auxiliary schema to store trans-
lation information needed by a constructing processor.

This, however, can limit or conflict with
the autonomy of the component DBSs.

2.2.4 Extended Federated Architectures

To allow a federation user to access data
from systems other than the component
DBSs, the five-level schema architecture
can be extended in additional ways.

l Atypical component DBMS: Instead
of a typical centralized DBMS, a com-
ponent DBMS may be a different type of
data management system such as a file
server, a database machine, a distributed
DBMS, or an FDBMS. OMNIBASE uses
a distributed DBMS as one of its com-
ponent DBMSs [Rusinkiewicz et al.
19891. Figure 15 illustrates how one
FDBS can act as a backend for another
FDBS. By making local schema A2 of
FDBS A the same as external schema B2
of FDBS B, the component DBS A2 of
FDBS A is replaced by FDBS B.

l Replacing a component database by
a collection of application pro-
grams: It is conceptually possible to re-
place some database tables by application
programs. For example, a table contain-
ing pairs of equivalent Fahrenheit and
Celsius values can be replaced by a pro-
cedure that calculates values on one scale
given values on the other. A collection of
conversion procedures can be modeled
by the federated system as a special-
component database. A special-access
processor can be developed that accepts
requests for conversion information and
invokes the appropriate procedure rather

ACM Computing Surveys, Vol. 22, No. 3, September 1990

208 l Amit Sheth and James Larson

Integrity Constraints in
External/Federated Schema 1

1 Filtering processor]

I
Constructing

Processor

Figure 14. Using a filtering processor to enforce constraints across
export schemas.

than access a stored database. Navathe
et al. [1989] discuss a federated architec-
ture being developed to provide access
to databases as well as application
programs.

2.3 Allocating Processors and Schemas to
Computers

It is possible to allocate all processors and
schemas to a single computer, perhaps to
allow federation users to access data man-
aged by multiple component DBSs on that
computer. Usually, however, different com-
ponent DBSs reside on different computers
connected by a communication system. Dif-
ferent allocations of the FDBS components
result in different FDBS configurations.

Figure 16 illustrates the configuration of
a typical FDBS. A general-purpose com-
puter at site 1 supports a single component
DBS and two federation schemas for two
different classes of federation users. Site 2
is a workstation that supports two export
schemas, each containing different data for
use by different federation users. Site 3 is
a small workstation that supports a single
federation user and no component DBS.
Site 4 is a database computer that has one
component DBS but supports no federation
users.

It may be desirable to group a related set
of processors and schemas into modules of

ACM Computing Surveys, Vol. 22, No. 3, September 1990

larger granularity and allocate them as
desired. For example, DDTS [Dwyer and
Larson 19871 defines two types of modules:
Application Processor and Data Processor
(Figure 17). An Application Processor in-
cludes a federated schema with the associ-
ated constructing processor and all the
external schemas defined over the feder-
ated schema with the associated filtering
processors and transforming processors (if
present). A Data Processor includes a local
schema, a component schema, and the as-
sociated transforming processor and all ex-
port schemas defined over the component
schema with associated filtering processors.
An Application Processor performs the
user interface and distributed transaction
management and coordination functions
and is located at every site at which there
are federation users. A Data Processor per-
forms the data management functions re-
lated to the data managed by a single
component DBS and is located at every site
at which a component DBS is located. A
site can have either or both of the two
modules. Mermaid [Templeton et al.
1987b] divides the processors and the sche-
mas into four types of modules of smaller
granularity.

Special communication processors can
also be placed on each computer to enable
processors on two different sites to com-
municate with each other. Communication

Federated Database Systems l 209

FDBS A

Component
DBS Al

External 0) Schema B 1

FDBS B

I
Component

DBS An

Figure 15. FDBS B acting as a back end to FDBS A.

processors are not shown in our reference
architecture. They are placed between any
pair of adjacent processors that are allo-
cated to different computers.

2.4 Case Studies

In this section we relate the terms and
concepts of the reference architecture to
those used in four example FDBSs. Our
purpose is not to survey these systems
[Thomas et al. 19901 but to show how the
reference architecture can be used to rep-
resent the architectures of various FDBSs
uniformly. This uniform representation
can greatly simplify the task of studying
and comparing these systems.

2.4.1 DOTS

Figure 17 illustrates the original architec-
ture of DDTS [Devor et al. 1982a] using
the terminology of the reference architec-
ture (to the left of each colon) and the
terminology used by DDTS (to the right of
each colon and in italics). It has a single

federated schema called the Global Repre-
sentation Schema, which is expressed in
the relational data model. It has an external
schema called the Conceptual Schema rep-
resented in the Entity-Category-Relation-
ship (ECR) model [Elmasri et al. 19851.
Users formulate requests directly against
the Conceptual Schema in the GORDAS
query language [Elmasri 19811. The ECR
data model is rich in semantics (e.g., it
shows cardinality and operation con-
straints on an entity’s participation in re-
lationships). The transforming part of the
Translation and Integrity Control proces-
sor is responsible for translating requests
written in GORDAS on the ECR data
model into the internal form of a relational
query language against the Global Repre-
sentational Schema. The filtering part
of the Translation and Integrity Control
processor is responsible for modifying
each query, so when it is processed, the
constraints specified in the Conceptual
Schema will be enforced. For example, a
GORDAS query that deletes a record will

ACM Computing Surveys, Vol. 22, No. 3, September 1990

Site 1 Site 2 Site 3

External Schema External Schema

I I
Filtering Processor Filtering Processor

I I
Federated Schema Federated Schema

I I
onstructing Processor Constructing Processor

(Export Schema

1 Filtering Processor 1

1 Component DBS 1

(External Schema 1

I

Constructing Processor

(Component Schema 3

1 TransforTing Proce: 1

(Local
1 Component DBS 1

External Schema
L /

I
1 Filtering, Processor 1

I

f Federated Schema 3

Constructing Processor

\

\
Site 4

I

Filtering Processor

I
(Component Schema

I

(Local Schema

1 Component DBS]

Figure 16. Typical FDBS system configuration.

Federated Database Systems 211

Component I: Local
Representational

Schema I

Transforming 1:
Local Operations

Module I
I

Component DBMS 1:
IDS.2 Wet works

I

Application Processor

F(T)

Federated: Global
Representational

I

Constructing:

-1

-1
I .

a Processor

Component n: Local
Representational

I
Transforming n:
Local Operations

Module n
I

I

Component DBMS n:
RAM (Relational)

I

Figure 17. DDTS architecture.

be modified so that it verifies that deleting
the record will not violate any semantic
integrity constraints before the record is
actually deleted. DDTS has since been ex-
tended to support external schemas [Dwyer
and Larson 19871 expressed in the rela-
tional data model defined over the Global
Representation Model. SQL is used to
query such external schemas.

sor

There are two separate processors in
DDTS’s constructing processor, reflecting
the decision to separate distributed query
optimization from distributed query exe-
cution. The Materialization and Access
Planning component generates a distrib-
uted execution strategy consisting of sets
of commands, each expressed in terms
of one of the Local Representational

ACM Computing Surveys, Vol. 22, No. 3, September 1990

212 l Amit Sheth and James Larson

ederatedl: DAPLEX Global vleW I

I
ransforming: Transformer

eratedl : DAPLEX Global View 1
ressedusing local terms

I

Transforming: GlobalQuery Optimizer
Constructing: Decomposer
Transforming: Filter
Constructinal Monitor

omponent 1: Component n:

DAPLEXLocal

LocalOptimizer

I DAPLEXLocal
Schema n I

I

Transforming:
LocalOptimizer
Transforming:
Translator

I

l*rrn

I
Component
DBMS n:
Relational

I

Figure 18. Multibase architecture.

(component) schemas. The distributed ex-
ecution strategy can be saved for future
execution or can be passed immediately to
the Distributed Execution Monitor. The
Distributed Execution Monitor is respon-
sible for executing the distributed execu-
tion strategy, coordinating the execution of
the sets of commands, and returning the
results to the user.

The Local Operations (transforming)
Module accepts a set of commands and
transforms it into a form that can be
executed by the component DBMS. Orig-
inally there were two CODASYL com-
ponent DBMSs. Later a third component
DBMS using the relational data model was
added.

2.4.2 Multibase

Figure 18 illustrates the architecture of
Multibase, again using the terminology of
the reference architecture and the termi-
nology used by Landers and Rosenberg
[1982]. The federated schema is expressed
in a functional data model called DAPLEX.
The Transformer modifies global queries
by inserting references to Local and Aux-
iliary schemas. The modified global query
is then processed by a series of processors
that generates sequences of DAPLEX
single-site queries. These processors
include:

l A Global Query Optimizer that produces
a global plan,

ACM Computing Surveys, Vol. 22, No. 3, September 1990

Federated Database Systems l 213

xternal 1: Relational I*** r ternal p: Semantic
Subschema 1 Subschema p
I I

Transforming: Relational Transforming: AR/EL
to D/L to D/L

Filtering: Access File/ Filtering: Access File/

Access List Access List

I
Constructing: Optimizer

and Controller

Local Schema 1

Figure 19. Mermaid architecture.

A Decomposer that decomposes the
global plan into single-site DAPLEX
queries,
A Filter that reduces the decomposed
queries by removing operations from
them that are not supported by the cor-
responding component DBMSs, and
A Monitor that controls the distributed
execution of the subqueries.

The Optimizer, Decomposer, and Filter
may be cyclically invoked for nested global
queries. Two types of transformations are
performed on each DAPLEX single-site
query:

l A Local Optimizer determines the opti-
mal query-processing strategy for the
single-site DAPLEX queries.

l A Translator converts the DAPLEX
query to a form the component DBMS
can process.

An Auxiliary schema holds additional
data not stored in any component DBMS
and information needed to resolve incon-
sistencies. Component DBMSs supported
by Multibase include both CODASYL and
relational.

2.4.3 Mermaid

Figure 19 illustrates the architecture of
Mermaid, again using the terminology of
the reference architecture and the termi-
nology used by Templeton et al. [1987b].
Users may formulate requests using either
SQL on a relational schema or ARIEL, a

ACM Computing Surveys, Vol. 22, No. 3, September 1990

214 l Amit Sheth and James Larson

ternal 11 Federated 1:
DSL Queries / External 1

I
l.**P

Constructing: MRDSM

mponent l/ Local 1:
MRDS Schema I MRDS Schema n

I
Component DBMS 1: freon Component DBMS n:

MRDS I MRDS n
I I

database 1

Figure 20. MRDSM architecture.

user-friendly query language developed at
Systems Development Corporation (now
Unisys), on what is called a Semantic Sub-
schema. The federated schema is called a
Global Schema and is expressed in the re-
lational model. User requests are trans-
formed to the internal command language
called the Distributed Intermediate Lan-
guage (DIL). DIL requests are processed by
a constructing processor that produces and
executes a query plan. A transforming pro-
cessor (one for each component DBS)
translates DIL requests into the query lan-
guage of the component DBMS, interacts
with the component DBMS, and sends data
to other transforming processors (e.g., for
joins and unions). Component DBMSs in-
clude commercial relational DBMSs on
Sun@ workstations and a database machine
with a minicomputer host [Thomas et al.
19901.

2.4.4 MRDSM

MRDSM is a loosely coupled FDBS (called
a multidatabase system by its originators)
in which a programmer/user formulates a
request involving data from component
DBSs. The system provides a multidata-
base language called MDSL [Litwin and

@ Sun is a trademark of Sun Microsystems, Inc.

ACM Computing Surveys, Vol. 22, No. 3, September 1990

Abdellatif 19871 to facilitate formulating
such queries. Figure 20 illustrates the archi-
tecture of MRDSM using the terminology
of the reference architecture and the ter-
minology of Litwin [19851.

3. FEDERATED DATABASE SYSTEM
EVOLUTION PROCESS

There are two approaches to managing dis-
tributed data: installing a distributed
DBMS or adding a layer of software above
existing DBMSs to create an FDBS system.
In the first approach, installing a distrib-
uted DBMS requires (1) changes and dis-
ruption of the existing applications because
they do not have the dichotomy of local
versus global operations, (2) a complete
change of the organizational structure for
information management because this ap-
proach does not respect the autonomy of
existing DBSs, and (3) replacement of the
existing centralized DBMSs by a distrib-
uted DBMS.

The federation approach offers a pre-
ferred evolutionary path. It allows contin-
ued operation of existing applications to
remain unchanged, preserves most of the
organizational structure, supports con-
trolled integration of existing databases,
and facilitates incorporation of new ap-
plications and new databases. Although

Federated Database Systems l 215

Both migration and extension of file sys-
tems are expensive. Many developers of the
FDBSs elect to use migration because they
do not have access to the source code of the
file system and because they want their
data maintained by a commercially avail-
able DBMS. Since existing application pro-
grams are affected, however, this activity is
very difficult and often organizationally
very sensitive.

The second phase of the FDBS evolution,
developing a federated database system, in-
volves creating the component, export, fed-
erated, and external schemas, defining the
mappings between various schemas, and
implementing the associated processors.
This is a critical task for the success of an
FDBS. A methodology that can be used to
manage this phase is discussed in Section
3.1. Tasks performed in this phase are dis-
cussed in Section 4.

The third phase of the FDBS evolution,
federated database system operations, in-
volves managing and manipulating multi-
ple integrated databases using an FDBMS.
The processors support various run-time
FDBS operations (e.g., query processing
and transaction management). The proces-
sors and the federated schemas developed
or generated in the second phase allow the
selective, shared, and consistent access to
data stored in the component DBSs. An
FDBMS provides an interface to the users
and applications and may allow execution
of ad hoc queries. Tasks performed in this
phase are discussed in Section 5.

existing applications need not be changed
in an FDBS, as the old applications are
modified, the component databases may be
standardized, and redundant data (unless
required for improving availability or ac-
cess time) may be removed. New applica-
tions may be coded using an external
schema defined on a federated schema.

An FDBS evolves through gradual inte-
gration of a set of interrelated DBSs. It
evolves as the new component databases
are added and the existing ones are modi-
fied. This evolution process can be divided
into three phases: preintegration, develop-
ing a federated database system, and fed-
erated database system operation. These
phases (or the activities within the phases)
need not follow serially from one phase to
the next; each phase may be performed
several times, and previous phases may be
revisited and their results revised.

The preintegration phase deals with the
situation in which data reside in files and
are not managed by any DBMS yet need to
be accessed by federation users. Two gen-
eral approaches are possible:

l Migrate the files to a DBMS: Files
can be migrated to a DBMS by perform-
ing three activities: (1) develop a com-
ponent schema that describes the data
in the files, (2) load the DBMS with
data from the files, and (3) modify exist-
ing application programs to access the
DBMS rather than access the files
directly.

l Extend the file system to support
DBMS-like features: By extending
the file system to support DBMS-like
features, a file system can be treated as
a component DBMS. In this approach,
the following activities are performed:
(1) create or generate a component
schema that describes data in the files,
(2) create backup and recovery facilities
in the file system if the federation users
will perform updates to data in the file
system, and (3) create appropriate filter-
ing and transforming processors that will
convert commands expressed in the
FDBS’s internal language to the com-
mands that can be processed by the file
system.

3.1 Methodology for Developing a Federated
Database System

The methodology discussed here extends
the methodology of Sheth [1988b] for de-
veloping schemas for an FDBS to include
processors. Developing a new FDBS pri-
marily consists of integrating existing com-
ponent databases. A bottom-up FDBS
development process can be followed for
this purpose. This process can also be used
for adding a new component database to an
FDBS.

When new applications are developed us-
ing an existing FDBS, it is necessary to
determine whether the data requirements

ACM Computing Surveys, Vol. 22, No. 3, September 1990

216 l Amit Sheth and James Larson

of the application are supported by a fed-
erated schema. If they are not, it is neces-
sary either to extend a federated schema or
create a new federated schema and either
to extend an existing component database
or create a new component database. This
process is called a top-down FDBS devel-
opment process. It is an extension of the
traditional distributed database design
process. In practice, elements of both the
bottom-up and top-down processes are
used to develop an FDBS.

A data dictionary/directory (DD/D)
often plays an important role in coordinat-
ing various activities by storing essential
information. In addition to storing all sche-
mas representing information about the
data managed by the FDBS, a DD/D also
stores mappings among schemas, informa-
tion about schemas and databases (such as
statistics relevant to query optimization),
schema-independent information (such as
tables and functions for unit/format con-
versions or heuristics for query optimiza-
tion) , and various types of system
informations (such as capabilities of each
component DBMS, network addresses of
each system hosting a component DBMS,
and communication facility to be used to
communicate with a given system).

3.1.1 Bottom-Up Development Process

A bottom-up FDBS development process is
used to integrate several existing databases
to develop an FDBS. Figure 21 illustrates
the bottom-up process outlined below:

(1) Translate schemas: Translate the
local schema of a component database
into a component schema expressed in
the CDM. Generate the mappings be-
tween the objects in the two schemas.
Develop (or identify if one already ex-
ists) the transforming processor that
can transform commands expressed on
the component schema into the com-
mands expressed on the corresponding
local schema.

(2) Define export schemas: Define ex-
port schemas from a component
schema. This step is performed by the
administrators (component DBAs) of

ACM Computing Surveys, Vol. 22, No. 3, September 1990

(3)

(4)

respective component DBSs to author-
ize part of their databases to be in-
cluded in the FDBS based on the
negotiations with the federation DBA.
Develop (or identify if one already ex-
ists) the appropriate filtering proces-
sor.
Integrate schemas: Select a related
set of export schemas to be integrated
and integrate them. Integration of each
set of export schemas will produce one
federated schema. Develop (or identify
if one already exists) a constructing
processor that would transform the
commands expressed on federated
schemas into commands expressed on
the corresponding export schemas.
This includes generating mappings
with appropriate distribution informa-
tion. This step is repeated once for each
related set of export schemas and the
corresponding federated schema.
Define external schemas: If neces-
sary, define external schemas for each
federation user or class of federation
users. Build or identify the necessary
filtering and transforming processors.
The transforming processor performs
schema translation if the data model of
the external schema is different than
the CDM.

3.1.2 Top-Down Development Process

A top-down FDBS development process is
used when an FDBS already exists and
additional user requirements (e.g., to sup-
port a new application) are placed on it.
Figure 22 illustrates the top-down process
outlined below:

(1) Define or modify external sche-
mas: Collect federation user require-
ments and analyze them to define new
external schemas or extensions to the
existing external schemas.

(2) Analyze schemas: Compare relevant
federated schemas with the external
schemas to identify parts of the exter-
nal schemas that are already in the
federated schema and hence supported
by the FDBS. If some part of an exter-
nal schema is not already supported by

Federated Database Systems l 217

I Data I

-Schema - - \
lntegratlon ’

’ I
&J$&z-;/i

Schema

Schema -----
Translation- -

Local
Schema

Figure 21. Bottom-up FDBS developing process.

the FDBS, a federated schema will need
to be extended or developed to include
that part. We refer to this unsupported
part as a temporary schema (which is
discarded at the end of the integration
process). One or more of the compo-
nent databases will have to support the
temporary schema. This can be accom-
plished in one of three ways:

(a) The required data exist in one or
more component database(s). In
this case, identify the component
schemas containing the descrip-
tion of required data and negotiate
with their administrators to have a
description of this data placed in
an export schema with appropriate
access rights.

(b) The required data are not imple-
mented in any component data-
base, and a component DBA is
willing to place the required data
in his or her component database.
In this case, local, component, and
export schemas of the relevant da-
tabases are modified.

(c) The required data are not imple-
mented in any component data-
base, and no component DBA is
willing to place the required data
in his or her component databases.
In this case, the temporary schema
is implemented as a separate da-
tabase of an existing component
DBMS. Alternatively, a new com-
ponent DBMS may be used that
may require a new transforming

ACM Computing Surveys, Vol. 22, No. 3, September 1990

218 . Amit Sheth and James Larson

Requirements
CollectIon & - -

External Schema External Schema

Physical
-Database

Design

Figure 22. Top-down FDBS developing process.

processor. The temporary schema
becomes a new component schema.

(3) Integrate schemas: Integrate the
temporary schema with the relevant
federated schema and discard the tem-
porary schema.

4. FEDERATED DATABASE SYSTEM
DEVELOPMENT TASKS

Many tasks involved in developing a cen-
tralized or a distributed DBS [Ozsu and
Valduriez 1990, Chapter 5; Teorey 19901
are also relevant to developing an FDBS
and can be adapted with minor changes. In
this section, we discuss four tasks that do
not typically arise in that context but have
particular significance for developing an
FDBS. They are schema translation, access

ACM Computing Surveys, Vol. 22, No. 3, September 1990

control, negotiation, and schema integra-
tion. As identified in Section 3.1, these
tasks are relevant to the development of
the schemas and are affected by the data
requirements of the federation users.

4.1 Schema Translation

Schema translation is performed when a
schema represented in one data model (the
source schema) is mapped to an equivalent
schema represented in a different data
model (the target schema). Schema trans-
lation is needed in two situations:

l Translating a local schema into a com-
ponent schema when the DBMS’s native
data model is different from the CDM.

l Translating a part of the federated
schema into an external schema when

Federated Database Systems l 219

the source schema. These rules specify how
each object in the target schema is derived
from objects in the source schema. If the
mapping rules do not have inverses, the
view update problem must be solved.
The following is a simplified example of
a set of mapping rules that can be used to
generate a relational schema from a
CODASYL schema:

the external schema is expressed in a data
model different than the CDM.

For example, assume that if the CDM is
an extended Entity Relationship (EER)
model, then one of the component DBMSs
to be integrated is a relational DBMS and
another is a CODASYL DBMS, and a class
of federated users wants a relational view.
The following are required: (1) translation
of the local schema of the relational DBMS
into its equivalent component schema ex-
pressed in the EER model, (2) translation
of the local schema of the CODASYL
DBMS into an equivalent component
schema expressed in the EER model, and
(3) translation of a part of the federated
schema in the EER model into an exter-
nal schema expressed in the relational
model. Two general approaches for per-
forming schema translation are discussed
below.

The first approach develops explicit
mappings between each source and the tar-
get schema. This approach is appropriate
when a (class of) federation user(s) requires
specific data structures in the target
schema. The DBA must then specify map-
pings that transform the source schema to
the target schema. There are three cases:

All schema objects in the target schema
can be derived from the schema objects
in the source schema, and there exist
inverses for all of these mappings. The
DBA specifies the mappings and their
inverses.
All schema objects in the target schema
can be derived from the schema objects
in the source schema, but inverses may
not exist for the mappings. If the update
were to be allowed, the DBA must con-
struct a filtering processor to solve the
associated view update task.
If the target schema contains objects that
cannot be derived from the objects in the
source schema, the DBA must modify the
target schema or construct a constructing
processor that integrates schema objects
from other schemas to support all of the
objects in the target schema.

The second approach develops mapping
rules to generate the target schema from

(1)

(2)

(3)

(4)

Each record type is mapped to a table
with the same name.
Each field in a record type A is mapped
to a column of table A.
Each record identifier in record type A
is mapped to a key in table A.
Each set (one-to-many relationships
between record type A and record type
B) is mapped to a column in table B
that contains values from the key of
table A. This column is called a foreign
key.

Consider the CODASYL schema in Fig-
ure 23(a) (from Larson [1983a]). The
COMPANY record type has two fields,
COMPANY-NAME and CITY. The
PRODUCT record type has two fields,
PRODUCT-NAME and COST. COM-
PANY-NAME is the unique record identi-
fier for the COMPANY record type, and
PRODUCT-NAME is the unique record
identifier for the PRODUCT record type.
There is a PRODUCES set consisting of
the COMPANY record type as the owner
and the PRODUCT record type as the
member. The PRODUCES set maintains

one-to-many relationship between
EOMPANY and PRODUCT.

The relational schema of Figure 23(b)
results when the above mapping rules are
applied. The COMPANY table has two
fields, COMPANY -NAME and CITY. The
PRODUCT table has three fields, PROD-
UCT-NAME, COST, and COMPANY-
NAME. COMPANY-NAME is the key for
the COMPANY table, and PRODUCT-
NAME is the key for the PRODUCT table.
The COMPANY-NAME column of
PRODUCT table is a foreign key; it con-
tains only values from the COMPANY-
NAME key field of the COMPANY table.

Zaniolo [1979] developed a tool that au-
tomatically generates relational schemas

ACM Computing Surveys, Vol. 22, No. 3, September 1990

220 l Amit Sheth and James Larson

PRODUCT

PRODUCT-NAME COST COMPANY-NAME*

(a) (b)

Figure23. Equivalent CODASYL and relational schemas. (a) CODASYL
schema; (b) relational schema. * -Foreign key.

from CODASYL schemas. Elmasri et al.
[1985] and Teorey et al. [1986] discuss
transformations between extensions of the
Entity Relation data model [Chen 19761
and the relational data model. Lien [1981]
describes mappings from the hierarchical
to the relational data model. Tsichritzis
and Lochovsky [1982] provide a summary
of these types of mappings.

In practice, the translation task may re-
quire more than just data model translation
because the source and the target schemas
may not be able to represent exactly the
same semantics, Hence schema translation
poses two contradictory requirements:
(1) Capture additional semantics during the
schema translation that can later help in
the tasks of schema integration and view
update, and (2) maintain only the existing
semantics because the local schema is not
able to support the additional semantics.
These requirements are discussed next.

Using a semantic data model as the CDM
can facilitate representation of additional
semantics that may be difficult or impos-
sible to specify in a traditional model such
as the relational model. As an example, a
generalization relationship with inherit-
ance between two entity types can be ex-
plicitly represented in a component schema
that uses a semantic data model. As an-
other example, a foreign key between rela-
tions Rl and R2 in a local schema expressed
in the relational model may be explicitly
represented as a relationship between the
two entities representing Rl and R2 in the
corresponding component schema in an
EER model. One, however, should be care-
ful about the additional semantic informa-
tion provided during the translation from a

ACM Computing Surveys, Vol. 22, No. 3, September 1990

local schema to a component schema. This
is because a component DBMS is autono-
mous, and the database managed by it
should not be changed as a result of the
translation process. In other words, the
translation should be reversible in the sense
that (a) the component schema in the CDM
should represent the same database repre-
sented by the local schema and (b) it should
be possible to translate a command on a
component schema into command(s) on the
corresponding local schema. A notion
that may be useful in this context is
that of content-preserving transformations
[Rosenthal and Reiner 19871.

4.2 Access Control

An FDBS should be designed to control
access to component databases by federa-
tion users. The system architecture of an
FDBS (shown in Figure 11) has filtering
processors at two levels. Each can be used
to provide access control. The filtering pro-
cessors relating the export and the compo-
nent schemas control access to component
DBSs. The filtering processor relating the
external and federated schemas controls
access to the federated schemas.7 Negotia-
tion between the component and federation
DBAs may be necessary to reach an agree-
ment on how to control the data a compo-
nent DBA wants to keep secure from some
of the federation users while allowing ac-
cess to other federation users. Alternately,
a new federated schema can be established

‘This is similar to using the view mechanism for
access control security in centralized and distributed
DBMSs [Bertino and Haas 19881.

Federated Database Systems l 221

maid maintains an access file on each com-
puter for this purpose. Access files control
access to Mermaid’s data dictionary and
directory. Third, Mermaid maintains an
access list that identifies the external and
federated schemas each user is authorized
to use. Fourth, the user must be registered
with each computer having a component
DBS that is relevant to the user’s federated
schema. In addition, Mermaid provides ex-
tensive run-time support for access control,
uses data encryption (for passing access
control information over the network and
for storing it in access files and access lists),
and provides an audit trail and a journal
trail for security purposes.

One of the heterogeneities that may be
encountered in an FDBS is the existence
of different and incompatible mechanisms
for expressing and enforcing access control
policies. An access control mechanism used
by an FDBMS, such as the view mecha-
nism, may also conflict with the autonomy
of the component DBMSs. A solution that
uses preprocessing is discussed by Wang
and Spooner [1987].

for use by a selected subgroup of the origi-
nal federation. For example, suppose com-
ponent databases each contain information
about commercial shipping and military
shipping. The following approaches are
possible:

Each component DBA includes schema
objects describing both commercial and
military shipping in their respective ex-
port schemas. This information is inte-
grated into a single federated schema.
The federation DBA creates two external
schemas, one for accessing commercial
shipping information and one for access-
ing military shipping. In this scenario,
the local DBAs trust the federation DBA
to provide appropriate access controls on
each external schema.
Each component DBA generates two ex-
port schemas, one containing the schema
objects describing commercial shipping
and the other containing schema objects
describing military shipping. Two feder-
ated schemas are created, one dealing
with commercial shipping and the other
dealing with military shipping. In this
scenario, the component DBAs control
appropriate access on each export
schema and hence is preferred to the
previous one.

Other access control and security issues
include the following:

How users are identified, grouped into
classes, and named for access control se-
curity purposes. Templeton et al. [1987a]
discuss the issue of installing a new user.
How data are identified, grouped into
classes, and named for access control se-
curity purposes [Abbott and McCarthy
1988; Templeton et al. 1987b].
What operations are used for controlling
security privileges [Fagin 1978; Larson
1983b; Selinger and Wade 19761.

A case study of the access control fea-
tures of Mermaid [Templeton et al. 1987a]
is interesting. It uses access control at four
levels. First, a user must have an account
on the computer where the Mermaid user
interface can be run. Second, the user
should be registered with Mermaid. Mer-

4.3 Negotiation

A federation DBA manages federated sche-
mas. A component DBA manages the ex-
port schemas defined over the component
DBS he or she manages. A federation DBA
and component DBAs must reach an agree-
ment about the contents of the export sche-
mas and operations allowed on the export
schemas such that federated schemas can
be defined over them to support federation
users. The dialogue between the two admin-
istrators to reach this agreement is
called negotiation. To facilitate negotia-
tion, the administrators follow protocols
governing the messages exchanged during
a negotiation.

In terms of the reference schema archi-
tecture, there are two ways to perform ne-
gotiation. First, a component DBA may
allow the federation DBA to read the com-
ponent schemas he or she controls but does
not give any specific rights for data access.
When a federation DBA determines data
access requirements, he or she sends a re-
quest to the component DBA to define an

ACM Computing Surveys, Vol. 22, No. 3, September 1990

222 l Amit Sheth and James Larson

export schema with appropriate access
rights. This request typically includes in-
formation on the data to be accessed, the
types of access (retrieval or update), and
the federation users who will access the
data. In some cases, it may also include
requirements on the component DBS such
as constraints to be satisfied (e.g., how cur-
rent or consistent the data must be and
maximum response time), and whether the
federation DBA or user may grant others
some or all of the access rights for this
export schema [Larson 1983131. The com-
ponent DBA may accept or refuse any part
of the request for any reason in defining
the export schemas. In the second alterna-
tive, all component DBAs may define the
export schemas a priori and require
the access from the FDBMS to be limited
to the contents and access rights contained
in those export schemas.

Two of the many aspects of FDBS oper-
ations for which negotiation protocols need
to be defined are the following:

l A component DBA decides to withdraw
access to a schema object or change a
schema object in a local schema.

l A federation user decides that access to a
schema object is no longer needed.

Heimbigner and McLeod [1985] present
negotiation protocols for a multisited dis-
tributed dialogue among the DBAs in an
FDBS. Alonso and Barbara [1989] consider
the case in which the federated schema is
a materialized view (they call it quasi-
copy). In this context, they explore ways to
express the needs of a federation DBA pre-
cisely, to determine the degree of sharing
the component DBA is willing to offer, and
to estimate the cost of a specific agreement
for both the component DBS and the
FDBS.

4.4 Schema integration

View integration refers to integrating mul-
tiple user views into a single schema (e.g.,
federated schema development in a top-
down FDBS development process). Schema
integration refers to integrating (usually ex-
isting) schemas into a single schema (e.g.,
federated schema development by integrat-

ing export schemas in a bottom-up FDBS
development process). The tasks are quite
similar and are treated uniformly as
schema integration in this paper.

Many approaches and techniques for
schema integration have been reported in
the literature. The survey paper of Batini
et al. [1986] discusses and compares 12
methodologies for schema integration. It
divides schema integration activities into
five steps: preintegration, comparison, con-
formation, merging, and restructuring. In
the context of FDBS development, prein-
tegration activities involve translation of
schemas into a CDM so they can be com-
pared and specification of global con-
straints and naming conventions. The
latter involves activities that may be useful
in the comparison step (e.g., specifying a
thesaurus that may be used for identifying
naming conflicts, homonyms, or syno-
nyms). Although schema translation has
been studied independently from schema
integration, the two tasks are highly inter-
related. Schema translation may be more
constrained when integrating existing
DBSs than during view integration because
the constraints of the existing data struc-
tures cannot be changed.

The comparison step (also called schema
analysis) involves two activities: (a) analyz-
ing and comparing the objects of the
schemas (and possibly databases) to be in-
tegrated, including identification of naming
conflicts (e.g., homonym and synonym de-
tection), domain (i.e., value type) conflicts,
structural differences, constraint differ-
ences, and missing data and (b) specifying
the interrelationships among the schema
objects. The conforming step is closely tied
to the comparing step since it is difficult to
compare unless the related information is
represented in a similar form in different
schemas.

Unless the schemas are represented in
the same model, analyzing and comparing
their schema objects is extremely difficult.
It is important to note that comparison of
the schema objects is primarily guided by
their semantics. not bv their svntax. Hence
the choice of the CDM is critical. The CDM
should be semantically rich; that is, it
should provide abstraction and constraints

ACM Computing Surveys, Vol. 22, No. 3, September 1990

Federated Database Systems l 223

E2, and El is-disjoint-and-nonintegra-
bleewith E2. Similar relationships exist
among relationship types. Elmasri et al.
[1986] and Sheth et al. [1988b] use the
relationships among attributes in a heuris-
tic algorithm to identify pairs of entity
types and relationship types that may be
related by the first three types of relation-
ships. The actual relationships are specified
by the person (the DBA in a tightly coupled
FDBS, a user in a loosely coupled FDBS)
integrating the schemas. Using classifica-
tion in the CANDIDE semantic data model
[Beck et al. 19891 and the relationships
among attributes, Sheth and Gala [1989]
suggest that many of the relationships
among entity types and relationship types
can be automatically discovered without
additional human input.

In [Sheth et al. 1988b], specification of
relationships among schema objects is used
as an input to a lattice generation or merg-
ing activity to generate a single integrated
schema. Other efforts, particularly those
that do not rely on identifying relationships
among schema objects, as discussed above,
provide a set of operators for the DBA
to correlate or integrate the objects to gen-
erate an integrated schema [Motro and
Buneman 19811.

One reason why a completely automatic
schema integration process (particularly
for discovering attribute relationships) is
not possible is because it would require that
all of the semantics of the schema be com-
pletely specified. This is not possible be-
cause, among other reasons, (1) the current
semantic (or other) data models are unable
to capture a real-world state completely,
(2) it will be necessary to capture much
more information than is typically cap-
tured in a schema, and (3) there can be
multiple views and interpretations of a
real-world state; and the interpretations
change with time. Convent [1986] formally
argues that integrating relational schemas
is undecidable.

Three tools developed to perform schema
integration are reported in Hayes and Ram
[19901, Sheth et al. [1988b], and Souza
[19861. Sheth et al. [1988131, for example,
describe a forms-based interactive tool to
integrate EER schemas. It accepts the

so that the semantics relevant to schema
integration can be presented. Thus, seman-
tic (or conceptual) data models are much
preferred over traditional data models such
as relational, network, or hierarchical.
Dayal and Hwang [1984] suggest that the
concept of generalization is important for
schema integration. One reason is that sim-
ilar or related concepts are represented at
different levels of abstractions in different
schemas. For example, one schema may
contain attributes Office-Phone-Number
and Home-Phone-Number, both of which
can be shown as specializations of the at-
tribute Telephone-Number in another
schema.

Analyzing and comparing schema objects
is followed by specifying the interrelation-
ships among the schema objects. Consider
integrating two EER schemas. In this case,
there are three types of schema objects:
entity types, relationship types, and attri-
butes. In the methodology discussed by
Elmasri et al. [1986] as well as in several
other schema integration methodologies,
relationships among attributes in the two
schemas are specified first. Relationships
among other object types (e.g., the entity
types and the relationship types) follow.

Two attributes, al and a2, may be related
in one of the three ways [Larson et al. 1989;
Sheth and Gala 19891: al is-equivalent-to
a2, al includes (or is-included-in) a2, or
al is-disjoint-with a2. Determining such
relationships can be time consuming and
tedious. If each schema has 100 entity
types, and an average of five attributes per
entity type, then 250,000 pairs of attributes
must be considered (for each attribute in
one schema, a potential relationship with
each attribute in other schemas should be
considered). Sheth and Gala [1989] argue
that this task cannot be automated, and
hence we may need to depend on heuristics
to identify a small number of attribute pairs
that may be potentially related by a rela-
tionship other than is-disjoint-with.

Two entity types, El and E2, may be
related in one of five ways [Elmasri et al.
1986; Navathe et al. 19861: El equals E2,
El includes (or is-included-in) E2, El
overlaps (or may-be-integratable-with)
E2, El is-disjoint-but-integrable-with

ACM Computing Surveys, Vol. 22, No. 3, September 1990

224 l Amit Sheth and James Larson

definitions of the schemas to be integrated,
guides the integrator through the process
of defining attribute equivalencies, uses at-
tribute equivalencies to rank entity type
and relationship type pairs that may be
related heuristically, accepts assertions
about the relationships among the entity
types and relationship type pairs, checks
for their consistency, and performs the
merging task automatically.

After schemas have been integrated, it
may be necessary to decide how to allocate
the data among multiple component DBSs.
This distribution design task has been stud-
ied extensively [Ceri et al. 19871.

5. FEDERATED DATABASE SYSTEM
OPERATION

The previous section discussed some of the
important tasks for developing an FDBS.
Many tasks relevant to the operation (i.e.,
run-time system) of distributed DBMSs are
also relevant to the operation of multida-
tabase systems and FDBSs. In this section,
we discuss four tasks that are either specific
to an FDBS (or a multi-DBMS system) or
are significantly different from similar
tasks in a distributed DBMS. These tasks
are application independent.

5.1 Query Formulation

The same query languages used in cen-
tralized and distributed DBMSs can
be used for formulating queries in a
tightly coupled FDBS. This is because a
lightly coupled FDBS provides location,
distribution, and replication transpar-
encies. Most loosely coupled FDBSs pro-
vide a multidatabase language to allow a
federation user to access data from multiple
component DBSs. A multidatabase lan-
guage provides functions that are not pres-
ent in data manipulation languages used in
centralized and distributed DBMSs [Litwin
et al. 19871. It provides a capability to
define federated schemas as views over
multiple export schemas (or parts of
component schemas) and to formulate
queries against such a view. In addition the
language deals with problems identified in
the discussion on schema integration, such
as naming conflicts and data structure/

type/scale differences. Some systems using
multidatabase languages can define multi-
ple semantics over the same data (e.g., dy-
namic attributes in Litwin and Abdellatif
[19861). Examples of multidatabase lan-
guages include MDSL [Litwin and Abdel-
latif 19871, MSQL [Litwin et al. 19871,
GSQL [Jacobs 19851, a relational language
with extended abstract data types [Czejdo
et al. 19871, and a graphical multidatabase
query language [Rusinkiewicz et al. 19891.
CALIDA [Jacobsen et al. 19881) provides a
menu-based interface to formulate queries
against multiple component DBMSs.

5.2 Command Transformation

A command transformation processor
translates commands in one language,
called the source language (or operations in
one data model, called the source data
model) into commands in another lan-
guage, called the target language (or oper-
ations in another data model, called the
target data model). Converting between
procedural and nonprocedural languages is
of particular interest.

5.2.1 Converting a Nonprocedural Language
into a Procedural Language

A common example of this type of conver-
sion is transforming relational algebraic op-
erations into a sequence of CODASYL
programming language statements. Con-
sider the relational operation join that
causes two tables to be combined. Two
rows, one from each table, are joined if their
values satisfy a specified Boolean (the join
condition) condition. Using the example of
Section 4.1, joining the COMPANY and
PRODUCT tables where the COMPANY-
NAME of a COMPANY equals the COM-
PANY-NAME of a PRODUCT results in
a single table consisting of columns of both
the COMPANY and PRODUCT tables.
Using code generation techniques, it is pos-
sible to automatically generate code con-
sisting of two nested loops. The outer loop
reads successive COMPANY records. The
inner loop reads successive PRODUCT rec-
ords in the PRODUCES set (owned by
COMPANY) and constructs rows of the
joined table.

ACM Computing Surveys, Vol. 22, No. 3, September 1990

This idea can be generalized as follows.
For each relational operation, R, develop
an algorithm, A, which generates equiva-
lent CODASYL code. For each nested op-
eration, Rl and R2, develop an algorithm
for using the corresponding generation al-
gorithms Al and A2 to generate an equiv-
alent CODASYL code. For example, if a
query involves joining the DISTRIBUTOR
table with the result of joining the COM-
PANY and PRODUCT tables, then gen-
erate two nested loops that perform the
join of COMPANY and PRODUCT and
place those two loops inside another loop
that generates the join of DISTRIBUTOR
table with the result of joining COMPANY
and PRODUCT.

Another approach involves generating all
possible strategies for performing nested
relational operations, then selecting the
best strategy. Heuristics can be used to
generate only promising strategies, de-
creasing the time to perform optimization
at the cost of producing a near-optimal
rather than optimal strategy. Rules for con-
verting one strategy into a better strategy
are described by Chu and Hurley [1982]
and Ceri and Pelagatti [19841.

An approach taken by some researchers
is to use an intermediate language that can
serve as an umbrella for multiple target
languages and be able to express most, if
not all, of the operations expressed in the
target languages. Piatetsky-Shapiro and
Jakobson [1987] define a language called
DELPHI that combines the power of rela-
tional algebra with many additional
database operations, including grouping,
sorting, aggregates, and nested queries.
They also describe rule-based transforma-
tions to convert DELPHI to different tar-
get query languages such as SQL and
fourth-generation languages. In CALIDA
[Jacobson et al. 19881, which is a loosely
coupled FDBS, a user’s interactions with a
menu-based interface results in a query in
DELPHI, which is then converted into
queries in the desired target language.

5.2.2 Converting a Procedural Language into a
Nonprocedural Language

An example of converting a procedural lan-
guage into a nonprocedural language is syn-

Federated Database Systems l 225

thesizing relational algebraic operations
from a sequence of CODASYL program-
ming language statements. This problem is
quite difficult. Demo [19831 suggests a data
flow analysis approach that may be used
for some cases. Solving the general case is
an open research problem. Fortunately, the
need for this type of transformation seldom
arises because a procedural language is sel-
dom chosen for the federation level.

5.3 Query Processing and Optimization

In a loosely coupled FDBS, the FDBMS
can support little or no query optimization
(see Section 2.1). In a tightly coupled
FDBS, the FDBMS can perform extensive
query optimization. Query processing in-
volves converting a query against a feder-
ated schema into several queries against
the export schemas (and the corresponding
component DBSs) and executing these
queries. Query processing in an FDBMS is
similar to that in a distributed DBMS (see
e.g., [Yu and Chang 19841 for a survey of
query-processing techniques for distributed
DBMSs). In an FDBMS, however, the
following additional complexities may
be introduced due to heterogeneity and
autonomy:

The cost of performing an operation may
be different in different component
DBSs. Due to autonomy of a component
DBS, the cost of performing the opera-
tion in a component DBMS may not be
known or may only be approximately
known. In addition, this cost may vary
from time to time as the local system load
changes.
The component DBMSs may differ in
their abilities to perform local query
optimizations.
The system and database operations pro-
vided by each of the component DBMSs
and the FDBMSs may be different. Ex-
amples of system operations include the
ability to create temporary relations and
the ability to receive and reference data
from other sites. Examples of database
operations include the different rela-
tional algebraic operations (join, selec-
tion, etc.) and aggregations. Not all
component DBMSs may support the

ACM Computing Surveys, Vol. 22, No. 3, September 1990

226 . Amit Sheth and James Larson

same operations and aggregations (or
their semantics may vary, e.g., one com-
ponent DBMS may remove duplicates
but another may not).

Landers and Rosenberg [1982] discuss
optimization problems and solutions
adopted for some of the above issues in
Multibase. Mermaid has implemented and
tested comprehensive algorithms for query
optimization [Chen et al. 19891 that involve
a dynamically changing network environ-
ment and different processing costs at dif-
ferent component DBMSs.

A query evaluation plan can be formu-
lated as a program in an intermediate task
specification language and then executed.
DOL (Distributed Operation Language)
[Rusinkiewicz et al. 19901 is an example of
such a language. Its main functions include
invocation of local and remote tasks (proc-
esses), synchronization of their execution,
data exchange between tasks (including re-
formatting), and exception handling. The
commands for the local systems can be
embedded in the DOL programs that are
forwarded to the local systems and executed
under local control.

Query processing in an FDBMS can be
divided into global processing performed by
the Global Data Manager (GDM) (a con-
structing processor) of an FDBMS and Zocal
processing performed by the Local Data-
base Interface (LDI) (a transforming pro-
cessor) associate with a component DBS.
Global query processing and optimization
relate to processing a query or transaction
submitted by a federation user, called a
global transaction, and dividing it into mul-
tiple subtransactions, called local transac-
tions, for the LDIs of the appropriate
component DBSs. Local query processing
and optimization relate to processing a lo-
cal transaction at a single component DBS.
Each is discussed below.

Global optimization involves evaluating
the following trade-offs:

l The amount of work done by the GDM
and the complexity of the LDI, and

l The amount of communication and pro-
cessing done by different component
DBSs.

Similar trade-offs exist in a distributed
DBMS, but the heterogeneity and auton-
omy add considerably to the complexity.
Three FDBMS query optimization design
approaches are as follows:

Simple LDIs and GDM: The GDM
transforms the global transaction into
the smallest possible local transactions.
An LDI (and hence a component DBS)
receives multiple local transactions for
each global transaction. The LDI sends
the result of each local transaction to the
GDM. The GDM merges all the results.
Multibase takes this approach. It results
in heavy workload for the GDM and sig-
nificant communication between the
GDM and the LDIs.
Medium complexity of the GDM and
LDIs: The GDM transforms the global
transaction into a set of the largest pos-
sible local transactions (one for each rel-
evant component DBS). This reduces the
GDM workload and communication be-
tween the GDM and the LDIs. Fewer
local transactions are sent to LDIs, and
the data returned to the GDM is a result
of processing a more complete local
transaction).
Complex GDM and LDIs: In this case,
GDM generates efficient programs that
involve participation of LDIs in the
global optimization. Partial results can
be sent to the GDM or other LDIs. LDIs
have to support additional functionalities
like sorting, removing duplicates, and
handling and merging temporary files.
DDTS and Mermaid take this approach.
It results in a further reduction in com-
munication and GDM workload. Rusin-
kiewicz and Czejdo [1987] discuss an
algorithm that attempts to maximize lo-
cal processing and minimize data transfer
between component DBSs.

Local optimization involves optimizing
execution of local transaction received from
the GDM. An FDBMS provides additional
requirements as well as opportunities for
local optimization as follows:

l Query languages for the component
DBMSs may be different. Thus, opera-
tion transformation for different pairs of

ACM Computing Surveys, Vol. 22, No. 3, September 1990

the query language used by the FDBS
and the query language provided by a
component DBMS may involve different
techniques.

l Physical database organization of each of
the component DBSs may be different.
Similarly, criteria for access path selec-
tion for different component DBMSs
may be different. Due to the autonomy
of the component DBMS, however, the
GDM or an LDI may not have enough
information on these matters.

Onuegbe et al. [1983] and Dayal and
Goodman [1982] develop strategies for
local query optimization in DDTS and
Multibase, respectively.

5.4 Global Transaction Management

The Global Transaction Manager (GTM)
is responsible for maintaining database
consistency while allowing concurrent up-
dates across multiple databases. Support-
ing global transaction management in an
environment with multiple heterogeneous
and autonomous component DBSs is very
difficult. This is underlined by the fact that
none of the prototype FDBMSs support
global transaction management. Nowhere
does the autonomy of component DBMSs
present more problems than in supporting
updates.

There are two types of transactions to be
managed: global transactions submitted to
the FDBMS by federation users and local
transactions directly submitted to a com-
ponent DBMS by local users. The basic
problem in supporting global concurrency
control is that the FDBMS does not know
about local transactions since a component
DBMS is autonomous. That is, local wait-
for relationships are known only to the
transaction manager of the component
DBMS. Without knowledge about local as
well as global transactions, it is highly un-
likely that efficient global concurrency con-
trol can be provided. Due to the existence
of local transactions, it is very difficult to
recognize when the execution order differs
from the serialization order at any site [Du
et al. 19891. Additional complications occur
when different component DBMSs and the

Federated Database Systems l 227

FDBMS support different concurrency
control mechanisms [Gligor and Popescu-
Zeletin 19861. The problem of global dead-
lock detection must also be addressed
[Logar and Sheth 19861.

Several researchers are currently study-
ing these problems [Alonso et al. 1987;
Breitbart and Silberschatz 1988; Elmagar-
mid and Helal 1988; Pu 19871. As argued
by Barker and Ozsu [1988] and Du et al.
[19891, however, the published solutions
often make unrealistic and pessimistic as-
sumptions, support a low level of concur-
rency, and/or sacrifice autonomy in order
to obtain higher concurrency.

It is unlikely that a theoretically elegant
solution that provides conflict serializabil-
ity without sacrificing performance (i.e.,
concurrency and/or response time) and
availability exists. One often accepted
trade-off is to limit the functionality of
concurrency control in favor of preserving
site autonomy. Examples of this would be
to allow only unsynchronized retrievals,
preclude multisite updates, or perform local
updates off-line. Another approach is to
devise mechanisms that specifically suit the
limitations of a given environment and
provide the required level of consistency.
Eliassen and Veijalainen [1987] propose a
concept of S-Transactions (for semantic
transactions) suited for a banking environ-
ment consisting of a network of highly au-
tonomous systems. It may be desirable to
devise solutions that do not meet the con-
flict serializability criteria but that are
practical and meet a desired level of consis-
tency. Du and Elmagarmid [1989] propose
a weaker consistency criterion called Quasi-
Serializability8 that works provided there
are no value dependencies (e.g., referential
integrity constraints) across databases.
Garcia-Molina and Salem [1987] and
Alonso et al. [1987] propose a concept of
Sagas that provides semantic atomicity but
does not serialize execution of global trans-
actions. More work on weaker consistency

‘A Quasi-Serializable schedule is one in which the
local transaction schedules are serializable and the
global transactions are executed serially. We need to
understand the practical significance of this and other
proposed weaker consistency criteria better.

ACM Computing Surveys, Vol. 22, No. 3, September 1990

228 l Amit Sheth and James Larson

criteria and a better understanding of their
significance in practical terms is needed.
Techniques to specify and execute the
transactions that selectively provide ato-
micity, isolation, and durability properties
need to be further researched. Little atten-
tion has been given to the problems of fault
tolerance, ensuring the integrity of redun-
dant data, and supporting integrity con-
straints across component databases.

6. FUTURE RESEARCH AND UNSOLVED
PROBLEMS

We discussed the concept of federation in
the context of database systems. A feder-
ated database system is a collection of co-
operating but autonomous and possibly
heterogeneous database systems. A refer-
ence architecture was used to study various
FDBS architectural alternatives and their
implications. A methodology for developing
FDBSs, particularly the tightly coupled
FDBSs, was discussed. Finally, we dis-
cussed important tasks that need to be
performed in order to develop and operate
FDBSs.

Several problems need further research
and development. They include the
following:

Identifying and representing all seman-
tics useful in performing various FDBS
tasks such as schema translation and
schema integration and determining con-
tents of schemas at various levels.
Lack of software tools to aid in perform-
ing various FDBS tasks with a high de-
gree of automation and an integrated
toolset for developing, maintaining, and
managing FDBSs.
Lack of adequate transaction manage-
ment algorithms that provide a specified
level of consistency (i.e., are correct with
respect to a given consistency criteria)
and fault tolerance at acceptable perfor-
mance within the heterogeneity and au-
tonomy constraints of an FDBS.
How to address management and effi-
ciency issues related to autonomy of com-
ponent DBSs.

The focus of the past activities in FDBSs
has been on databases that store more

ACM Computing Surveys, Vol. 22, No. 3, September 1990

structured data, often called business data.
Recently, however, there has been a great
deal of activity for constructing DBMSs
that manage data for the so-called nontra-
ditional applications. These applications
require less structured data in the forms
such as text, image, graphics, and voice.
Current database research activities, par-
ticularly related to object-oriented database
systems, address centralized management
of these types of data. We now need to
investigate issues in integrating such sys-
tems [Sheth 1987b, 1988131.

The second significant extension is to
create information systems that not only
include database systems but also applica-
tion programs and expert systems. Such a
system may be called a federated knowledge
base system. One of the main problems is
to represent information contents, process-
ing capabilities, and semantics (including
behavioral aspects) of programs and expert
systems adequately. We need to define a
description that plays a role with respect to
an application program that is equivalent
to the role a schema plays for a database.
One such effort is that of a “capability
schema” for an application program
[Ryan and Larson 19861. Models for fed-
eration also need to be developed for such
environments.

ACKNOWLEDGMENTS

We thank the referees, S. March, M. Rusinkiewicz,
G. Thomas, and M. Templeton, who have helped us
toward the current version; their time and care is
gratefully acknowledged.

REFERENCES

ABBOTT, K., AND MCCARTHY, D. 1988. Admi-
nistration and autonomy in a replication-
transuarent distributed DBMS. In Proceedinm of
the 14th International Conference on Very L&g;
Data Bases (Aug.), pp. 195-205.

ALONSO, R., AND BARBARA, D. 1989. Negotiating
data access in federated database systems. In
Proceedings of the 5th International Conference
on Data Engineering (Feb.), pp. 56-65.

ALONSO, R., GARCIA-M• LINA, H., AND SALEM, K.
1987. Concurrency control and recovery for
global procedures in federated database systems.
In 9. Bull. IEEE-CS TC Data Em. 10. 3
(Sept.), 5-11.

-

BARKER, K., AND Ozsu, T. 1988. A survey of issues
in distributed heterogeneous database systems.

Federated Database Systems l 229

Tech. Rep. TR 88-9, Univ. of Alberta Edmonton,
Canada.

BATINI, C., LENZERINI, M., AND NAVATHE, S.
1986. A comparative analysis of methodologies
for database schema integration. ACM Comput.
Suru. 18, 4 (Dec.), 323-364.

BECK, H., GALA, S., AND NAVATHE, S. 1989.
Classification as a query processing technique in
CANDIDE semantic data model. In Proceedings
of the 5th International Conference on Data En-
gineering (Feb.), pp. 572-581.

BELCASTRO, V., ET AL. 1988. An overview of the
distributed query system D&S. In Proceedings of
the International Conference on Extending Data
Base Technolozy (Venice, Italv. Mar.). In Com-
puter Science.--Vol. 303,’ Sp&ger-V&lag, New
York, pp. 170-189.

BERTINO, E., AND HAAS, L. 1988. Views and security
in distributed database management systems. In
Proceedings of the International Conference on
Extending Database Technology (Venice, Italy,
Mar.). In Computer Science. Vol. 303, Springer-
Verlag, New York, pp. 155-169.

BLAKEY, M. 1987. Basis of a partially informed dis-
tributed database. In Proceedings of the 13th In-
ternational Conference on Very Large Data Bases
(Brighton, UK, Sept.), pp. 381-388.

BREITBART, Y ., AND SILBERSCHATZ, A. 1988.
Multidatabase update issues. In Proceedings of
the ACM SZGMOD Conference (June), 135-142.

BRZEZINSKI, Z., GETTA, J., RYBNIK, J., AND STEP-
NIEWSKI, W. 1984. UNIBASE-An integrated
access to databases. In Proceedings of the 10th
International Conference on Very Large Data
Bases (Singapore, Aug.), pp. 388-395.

CARDENAS, A. 1987. Heterogeneous distributed da-
tabase management: The HD-DBMS. In Proc.
ZEEE 75,5 (May), 588-600.

CERCONE, N., MORGESTERN, M., SHETH, A., AND
LITWIN, W. 1990. Resolving semantic hetero-
geneity. Panel at the International Conference on
Data Engineering (Feb.).

CERI, S., AND PELAGATTI, G. 1984. Distributed
Databases-Principles and Systems. McGraw-
Hill, New York.

CERI, S., PERNICI, B., AND WIEDERHOLD, G. 1987.
Distributed database design methodologies. In
Proc. IEEE 75, 5 (May), 533-546.

CHEN, P. 1976. The entity-relationship model:
Toward a unified view of data. ACM Trans. Da-
tabase Syst. 1, 1 (Mar.), 9-36.

CHEN, A., BRILL, D., TEMPLETON, M., AND Yu, C.
1989. Distributed query processing in Mermaid:
A frontend system for multiple databases. IEEE
J. Selected Areas Commun. 7, 3 (Apr.), 390-398.

CHU, W., AND HURLEY, P. 1982. Optimal query pro-
cessing for distributed databases systems. IEEE
Trans. Comput. C-31 (Sept.), 835-850.

CONVENT, B. 1986. Unsolvable problems related to
the view integration approach. In Proceedings of
the Znternational Conference on Database Theory
(Rome, Italy, Sept.). In Computer Science, Vol.

243, Goos, G. and Hartmanis, J. Eds. Springer-
Verlag, New York, pp. 141-156.

CZEJDO, B., RUSINKIEWICZ, M., AND EMBLEY, D.
1987. An approach to schema integration and
query formulation in federated database systems.
In Proceedings of the 3rd International Conference
on Data Engineering (Feb.), pp. 477-484.

DATE, C. 1986. An Introduction to Database Systems,
Vol. 1, 4th ed. Addison-Wesley, Reading, Mass.

DAYAL, U., AND GOODMAN, N. 1982. Query optimi-
zation for CODASYL database systems. In Pro-
ceedings of the ACM SZGMOD Conference,
pp. 13&156.

DAYAL, U., AND HWANG, H. 1984. View definition
and generalization for database integration in a
multidatabase system. IEEE Trans. Soft. Eng.
SE-IO, 6 (Nov.), 628-644.

DE 1987. Special issue on federated database systems
(mainly transaction management aspects).
Q. Bull. IEEE-CS TC Data Eng. 10, 3 (Sept.).

DEMO, B. 1983. Program analysis for conversion
from a navigational to a specification data base
interface. In Proceedings of the 9th International
Conference on Very Large Data Bases (Florence,
Italy, Oct.), pp. 387-398.

DEVOR, C., ELMASRI, R., LARSON, J., RAHIMI, S., AND
RICHARDSON, J. 1982b. Five-schema architec-
ture extends DBMS to distributed applications.
Electron. Des. (Mar. 18), 27-32.

DEVOR, C., ELMASRI, R., AND RAHIMI, S. 1982a. The
design of DDTS: A testbed for reliable distributed
database management. Tech. Rep. HP-82-273:
17-38, Honeywell Computer Sciences Center,
Camden, Minn.

DP 1988. Special issue on heterogeneous distributed
database systems. L. Lilien, Ed. D&rib. Process.
Tech. Comm. News. (Q.) 10, 2 (Nov.).

Du, W., AND ELMAGARMID, A. 1989. Quasi serializ-
ability: A correctness criterion for global concur-
rency control in interbase. In Proceedings of the
15th International Conference on Very Large Data
Bases (Amsterdam, Aug.), pp. 347-355.

Du, W., ELMAGARMID, A., AND KIM, W. 1990.
Effects of local autonomy on heterogeneous dis-
tributed database systems. MCC Tech. Rep.
ACT-OODS-EI-059-90, Microelectronics and
Computer Technology Corp., Austin Tex.

Du, W., ELMAGARMID, A., LEU, Y., AND OSTERMANN,
S. 1989. Effects of local autonomy on global
concurrency control in heterogeneous database
systems. In Proceedings of the 2nd International
Conference on Data and Knowledge Systems for
Manufacturing and Engineering (Oct.).

DWYER, P., AND LARSON, J. 1987. Some experiences
with a distributed database testbed system. In
Proc. IEEE 75, 5 (May), 633-647.

ELIASSEN, F. AND VEIJALAINEN, J. 1987. An S-
transaction definition language and execution
mechanism. Tech. Rep. No. 275, GMD, Harden-
bergplatz, D-1000 Berlin 12, FRG.

ELIASSEN, F., AND VEIJALAINEN, J. 1988. A func-
tional approach to information system interoper-

ACM Computing Surveys, Vol. 22, No. 3, September 1990

230 l Amit Sheth and James Larson

ability. In Research into Networks and Distributed
Applications (Proceedings of the EUTECO ‘88),
Speth, R. Ed., Elsevier Science Publishers B.V.,
North-Holland, pp. 1121-1135.

ELLINGHAUS, D., HALLMANN, M., HOLTKAMP, B.,
AND KREPLIN, K. 1988. A multidatabase system
for transaction autonomy. In Proceedings of the
International Conference on Extending Database
Technology (Venice, Italy, Mar.). In Computer
Science, Vol. 303, Springer-Verlag, New York,
pp. 600-605.

ELMAGARMID, A. 1987. When will we have true het-
erogeneous databases? (A position statement on
Transaction Processing). In Proceedings of the
Fall Joint Computer Conference (Dallas, Tex.,
Oct.), p. 746.

ELMAGARMID, A., AND HELAL, A. 1988. Supporting
updates in heterogeneous distributed database
systems. In Proceedings on the International Con-
ference on Data Engineering (Feb.).

ELMASRI, R. 1981. GORDAS: A data definition,
query and update language for the entity-cate-
gory-relationship model of data. Tech. Rep. HR-
81-250, Honeywell Inc., Camden, Minn.

ELMASRI, R., AND NAVATHE, S. 1989. Fundamentals
of Database Systems. Benjamin/Cummings, Red-
wood City, Calif.

ELMASRI, R., LARSON, J., AND NAVATHE, S. 1986.
Schema integration algorithms for federated da-
tabases and logical database design. Tech. Rep.,
Honeywell Corporate Systems Development Di-
vision, Camden, Minn.

ELMASRI, R., WEELDREYER, J., AND HEVNER, A.
1985. The category concept: An extension to
entity-relationship model. Data and Knowledge
Engineering 1 (June). North-Holland, The Neth-
erlands, pp. 75-116.

FAGIN, R. 1978. On an authorization mechanism.
ACM Trans. Database Syst. 3, 3, 310-331.

GARCIA-M• LINA, H., AND KOGAN, B. 1988. Node
autonomy in distributed systems. In Proceedings
of the International Symposium on Databases in
Parallel and Distributed Systems (Austin, Tex.,
Dec.), pp. 158-166.

GARCIA-M• LINA, H., AND SALEM, K. 1987. Sagas.
In Proceedings of the ACM SZGMOD Conference
(May), pp. 249-259.

GE, L., JOHANNSEN, W., LAMERSDORF, W., REIN-
HARDT, R., AND SCHMIDT, J. 1987. Import and
export of database objects in a distributed envi-
ronment. In Proceedings of the ZFZP WG 10.3
Conference on Distributed Processing (Amster-
dam, Oct.).

GLIGOR, V., AND LUCKENBAUGH, G. 1984. Inter-
connecting heterogeneous database management
systems. Comput. 17, 1 (Jan.), 33-43.

GLIGOR, V., AND POPESCU-ZELETIN, R. 1986.
Transaction management in distributed hetero-
geneous database management systems. Znf. Syst.
I I, 4,287-297.

HAMMER, M., AND MCLEOD, D. 1979. On database
management system architecture. Tech. Rep.

MIT/LCS/TM-141, Massachusetts Institute of
Technology, Cambridge, Mass.

HAMMER, K., AND TIMMERMAN, T. 1989.
Automating data conversion between heteroge-
neous databases. Tech. Rep. ACA-ST-046-89,
Microelectronics and Computer Technology
Corp.

HAYES, S., AND RAM, S. 1990. Multi-user view in-
tegration system (MUVIS): An expert system for
view integration. In Proceedings of the 6th Znter-
national Conference on Data Engineering (Feb.).

HEIMBIGNER, D., AND MCLEOD, D. 1985. A feder-
ated architecture for information management.
ACM Trans. Off. Znf. Syst. 3, 3 (July), 253-278.

HULL, R., AND KING, R. 1987. Semantic database
modeling: Survey, applications, and research is-
sues. ACM Comput. Suru. 19,3 (Sept.), 201-260.

IEEE 1987. Special issue on distributed database
systems. Proc. IEEE 75, 5 (May).

IISS 1986. The integrated information support sys-
tem. Gateway 2, 2. Industrial Technology Insti-
tute (Mar.-Apr.).

JACOBS, B. 1985. Applied Database Logic II: Hetero-
geneous Distributed Query Processing. Prentice-
Hall, Englewood Cliffs, N.J.

JACOBSON, G., PIATETSKY-SHAPIRO, G., LAFOND, C.,
RAJINIKANTH, M., HERNANDEZ, J. 1988.
CALIDA: A knowledge-based system for inte-
grating multiple heterogeneous databases. In Pro-
ceedings of the 3rd International Conference on
Data and Knowledge Bases (Jerusalem, Israel,
June), pp. 3-18.

KAUL, M., DROSTERN, K., AND NEUHOLD, E.
1990. ViewSystem: Integrating heterogeneous
information bases by object-oriented views. In
Proceedings of the 6th International Conference
on Data Engineering (Los Angeles, Calif., Feb.),
pp. 2-10.

KIM, W. 1989. Research directions for integrating
heterogeneous databases. In 1989 Workshop on
Heterogeneous Databases (Chicago, Ill., Dec.).

LANDERS, T., AND ROSENBERG, R. 1982. An over-
view of Multibase. In Distributed Databases,
H.-J. Schneider, Ed., North-Holland, The Neth-
erlands, pp. 153-184.

LARSON, J. 1983a. Bridging the gap between network
and relational database management systems.
Comput. (Sept.), 82-92.

LARSON, J. 1983b. Granting and revoking discre-
tionary authority. Znf. Syst. 8, 4, 251-261.

LARSON, J. 1989. Four reference architectures for
distributed database management systems.
Computer, Standards and Interfaces, Vol. 8,
pp. 209-221.

LARSON, J., NAVATHE, S., AND ELMASRI, R. 1989. A
theory of attribute equivalence in databases with
applications to schema integration. IEEE Trans.
Softw. Eng. 15, 4 (Apr.), 449-463.

LIEN, Y. 1981. Hierarchical schemata for relational
databases. ACM Trans. Database Syst. 6,48-69.

ACM Computing Surveys, Vol. 22, No. 3, September 1990

Federated Database Systems 231

RAM, S., AND CHASTAIN, C. 1989. Architecture of
distributed data base systems. J. Syst. Softw. 10,
2, 77-95.

ROSENTHAL, A., AND REINER, D. 1987. Theo-
retically sound transformations for practical da-
tabase design. In Proceedings of the 6th Znterna-
tional Conference on Entity-Relationship
Approach (New York, Nov.), pp. 97-113.

RUSINKIEWICZ, M. 1987. Heterogeneous databases:
Towards a federation of autonomous systems. In
Proceedings of the Fall Joint Computer Conference
(Dallas, Tex., Oct.), pp. 751-752.

RUSINKIEWCIZ, M., AND CZEJDO, B. 1987. An ap-
proach to query processing in federated database
systems. In Proceedings of the 20th International
Conference on System Sciences (Hawaii, Jan.),
pp. 430-440.

RUSINKIEWICZ, M., OSTERMANN, S., ELMAGARMID,
A., AND LOA, K. 1990. The distributed opera-
tion language for specifying multisystem appli-
cations. In Proceedings of the 1st International
Conference on Systems Integration (Morristown,
N.J., Apr.).

RUSINKIEWICZ, M., ELMASRI, R., CZEJDO, B.,
GEORAKOPOULOUS, D., KARABATIS, G., JA-
MOUSSI, A., LOA, L., AND Ll, Y. 1989.
OMNIBASE: Design and implementation of a
multidatabase system. In Proceedings of the 1st
Annual Symposium in Parallel and Distributed
Processing (Dallas, Tex., May), pp. 162-169.

RYAN, K., AND LARSON, J. 1986. The use of E-R
models in capability schemas. In Proceedings of
the 5th International Conference on the Entity-
Relationship Approach (Dijoin, France, Nov.).

SELINGER, P., AND WADE, B. 1976. An authorization
mechanism for a relational database system.
ACM Trans. Database Syst. 1, 3, 242-255.

SIEGEL, M. 1987. A survey on heterogeneous data-
base systems. Tech. Note 87-174.1, GTE Labo-
ratories, Waltham, Mass.

SHETH, A. 1987a. Heterogeneous distributed data-
base systems: Issues in integration. The 3rd Zn-
ternational Conference on Data Engineering.
IEEE Press, Washington, D.C.

SHETH, A. 1987b. When will we have true heteroge-
neous database systems? In Proceedings of the
Fall Joint Computer Conference (Dallas, Tex.,
Oct.), pp. 747-748.

SHETH, A. 1988a. Managing and integrating un-
structured and structured data: Problems of rep-
resentation, features, and abstraction. In
Proceedings of the 4th International Conference
on Data Engineering. pp. 598-599.

SHETH, A. 1988b. Building Federated Database Sys-
tems. In D&rib. Process. Tech. Comm. Newsl. 10,
2 (Nov.), 50-58.

SHETH, A., AND GALA, S. 1989. Attribute relation-
ships: An impediment in automating schema in-
tegration. In the Workshop on Heterogeneous
Database Systems (Chicago, Ill., Dec.).

SHETH, A., LARSON, J., AND WATKINS, E.
1988a. TAILOR: A tool for updating views. In

LITWIN, W. 1985. An overview of the multidatabase
system MRDSM. In Proceedings of the ACM Na-
tional Conference (Denver, Oct.), pp. 495-504.

LITWIN, W., 1987. The future of heterogeneous da-
tabases. In Proceedings of the Fall Joint Computer
Conference (Dallas, Tex., Oct.), pp. 751-752.

LITWIN, W., AND ABDELLATIF, A. 1986. Multi-
database interoperability. IEEE Comput. 19, 12
(Dec.), 10-18.

LITWIN, W., AND ABDELLATIF, A. 1987. An overview
of multidatabase manipulation language MDSL.
In IEEE Proc. 75, 5 (May), 621-632.

LITWIN, W., AND ZEROUAL, A. 1988. Advances in
multidatabase systems. In Research into Net-
works and Distributed Applications (Proceedings
of the EUTECO ‘88). Sneth. R.. Ed. Elsevier
Science Publishers’ B.V., fiorth-Holland,
pp. 1137-1151.

LITWIN, W., ABDELLATIF, A., NICOL,AS, B., VIGIER,
P., AND ZEROUAL, A. 1987. MSQL: A multida-
tabase language. Tech. Rep. 695, INRIA, BP 105,
78153 Le-Chesnay, France.

LITWIN, W., BOUDENANT, J., ESCULIER, C., FERRIER,
A., GLORIEUX, A., LA CHIMIA, J., KABBAJ, K.,
MOULINOUX, C., ROLIN, P., AND STANGRET, C.
1982. SIRIUS Systems for Distributed Data
Management. In Distributed Data Bases, H.-J.
Schneider, Ed. North-Holland, The Netherlands,
pp. 311-366.

LOGAR, T., AND SHETH, A. 1986. Concurrency con-
trol issues in heterogeneous distributed database
management systems. Tech. Memo, Honeywell
Computer Sciences Center, Camden, Minn.

MOTRO, A., AND BUNEMAN, P. 1981. Constructing
superviews. In Proceeding of the ACM SZGMOD
Conference (May), pp. 54-64.

NAVATHE, S., ELMASRI, R., AND LARSON, J.
1986. Integrating user views in database design.
IEEE Comput. 19, 1 (Jan.), 50-62.

NAVATHE, S., GALA, S., KAMATH, A., KRISHNAMUR-
THY, A., SAVASERE, A., AND WANG, W. 1989. A
federated architecture for heterogeneous infor-
mation systems. In the Workshop on Heteroge-
neous Database Systems (Chicago, Ill., Dec.).

ONUEGBE, E., RAHIMI, S., AND HEVNER, A.
1983. Local query translation and optimization
in a distributed system. In AFZPS Conference
Proceedings, Vol. 52, National Computer Confer-
ence, AFIPS Press, pp. 229-239.

Ozsu, M., AND VALDURIEZ, P. 1990. Principles of
Distributed Database Systems. Prentice-Hall,
Englewood Cliffs, N.J.

PECKHAM, J., AND MARYANSKI, J. 1988. Semantic
data models. ACM Comput. Suru. 20, 3 (Sept.),
153-190.

PIATETSKY-SHAPIRO, G., AND JAKOBSON, G. 1987.
An intermediate database language and its rule-
based transformation to different database lan-
guages. Data and Knowledge Engineering 2,1-29.

Pu, C. 1987. Superdatabases: Transactions across
database boundaries. In Q. Bull. IEEE-CS TC
Data Eng. 10, 3 (Sept.), 19-25.

ACM Computing Surveys, Vol. 22, No. 3, September 1990

232 l Amit Sheth and James Larson

Proceedings of the International Conference on
Extending Database Technology (Venice, Italy,
Mar.). In Computer Science, Vol. 303, Springer-
Verlag, New York, pp. 190-213.

SHETH, A., LARSON, J., CORNELLIO, A., AND
NAVATHE, S. 1988b. A tool for integrating con-
ceptual schemas and user views. In Proceedings
of 4th International Conference on Data Engi-
neering. pp. 176-183.

SOUZA, J. 1986. SIS: A schema integration system.
In Proceedines of the BNCOD5 Conference.
pp. 167-185. - ’

TEMPLETON, M., LUND, E., AND WARD, P. 1987a.
Pragmatics of access control in Mermaid. In
Q. Bull. IEEE-CS TC Data Eng. 10, 3 (Sept.),
33-38.

TEMPLETON, M., BRILL, D., CHEN, A., DAO, S.,
LUND, E., MCGREGOR, R., AND WARD, P.
198713. Mermaid: A front-end to distributed het-
erogeneous databases. In Proc. IEEE 75,5 (May),
695-708.

TEOREY, T. 1990. Database Modeling and Design:
The Entity-Relationship Approach, Chaps. 8-9.
Morgan Kaufmann, San Mateo, Calif.

TEOREY, T., YANG, D., AND FRY, J. 1986. A logical
design methodology for relational databases using
the extended entity-relationship model. ACM
Comput. Surv. 18, 2 (June), 197-222.

THOMAS, G., et al. 1990. Heterogeneous distributed
database systems for production Use. Comput.
Surv. 22, 3 (Sept.), 237-266.

TSICHRITZIS, D., AND KLUG, A. Eds. 1978. The
ANSI/XB/SPARC DBMS framework. Inf. Syst.
3, 4.

TSICHRITZIS, D., AND LOCHOVSKY, F. 1982. Data
Models, Chap. 14. Prentice-Hall, Englewood
Cliffs, N.J.

VEIJALAINEN, J., AND POPESCU-ZELETIN, R. 1988.
Multidatabase systems in ISO/OSI environment.
In Standards in Information Technology and In-
dustrial Control, Malagardis, N., and-Williams,
T., Eds. North-Holland. The Netherlands. DD.
83-97.

, __

WANG, C., AND SPOONER, D. 1987. Access control
in a heterogeneous distributed database manage-
ment system. In Proceedings of the 6th Sympo-
sium on Reliability in Distributed Software and
Database Systems (Mar.).

Yu, C., AND CHANG, C. 1984. Distributed query pro-
cessing. ACM Comput. Surv. 16, 4, (Dec.),
399-433.

ZANIOLO, C. 1979. Design of relational views over
network schemas. In Proceedings of the ACM
SIGMOD Conference, pp. 179-190.

BIBLIOGRAPHY

Multi-DBMS and Federated Database Systems:
Adiba and Delobel 1977, Adiba and Portal 1978,
Belcastro et al. 1988, Bell et al. 1987, Breitbart

et al. 1986, Brzezinski et al. 1984, Cardenas 1987,
Cardenas and Pirahesh 1980, Chung 1990, Deen
et al. 1985, Devor et al. 198213, Dwyer et al. 1986,
Dwyer and Larson 1987, Ferrier and Stangret
1983, Furlani et al. 1983, Ge et al. 1987, Hammer
and McLeod 1979, Heimbigner and McLeod 1985,
IISS 1986, Jacobson et al. 1988, Landers and
Rosenberg 1982, Litwin 1985, Litwin and Vifier
1987, Litwin et al. 1982, Rajinikanth et al. 1990,
Rusinkiewicz et al. 1989, Smith et al. 1981, Spac-
capietra et al. 1982, Stephenson and Main 1986,
Stocker et al. 1984, Templeton et al. 1983, Tem-
pleton et al. 1987b, Tsubaki and Hotaka 1980.

Schema Translation: Elmasri et al. 1985, Jajodia
and Ng 1983, Kalinichenko 1978, Katz 1980, Klug
1981, Larson 1983a, Lien 1981, Morgestern 1981,
Navathe 1980, Navathe and Cheng 1983,
Pelagatti et al. 1978, Senko 1976, Sibley and
Hardgrave 1977, Shoval and Even-Chaime
1987, Vassiliou and Lachovsky 1980, Zaniolo
1979 (references), Zaniolo 1979, (bibliography).

Schema Integration: Batini and Lenzerini 1984,
Batini et al. 1986, Czejdo et al. 1987, Deen et al.
1987, Effelsherg and Mannino 1984, Elmasri
1980, Elmasri et al. 1986, Hayes and Ram 1990,
Larson et al. 1989. Mannino and Effelsberg 1984,
Navathe et al. 1986, Sheth et al. 1988b,-Sheth
and Gala 1989, Souza 1986.

Multidatabase Languages: Deen et al. 1987, Ja-
cobs 1985, Lamersdorf et al. 1987, Litwin and
Abdellatif 1987, Litwin et al. 1988, Piatetsky-
Shapiro and Jakobson 1987, Rusinkiewicz et al.
1989.

Operation Translation and Optimization: Czejdo
et al. 1987, Dayal 1983, Deen et al. 1987, Katz
1980, Onuegbe et al. 1983, Vassiliou and Lachov-
sky 1980, Zaniolo 1979 (bibliography).

Transaction Management: Alonso et al. 1987,
Bernstein and Goodman 1981, Breibart et al.
1987, Breitbart and Silberschatz 1988, DE 1987,
Du and Elmagarmid 1989, Du et al. 1989, Eliassen
and Veiialainen 1987. Elmagarmid and Du 1990.
Elmagaimid and Helal 1988, Elmagarmid and
Leu 1987, Gligor and Popescu-Zeletin 1985, Logar
and Sheth 1986, Pu 1987, Thomson 1987,
Veijalainen and Popescu-Zeletin 1986.

ADIBA, M., AND DELOBEL, C. 1977. The problem of
the cooperation between different D.B.M.S. In
Architecture and Models in Data Base Manage-
ment Systems, Nijssen, G., Ed. North-Holland,
The Netherlands.

ADIBA, A., AND PROTAL, D. 1978. A cooperative sys-
tem for heterogeneous data base management
systems. Znf. Syst. 3, 209-215.

BATINI, C., AND LENZERINI, M. 1984. A methodol-
ogy for data schema integration in entity-
relationship model. IEEE Trans. Softw. Eng.
SE-IO, 6 (Nov.).

BELL, D., et al. 1987. MULTI-STAR: A multidata-
base system for health information systems. In
Proceedings of the 7th International Conference
on Medical Informatic (Rome, Italy, Sept.).

ACM Computing Surveys, Vol. 22, No. 3, September 1990

Federated Database Systems l 233

FURLANI, C., et al. 1983. The automated manufac-
turing research facility of the national bureau of
standards. In Proceedings of the Summer Com-
puter Simulation Conference (Vancouver, Can-
ada, July).

HSIAO, D., AND KAMEL, M. 1989. Heterogeneous
databases: Proliferation, issues, and solutions.
IEEE Trans. Knowledge Data Eng. 1, 1,45-62.

HONG, S., AND MARYANSKI, F. 1988. Database de-
sign tool generation via software reusability. In
Proceedings of the COMPSAC.

JAJODIA, S., AND NG, P. 1983. On representation of
relational structures by entity-relationship dia-
grams. In Entity Relationship Approach to Soft-
ware Engineering, Davis et al., Eds. Elsevier
Science Publishers, New York.

KALINICHENKO, L. 1978. Data model transforma-
tion method based on axiomatic data model ex-
tension. In Proceedings of the 4th Very Large Data
Base Conference.

KATZ, R. 1980. Database design and translation for
multiple data models. Ph.D. dissertation, Memo
No. UCB/ERL M80/24, College of Eng., Univ. of
California, Berkeley, Calif.

KLUG, A. 1981. Multiple view, multiple data model
support in the CHEOPS database management
system. Tech. Rep. 418, Computer Science Dept.,
Univ. of Wisconsin-Madison, Madison, Wise.

LAMERSDORF, W., ECKHARDT, H., EFFELSBERG, W.,
JOHANNSEN, W., REINHARDT, K., AND SCHMIDT,
J. 1987. Database programming for distributed
office systems. In Proceedings IEEE Comp. SOC.
Symp. on Office Automation (Gaithersburg, Md.).

LARSON, J., NAVATHE, S., AND ELMASRI, R. 1989. A
theory of attribute equivalence in databases with
applications to schema integration. IEEE Trans.
Softw. Eng. 15, 4 (Apr.), 449-463.

LITWIN, W., AND VIGIER, P. 1987. New capabilities
of the multidatabase system MRDSM. In
HLSUA Forum XLV Proceedings (New Orleans,
Oct.).

MANNINO, M., AND EFFELSBERG, W. 1984.
Matching techniques in global schema design. In
Proceedings of First International Conference on
Data Engineering (Apr.), pp. 418-425.

MORGESTERN, M. 1989. A unifying approach for
conceptual schema to support multiple data
models. In Proceedings of the 2nd International
Conference on Entity-Relationship Approach
(Washington, D.C., Oct.), pp. 281-299.

NAVATHE, S. 1980. An intuitive approach to nor-
malize network structured data. In Proceedings of
the 6th International Conference on Very Large
Data Bases.

NAVATHE, S., AND CHENG, A. 1983. A methodology
for database schema mapping from extended en-
tity relationship models into the hierarchical
model. In Entity Relationship Approach to Soft-
ware Engineering, Davis, et al. Eds. Elsevier Sci-
ence Publishers, New York.

BREITBART, Y., OLSON, P., AND THOMPSON, G. 1986.
Database integration in a distributed heteroge-
neous database system. In Proceedings 2nd Inter-
national Conference on Data Engineering. pp.
301-310.

BREITBART, Y., SILBERSCHATZ, A., AND THOMPSON,
G. 1987. An update mechanism for multidata-
base systems. In Q. Bull. IEEE-CS TC Data Eng.
10, 3 (Sept.), 12-18.

CARDENAS, A., AND PIRAHESH, H. 1980. Data base
communication in a heterogeneous data base
management system network. Inf. Syst. 5,55-79.

CD 1988. Common Data model*plus. Product liter-
ature, Control Data Corp.

CHUNG, C. 1990. DATAPLEX: An access to heter-
ogeneous distributed databases. Commun. ACM
33, 1 (Jan.), 70-80.

CODASYL, 1971. Database task group of CODA-
SYL programming language committee. Report.
(Apr.).

DAYAL, U. 1983. Processing queries over generaliza-
tion hierarchies in a multidatabase system. In
Proceedings of the 9th International Conference
on Very Large Data Bases.

DEEN, S., AMIN, R., AND TAYLOR, M. 1987. Data
integration in distributed databases. IEEE Trans.
Softw. Eng. SE-13, 7.

DEEN, S., AMIN, R., OFORI-DWUMFUO, G., AND
TAYLOR, M. 1985. The architecture of a gener-
alized distributed data base system-PERCI*.
Comput. J. 28, 3, 209-215.

DWYER, P., KASRAVI, K., AND PHAM, M. 1986. A
heterogeneous distributed database management
system (DDTS/RAM). Tech. Rep. CSC-86-
7:8216, Honeywell Computer Sciences Center,
Camden, Minn.

EFFELSBERG, W., AND MANNINO, M. 1984.
Attribute equivalence in global schema design for
heterogeneous distributed databases. Inf. Syst. 9,
3/4.

ELMAGARMID, A., AND Du, W. 1990. A paradigm for
concurrency control in heterogeneous distributed
database systems. In Proceedings of the 6th Inter-
national Conference on Data Engineering. (Feb.).

ELMAGARMID, A., AND LEU, Y. 1987. An optimistic
concurrency control algorithm for heterogeneous
distributed database systems. In Q. Bull. IEEE-
CS TC Data Eng. 10, 3 (Sept.), 26-32.

ELMASRI, R. 1980. On the design, use, and integra-
tion of data models. Ph.D. dissertation, Rep.
STAN-CS-80-801, Computer Science Dept.,
Stanford Univ., Stanford.

FERRIER, A., AND STANGRET, C. 1983. Hetero-
geneity in the distributed database management
system SIRIUS-DELTA. In Proceedings of the
8th Very Large Data Base Conference (Mexico
City).

FONG, E., AND GOLDFINE, A. 1986. Data base direc-
tions: Information resource managementi Mak-
ing it work, Executive Summary. SIGMOD
RECORD 15, 3 (Sept.).

ACM Computing Surveys, Vol. 22, No. 3, September 1990

234 l Amit Sheth and James Larson

PELAGATTI, G., PAOLINI, P., AND BRACCHI, G.
1978. Mapping external views to common data
model. Znf Syst. 3.

RAJINIKANTH, M., JACOBSON, G., LAFOND, C., PAPP,
w., AND PIATETSKY-SHAPIRO, G. 1990.
Multiple database integration in CALIDA: De-
sign and integration. In Proceedings of the 1st
International Conference on Systems Integration
(Apr.).

REINER, D., BROWN, G., FRIEDELL, M., LEHMAN, J.,
MCKEE, R., RHEINGANS, P., AND ROSENTHAL,
A. 1987. A Database designer’s workbench. In
Entity-Relationship Approach, Spaccapietra, S.,
Ed. Elsevier Science Publishers. New York.
pp. 347-360.

SENKO, M., 1976. DIAM as a detailed example of
the ANSI SPARC architecture. In Modelline in
Data Base Management Systems, Nijssen, G.,-Ed.
North-Holland, The Netherlands.

SHIPMAN, D. 1981. The functional data model data
language DAPLEX. ACM Trans. Database Svst.
6, l-(Mar.), 140-173.

SMITH, J., et al. 1981. Multibase: Integrating heter-
ogeneous distributed database systems. In Pro-
ceedings of the National Computer Conference.

SPACCAPIETRA, S., DEMO, B., DILEVA, A., PARENT,
C., CELLIS, C., AND BELFAR, K. 1982. An ap-
proach to effective heterogeneous database co-
operation. In Distributed Data Sharing Systems,
van de Riet. R., and Litwin. W.. Eds. North-
Holland, The Netherlands, pp: 209-218.

STEPHENSON, G., AND MAIN, R. 1986. ARCHEDDA
Prototype. Final Report. CRI, Great Britain.

STOCKER, P., et al. 1984. Proteus: A heterogeneous
distributed data-base project. In Databases: Role
and Structure, Gray, P., and Atkinson, M., Eds.
Cambridge University Press, New York.

TEMPLETON, M., BRILL, D., CHEN, A., DAO, S., AND
LUND, E. 1986. Mermaid: Experiences with net-
work operation. In Proceedings of the 2nd Znter-
national Conference on Data Engineering.

TEMPLETON, M., BRILL, D., HWANG, A., KAMENY, I.,
AND LUND, E. 1983. An overview of the mer-
maid system. A frontend to heterogeneous data-
bases. In Proceedings of EASCON 83.

THOMSON, G. 1987. Multidatabase concurrency
control. Ph.D. dissertation, Oklahoma State Uni-
versity.

TSUBAKI, M., AND HOTAKA, R. 1980. Distributed
multidatabase environment with a supervisory
data dictionary database. In Entity-Relationship
Approach to System Analysis and Design, Chen
P., Ed. North-Holland, The Netherlands.

VASSILIOU, Y., AND LOCHOVSKY, F. 1980. DBMS
transaction translation. In Proceedings COMP-
SAC 80, IEEE Computer Software and Applica-
tion Conference.

VEIJALAINEN, J., AND POPESCU-ZELETIN, R. 1986.
On multi-database transactions in a cooperative,
autonomous environment. Tech. Rep., Hahn-

Meitner Institut, Berlin GmnH, D-1000 Berlin
39, FRG.

ZANIOLO, C. 1979. Multimode1 external schemas for
CODASYL data base management systems. In
Data Base Architecture, Bracchi, G., and Nijssen,
G., Eds. North-Holland, The Netherlands.

GLOSSARY

Accessing Processor: Software that ac-
cepts commands and produces data by
executing commands against a database.

Class of Users: A set of users performing
closely related tasks.

Common Data Model (CDM): A data
model to which schemas of different com-
ponent DBMSs are translated for the
purpose of representation in a com-
mon format and facilitation of schema
integration.

Component Database Administrator
(component DBA): The administrator
of a component DBS (also called local
DBA) who, among other things, decides
data access rights of local users as well
as (individuals and/or classes) of federa-
tion uses. It is the component DBA’s
responsibility to manage the local
schema, translate it to create the com-
ponent schemas, and define export
schemas.

Component DBMS: A DBMS participat-
ing in a multidatabase system. A com-
ponent DBMS participating in an FDBS
is autonomous and allows local opera-
tions as well as global (federation) oper-
ations that meet its constraints.

Component Schema: A translation of a
local schema into an equivalent schema
in the common data model.

Constructing Processor: Software that
partitions and/or replicates operations
produced by a single processor for exe-
cution by two or more processors. Also
software that merges data produced by
two or more processors for consumption
by another processor.

Database Management System
(DBMS): Software that manages a col-
lection of structured data. Management
includes providing data management

ACM Computing Surveys, Vol. 22, No. 3, September 1990

services including data access, constraint
enforcement, and consistency manage-
ment.

Database System (DBS): A database
system (DBS) consists of a DBMS that
manages one or more databases.

Distributed DBMS: A system that man-
ages multiple databases.

Export Schema: A subschema of a com-
ponent schema specifically defined to ex-
press the access constraints on a class of
federation users to access the data rep-
resented in the component schema.

External Schema: A subschema or a
view defined over a federated schema
primarily for a pragmatic reason of not
having to define too many federated
schemas or to tailor a federated schema
for smaller groups of federation users
than that of a federated schema.

Federated Database System (FDBS):
A system that is created to provide op-
erations on databases managed by auton-
omous, and possibly heterogeneous,
DBSs. The software that manages an
FDBS is called a federated DBMS
(FDBMS).

Federated Schema: An integration of
several export schemas created to repre-
sent data access requirements and rights
of a class or group of federation users.

Federation Administrator (federation
DBA): The administrator of a federated
schema or the federated database sys-
tem who, among other things, creates
and maintains federated and external
schemas.

Federation User: A user of an FDBS or
an application running over an FDBS.

Filtering Processor: Software that con-
strains operations that can be applied

Federated Database Systems l 235

or data that can be passed to another
processor.

Global (or External) Operation: An op-
eration that is not submitted by a local
user (e.g., an operation submitted to the
component DBS by the FDBMS or an-
other component DBS).

Local Schema: A schema of a component
DBS in a native data model of the com-
ponent DBMS.

Local User: A user of a component DBS.
Multidatabase System (MDBS): A sys-

tem that allows operations on multiple
databases.

Processor: Software that performs oper-
ations on data and commands.

Schema Object: A description of a data
element in a schema. For example, a
schema expressed in the Entity Relation-
ship model has three types of schema
objects: entity types, relationship types,
and attribute definitions. An example of
an entity type schema object is an “Em-
ployee” entity type.

Schema, Subschema, and View: A rep-
resentation of the structure (syntax), se-
mantics, and constraints on the use of a
database (or its portion) in a particular
data model. A schema is a collection of
schema objects. A subschema is a collec-
tion of subsets of that schema’s objects.
A view is any connected portion of a
schema. In other words, a schema is a
collection of views.

Transforming Processor: Software that
translates commands from one language
or format to another language or format
or translates data from one format to
another.

User: An individual or an application us-
ing a database system.

Appendix: Features of Some FDBS/Multi-DBMS Efforts

Table A.1 summarizes the choice of a common data model and the types of component
DBMSs integrated into some of the experimental prototype systems. Table A.2 gives an
empirical and partial list of significant or interesting features of some of these efforts.
No effort is made to present all systems that exhibit FDBS features or to capture all
important details of those mentioned.

ACM Computing Surveys, Vol. 22, No. 3, September 1990

236 l Amit Sheth and James Larson

Table A.l. Data Models of Various Multi-DBMS/FDBS Efforts

Effort CDM
Types of Component

DBMSs Reference

ADDS Extended Relational
CALIDA Relational like

DDTS
DQS

Relational
Relational

IISS
Mermaid

E-R Variant (IDEFlx)
Relational (DIL)

MRDSM
Multibase
OMNIBASE
SIRUS-DELTA
SCOOP

Relational
Functional (DAPLEX)
Extended Relational
Relational
E-R

Hierarchical, Relational, Files
Relational, Relational like,

Files
Network, Relational
Hierarchical, Network,

Relational
Network, Relational
Relational (partial integration

of text)
Relational
Network, Relational
Relational
Network, Relational
Hierarchical, Network,

Relational

[Breitbart et al. 19861
[Jacobson et al. 19881

[Dwyer and Larson 19871
[Belcastro et al. 19881

[IISS 19861
[Templeton et al. 1987b]

[Litwin 19851
[Landers and Rosenberg 1982]
[Rusinkiewicz et al. 19891
[Litwin et al. 19821
[Spaccapietra et al. 19821

’ Extended E-R is used for integrity constraint enforcement at the federated schema level and at the external
schema level. The primary CDM can be said to be relational since the internal command language is based on
the relational algebra.

Table A.2. Significant Features

Effort

ADDS
CALIDA

DDTS

DQS

IISS

Mermaid

MRDSM

Multibase

OMNIBASE

Tightly coupled, limited updates, in-house use of the prototype system
More like loosely coupled, intermediate language, interactive, menu-
driven user interface, data dictionary editor/browser, in-house use of the
prototype system
Tightly coupled architecture, integrity constraint checking, local query
optimization, use of local and long haul communication
Tightly coupled, completeness of implementation, auxiliary schema, IBM
environment, attention to autonomy
More like tightly coupled, queries must be compiled, forms-based user
interface
Tightly coupled, completeness of implementation, data dictionary, access
control, global query optimization, extensions to include texts, experience
with communication systems, workstation environment
Loosely coupled architecture, multidatabase language, dealing with mul-
tiple semantic interpretations
Tightly coupled, completeness of implementation, schema integration,
global query optimization, auxiliary schema, architecture, number of
component DBMSs integrated in various prototypes
Loosely coupled, DEC environment, query processing, distributed DBMS
as a comnonent DBMS

Received November 1988; final revision accepted June 1990.

ACM Computing Surveys, Vol. 22, No. 3, September 1990

