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INTRODUCTION 

Federated Database System 

tern (DBMS), and one or more databases 
that it manages. A federated database sys- 
tem (FDBS) is a collection of cooperating 

A database system (DBS) consists of soft- but autonomous component database sys- 
ware, called a database management sys- tems (DBSs). The component DBSs are 
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integrated to various degrees. The software 
that provides controlled and coordinated 
manipulation of the component DBSs is 
called a federated database management 
system (FDBMS) (see Figure 1). 

Both databases and DBMSs play impor- 
tant roles in defining the architecture of an 
FDBS. Component database refers to a da- 
tabase of a component DBS. A component 
DBS can participate in more than one fed- 
eration. The DBMS of a component DBS, 
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or component DBMS, can be a centralized 
or distributed DBMS or another FDBMS. 
The component DBMSs can differ in such 
aspects as data models, query languages, 
and transaction management capabilities. 

One of the significant aspects of an 
FDBS is that a component DBS can con- 
tinue its local operations and at the same 
time participate in a federation. The inte- 
gration of component DBSs may be man- 
aged either by the users of the federation 
or by the administrator of the FDBS 
together with the administrators of the 
component DBSs. The amount of integra- 
tion depends on the needs of federation 
users and desires of the administrators 
of the component DBSs to participate in 
the federation and share their databases. 
The term federated database system was 
coined by Hammer and McLeod [ 19791 and 
Heimbigner and McLeod [1985]. Since its 
introduction, the term has been used for 
several different but related DBS archi- 
tectures. As explained in this Introduc- 
tion, we use the term in its broader con- 
text and include additional architectural 
alternatives as examples of the federated 
architecture. 

The concept of federation exists in many 
contexts. Consider two examples from the 
political domain-the United Nations 
(UN) and the Soviet Union. Both entities 
exhibit varying levels of autonomy and 
heterogeneity among the components (sov- 
ereign nations and the republics, respec- 
tively). The autonomy and heterogeneity is 
greater in the UN than in the Soviet Union. 
The power of the federation body (the Gen- 
eral Assembly of the UN and the central 
government of the Soviet Union, respec- 
tively) with respect to its components in 
the two cases is also different. Just as peo- 
ple do not agree on an ideal model or the 
utility of a federation for the political 
bodies and the governments, the database 
context has no single or ideal model of 
federation. A key characteristic of a feder- 
ation, however, is the cooperation among 
independent systems. In terms of an FDBS, 
it is reflected by controlled and sometimes 
limited integration of autonomous DBSs. 

The goal of this survey is to discuss the 
application of the federation concept for 
managing existing heterogeneous and au- 
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Figure 1. An FDBS and its components. 

tonomous DBSs. We describe various ar- 
chitectural alternatives and components of 
a federated database system and explore 
the issues related to developing and oper- 
ating such a system. The survey assumes 
an understanding of the concepts in basic 
database management textbooks [ Ceri and 
Pelagatti 1984; Date 1986; Elmasri and 
Navathe 1989; Tsichritzis and Lochovsky 
19821 such as data models, the ANSI/ 
SPARC schema architecture, database de- 
sign, query processing and optimization, 
transaction management, and distributed 
database management. 

Characteristics of Database Systems 

Systems consisting of multiple DBSs, of 
which FDBSs are a specific type, may be 
characterized along three orthogonal di- 
mensions: distribution, heterogeneity, and 
autonomy. These dimensions are discussed 
below with an intent to classify and define 
such systems. Another characterization 
based on the dimensions of the networking 
environment [single DBS, many DBSs in a 
local area network (LAN), many DBSs in 
a wide area network (WAN), many net- 
works], update related functions of partic- 
ipating DBSs (e.g., no update, nonatomic 
updates, atomic updates), and the types of 
heterogeneity (e.g., data models, transac- 

tion management strategies) has been pro- 
posed by Elmagarmid [1987]. Such a 
characterization is particularly relevant to 
the study and development of transaction 
management in FDBMS, an aspect of 
FDBS that is beyond the scope of this 
paper. 

Distribution 

Data may be distributed among multiple 
databases. These databases may be stored 
on a single computer system or on multiple 
computer systems, co-located or geograph- 
ically distributed but interconnected by a 
communication system. Data may be dis- 
tributed among multiple databases in dif- 
ferent ways. These include, in relational 
terms, vertical and horizontal database par- 
titions. Multiple copies of some or all of the 
data may be maintained. These copies need 
not be identically structured. 

Benefits of data distribution, such as in- 
creased availability and reliability as well 
as improved access times, are well known 
[Ceri and Pelagatti 19841. In a distributed 
DBMS, distribution of data may be in- 
duced; that is, the data may be deliberately 
distributed to take advantage of these ben- 
efits. In the case of FDBS, much of the 
data distribution is due to the existence of 
multiple DBSs before an FDBS is built. 
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Figure 2. Types of heterogeneities. 

Many types of heterogeneity are due to 
technological differences, for example, dif- 
ferences in hardware, system software 
(such as operating systems), and commu- 
nication systems. Researchers and devel- 
opers have been working on resolving such 
heterogeneities for many years. Several 
commercial distributed DBMSs are avail- 
able that run in heterogeneous hardware 
and system software environments. 

The types of heterogeneities in the da- 
tabase systems can be divided into those 
due to the differences in DBMSs and those 
due to the differences in the semantics of 
data (see Figure 2). 

Heterogeneities due to Differences in DBMSs 

An enterprise may have multiple DBMSs. 
Different organizations within the enter- 
prise may have different requirements and 
may select different DBMSs. DBMSs 
purchased over a period of time may be 
different due to changes in technology. Het- 
erogeneities due to differences in DBMSs 
result from differences in data models and 
differences at the system level. These are 
described below. Each DBMS has an un- 

derlying data model used to define data 
structures and constraints. Both represen- 
tation (structure and constraints) and lan- 
guage aspects can lead to heterogeneity. 

l Differences in structure: Different 
data models provide different structural 
primitives [e.g., the information modeled 
using a relation (table) in the relational 
model may be modeled as a record type 
in the CODASYL model]. If the two rep- 
resentations have the same information 
content, it is easier to deal with the dif- 
ferences in the structures. For example, 
address can be represented as an entity 
in one schema and as a composite attri- 
bute in another schema. If the informa- 
tion content is not the same, it may be 
very difficult to deal with the difference. 
As another example, some data models 
(notably semantic and object-oriented 
models) support generalization (and 
property inheritance) whereas others do 
not. 

l Differences in constraints: Two data 
models may support different con- 
straints. For example, the set type in a 
CODASYL schema may be partially 
modeled as a referential integrity con- 
straint in a relational schema. CODA- 
SYL, however, supports insertion and 
retention constraints that are not cap- 
tured by the referential integrity con- 
straint alone. Triggers (or some other 
mechanism) must be used in relational 
systems to capture such semantics. 

l Differences in query languages: 
Different languages are used to manipu- 
late data represented in different data 
models. Even when two DBMSs support 
the same data model, differences in their 
query languages (e.g., QUEL and SQL) 
or different versions of SQL supported 
by two relational DBMSs could contrib- 
ute to heterogeneity. 
Differences in the system aspects of the 

DBMSs also lead to heterogeneity. Exam- 
ples of system level heterogeneity include 
differences in transaction management 
primitives and techniques (including 
concurrency control, commit protocols, 
and recovery), hardware and system 
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software requirements, and communication 
capabilities. 

Semantic Heterogeneity 

Semantic heterogeneity occurs when there 
is a disagreement about the meaning, inter- 
pretation, or intended use of the same or 
related data. A recent panel on semantic 
heterogeneity [Cercone et al. 19901 showed 
that this problem is poorly understood and 
that there is not even an agreement regard- 
ing a clear definition of the problem. Two 
examples to illustrate the semantic heter- 
ogeneity problem follow. 

Consider an attribute MEAL-COST of 
relation RESTAURANT in database DBl 
that describes the average cost of a meal 
per person in a restaurant without service 
charge and tax. Consider an attribute by 
the same name (MEAL-COST) of relation 
BOARDING in database DB2 that de- 
scribes the average cost of a meal per per- 
son including service charge and tax. Let 
both attributes have the same syntactic 
properties. Attempting to compare at- 
tributes DBl.RESTAURANTS.MEAL- 
COST and DBS.BOARDING.MEAL- 
COST is misleading because they are 
semantically heterogeneous. Here the 
heterogeneity is due to differences in 
the definition (i.e., in the meaning) of 
related attributes [Litwin and Abdellatif 
19861. 

As a second example, consider an attri- 
bute GRADE of relation COURSE in 
database DBl. Let COURSE.GRADE de- 
scribe the grade of a student from the set 
of values {A, B, C, D, FJ. Consider another 
attribute SCORE of relation CLASS in da- 
tabase DB2. Let SCORE denote a normal- 
ized score on the scale of 0 to 10 derived by 
first dividing the weighted score of all ex- 
ams on the scale of 0 to 100 in the course 
and then rounding the result to the nearest 
half-point. DBl.COURSE.GRADE and 
DBB.CLASS.SCORE are semantically het- 
erogeneous. Here the heterogeneity is due 
to different precision of the data values 
taken by the related attributes. For exam- 
ple, if grade C in DBl.COURSE.GRADE 
corresponds to a weighted score of all ex- 
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ams between 61 and 75, it may not be 
possible to correlate it to a score in 
DB2.CLASS.SCORE because both 73 and 
77 would have been represented by a score 
of 7.5. 

Detecting semantic heterogeneity is a 
difficult problem. Typically, DBMS sche- 
mas do not provide enough semantics to 
interpret data consistently. Heterogeneity 
due to differences in data models also con- 
tributes to the difficulty in identifica- 
tion and resolution of semantic hetero- 
geneity. It is also difficult to decouple 
the heterogeneity due to differences in 
DBMSs from those resulting from semantic 
heterogeneity. 

Autonomy 

The organizational entities that manage 
different DBSs are often autonomous. In 
other words, DBSs are often under separate 
and independent control. Those who con- 
trol a database are often willing to let others 
share the data only if they retain control. 
Thus, it is important to understand the 
aspects of component autonomy and how 
they can be addressed when a component 
DBS participates in an FDBS. 

A component DBS participating in an 
FDBS may exhibit several types of auton- 
omy. A classification discussed by Veijalai- 
nen and Popescu-Zeletin [ 19881 includes 
three types of autonomy: design, commu- 
nication, and execution. These and an ad- 
ditional type of component autonomy 
called association autonomy are discussed 
below. 

Design autonomy refers to the ability of 
a component DBS to choose its own design 
with respect to any matter, including 

(a) The data being managed (i.e., the Uni- 
verse of Discourse), 

(b) The representation (data model, query 
language) and the naming of the data 
elements, 

(c) The conceptualization or semantic 
interpretation of the data (which 
greatly contributes to the problem of 
semantic heterogeneity), 
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(d) 

(e) 

(f) 

k) 

Constraints (e.g., semantic integrity 
constraints and the serializability cri- 
teria) used to manage the data, 
The functionality of the system (i.e., 
the operations supported by system), 
The association and sharing with other 
systems (see association autonomy be- 
low), and 
The implementation (e.g., record and 
file structures, concurrency control 
algorithms). 

Heterogeneity in an FDBS is primarily 
caused by design autonomy among compo- 
nent DBSs. 

The next two types of autonomy involve 
the DBMS of a component DBS. Commu- 
nication autonomy refers to the ability of 
a component DBMS to decide whether 
to communicate with other component 
DBMSs. A component DBMS with com- 
munication autonomy is able to decide 
when and how it responds to a request from 
another component DBMS. 

Execution autonomy refers to the ability 
of a component DBMS to execute local 
operations (commands or transactions sub- 
mitted directly by a local user of the com- 
ponent DBMS) without interference from 
external operations (operations submitted 
by other component DBMSs or FDBMSs) 
and to decide the order in which to execute 
external operations. Thus, an external sys- 
tem (e.g., FDBMS) cannot enforce an order 
of execution of the commands on a com- 
ponent DBMS with execution autonomy. 
Execution autonomy implies that a com- 
ponent DBMS can abort any operation that 
does not meet its local constraints and that 
its local operations are logically unaffected 
by its participation in an FDBS. Further- 
more, the component DBMS does not need 
to inform an external system of the order 
in which external operations are executed 
and the order of an external operation with 
respect to local operations. Operationally, 
a component DBMS exercises its execution 
autonomy by treating external operations 
in the same way as local operations. 

Association autonomy implies that a com- 
ponent DBS has the ability to decide 
whether and how much to share its func- 
tionality (i.e., the operations it supports) 

and resources (i.e., the data it manages) 
with others. This includes the ability to 
associate or disassociate itself from the fed- 
eration and the ability of a component DBS 
to participate in one or more federations. 
Association autonomy may be treated as 
a part of the design autonomy or as an 
autonomy in its own right. Alonso and 
Barbara [1989] discuss the issues that are 
relevant to this type of autonomy. 

A subset of the above types of autonomy 
were also identified by Heimbigner and 
McLeod [1985]. Du et al. [1990] use the 
term local autonomy for the autonomy of a 
component DBS. They define two types of 
local autonomy requirements: operation 
autonomy requirements and service auton- 
omy requirements. Operation autonomy re- 
quirements relate to the ability of a 
component DBS to exercise control over its 
database. These include the requirements 
related to design and execution autonomy. 
Service autonomy requirements relate to the 
right of each component DBS to make de- 
cisions regarding the services it provides to 
other component DBSs. These include the 
requirements related to association and 
communication autonomy. Garcia-Molina 
and Kogan [1988] provide a different clas- 
sification of the types of autonomy. Their 
classification is particularly relevant to the 
operating system and transaction manage- 
ment issues. 

The need to maintain the autonomy of 
component DBSs and the need to share 
data often present conflicting require- 
ments. In many practical environments, it 
may not be desirable to support the auton- 
omy of component DBSs fully. Two exam- 
ples of relaxing the component autonomy 
follow: 

l Association autonomy requires that each 
component DBS be free to associate or 
disassociate itself from the federation. 
This would require that the FDBS be 
designed so that its existence and opera- 
tion are not dependent on any single 
component DBS. Although this may be a 
desirable design goal, the FDBS may 
moderate it by requiring that the entry 
or departure of a component DBS must 
be based on an agreement between the 
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Different architectures and types of 
FDBSs are created by different levels of 
integration of the component DBSs and by 
different levels of global (federation) serv- 
ices. We will use the taxonomy shown in 
Figure 3 to compare the architectures of 
various research and development efforts. 
This taxonomy focuses on the autonomy 
dimension. Other taxonomies are possible 
by focusing on the distribution and heter- 
ogeneity dimensions. Some recent publica- 
tions discussing various architectures or 
different taxonomies include Eliassen and 
Veijalainen [ 19881, Litwin and Zeroual 
[ 19881, Ozsu and Valduriez [ 19901, and 
Ram and Chastain [ 19891. 

MDBSs can be classified into two types 
based on the autonomy of the component 
DBSs: nonfederated database systems and 
federated database systems. A nonfederated 
database system is an integration of com- 
ponent DBMSs that are not autonomous. 
It has only one level of management,2 and 
all operations are performed uniformly. In 
contrast to a federated database system, a 
nonfederated database system does not dis- 
tinguish local and nonlocal users. A partic- 
ular type of nonfederated database system 
in which all databases are fully integrated 
to provide a single global (sometimes called 
enterprise or corporate) schema can be 
called a unified MDBS. It logically appears 
to its users like a distributed DBS. 

A federated database system consists of 
component DBSs that are autonomous yet 
participate in a federation to allow partial 
and controlled sharing of their data. Asso- 
ciation autonomy implies that the compo- 
nent DBSs have control over the data they 
manage. They cooperate to allow different 
degrees of integration. There is no central- 
ized control in a federated architecture be- 
cause the component DBSs (and their 
database administrators) control access to 
their data. 

FDBS represents a compromise between 
no integration (in which users must explic- 
itly interface with multiple autonomous da- 
tabases) and total integration (in which 

* This definition may be diluted to include two levels 
of management, where the global level has the author- 
ity for controlling data sharing. 

federation (i.e., its representative entity 
such as the administrator of the FDBS) 
and the component DBS (i.e., the admin- 
istrator of a component DBS) and cannot 
be a unilateral decision of the component 
DBS. 

l Execution autonomy allows a component 
DBS to decide the order in which exter- 
nal and local operations are performed. 
Futhermore, the component DBS need 
not inform the external system (e.g., 
FDBS) of this order. This latter aspect 
of autonomy may, however, be relaxed by 
informing the FDBS of the order of 
transaction execution (or transaction 
wait-for graph) to allow simpler and 
more efficient management of global 
transactions. 

Taxonomy of Multi-DBMS and Federated 
Database Systems 

A DBS may be either centralized or distrib- 
uted. A centralized DBS system consists of 
a single centralized DBMS managing a sin- 
gle database on the same computer system. 
A distributed DBS consists of a single dis- 
tributed DBMS managing multiple data- 
bases. The databases may reside on a single 
computer system or on multiple computer 
systems that may differ in hardware, sys- 
tem software, and communication support. 
A multidatabase system (MDBS) supports 
operations on multiple component DBSs. 
Each component DBS is managed by (per- 
haps a different) component DBMS. A 
component DBS in an MDBS may be cen- 
tralized or distributed and may reside on 
the same computer or on multiple com- 
puters connected by a communication sub- 
system. An MDBS is called a homogeneous 
MDBS if the DBMSs of all component 
DBSs are the same; otherwise it is called a 
heterogeneous MDBS. A system that only 
allows periodic, nontransaction-based ex- 
change of data among multiple DBMSs 
(e.g., EXTRACT [Hammer and Timmer- 
man 19891) or one that only provides access 
to multiple DBMSs one at a time (e.g., no 
joins across two databases) is not called an 
MDBS. The former is a data exchange sys- 
tem; the latter is a remote DBMS interface 
[Sheth 1987a]. 
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Figure 3. Taxonomy of multidatabase systems. 

autonomy of each component DBS is sac- 
rificed so that users can access data through 
a single global interface but cannot directly 
access a DBMS as a local user). The fed- 
erated architecture is well suited for mi- 
grating a set of autonomous and stand- 
alone DBSs (i.e., DBSs that are not sharing 
data) to a system that allows partial and 
controlled sharing of data without affecting 
existing applications (and hence preserving 
significant investment in existing applica- 
tion software). 

They involve only data in that component 
DBS. A component DBS, however, does not 
need to distinguish between local and global 

To allow controlled sharing while pre- 
serving the autonomy of component DBSs 
and continued execution of existing appli- 
cations, an FDBS supports two types of 
operations: local and global (or federation). 
This dichotomy of local and global opera- 
tions is an essential feature of an FDBS. 
Global operations involve data access using 
the FDBMS and may involve data managed 
by multiple component DBSs. Component 
DBSs must grant permission to access the 
data they manage. Local operations are 
submitted to a component DBS directly. 

will consist of heterogeneous component 
DBSs. In the rest of this paper, we will use 
the term FDBS to describe a heterogeneous 
distributed DBS with autonomy of compo- 
nent DBSs. 

FDBSs can be categorized as loosely 
coupled or tightly coupled based on who 
manages the federation and how the com- 
ponents are integrated. An FDBS is loosely 
coupled if it is the user’s responsibility to 
create and maintain the federation and 
there is no control enforced by the feder- 
ated system and its administrators. Other 
terms used for loosely coupled FDBSs are 
interoperable database system [Litwin and 
Abdellatif 19861 and multidatabase system 
[Litwin et al. 1982].3 A federation is tightly 
coupled if the federation and its adminis- 
trator(s) have the responsibility for creat- 
ing and maintaining the federation and 
actively control the access to component 
DBSs. Association autonomy dictates that, 
in both cases, sharing of any part of a 
component database or invoking a capabil- 
ity (i.e., an operation) of a component DBS 
is controlled by the administrator of the 
component DBS. 

A federation is built by a selective and 
controlled integration of its components. 
The activity of developing an FDBS results 
in creating a federated schema upon which 
operations (i.e., query and/or updates) are 
performed. A loosely coupled FDBS always 
supports multiple federated schemas. A 
tightly coupled FDBS may have one or 
more federated schemas. A tightly coupled 
FDBS is said to have single federation if it 
allows the creation and management of 
only one federated schema.* Having a single 

3 The term multidatabase has been used by different 

4 Note that a tightly coupled FDBS with a single 

people to mean different things. For example, Litwin 
[1985] and Rusinkiewicz et al. [1989] use the term 

federated schema is not the same as a unified MDBS 

multidatabase to mean loosely coupled FDBS (or in- 
teroperable system) in our taxonomy; Ellinghaus et al. 

but is a special case of the latter. It espouses the 

[1988] and Veijalainen and Popescu-Zeletin [1988] use 

federation concepts such as autonomy of component 

it to mean client-server type of FDBS in our taxon- 
omy; and Dayal and Hwang [1984], Belcastro et al. 
[1988], and Breitbart and Silberschatz [1988] use it to 
mean tightly coupled FDBS in our taxonomy. 

operations. In moSt environment% the DBMS~, dichotomy of operations, and controlled 
FDBS will also be heterogeneous, that is, sharing that a unified MDBS does not. 
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A type of FDBS architecture called the 
client-server architecture has been dis- 
cussed by Ge et al. [ 19871 and Eliassen and 
Veijalainen [1988]. In such a system, there 
is an explicit contract between a client and 
one or more servers for exchanging infor- 
mation through predefined transactions. A 
client-server system typically does not al- 
low ad hoc transactions because the server 
is designed to respond to a set of predefined 
requests. The schema architecture of a 
client-server system is usually quite simple. 
The schema of each server is directly 
mapped to the schema of the client. Thus 
the client-server architecture can be con- 
sidered to be a tightly coupled one for 
FDBS with multiple federations. 

federated schema helps in maintaining uni- 
formity in semantic interpretation of the 
integrated data. A tightly coupled FDBS is 
said to have multiple federations if it allows 
the creation and management of multiple 
federated schemas. Having multiple feder- 
ated schemas readily allows multiple inte- 
grations of component DBSs. Constraints 
involving multiple component DBS, how- 
ever, may be difficult to enforce. An orga- 
nization wanting to exercise tight control 
over the data (treated as a corporate re- 
source) and the enforcement of constraints 
(including the so-called business rules) may 
choose to allow only one federated schema. 

The terms federated database system and 
federated database architecture were intro- 
duced by Heimbigner and McLeod [1985] 
to mean “collection of components to unite 
loosely coupled federation in order to share 
and exchange information” and “an orga- 
nization model based on equal, autonomous 
databases, with sharing controlled by ex- 
plicit interfaces.” The multidatabase archi- 
tecture of Litwin et al. [1982] shares many 
features of the above architecture. These 
definitions include what we have defined as 
loosely coupled FDBSs. The key FDBS 
concepts, however, are autonomy of com- 
ponents, and partial and controlled sharing 
of data. These can also be supported when 
the components are tightly coupled. Hence 
we include both loosely and tightly coupled 
FDBSs in our definition of FDBSs. 

MRDSM [Litwin 19851, OMNIBASE 
[Rusinkiewicz et al. 19891, and CALIDA 
[Jacobson et al. 19881 are examples of 
loosely coupled FDBSs. In CALIDA, fed- 
erated schemas are generated by a database 
administrator rather than users as’in other 
loosely coupled FDBSs. Users must be rel- 
atively sophisticated in other loosely cou- 
pled FDBSs to be able to define schemas/ 
views over multiple component DBSs. 
SIRIUS-DELTA [Litwin et al. 19821 and 
DDTS [Dwyer and Larson 19871 can be 
categorized as tightly coupled FDBSs with 
single federation. Mermaide [Templeton 
et al. 1987131 and Multibase [Landers and 
Rosenberg 19821 are examples of tightly 
coupled FDBSs with multiple federations. 

@ Mermaid is a trademark of Unisys Corporation. 

Scope and Organization of this Paper 

Issues involved in managing an FDBS deal 
with distribution, heterogeneity, and au- 
tonomy. Issues related to distribution have 
been addressed in past research and devel- 
opment efforts on distributed DBMSs. We 
will concentrate on the issues of autonomy 
and heterogeneity. Recent surveys on the 
related topics include Barker and Ozsu 
[1988]; Litwin and Zeroual [1988]; Ram 
and Chastain [ 19891, and Siegel [1987]. 

The remainder of this paper is organized 
as follows. In Section 1 we discuss a refer- 
ence architecture for DBSs. Two types of 
system components-processors and sche- 
mas-are particularly applicable to FDBSs. 
In Section 2 we use the processors and 
schemas to define various FDBS architec- 
tures. In Section 3 we discuss the phases in 
an FDBS evolution process. We also dis- 
cuss a methodology for developing a tightly 
coupled FDBS with multiple federations. 
In Section 4 we discuss four important 
tasks in developing an FDBS: schema 
translation, access control, negotiation, and 
schema integration. In Section 5 we discuss 
four tasks relevant to operating an FDBS: 
query formulation, command transforma- 
tion, query processing and optimization, 
and transaction management. Section 6 
summarizes and discusses issues that need 
further research and development. The 
paper ends with references, a comprehen- 
sive bibliography, a glossary of the terms 
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used throughout this paper, and an appen- 
dix comparing some features of relevant 
prototype efforts. 

1. REFERENCE ARCHITECTURE 

A reference architecture is necessary to 
clarify the various issues and choices within 
a DBS. Each component of the reference 
architecture deals with one of the impor- 
tant issues of a database system, federated 
or otherwise, and allows us to ignore details 
irrelevant to that issue. We can concentrate 
on a small number of issues at a time by 
analyzing a single component. A reference 
architecture provides the framework in 
which to understand, categorize, and com- 
pare different architectural options for de- 
veloping federated database systems. 
Section 1.1 discusses the basic system com- 
ponents of a reference architecture. Section 
1.2 discusses various types of processors 
and the operations they perform on com- 
mands and data. Section 1.3 discusses a 
schema architecture of a reference archi- 
tecture. Other reference architectures de- 
scribed in the literature include Blakey 
[ 19871, Gligor and Luckenbaugh [ 19841, 
and Larson [ 19891. 

1.1 System Components of a Reference 
Architecture 

A reference architecture consists of various 
system components. Basic types of system 
components in our reference architecture 
are as follows: 

Data: Data are the basic facts and in- 
formation managed by a DBS. 
Database: A database is a repository of 
data structured according to a data 
model. 
Commands: Commands are requests 
for specific actions that are either entered 
by a user or generated by a processor. 
Processors: Processors are software 
modules that manipulate commands and 
data. 
Schemas: Schemas are descriptions of 
data managed by one or more DBMSs. A 
schema consists of schema objects and 
their interrelationships. Schema objects 
are typically class definitions (or data 

structure descriptions) (e.g., table defi- 
nitions in a relational model), and entity 
types and relationship types in the 
entity-relationship model. 

l Mappings: Mappings are functions that 
correlate the schema objects in one 
schema to the schema objects in another 
schema. 

These basic components can be com- 
bined in different ways to produce different 
data management architectures. Figure 4 
illustrates the iconic symbols used for each 
of these basic components. The reasons for 
choosing these components are as follows: 

l Most centralized, distributed, and feder- 
ated database systems can be expressed 
using these basic components. 

l These components hide many of the 
implementation details that are not 
relevant to understanding the im- 
portant differences among alternate 
architectures. 

Two basic components, processors and 
schemas, play especially important roles 
in defining various architectures. The pro- 
cessors are application-independent soft- 
ware modules of a DBMS. Schemas are 
application-specific components that de- 
fine database contents and structure. They 
are developed by the organizations to which 
the users belong. Users of a DBS include 
both persons performing ad hoc operations 
and application programs. 

1.2 Processor Types in the Reference 
Architecture 

Data management architectures differ in 
the types of processors present and the 
relationships among those processors. 
There are four types of processors, each 
performing different functions on data ma- 
nipulation commands and accessed data: 
transforming processors, filtering proces- 
sors, constructing processors, and accessing 
processors. Each of the processor types is 
discussed below. 

1.2.1 Transforming Processor 

Transforming processors translate com- 
mands from one language, called source 
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[Onuegbe et al. 1983; Zaniolo 19791, 
allowing a CODASYL DBS to be proc- 
essed using SQL commands. 

l A program generator that translates SQL 
commands into equivalent COBOL pro- 
grams allowing a file system to be proc- 
essed using SQL commands. 

For some command-transforming pro- 
cessors, there may exist companion data- 
transforming processors that convert data 
produced by the transformed commands 
into data compatible with the commands 
in the source format. For example, a data- 
transforming processor that is the com- 
panion to the above SQL-to-CODASYL 
command-transforming processor is a table 
builder that accepts individual database 
records produced by the CODASYL DBMS 
and builds complete tables for display to 
the SQL user. 

Figure 5(a) illustrates a pair of compan- 
ion transforming processors. Using infor- 
mation from schema A, schema B, and the 
mappings between them, the command- 
transforming processor converts com- 
mands expressed using schema A’s descrip- 
tion into commands expressed using 
schema B’s description. Using the 
same information, the companion data- 
transforming processor transforms data 
described using schema B’s description 
into data described using schema A’s 
description. 

To perform these transformations, a 
transforming processor needs mappings be- 
tween the objects of each schema. The task 
of schema translation involves transform- 
ing a schema (schema A) describing data in 
one data model into an equivalent schema 
(schema B) describing the same data in a 
different data model. This task also gener- 
ates the mappings that correlate the 
schema objects in one schema (schema B) 
to the schema objects in another schema 
(schema A). The task of command transfor- 
mation entails using these mappings to 
translate commands involving the schema 
objects of one schema (schema B) into com- 
mands involving the schema objects of the 
other schema (schema A). The schema 
translation problem and the command 
transformation problem are further dis- 
cussed in Sections 4.1 and 5.2, respectively. 

Component Icon (with 

Type Example) 

Processor 

Command 

Data 
<--ii-> 

Schema 

Information 

Mapping 

Database 

Figure 4. Basic system components of the data man- 
agement reference architecture. 

language, to another language, called target 
language, or transform data from one 
format (source format) to another format 
(target format). Transforming processors 
provide a type of data independence called 
data model transparency in which the data 
structures and commands used by one pro- 
cessor are hidden from other processors. 
Data model transparency hides the dif- 
ferences in query languages and data for- 
mats. For example, the data structures 
used by one processor can be modified to 
improve overall efficiency without requiring 
changes to other processors. Examples of 
command-transforming processors include 
the following: 

l A command transformer that trans- 
lates SQL commands into CODASYL 
data manipulation language commands 
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(b) 

Figure5. Transforming processors. (a) A pair of companion transforming processors. 
(b) An abstract transforming processor. 

Mappings are associated with a trans- 
forming processor in one of two ways. In 
the first case, the mappings are encoded 
into the transforming processor’s logic, 
making the transforming processor specific 
to the schemas. Alternatively, the map- 
pings are stored in a separate data structure 
and accessed by the transforming processor 
when converting commands and data. This 
is a more general approach. It may also be 
possible to generate a transforming proces- 
sor for transforming specific commands 
or data automatically. For example, an 
SQL-to-COBOL program generator might 
generate a specific data-transforming pro- 
cessor, the generated COBOL program, 
that converts data to the required form. 

For the remainder of this paper we will 
illustrate a command-transforming proces- 
sor and data converter pair as a single 
transforming processor as illustrated in 
Figure 4(b). This higher-level abstraction 
enables us to hide the differences between 
a single data-transforming processor, a sin- 
gle command-transforming processor, or a 

command-transforming processor and data 
converter pair. 

1.2.2 Filtering Processor 

Filtering processors constrain the com- 
mands and associated data that can be 
passed to another processor. Associated 
with each filtering processor are mappings 
that describe the constraints on commands 
and data. These constraints may either be 
embedded into the code of the filtering 
processor or be specified in a separate data 
structure. Examples of filtering processors 
include the following: 

Syntactic constraint checker, which 
checks commands to verify that they are 
syntactically correct. 
Semantic integrity constraint checker, 
which performs one or more of the follow- 
ing functions: (a) checks commands to 
verify that they will not violate semantic 
integrity constraints, (b) modifies com- 
mands in such a manner that when the 
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Figure 6. Filtering processors. (a) A pair of companion filtering processors. (b) An abstract filtering processor. 

commands are interpreted, semantic in- 
tegrity constraints will automatically be 
enforced, or (c) verifies that data pro- 
duced by another processor does not vi- 
olate any semantic integrity constraint. 

l Access controller, which verifies that the 
user is permitted to perform the com- 
mand on the indicated data or verifies 
that the user is permitted to use data 
produced by another processor. 

Figure 6(a) illustrates two filtering pro- 
cessors, one that controls commands and 
one that controls data. Again, we will ab- 
stract command- and data-filtering proces- 
sors into a single filtering processor as 
illustrated in Figure 6(b). 

An important task that may be solved by 
a filtering processor is that of view update. 
This task occurs when the differences in 
data structures between the view and the 
schema is such that there may be more 

than one way to translate an update com- 
mand. We do not discuss the view update 
task in more detail because we feel that a 
loosely coupled FDBS is not well suited to 
support updates, and solving this problem 
in a tightly coupled FDBS is very similar 
to solving it in a centralized or distributed 
DBMS [Sheth et al. 1988a]. 

1.2.3 Constructing Processor 

Constructing processors partition and/or 
replicate an operation submitted by a single 
processor into operations that are accepted 
by two or more other processors. Construct- 
ing processors also merge data produced by 
several processors into a single data set for 
consumption by another single processor. 
They can support location, distribution, 
and replication transparencies because a 
processor submitting a command does not 
need to know the location, distribution, and 
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(b) 
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Figure 7. Constructing processors. (a) A pair of constructing processors. (b) An abstract constructing 
processor. 

number of processors participating in pro- 
cessing that command. 

Tasks that can be handled by construct- 
ing processors include the following: 

Schema integration: Integrating mul- 
tiple schemes into a single schema 
Negotiation: Determining what proto- 
col should be used among the owners of 
various schemas to be integrated in de- 
termining the contents of an integrated 
schema 
Query (command) decomposition 
and optimization: Decomposing and 
optimizing a query (command) expressed 
on an integrated schema 
Global transaction management: 
Performing the concurrency and atomic- 
ity control 

These issues are further discussed in Sec- 
tions 4 and 5. Figure 7(a) illustrates a pair 
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of companion constructing processors. Us- 
ing information from schema A, schema B, 
schema C, and the mappings from schema 
A to schemas B and C, the command de- 
composer uses the commands expressed us- 
ing the schema A objects to generate the 
commands using the objects in schemas B 
and C. Schema A is an integrated schema 
that contains a description of all or parts 
of the data described by schemas B and C. 
Using the same information, the data 
merger generates data in the format of 
schema A objects from data in the formats 
of the objects in schemas B and C. 

Again we will abstract the command par- 
titioner and data merger pair into a single 
constructing processor as illustrated in 
Figure 7(b). 

1.2.4 Accessing Processor 

An accessing processor accepts commands 
and produces data by executing the 
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commands against a database. It may ac- 
cept commands from several processors 
and interleave the processing of those com- 
mands. Examples of accessing processors 
include the following: 

l A file management system that executes 
access procedures against stored file 

l A special application program that ac- 
cepts commands and generates data to be 
returned to the processor generating the 
commands 

l A data manager of a DBMS containing 
data access methods 

l A dictionary manager that manages ac- 
cess to dictionary data 

Figure 8 illustrates an accessing processor 
that accepts data manipulation commands 
and uses access methods to retrieve data 
from the database. 

Issues that are addressed by accessing 
processors include local concurrency con- 
trol, commitment, backup, and recovery. 
These problems and their solutions are ex- 
tensively discussed in the literature for cen- 
tralized and distributed DBMSs. Some of 
the issues of adapting these problems to 
deal with heterogeneity and autonomy in 
the FDBSs are discussed in Section 5.4. 

1.3 Schema Types in the Reference 
Architecture 

In this section, we first review the standard 
three-level schema architecture for central- 
ized DBMSs. We then extend it to a five- 
level architecture that addresses the 
requirements of dealing with distribution, 
autonomy, and heterogeneity in an FDBS. 

1.3.1 ANSIISPARC Three-Level Schema 
Architecture 

The ANSI/X3/SPARC Study Group on 
Database Systems outlined a three-level 
data description architecture [Tsichritzis 
and Klug 19781. The three levels of data 
description are the conceptual schema, the 
internal schema, and the external schema. 

A conceptual schema describes the con- 
ceptual or logical data structures (i.e., the 
schema consists of objects that provide a 
conceptual- or logical-level description of 
the database) and the relationships among 

Figure 8. Accessing processor. 

those structures. It is an attempt to de- 
scribe all data of interest to an enterprise. 
In the context of the ANSI/X3/SPARC 
architecture, it is a database schema as 
expressed in the data definition language 
of a centralized DBMS. The internal 
schema describes physical characteristics of 
the logical data structures in the conceptual 
schema. These characteristics include in- 
formation about the placement of records 
on physical storage devices, the placement 
and type of indexes and physical represen- 
tation of relationships between logical rec- 
ords. Much of the description in the 
internal schema can be changed without 
having to change the conceptual schema. 
By making changes to the description in 
the internal schema and making the cor- 
responding changes to the data in the da- 
tabase, it is possible to change the physical 
representation without changing any appli- 
cation program source code. Thus it is 
possible to fine tune the physical represen- 
tation of data and optimize the perfor- 
mance of the DBMS in providing database 
access for selected applications. 

Most users do not require access to all of 
the data in a database. Thus they do not 
require access to all of the schema objects 
in the conceptual schema. Each user or 
class of users may require access to only a 
portion of the database. The subset of the 
database that may be accessed by a user or 
a class of users is described by an external 
schema. Because different users may need 
access to different portions of the database, 
each user or a class of users may require a 
separate external schema. 

In terms of the above constructs, filtering 
processors use the information in the ex- 
ternal schemas to control what data can be 
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Figure 9. System architecture of a centralized DBMS. 

accessed by which users. A transforming 
processor translates commands expressed 
using the conceptual schema objects into 
commands using the internal schema ob- 
jects. An accessing processor executes the 
commands to retrieve data from the phys- 
ical media. A system architecture consist- 
ing of both processors and schemas of a 
centralized DBS is shown in Figure 9. 

1.3.2 A Five-Level Schema Architecture for 
Federated Databases 

The three-level schema architecture is ad- 
equate for describing the architecture of a 
centralized DBMS. It, however, is inade- 
quate for describing the architecture of an 
FDBS. The three-level schema must be ex- 
tended to support the three dimensions of 
a federated database system-distribution, 
heterogeneity, and autonomy. Examples of 
extended schema architectures include a 
four-level schema architecture in Mermaid 
[Templeton et al. 1987131, five-level schema 
architectures in DDTS [Devor et al. 1982b] 
and SIRIUS-DELTA [Litwin et al. 19821, 
and others [Blakey 1987; Ram and 
Chastain 19891. We have adapted these 
architectures for our five-level schema ar- 
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chitecture for federated systems shown in 
Figure 10. A system architecture consisting 
of both processors and schemas of an FDBS 
is shown in Figure 11. 

The five-level schema architecture of an 
FDBS includes the following: 

Local Schema: A local schema is the con- 
ceptual schema of a component DBS. A 
local schema is expressed in the native data 
model of the component DBMS, and hence 
different local schemas may be expressed 
in different data models. 

Component Schema: A component 
schema is derived by translating local sche- 
mas into a data model called the canonical 
or common data model (CDM) of the FDBS. 
Two reasons for defining component sche- 
mas in a CDM are (1) they describe the 
divergent local schemas using a single rep- 
resentation and (2) semantics that are 
missing in a local schema can be added to 
its component schema. Thus they facilitate 
negotiation and integration tasks per- 
formed when developing a tightly coupled 
FDBS. Similarly, they facilitate negotia- 
tion and specification of views and multi- 
database queries in a loosely coupled 
FDBS. 



Federated Database Systems . 199 

I 
Local 

Schema 
bb b 

Figure 10. Five-level schema architecture of an FDBS. 
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Figure 11. System architecture for an FDBS. 

The process of schema translation from schema objects. Transforming processors 
a local schema to a component schema use these mappings to transform com- 
generates the mappings between the com- mands on a component schema into com- 
ponent schema objects and the local mands on the corresponding local schema. 

ACM Computing Surveys, Vol. 22, No. 3, September 1990 



200 l Amit Sheth and James Larson 

Such transforming processors and the com- 
ponent schemas support the heterogeneity 
feature of an FDBS. 

Export Schema: Not all data of a com- 
ponent DBS may be available to the fed- 
eration and its users. An export schema 
represents a subset of a component schema 
that is available to the FDBS. It may in- 
clude access control information regarding 
its use by specific federation users. The 
purpose of defining export schemas is to 
facilitate control and management of asso- 
ciation autonomy. A filtering processor can 
be used to provide the access control as 
specified in an export schema by limiting 
the set of allowable operations that can be 
submitted on the corresponding component 
schema. Such filtering processors and the 
export schemas support the autonomy fea- 
ture of an FDBS. 

Alternatively, the data available to the 
FDBS can be defined as the transactions 
that can be executed by a component DBS 
(e.g., [Ge et al. 1987; Heimbigner and 
McLeod 1985; Veijalainen and Popescu- 
Zeletin 19881). In this paper, however, we 
will not consider that case of exporting 
transactions. 

Federated Schema: A federated schema 
is an integration of multiple export sche- 
mas. A federated schema also includes the 
information on data distribution that is 
generated when integrating export sche- 
mas. Some systems use a separate schema 
called a distribution schema or an allocation 
schema to contain this information. A con- 
structing processor transforms commands 
on the federated schema into the com- 
mands on one or more export schemas. 
Constructing processors and the federated 
schemas support the distribution feature of 
an FDBS. 

There may be multiple federated sche- 
mas in an FDBS, one for each class of 
federation users. A class of federation users 
is a group of users and/or applications per- 
forming a related set of activities. For ex- 
ample, in a corporate environment, all 
managers may be one class of federation 
users, and all employees and applications 
in the accounting department may be an- 
other class of federation users. A concept 
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similar to that of federated schema is rep- 
resented by the terms import schema 
[Heimbigner and McLeod 19851, global 
schema [Landers and Rosenberg 1982J, 
global conceptual schema [Litwin et al. 
19821, unified schema, and enterprise 
schema, although the terms other than im- 
port schemas are usually used when there 
is only one such schema in the system. 

External Schema: An external schema 
defines a schema for a user and/or appli- 
cation or a class of users/applications. Rea- 
sons for the use of external schemas are as 
follows: 

l Customization: A federated schema 
can be quite large, complex, and difficult 
to change. An external schema can be 
used to specify a subset of information in 
a federated schema that is relevant to the 
users of the external schema. They can 
be changed more readily to meet chang- 
ing users’ needs. The data model for an 
external schema may be different than 
that of the federated schema. 
Additional integrity constraints: 
Additional integrity constraints can also 
be specified in the external schema. 
Access control: Export schemas pro- 
vide access control with respect to the 
data managed by the component data- 
bases. Similarly, external schemas pro- 
vide access control with respect to the 
data managed by the FDBS. 

A filtering process analyzes the com- 
mands on an external schema to ensure 
their conformance with access control and 
integrity constraints of the federated 
schema. If an external schema is in a dif- 
ferent data model from that of the federated 
schema, a transforming processor is also 
needed to transform commands on the ex- 
ternal schema into commands on the fed- 
erated schema. 

Most existing prototype FDBSs support 
only one data model for all the external 
schemas and one query language interface. 
Exceptions are a version of Mermaid that 
supported two query language interfaces, 
SQL and ARIEL, and a version of DDTS 
that supported SQL and GORDAS (a 
query language for an extended ER model). 
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Future systems are likely to provide ing local schema. The additional semantics 
more support for multimode1 external are supplied by the FDBS developer during 
schemas and multiquery language interfaces the schema design, integration, and trans- 
[Cardenas 1987; Kim 19891. lation processes. 

Besides adding to the levels in the 
schema architecture, heterogeneity and au- 
tonomy requirements may also dictate 
changes in the content of a schema. For 
example, if an FDBS has multiple hetero- 
geneous DBMSs providing different data 
management capabilities, a component 
schema should contain information on the 
operations supported by a component 
DBMS. 

The five-level schema architecture 
presented above has several possible 
redundancies. 

An FDBS may be required to support 
local and external schemas expressed in 
different data models. To facilitate their 
design, integration, and maintenance, how- 
ever, all component, export, and federated 
schemas should be in the same data model. 
This data model is called canonical or com- 
mon data model (CDM). A language asso- 
ciated with the CDM is called an internal 
command language. All commands on fed- 
erated, export, and component schemas are 
expressed using this internal command 
language. 

Redundancy between external and 
federated schemas: External schemas 
can be considered redundant with feder- 
ated schemas since a federated schema 
could be generated for every different 
federation user. This is the case in the 
schema architecture of Heimbigner and 
McLeod [ 19851 (they use the term import 
schema rather than federated schema). In 
loosely coupled FDBSs, a user defines the 
federated schema by integrating export 
schemas. Thus there is usually no need 
for an additional level. In tightly coupled 
FDBSs, however, it may be desirable to 
generate a few federated schemas for 
widely different classes of users and to 
customize these further by defining ex- 
ternal schemas. Such external schemas 
can also provide additional access 
control. 

Database design and integration is a 
complex process involving not only the 
structure of the data stored in the databases 
but also the semantics (i.e., the meaning 
and use) of the data. Thus it is desirable to 
use a high-level, semantic data model [Hull 
and King 1987; Peckham and Maryanski 
19881 for the CDM. Using concepts from 
object-oriented programming along with a 
semantic data model may also be appropri- 
ate for use as a CDM [Kaul et al. 19901. 
Although many existing FDBS prototypes 
use some form of the relational model as 
the CDM (Appendix), we believe that fu- 
ture systems are more likely to use a se- 
mantic data model or a combination of an 
object-oriented model and a semantic data 
model. Most of the semantic data models 
will adequately meet requirements of a 
CDM, and the choice of a particular one is 
likely to be subjective. Because a CDM 
using a semantic data model may provide 
richer semantic constructs than the data 
models used to express the local schemas, 
the component schema may contain more 
semantic information than the correspond- 

Redundancy between an external 
schema of a component DBS and an 
export schema: If a component DBMS 
supports proper access control security 
features for its external schemas and if 
translating a local schema into a compo- 
nent schema is not required (e.g., the data 
model of the component DBMS is the 
same as CDM of the FDBS), then the 
external schemas of a component DBS 
may be used as an export schema in the 
five-level schema architecture (external 
schemas of component DBSs are not 
shown in the five-level schema architec- 
ture of Figure 10). 
Redundancy between component 
schemas and local schemas: When 
component DBSs uses CDM of the 
FDBS and have the same functionality, 
it is unnecessary to define component 
schemas. 

Figure 12 shows an example in which 
some of the schema levels are not used. No 
external schemas are defined over Feder- 
ated Schema 2 (all of it is presented to all 
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Figure 12. Example FDBS schemas with missing schemas at some levels. 

federation users using it). Component 
Schema 2 is the same as the Local Schema 
2 (the data model of the Component DBMS 
2 is the same as the CDM). No export 
schema is defined over Component Schema 
3 (all of it is exported to the FDBS). 

An important type of information asso- 
ciated with all FDBS schemas is the map- 
pings. These correlate schema objects at 
one level with the schema objects at the 
next lower level of the architecture. Thus, 
there are mappings from each external 
schema to the federated schema over which 
it is defined. Similarly, there are mappings 
from each federated schema to all of the 
export schemas that define it. The map- 
pings may either be stored as a part of the 
schema information or as distinct objects 
within the FDBS data dictionary (which 
also stores schemas). The amount of dic- 
tionary information needed to describe a 
schema object in one type of schema may 
be different from that needed for another 
type of schema. For example, the descrip- 
tion of an entity type in a federated schema 
may include the names of the users that 
can access it, whereas such information is 
not stored for an entity type in a compo- 
nent schema. The types of schema objects 

in one type of schema may also vary from 
those in another type of schema. For ex- 
ample, a federated schema may have 
schema objects describing the capabilities 
of the various component DBMSs in the 
system, whereas no such objects exist in 
the local schemas. 

Two important features of the schema 
architecture are how autonomy is preserved 
and how access control is managed. These 
involve exercising control over schemas at 
different levels. Two types of administra- 
tive individuals are involved in developing, 
controlling, and managing an FDBS: 

l A component DBS administrator (com- 
ponent DBA) manages a component 
DBS. There is one component DBA5 for 
each component DBS. The local, com- 
ponent, and export schemas are con- 
trolled by the component DBAs of the 
respective component DBSs. A key man- 
agement function of a component DBA 

’ Here a database administrator is a logical entity. In 
reality, multiple authorized individuals may play the 
role of a single (logical) DBA, or the same individual 
may play the role of the component DBA for multiple 
component DBSs. 
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. 

is to define the export schemas that spec- 
ify the access rights of federation users 
to access different data in the component 
databases. 
A federation DBA defines and manages a 
federated schema and the external sche- 
mas related to the federated schema. 
There can be one federation DBA for 
each federated schema or one federation 
DBA for the entire FDBS. Each federa- 
tion DBA in a tightly coupled FDBS is a 
specially authorized system administra- 
tor and is not a federation user. In a 
loosely coupled FDBS, federated schemas 
are defined and maintained by the users, 
not by the system-assigned federation 
DBA. This is further discussed in Sec- 
tion 2.1. 

2. SPECIFIC FEDERATED DATABASE 
SYSTEM ARCHITECTURES 

The architecture of an FDBS is primarily 
determined by which schemas are present, 
how they are arranged, and how they are 
constructed. In this section, we begin by 
discussing the loosely coupled and tightly 
coupled architectures of our taxonomy in 
additional detail. Then we discuss how sev- 
eral alternate architectures can be derived 
from the five-level schema architecture by 
inserting additional basic components, re- 
moving all basic components of a specific 
type, and arranging the components of the 
five-level schema architecture in different 
ways. We then discuss assignment of com- 
ponents to computers. Finally, we briefly 
discuss four case studies. 

2.1 Loosely Coupled and Tightly Coupled 
FDBSs 

With the background of Section 1, we dis- 
cuss distinctions between the loosely cou- 
pled and tightly coupled FDBSs in more 
detail. 

2.1.1 Creation and Administration of Federated 
Schemas 

The process of creating a federated schema 
takes different forms. In a loosely coupled 
FDBS, it typically takes the form of schema 
importation (e.g., defining “import sche- 

mas” in Heimbigner and McLeod [1985]), 
defining a view using a set of operators 
(e.g., defining “superviews” in Motro 
and Buneman [1981]), or defining a view 
using a query in a multidatabase lan- 
guage ([Czejdo et al. 1987; Litwin and 
Abdellatif 19861; see Section 5.1). In a 
tightly coupled FDBS, it takes the form of 
schema integration ([Batini et al. 19861; see 
Section 4.4). 

A typical process of developing federated 
schemas in a loosely coupled FDBS is as 
follows. Each federation user is the admin- 
istrator of his or her own federated schema. 
First, a federation user looks at the avail- 
able set of export schemas to determine 
which ones describe data he or she would 
like to access. Next, the federation user 
defines a federated schema by importing 
the export schema objects by using a user 
interface or an application program or by 
defining a multidatabase language query 
that references export schema objects. The 
user is responsible for understanding the 
semantics of the objects in the export sche- 
mas and resolving the DBMS and semantic 
heterogeneity. In some cases, component 
DBMS dictionaries and/or the federated 
DBMS dictionary may be consulted for ad- 
ditional information. Finally, the federated 
schema is named and stored under account 
of the federation user who is its owner. It 
can be referenced or deleted at any time by 
that federation user. 

A typical scenario for the administration 
of a tightly coupled FDBS is as follows. For 
simplicity, we assume single (logical) fed- 
eration DBA for the entire tightly coupled 
FDBS. Export schemas are created by ne- 
gotiation between a component DBA and 
the federation DBA; the component DBA 
has authority or control over what is in- 
cluded in the export schemas. The federa- 
tion DBA is usually allowed to read the 
component schemas to help determine 
what data are available and where they are 
located and then negotiate for their access. 
The federation DBA creates and controls 
the federated schemas. External schemas 
are created by negotiation between a fed- 
eration user (or a class of federation users) 
and the federation DBA who has the 
authority over what is included in each 
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external schema. It may be possible to in- 
stitute detailed and well-defined negotia- 
tion protocols as well as business rules (or 
some types of constraints) for creating, 
modifying, and maintaining the federated 
schemas. 

Based on how often the federated sche- 
mas are created and maintained as well as 
on their stability, an FDBS may be termed 
dynamic or static. Properties of a dynamic 
FDBS are as follows: (a) A federated 
schema can be promptly created and 
dropped; (b) there is no predetermined pro- 
cess for controlling the creation of a feder- 
ated schema. As described above, defining 
a federated schema in a loosely coupled 
FDBS is like creating a view over the sche- 
mas of the component DBSs. Since such a 
federated schema may be managed on the 
fly (created, changed, dropped easily) by a 
user, loosely coupled FDBSs are dynamic. 
A tightly coupled federation is almost al- 
ways static because creating a federated 
schema is like database schema integration. 
A federated schema in a tightly coupled 
FDBS evolves gradually and in a more con- 
trolled fashion. 

2.1.2 Case for Loosely Coupled FDBS 

A loosely coupled FDBS provides an inter- 
face to deal with multiple component 
DBMSs directly. A typical way to formulate 
queries is to use a multidatabase language 
(see Section 5.1). This architecture has the 

- following advantages: 

l A user can precisely specify relationships 
and mappings among objects in the ex- 
port schema. This is desirable when the 
federation DBA is unable to specify the 
mappings in order to integrate data in 
multiple databases in a manner meaning- 
ful to the user’s precise needs [Litwin 
and Abdellatif 19861. 

l It is also possible to support multiple 
semantics since different users can im- 
port or integrate export schemas differ- 
ently and maintain different mappings 
from their federated schemas to export 
schemas. This can be a significant advan- 
tage when the needs of the federation 
users cannot be anticipated by the fed- 

eration DBA [Litwin and Abdellatif 
19861. 

An example of multiple semantics is as 
follows. Suppose that there are two export 
schemas, each containing the entity SHOE. 
The colors of SHOE in one component 
schema, schemal, are brown, tan, cream, 
white, and black. The colors of SHOE in 
the other component schema, schema2, are 
brown, tan, white, and black. Users defin- 
ing different federated schemas may define 
different mappings that are relevant to 
their applications. For example, 

l User1 maps cream in his federated sche- 
mas to cream in schema1 and tan in 
schema2, 

l User2 maps cream in her federated 
schema to tan or cream in schema1 and 
tan or white in schema2. 

Proponents of the loosely coupled archi- 
tecture argue that a federated schema cre- 
ated and maintained by a single federation 
DBA is utopian and totalitarian in nature 
[Litwin 1987; Rusinkiewicz 19871. We feel 
that a loosely coupled approach may be 
better suited for integrating a large number 
of very autonomous read only databases 
accessible over communication networks 
(e.g., public databases of the types dis- 
cussed by Litwin and Abdellatif [ 19861). 
User management of federated schemas 
means that the FDBMS can do little to 
optimize queries. In most cases, however, 
the users are free to use their own under- 
standing of the component DBSs to design 
a federated schema and to specify queries 
to achieve good performance. 

2.1.3 Case for Tightly Coupled FDBS 

The loosely coupled approach may be ill 
suited for more traditional business or cor- 
porate databases, where system control (via 
DBAs that represent local and federation 
level authories) is desirable, where the users 
are naive and would find it difficult to 
perform negotiation and integration them- 
selves, or where location, distribution, and 
replication transparencies are desirable. 
Furthermore, in our opinion, a loosely 
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coupled FDBS is not suitable for update 
operations. Updating in a loosely coupled 
FDBS may degrade data integrity. When a 
user of a loosely coupled FDBSs creates 
a federated schema using a view definition 
process, view update transformations are 
often not determined. The users may not 
have complete information on the compo- 
nent DBSs and different users may use 
different semantic interpretations of the 
data managed by the component DBSs (i.e., 
loosely coupled FDBSs support multiple 
semantic interpretations). Thus different 
users can define different federated sche- 
mas over the same component DBSs, and 
different transformations may be chosen 
for the same updates submitted on different 
federated schemas. Similar problems can 
occur in a tightly coupled FDBS with mul- 
tiple federations but can be resolved at the 
time of federated schema creation through 
schema integration. A federation DBA cre- 
ating a federated schema using a schema 
integration process can be expected to have 
more complete knowledge of the compo- 
nent DBSs and other federated schemas. 
In addition to the update transformation 
issue, transaction management issues need 
to be addressed (see Section 5.4). 

A tightly coupled FDBS provides loca- 
tion, replication, and distribution transpar- 
ency. This is accomplished by developing a 
federated schema that integrates multiple 
export schemas. The transparencies are 
managed by the mappings between the fed- 
erated schema and the export schemas, and 
a federation user can query using a classical 
query language against the federated 
schema with an illusion that he or she is 
accessing a single system. A loosely coupled 
system usually provides none of these 
transparencies. Hence a user of a loosely 
coupled FDBS has to be sophisticated to 
find appropriate export schemas that can 
provide required data and to define map- 
pings between his or her federated schema 
and export schemas. Lack of adequate se- 
mantics in the component schemas make 
this task particularly difficult. Let us now 
discuss two alternatives for tightly coupled 
FDBSs in more detail. 

In a tightly coupled FDBS with a single 
federation, all export schemas are inte- 
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grated to develop a single federated schema. 
Sometimes an organization will insist on 
having a single federated schema (also 
called enterprise schema or global concep- 
tual schema) to have a single point of con- 
trol for all data sharing in the organization 
across the component DBS boundaries. Us- 
ing a single federated schema helps in de- 
fining uniform semantics of the data in the 
FDBS. With a single federated schema, it 
is also easier to enforce constraints that 
cross export schemas (and hence multiple 
databases) then when multiple federated 
schemas are allowed. 

Because one federated schema is created 
by integrating all export schemas and be- 
cause this federated schema supports data 
requirements of all federation users, it may 
become too large and hence difficult to 
create and maintain. In this case, it may 
become necessary to support external sche- 
mas for different federation users. 

A tightly coupled FDBS with multiple 
federations allows the tailoring of the use 
of the FDBS with respect to multiple 
classes of federation users with different 
data access requirements. Integrations of 
the same set of schemas can lead to differ- 
ent integrated schemas if different seman- 
tics are used. Thus this architecture can 
support multiple semantics, but the seman- 
tics are decided upon by the federation 
DBAs when defining the federated schemas 
and their mappings to the export schemas. 
A federation user can select from among 
multiple alternative mappings by selecting 
from among multiple federated schemas. 
When an FDBS allows updates, multiple 
semantics could lead to inconsistencies. For 
this reason, federation DBAs have to be 
very careful in developing the federated 
schemas and their mappings to the export 
schemas. Updates are easier to support in 
tightly coupled FDBSs where DBAs care- 
fully define mappings than in a loosely 
coupled FDBS where the users define the 
mappings. 

2.2 Alternative FDBS Architectures 

In this section, we discuss how processors 
and schemas are combined to create various 
FDBS architectures. 
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2.2.1 A Complete Architecture of a Tightly 
Coupled FDBS 

An architecture of a tightly coupled FDBS, 
shown in Figure 11, consists of multiple 
basic components as described below. 

l Multiple export schemas and filter- 
ing processors: Any number of exter- 
nal schemas can be defined, each with its 
own filtering processor. Each external 
schema supports the data requirements 
of a single federation user or a class of 
federation users. 

l Multiple federated schemas and con- 
structing processors: Any number of 
federated schemas can be defined, each 
with its own constructing processor. Each 
federated schema may integrate different 
export schemas (and the same export 
schema may be integrated differently in 
different federated schemas). 

l Multiple export schemas and filter- 
ing processors: Multiple export sche- 
mas represent different parts of a 
database to be integrated into different 
federated schemas. A filtering processor 
associated with an export schema sup- 
ports access control for the related com- 
ponent schema. 

. Multiple component schemas and 
transforming processors: Each com- 
ponent schema represents a different 
component database expressed in the 
CDM. Each transforming processor 
transforms a command expressed on the 
associated component schema into one or 
more commands on the corresponding 
local schema. 

2.2.2 Architectures with Missing Basic 
Components 

There are several architectures in which all 
of the processors of one type and all sche- 
mas of one type are missing. Several ex- 
amples follow. 

l No transforming processors or com- 
ponent schemas: All of the local sche- 
mas are described in a single data model. 
In other words, the FDBS does not sup- 
port component DBSs that use different 
data models. Hence there is no need for 

component schemas. Mermaid [Temple- 
ton et al. 1987b] falls into this category.‘j 
No filtering processors or export 
schemas: All of the component schemas 
are integrated into a single federated 
schema resulting in a tightly coupled sys- 
tem in which component DBAs do not 
control what users can access. This ar- 
chitecture fails to support component 
DBS autonomy fully. UNIBASE [Brze- 
zinski et al. 19841 is in this category, and 
hence it is classified as a nonfederated 
system. 
No constructing processor: The user 
or programmer performs the constructing 
process via a query or application pro- 
gram containing references to multiple 
export schemas. The programmer must 
be aware of what data are available in 
each export schema and whether data are 
replicated at multiple sites. This archi- 
tecture, classified as a loosely coupled 
FDBS, fails to support location, distri- 
bution, and replication transparencies. If 
data are copied or moved between com- 
ponent databases, any query or applica- 
tion using them must be modified. 

In practice, two processors may be com- 
bined into a single module, or two schemas 
may be combined into a single implemen- 
tation schema. For example, a component 
schema and its export schemas are fre- 
quently combined into a single schema with 
a single processor that performs both trans- 
formation and filtering. 

2.2.3 Architectures with Additional Basic 
Components 

There are several types of architectures 
with additional components that are exten- 
sions or variations of the basic components 
of the reference architecture. Such compo- 
nents enhance the capabilities of an FDBS. 
Examples of such components include the 
following: 

l Auxiliary schema: Some FDBSs have 
an additional schema called an auxiliary 

‘Its design, however, has provisions to store model 
transformation information and attach a transforming 
processor. 
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schema that stores the following types of 
information: 

. 

Data needed by federation users but 
not available in any of the (preexisting) 
component DBSs. 
Information needed to resolve incom- 
patibilities (e.g., unit translation tables, 
format conversion information). 
Statistical information helpful in per- 
forming query processing and optimi- 
zation. 

Multibase [Landers and Rosenberg 
19821 describes the first two types of 
information in its auxiliary schema, 
whereas DQS [Belcastro et al. 19881 de- 
scribes the last two types of information 
in its auxiliary schema. Mermaid [Tem- 
pleton et al. 1987133 describes the third 
type of information in its federated 
schema. As illustrated in Figure 13, the 
auxiliary schema and the federated 
schema are used by constructing proces- 
sors. It is also possible to consider the 
auxiliary schema to be a part (or sub- 
schema) of a federated schema. 
Enforcing constraints among com- 
ponent schemas: As illustrated in Fig- 
ure 14, an FDBS can have a filtering 
processor in addition to a constructing 
processor between a federated schema 
and the component schemas. The filter- 
ing processor enforces constraints that 
span multiple component schemas. The 
constructing processor, as discussed be- 
fore, transforms a query into subqueries 
against the component schemas of the 
component DBSs. Integrity constraints 
may be stored in an external schema or 
a federated schema. The constraints may 
involve data represented in multiple ex- 
port schemas. The filtering processor 
checks and modifies each update request 
so when data in multiple component da- 
tabases are modified, the intercomponent 
constraints are not violated. This capa- 
bility is appropriate in a tightly coupled 
system in which constraints among mul- 
tiple component databases must be en- 
forced. An early description of DDTS 
[Devor et al. 1982aJ suggested enforce- 
ment of semantic integrity constraints 
spanning components in this manner. 

. 

“‘“““‘;” Schema) 

Figure 13. Using an auxiliary schema to store trans- 
lation information needed by a constructing processor. 

This, however, can limit or conflict with 
the autonomy of the component DBSs. 

2.2.4 Extended Federated Architectures 

To allow a federation user to access data 
from systems other than the component 
DBSs, the five-level schema architecture 
can be extended in additional ways. 

l Atypical component DBMS: Instead 
of a typical centralized DBMS, a com- 
ponent DBMS may be a different type of 
data management system such as a file 
server, a database machine, a distributed 
DBMS, or an FDBMS. OMNIBASE uses 
a distributed DBMS as one of its com- 
ponent DBMSs [Rusinkiewicz et al. 
19891. Figure 15 illustrates how one 
FDBS can act as a backend for another 
FDBS. By making local schema A2 of 
FDBS A the same as external schema B2 
of FDBS B, the component DBS A2 of 
FDBS A is replaced by FDBS B. 

l Replacing a component database by 
a collection of application pro- 
grams: It is conceptually possible to re- 
place some database tables by application 
programs. For example, a table contain- 
ing pairs of equivalent Fahrenheit and 
Celsius values can be replaced by a pro- 
cedure that calculates values on one scale 
given values on the other. A collection of 
conversion procedures can be modeled 
by the federated system as a special- 
component database. A special-access 
processor can be developed that accepts 
requests for conversion information and 
invokes the appropriate procedure rather 
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Figure 14. Using a filtering processor to enforce constraints across 
export schemas. 

than access a stored database. Navathe 
et al. [1989] discuss a federated architec- 
ture being developed to provide access 
to databases as well as application 
programs. 

2.3 Allocating Processors and Schemas to 
Computers 

It is possible to allocate all processors and 
schemas to a single computer, perhaps to 
allow federation users to access data man- 
aged by multiple component DBSs on that 
computer. Usually, however, different com- 
ponent DBSs reside on different computers 
connected by a communication system. Dif- 
ferent allocations of the FDBS components 
result in different FDBS configurations. 

Figure 16 illustrates the configuration of 
a typical FDBS. A general-purpose com- 
puter at site 1 supports a single component 
DBS and two federation schemas for two 
different classes of federation users. Site 2 
is a workstation that supports two export 
schemas, each containing different data for 
use by different federation users. Site 3 is 
a small workstation that supports a single 
federation user and no component DBS. 
Site 4 is a database computer that has one 
component DBS but supports no federation 
users. 

It may be desirable to group a related set 
of processors and schemas into modules of 
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larger granularity and allocate them as 
desired. For example, DDTS [Dwyer and 
Larson 19871 defines two types of modules: 
Application Processor and Data Processor 
(Figure 17). An Application Processor in- 
cludes a federated schema with the associ- 
ated constructing processor and all the 
external schemas defined over the feder- 
ated schema with the associated filtering 
processors and transforming processors (if 
present). A Data Processor includes a local 
schema, a component schema, and the as- 
sociated transforming processor and all ex- 
port schemas defined over the component 
schema with associated filtering processors. 
An Application Processor performs the 
user interface and distributed transaction 
management and coordination functions 
and is located at every site at which there 
are federation users. A Data Processor per- 
forms the data management functions re- 
lated to the data managed by a single 
component DBS and is located at every site 
at which a component DBS is located. A 
site can have either or both of the two 
modules. Mermaid [Templeton et al. 
1987b] divides the processors and the sche- 
mas into four types of modules of smaller 
granularity. 

Special communication processors can 
also be placed on each computer to enable 
processors on two different sites to com- 
municate with each other. Communication 
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Figure 15. FDBS B acting as a back end to FDBS A. 

processors are not shown in our reference 
architecture. They are placed between any 
pair of adjacent processors that are allo- 
cated to different computers. 

2.4 Case Studies 

In this section we relate the terms and 
concepts of the reference architecture to 
those used in four example FDBSs. Our 
purpose is not to survey these systems 
[Thomas et al. 19901 but to show how the 
reference architecture can be used to rep- 
resent the architectures of various FDBSs 
uniformly. This uniform representation 
can greatly simplify the task of studying 
and comparing these systems. 

2.4.1 DOTS 

Figure 17 illustrates the original architec- 
ture of DDTS [Devor et al. 1982a] using 
the terminology of the reference architec- 
ture (to the left of each colon) and the 
terminology used by DDTS (to the right of 
each colon and in italics). It has a single 

federated schema called the Global Repre- 
sentation Schema, which is expressed in 
the relational data model. It has an external 
schema called the Conceptual Schema rep- 
resented in the Entity-Category-Relation- 
ship (ECR) model [Elmasri et al. 19851. 
Users formulate requests directly against 
the Conceptual Schema in the GORDAS 
query language [Elmasri 19811. The ECR 
data model is rich in semantics (e.g., it 
shows cardinality and operation con- 
straints on an entity’s participation in re- 
lationships). The transforming part of the 
Translation and Integrity Control proces- 
sor is responsible for translating requests 
written in GORDAS on the ECR data 
model into the internal form of a relational 
query language against the Global Repre- 
sentational Schema. The filtering part 
of the Translation and Integrity Control 
processor is responsible for modifying 
each query, so when it is processed, the 
constraints specified in the Conceptual 
Schema will be enforced. For example, a 
GORDAS query that deletes a record will 
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Figure 16. Typical FDBS system configuration. 
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Figure 17. DDTS architecture. 

be modified so that it verifies that deleting 
the record will not violate any semantic 
integrity constraints before the record is 
actually deleted. DDTS has since been ex- 
tended to support external schemas [Dwyer 
and Larson 19871 expressed in the rela- 
tional data model defined over the Global 
Representation Model. SQL is used to 
query such external schemas. 

sor 

There are two separate processors in 
DDTS’s constructing processor, reflecting 
the decision to separate distributed query 
optimization from distributed query exe- 
cution. The Materialization and Access 
Planning component generates a distrib- 
uted execution strategy consisting of sets 
of commands, each expressed in terms 
of one of the Local Representational 
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Figure 18. Multibase architecture. 

(component) schemas. The distributed ex- 
ecution strategy can be saved for future 
execution or can be passed immediately to 
the Distributed Execution Monitor. The 
Distributed Execution Monitor is respon- 
sible for executing the distributed execu- 
tion strategy, coordinating the execution of 
the sets of commands, and returning the 
results to the user. 

The Local Operations (transforming) 
Module accepts a set of commands and 
transforms it into a form that can be 
executed by the component DBMS. Orig- 
inally there were two CODASYL com- 
ponent DBMSs. Later a third component 
DBMS using the relational data model was 
added. 

2.4.2 Multibase 

Figure 18 illustrates the architecture of 
Multibase, again using the terminology of 
the reference architecture and the termi- 
nology used by Landers and Rosenberg 
[1982]. The federated schema is expressed 
in a functional data model called DAPLEX. 
The Transformer modifies global queries 
by inserting references to Local and Aux- 
iliary schemas. The modified global query 
is then processed by a series of processors 
that generates sequences of DAPLEX 
single-site queries. These processors 
include: 

l A Global Query Optimizer that produces 
a global plan, 
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Figure 19. Mermaid architecture. 

A Decomposer that decomposes the 
global plan into single-site DAPLEX 
queries, 
A Filter that reduces the decomposed 
queries by removing operations from 
them that are not supported by the cor- 
responding component DBMSs, and 
A Monitor that controls the distributed 
execution of the subqueries. 

The Optimizer, Decomposer, and Filter 
may be cyclically invoked for nested global 
queries. Two types of transformations are 
performed on each DAPLEX single-site 
query: 

l A Local Optimizer determines the opti- 
mal query-processing strategy for the 
single-site DAPLEX queries. 

l A Translator converts the DAPLEX 
query to a form the component DBMS 
can process. 

An Auxiliary schema holds additional 
data not stored in any component DBMS 
and information needed to resolve incon- 
sistencies. Component DBMSs supported 
by Multibase include both CODASYL and 
relational. 

2.4.3 Mermaid 

Figure 19 illustrates the architecture of 
Mermaid, again using the terminology of 
the reference architecture and the termi- 
nology used by Templeton et al. [1987b]. 
Users may formulate requests using either 
SQL on a relational schema or ARIEL, a 
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user-friendly query language developed at 
Systems Development Corporation (now 
Unisys), on what is called a Semantic Sub- 
schema. The federated schema is called a 
Global Schema and is expressed in the re- 
lational model. User requests are trans- 
formed to the internal command language 
called the Distributed Intermediate Lan- 
guage (DIL). DIL requests are processed by 
a constructing processor that produces and 
executes a query plan. A transforming pro- 
cessor (one for each component DBS) 
translates DIL requests into the query lan- 
guage of the component DBMS, interacts 
with the component DBMS, and sends data 
to other transforming processors (e.g., for 
joins and unions). Component DBMSs in- 
clude commercial relational DBMSs on 
Sun@ workstations and a database machine 
with a minicomputer host [Thomas et al. 
19901. 

2.4.4 MRDSM 

MRDSM is a loosely coupled FDBS (called 
a multidatabase system by its originators) 
in which a programmer/user formulates a 
request involving data from component 
DBSs. The system provides a multidata- 
base language called MDSL [Litwin and 

@ Sun is a trademark of Sun Microsystems, Inc. 
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Abdellatif 19871 to facilitate formulating 
such queries. Figure 20 illustrates the archi- 
tecture of MRDSM using the terminology 
of the reference architecture and the ter- 
minology of Litwin [ 19851. 

3. FEDERATED DATABASE SYSTEM 
EVOLUTION PROCESS 

There are two approaches to managing dis- 
tributed data: installing a distributed 
DBMS or adding a layer of software above 
existing DBMSs to create an FDBS system. 
In the first approach, installing a distrib- 
uted DBMS requires (1) changes and dis- 
ruption of the existing applications because 
they do not have the dichotomy of local 
versus global operations, (2) a complete 
change of the organizational structure for 
information management because this ap- 
proach does not respect the autonomy of 
existing DBSs, and (3) replacement of the 
existing centralized DBMSs by a distrib- 
uted DBMS. 

The federation approach offers a pre- 
ferred evolutionary path. It allows contin- 
ued operation of existing applications to 
remain unchanged, preserves most of the 
organizational structure, supports con- 
trolled integration of existing databases, 
and facilitates incorporation of new ap- 
plications and new databases. Although 
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Both migration and extension of file sys- 
tems are expensive. Many developers of the 
FDBSs elect to use migration because they 
do not have access to the source code of the 
file system and because they want their 
data maintained by a commercially avail- 
able DBMS. Since existing application pro- 
grams are affected, however, this activity is 
very difficult and often organizationally 
very sensitive. 

The second phase of the FDBS evolution, 
developing a federated database system, in- 
volves creating the component, export, fed- 
erated, and external schemas, defining the 
mappings between various schemas, and 
implementing the associated processors. 
This is a critical task for the success of an 
FDBS. A methodology that can be used to 
manage this phase is discussed in Section 
3.1. Tasks performed in this phase are dis- 
cussed in Section 4. 

The third phase of the FDBS evolution, 
federated database system operations, in- 
volves managing and manipulating multi- 
ple integrated databases using an FDBMS. 
The processors support various run-time 
FDBS operations (e.g., query processing 
and transaction management). The proces- 
sors and the federated schemas developed 
or generated in the second phase allow the 
selective, shared, and consistent access to 
data stored in the component DBSs. An 
FDBMS provides an interface to the users 
and applications and may allow execution 
of ad hoc queries. Tasks performed in this 
phase are discussed in Section 5. 

existing applications need not be changed 
in an FDBS, as the old applications are 
modified, the component databases may be 
standardized, and redundant data (unless 
required for improving availability or ac- 
cess time) may be removed. New applica- 
tions may be coded using an external 
schema defined on a federated schema. 

An FDBS evolves through gradual inte- 
gration of a set of interrelated DBSs. It 
evolves as the new component databases 
are added and the existing ones are modi- 
fied. This evolution process can be divided 
into three phases: preintegration, develop- 
ing a federated database system, and fed- 
erated database system operation. These 
phases (or the activities within the phases) 
need not follow serially from one phase to 
the next; each phase may be performed 
several times, and previous phases may be 
revisited and their results revised. 

The preintegration phase deals with the 
situation in which data reside in files and 
are not managed by any DBMS yet need to 
be accessed by federation users. Two gen- 
eral approaches are possible: 

l Migrate the files to a DBMS: Files 
can be migrated to a DBMS by perform- 
ing three activities: (1) develop a com- 
ponent schema that describes the data 
in the files, (2) load the DBMS with 
data from the files, and (3) modify exist- 
ing application programs to access the 
DBMS rather than access the files 
directly. 

l Extend the file system to support 
DBMS-like features: By extending 
the file system to support DBMS-like 
features, a file system can be treated as 
a component DBMS. In this approach, 
the following activities are performed: 
(1) create or generate a component 
schema that describes data in the files, 
(2) create backup and recovery facilities 
in the file system if the federation users 
will perform updates to data in the file 
system, and (3) create appropriate filter- 
ing and transforming processors that will 
convert commands expressed in the 
FDBS’s internal language to the com- 
mands that can be processed by the file 
system. 

3.1 Methodology for Developing a Federated 
Database System 

The methodology discussed here extends 
the methodology of Sheth [1988b] for de- 
veloping schemas for an FDBS to include 
processors. Developing a new FDBS pri- 
marily consists of integrating existing com- 
ponent databases. A bottom-up FDBS 
development process can be followed for 
this purpose. This process can also be used 
for adding a new component database to an 
FDBS. 

When new applications are developed us- 
ing an existing FDBS, it is necessary to 
determine whether the data requirements 
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of the application are supported by a fed- 
erated schema. If they are not, it is neces- 
sary either to extend a federated schema or 
create a new federated schema and either 
to extend an existing component database 
or create a new component database. This 
process is called a top-down FDBS devel- 
opment process. It is an extension of the 
traditional distributed database design 
process. In practice, elements of both the 
bottom-up and top-down processes are 
used to develop an FDBS. 

A data dictionary/directory (DD/D) 
often plays an important role in coordinat- 
ing various activities by storing essential 
information. In addition to storing all sche- 
mas representing information about the 
data managed by the FDBS, a DD/D also 
stores mappings among schemas, informa- 
tion about schemas and databases (such as 
statistics relevant to query optimization), 
schema-independent information (such as 
tables and functions for unit/format con- 
versions or heuristics for query optimiza- 
tion) , and various types of system 
informations (such as capabilities of each 
component DBMS, network addresses of 
each system hosting a component DBMS, 
and communication facility to be used to 
communicate with a given system). 

3.1.1 Bottom-Up Development Process 

A bottom-up FDBS development process is 
used to integrate several existing databases 
to develop an FDBS. Figure 21 illustrates 
the bottom-up process outlined below: 

(1) Translate schemas: Translate the 
local schema of a component database 
into a component schema expressed in 
the CDM. Generate the mappings be- 
tween the objects in the two schemas. 
Develop (or identify if one already ex- 
ists) the transforming processor that 
can transform commands expressed on 
the component schema into the com- 
mands expressed on the corresponding 
local schema. 

(2) Define export schemas: Define ex- 
port schemas from a component 
schema. This step is performed by the 
administrators (component DBAs) of 
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(3) 

(4) 

respective component DBSs to author- 
ize part of their databases to be in- 
cluded in the FDBS based on the 
negotiations with the federation DBA. 
Develop (or identify if one already ex- 
ists) the appropriate filtering proces- 
sor. 
Integrate schemas: Select a related 
set of export schemas to be integrated 
and integrate them. Integration of each 
set of export schemas will produce one 
federated schema. Develop (or identify 
if one already exists) a constructing 
processor that would transform the 
commands expressed on federated 
schemas into commands expressed on 
the corresponding export schemas. 
This includes generating mappings 
with appropriate distribution informa- 
tion. This step is repeated once for each 
related set of export schemas and the 
corresponding federated schema. 
Define external schemas: If neces- 
sary, define external schemas for each 
federation user or class of federation 
users. Build or identify the necessary 
filtering and transforming processors. 
The transforming processor performs 
schema translation if the data model of 
the external schema is different than 
the CDM. 

3.1.2 Top-Down Development Process 

A top-down FDBS development process is 
used when an FDBS already exists and 
additional user requirements (e.g., to sup- 
port a new application) are placed on it. 
Figure 22 illustrates the top-down process 
outlined below: 

(1) Define or modify external sche- 
mas: Collect federation user require- 
ments and analyze them to define new 
external schemas or extensions to the 
existing external schemas. 

(2) Analyze schemas: Compare relevant 
federated schemas with the external 
schemas to identify parts of the exter- 
nal schemas that are already in the 
federated schema and hence supported 
by the FDBS. If some part of an exter- 
nal schema is not already supported by 
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Figure 21. Bottom-up FDBS developing process. 

the FDBS, a federated schema will need 
to be extended or developed to include 
that part. We refer to this unsupported 
part as a temporary schema (which is 
discarded at the end of the integration 
process). One or more of the compo- 
nent databases will have to support the 
temporary schema. This can be accom- 
plished in one of three ways: 

(a) The required data exist in one or 
more component database(s). In 
this case, identify the component 
schemas containing the descrip- 
tion of required data and negotiate 
with their administrators to have a 
description of this data placed in 
an export schema with appropriate 
access rights. 

(b) The required data are not imple- 
mented in any component data- 
base, and a component DBA is 
willing to place the required data 
in his or her component database. 
In this case, local, component, and 
export schemas of the relevant da- 
tabases are modified. 

(c) The required data are not imple- 
mented in any component data- 
base, and no component DBA is 
willing to place the required data 
in his or her component databases. 
In this case, the temporary schema 
is implemented as a separate da- 
tabase of an existing component 
DBMS. Alternatively, a new com- 
ponent DBMS may be used that 
may require a new transforming 
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Figure 22. Top-down FDBS developing process. 

processor. The temporary schema 
becomes a new component schema. 

(3) Integrate schemas: Integrate the 
temporary schema with the relevant 
federated schema and discard the tem- 
porary schema. 

4. FEDERATED DATABASE SYSTEM 
DEVELOPMENT TASKS 

Many tasks involved in developing a cen- 
tralized or a distributed DBS [Ozsu and 
Valduriez 1990, Chapter 5; Teorey 19901 
are also relevant to developing an FDBS 
and can be adapted with minor changes. In 
this section, we discuss four tasks that do 
not typically arise in that context but have 
particular significance for developing an 
FDBS. They are schema translation, access 
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control, negotiation, and schema integra- 
tion. As identified in Section 3.1, these 
tasks are relevant to the development of 
the schemas and are affected by the data 
requirements of the federation users. 

4.1 Schema Translation 

Schema translation is performed when a 
schema represented in one data model (the 
source schema) is mapped to an equivalent 
schema represented in a different data 
model (the target schema). Schema trans- 
lation is needed in two situations: 

l Translating a local schema into a com- 
ponent schema when the DBMS’s native 
data model is different from the CDM. 

l Translating a part of the federated 
schema into an external schema when 
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the source schema. These rules specify how 
each object in the target schema is derived 
from objects in the source schema. If the 
mapping rules do not have inverses, the 
view update problem must be solved. 
The following is a simplified example of 
a set of mapping rules that can be used to 
generate a relational schema from a 
CODASYL schema: 

the external schema is expressed in a data 
model different than the CDM. 

For example, assume that if the CDM is 
an extended Entity Relationship (EER) 
model, then one of the component DBMSs 
to be integrated is a relational DBMS and 
another is a CODASYL DBMS, and a class 
of federated users wants a relational view. 
The following are required: (1) translation 
of the local schema of the relational DBMS 
into its equivalent component schema ex- 
pressed in the EER model, (2) translation 
of the local schema of the CODASYL 
DBMS into an equivalent component 
schema expressed in the EER model, and 
(3) translation of a part of the federated 
schema in the EER model into an exter- 
nal schema expressed in the relational 
model. Two general approaches for per- 
forming schema translation are discussed 
below. 

The first approach develops explicit 
mappings between each source and the tar- 
get schema. This approach is appropriate 
when a (class of) federation user(s) requires 
specific data structures in the target 
schema. The DBA must then specify map- 
pings that transform the source schema to 
the target schema. There are three cases: 

All schema objects in the target schema 
can be derived from the schema objects 
in the source schema, and there exist 
inverses for all of these mappings. The 
DBA specifies the mappings and their 
inverses. 
All schema objects in the target schema 
can be derived from the schema objects 
in the source schema, but inverses may 
not exist for the mappings. If the update 
were to be allowed, the DBA must con- 
struct a filtering processor to solve the 
associated view update task. 
If the target schema contains objects that 
cannot be derived from the objects in the 
source schema, the DBA must modify the 
target schema or construct a constructing 
processor that integrates schema objects 
from other schemas to support all of the 
objects in the target schema. 

The second approach develops mapping 
rules to generate the target schema from 

(1) 

(2) 

(3) 

(4) 

Each record type is mapped to a table 
with the same name. 
Each field in a record type A is mapped 
to a column of table A. 
Each record identifier in record type A 
is mapped to a key in table A. 
Each set (one-to-many relationships 
between record type A and record type 
B ) is mapped to a column in table B 
that contains values from the key of 
table A. This column is called a foreign 
key. 

Consider the CODASYL schema in Fig- 
ure 23(a) (from Larson [1983a]). The 
COMPANY record type has two fields, 
COMPANY-NAME and CITY. The 
PRODUCT record type has two fields, 
PRODUCT-NAME and COST. COM- 
PANY-NAME is the unique record identi- 
fier for the COMPANY record type, and 
PRODUCT-NAME is the unique record 
identifier for the PRODUCT record type. 
There is a PRODUCES set consisting of 
the COMPANY record type as the owner 
and the PRODUCT record type as the 
member. The PRODUCES set maintains 

one-to-many relationship between 
EOMPANY and PRODUCT. 

The relational schema of Figure 23(b) 
results when the above mapping rules are 
applied. The COMPANY table has two 
fields, COMPANY -NAME and CITY. The 
PRODUCT table has three fields, PROD- 
UCT-NAME, COST, and COMPANY- 
NAME. COMPANY-NAME is the key for 
the COMPANY table, and PRODUCT- 
NAME is the key for the PRODUCT table. 
The COMPANY-NAME column of 
PRODUCT table is a foreign key; it con- 
tains only values from the COMPANY- 
NAME key field of the COMPANY table. 

Zaniolo [1979] developed a tool that au- 
tomatically generates relational schemas 
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Figure23. Equivalent CODASYL and relational schemas. (a) CODASYL 
schema; (b) relational schema. * -Foreign key. 

from CODASYL schemas. Elmasri et al. 
[1985] and Teorey et al. [1986] discuss 
transformations between extensions of the 
Entity Relation data model [Chen 19761 
and the relational data model. Lien [1981] 
describes mappings from the hierarchical 
to the relational data model. Tsichritzis 
and Lochovsky [1982] provide a summary 
of these types of mappings. 

In practice, the translation task may re- 
quire more than just data model translation 
because the source and the target schemas 
may not be able to represent exactly the 
same semantics, Hence schema translation 
poses two contradictory requirements: 
(1) Capture additional semantics during the 
schema translation that can later help in 
the tasks of schema integration and view 
update, and (2) maintain only the existing 
semantics because the local schema is not 
able to support the additional semantics. 
These requirements are discussed next. 

Using a semantic data model as the CDM 
can facilitate representation of additional 
semantics that may be difficult or impos- 
sible to specify in a traditional model such 
as the relational model. As an example, a 
generalization relationship with inherit- 
ance between two entity types can be ex- 
plicitly represented in a component schema 
that uses a semantic data model. As an- 
other example, a foreign key between rela- 
tions Rl and R2 in a local schema expressed 
in the relational model may be explicitly 
represented as a relationship between the 
two entities representing Rl and R2 in the 
corresponding component schema in an 
EER model. One, however, should be care- 
ful about the additional semantic informa- 
tion provided during the translation from a 
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local schema to a component schema. This 
is because a component DBMS is autono- 
mous, and the database managed by it 
should not be changed as a result of the 
translation process. In other words, the 
translation should be reversible in the sense 
that (a) the component schema in the CDM 
should represent the same database repre- 
sented by the local schema and (b) it should 
be possible to translate a command on a 
component schema into command(s) on the 
corresponding local schema. A notion 
that may be useful in this context is 
that of content-preserving transformations 
[Rosenthal and Reiner 19871. 

4.2 Access Control 

An FDBS should be designed to control 
access to component databases by federa- 
tion users. The system architecture of an 
FDBS (shown in Figure 11) has filtering 
processors at two levels. Each can be used 
to provide access control. The filtering pro- 
cessors relating the export and the compo- 
nent schemas control access to component 
DBSs. The filtering processor relating the 
external and federated schemas controls 
access to the federated schemas.7 Negotia- 
tion between the component and federation 
DBAs may be necessary to reach an agree- 
ment on how to control the data a compo- 
nent DBA wants to keep secure from some 
of the federation users while allowing ac- 
cess to other federation users. Alternately, 
a new federated schema can be established 

‘This is similar to using the view mechanism for 
access control security in centralized and distributed 
DBMSs [Bertino and Haas 19881. 
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maid maintains an access file on each com- 
puter for this purpose. Access files control 
access to Mermaid’s data dictionary and 
directory. Third, Mermaid maintains an 
access list that identifies the external and 
federated schemas each user is authorized 
to use. Fourth, the user must be registered 
with each computer having a component 
DBS that is relevant to the user’s federated 
schema. In addition, Mermaid provides ex- 
tensive run-time support for access control, 
uses data encryption (for passing access 
control information over the network and 
for storing it in access files and access lists), 
and provides an audit trail and a journal 
trail for security purposes. 

One of the heterogeneities that may be 
encountered in an FDBS is the existence 
of different and incompatible mechanisms 
for expressing and enforcing access control 
policies. An access control mechanism used 
by an FDBMS, such as the view mecha- 
nism, may also conflict with the autonomy 
of the component DBMSs. A solution that 
uses preprocessing is discussed by Wang 
and Spooner [1987]. 

for use by a selected subgroup of the origi- 
nal federation. For example, suppose com- 
ponent databases each contain information 
about commercial shipping and military 
shipping. The following approaches are 
possible: 

Each component DBA includes schema 
objects describing both commercial and 
military shipping in their respective ex- 
port schemas. This information is inte- 
grated into a single federated schema. 
The federation DBA creates two external 
schemas, one for accessing commercial 
shipping information and one for access- 
ing military shipping. In this scenario, 
the local DBAs trust the federation DBA 
to provide appropriate access controls on 
each external schema. 
Each component DBA generates two ex- 
port schemas, one containing the schema 
objects describing commercial shipping 
and the other containing schema objects 
describing military shipping. Two feder- 
ated schemas are created, one dealing 
with commercial shipping and the other 
dealing with military shipping. In this 
scenario, the component DBAs control 
appropriate access on each export 
schema and hence is preferred to the 
previous one. 

Other access control and security issues 
include the following: 

How users are identified, grouped into 
classes, and named for access control se- 
curity purposes. Templeton et al. [1987a] 
discuss the issue of installing a new user. 
How data are identified, grouped into 
classes, and named for access control se- 
curity purposes [Abbott and McCarthy 
1988; Templeton et al. 1987b]. 
What operations are used for controlling 
security privileges [Fagin 1978; Larson 
1983b; Selinger and Wade 19761. 

A case study of the access control fea- 
tures of Mermaid [Templeton et al. 1987a] 
is interesting. It uses access control at four 
levels. First, a user must have an account 
on the computer where the Mermaid user 
interface can be run. Second, the user 
should be registered with Mermaid. Mer- 

4.3 Negotiation 

A federation DBA manages federated sche- 
mas. A component DBA manages the ex- 
port schemas defined over the component 
DBS he or she manages. A federation DBA 
and component DBAs must reach an agree- 
ment about the contents of the export sche- 
mas and operations allowed on the export 
schemas such that federated schemas can 
be defined over them to support federation 
users. The dialogue between the two admin- 
istrators to reach this agreement is 
called negotiation. To facilitate negotia- 
tion, the administrators follow protocols 
governing the messages exchanged during 
a negotiation. 

In terms of the reference schema archi- 
tecture, there are two ways to perform ne- 
gotiation. First, a component DBA may 
allow the federation DBA to read the com- 
ponent schemas he or she controls but does 
not give any specific rights for data access. 
When a federation DBA determines data 
access requirements, he or she sends a re- 
quest to the component DBA to define an 
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export schema with appropriate access 
rights. This request typically includes in- 
formation on the data to be accessed, the 
types of access (retrieval or update), and 
the federation users who will access the 
data. In some cases, it may also include 
requirements on the component DBS such 
as constraints to be satisfied (e.g., how cur- 
rent or consistent the data must be and 
maximum response time), and whether the 
federation DBA or user may grant others 
some or all of the access rights for this 
export schema [Larson 1983131. The com- 
ponent DBA may accept or refuse any part 
of the request for any reason in defining 
the export schemas. In the second alterna- 
tive, all component DBAs may define the 
export schemas a priori and require 
the access from the FDBMS to be limited 
to the contents and access rights contained 
in those export schemas. 

Two of the many aspects of FDBS oper- 
ations for which negotiation protocols need 
to be defined are the following: 

l A component DBA decides to withdraw 
access to a schema object or change a 
schema object in a local schema. 

l A federation user decides that access to a 
schema object is no longer needed. 

Heimbigner and McLeod [1985] present 
negotiation protocols for a multisited dis- 
tributed dialogue among the DBAs in an 
FDBS. Alonso and Barbara [1989] consider 
the case in which the federated schema is 
a materialized view (they call it quasi- 
copy). In this context, they explore ways to 
express the needs of a federation DBA pre- 
cisely, to determine the degree of sharing 
the component DBA is willing to offer, and 
to estimate the cost of a specific agreement 
for both the component DBS and the 
FDBS. 

4.4 Schema integration 

View integration refers to integrating mul- 
tiple user views into a single schema (e.g., 
federated schema development in a top- 
down FDBS development process). Schema 
integration refers to integrating (usually ex- 
isting) schemas into a single schema (e.g., 
federated schema development by integrat- 

ing export schemas in a bottom-up FDBS 
development process). The tasks are quite 
similar and are treated uniformly as 
schema integration in this paper. 

Many approaches and techniques for 
schema integration have been reported in 
the literature. The survey paper of Batini 
et al. [1986] discusses and compares 12 
methodologies for schema integration. It 
divides schema integration activities into 
five steps: preintegration, comparison, con- 
formation, merging, and restructuring. In 
the context of FDBS development, prein- 
tegration activities involve translation of 
schemas into a CDM so they can be com- 
pared and specification of global con- 
straints and naming conventions. The 
latter involves activities that may be useful 
in the comparison step (e.g., specifying a 
thesaurus that may be used for identifying 
naming conflicts, homonyms, or syno- 
nyms). Although schema translation has 
been studied independently from schema 
integration, the two tasks are highly inter- 
related. Schema translation may be more 
constrained when integrating existing 
DBSs than during view integration because 
the constraints of the existing data struc- 
tures cannot be changed. 

The comparison step (also called schema 
analysis) involves two activities: (a) analyz- 
ing and comparing the objects of the 
schemas (and possibly databases) to be in- 
tegrated, including identification of naming 
conflicts (e.g., homonym and synonym de- 
tection), domain (i.e., value type) conflicts, 
structural differences, constraint differ- 
ences, and missing data and (b) specifying 
the interrelationships among the schema 
objects. The conforming step is closely tied 
to the comparing step since it is difficult to 
compare unless the related information is 
represented in a similar form in different 
schemas. 

Unless the schemas are represented in 
the same model, analyzing and comparing 
their schema objects is extremely difficult. 
It is important to note that comparison of 
the schema objects is primarily guided by 
their semantics. not bv their svntax. Hence 
the choice of the CDM is critical. The CDM 
should be semantically rich; that is, it 
should provide abstraction and constraints 
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E2, and El is-disjoint-and-nonintegra- 
bleewith E2. Similar relationships exist 
among relationship types. Elmasri et al. 
[1986] and Sheth et al. [1988b] use the 
relationships among attributes in a heuris- 
tic algorithm to identify pairs of entity 
types and relationship types that may be 
related by the first three types of relation- 
ships. The actual relationships are specified 
by the person (the DBA in a tightly coupled 
FDBS, a user in a loosely coupled FDBS) 
integrating the schemas. Using classifica- 
tion in the CANDIDE semantic data model 
[Beck et al. 19891 and the relationships 
among attributes, Sheth and Gala [1989] 
suggest that many of the relationships 
among entity types and relationship types 
can be automatically discovered without 
additional human input. 

In [Sheth et al. 1988b], specification of 
relationships among schema objects is used 
as an input to a lattice generation or merg- 
ing activity to generate a single integrated 
schema. Other efforts, particularly those 
that do not rely on identifying relationships 
among schema objects, as discussed above, 
provide a set of operators for the DBA 
to correlate or integrate the objects to gen- 
erate an integrated schema [Motro and 
Buneman 19811. 

One reason why a completely automatic 
schema integration process (particularly 
for discovering attribute relationships) is 
not possible is because it would require that 
all of the semantics of the schema be com- 
pletely specified. This is not possible be- 
cause, among other reasons, (1) the current 
semantic (or other) data models are unable 
to capture a real-world state completely, 
(2) it will be necessary to capture much 
more information than is typically cap- 
tured in a schema, and (3) there can be 
multiple views and interpretations of a 
real-world state; and the interpretations 
change with time. Convent [1986] formally 
argues that integrating relational schemas 
is undecidable. 

Three tools developed to perform schema 
integration are reported in Hayes and Ram 
[ 19901, Sheth et al. [1988b], and Souza 
[ 19861. Sheth et al. [ 1988131, for example, 
describe a forms-based interactive tool to 
integrate EER schemas. It accepts the 

so that the semantics relevant to schema 
integration can be presented. Thus, seman- 
tic (or conceptual) data models are much 
preferred over traditional data models such 
as relational, network, or hierarchical. 
Dayal and Hwang [1984] suggest that the 
concept of generalization is important for 
schema integration. One reason is that sim- 
ilar or related concepts are represented at 
different levels of abstractions in different 
schemas. For example, one schema may 
contain attributes Office-Phone-Number 
and Home-Phone-Number, both of which 
can be shown as specializations of the at- 
tribute Telephone-Number in another 
schema. 

Analyzing and comparing schema objects 
is followed by specifying the interrelation- 
ships among the schema objects. Consider 
integrating two EER schemas. In this case, 
there are three types of schema objects: 
entity types, relationship types, and attri- 
butes. In the methodology discussed by 
Elmasri et al. [1986] as well as in several 
other schema integration methodologies, 
relationships among attributes in the two 
schemas are specified first. Relationships 
among other object types (e.g., the entity 
types and the relationship types) follow. 

Two attributes, al and a2, may be related 
in one of the three ways [Larson et al. 1989; 
Sheth and Gala 19891: al is-equivalent-to 
a2, al includes (or is-included-in) a2, or 
al is-disjoint-with a2. Determining such 
relationships can be time consuming and 
tedious. If each schema has 100 entity 
types, and an average of five attributes per 
entity type, then 250,000 pairs of attributes 
must be considered (for each attribute in 
one schema, a potential relationship with 
each attribute in other schemas should be 
considered). Sheth and Gala [1989] argue 
that this task cannot be automated, and 
hence we may need to depend on heuristics 
to identify a small number of attribute pairs 
that may be potentially related by a rela- 
tionship other than is-disjoint-with. 

Two entity types, El and E2, may be 
related in one of five ways [Elmasri et al. 
1986; Navathe et al. 19861: El equals E2, 
El includes (or is-included-in) E2, El 
overlaps (or may-be-integratable-with) 
E2, El is-disjoint-but-integrable-with 

ACM Computing Surveys, Vol. 22, No. 3, September 1990 



224 l Amit Sheth and James Larson 

definitions of the schemas to be integrated, 
guides the integrator through the process 
of defining attribute equivalencies, uses at- 
tribute equivalencies to rank entity type 
and relationship type pairs that may be 
related heuristically, accepts assertions 
about the relationships among the entity 
types and relationship type pairs, checks 
for their consistency, and performs the 
merging task automatically. 

After schemas have been integrated, it 
may be necessary to decide how to allocate 
the data among multiple component DBSs. 
This distribution design task has been stud- 
ied extensively [Ceri et al. 19871. 

5. FEDERATED DATABASE SYSTEM 
OPERATION 

The previous section discussed some of the 
important tasks for developing an FDBS. 
Many tasks relevant to the operation (i.e., 
run-time system) of distributed DBMSs are 
also relevant to the operation of multida- 
tabase systems and FDBSs. In this section, 
we discuss four tasks that are either specific 
to an FDBS (or a multi-DBMS system) or 
are significantly different from similar 
tasks in a distributed DBMS. These tasks 
are application independent. 

5.1 Query Formulation 

The same query languages used in cen- 
tralized and distributed DBMSs can 
be used for formulating queries in a 
tightly coupled FDBS. This is because a 
lightly coupled FDBS provides location, 
distribution, and replication transpar- 
encies. Most loosely coupled FDBSs pro- 
vide a multidatabase language to allow a 
federation user to access data from multiple 
component DBSs. A multidatabase lan- 
guage provides functions that are not pres- 
ent in data manipulation languages used in 
centralized and distributed DBMSs [Litwin 
et al. 19871. It provides a capability to 
define federated schemas as views over 
multiple export schemas (or parts of 
component schemas) and to formulate 
queries against such a view. In addition the 
language deals with problems identified in 
the discussion on schema integration, such 
as naming conflicts and data structure/ 

type/scale differences. Some systems using 
multidatabase languages can define multi- 
ple semantics over the same data (e.g., dy- 
namic attributes in Litwin and Abdellatif 
[ 19861). Examples of multidatabase lan- 
guages include MDSL [Litwin and Abdel- 
latif 19871, MSQL [Litwin et al. 19871, 
GSQL [Jacobs 19851, a relational language 
with extended abstract data types [Czejdo 
et al. 19871, and a graphical multidatabase 
query language [Rusinkiewicz et al. 19891. 
CALIDA [Jacobsen et al. 19881) provides a 
menu-based interface to formulate queries 
against multiple component DBMSs. 

5.2 Command Transformation 

A command transformation processor 
translates commands in one language, 
called the source language (or operations in 
one data model, called the source data 
model) into commands in another lan- 
guage, called the target language (or oper- 
ations in another data model, called the 
target data model). Converting between 
procedural and nonprocedural languages is 
of particular interest. 

5.2.1 Converting a Nonprocedural Language 
into a Procedural Language 

A common example of this type of conver- 
sion is transforming relational algebraic op- 
erations into a sequence of CODASYL 
programming language statements. Con- 
sider the relational operation join that 
causes two tables to be combined. Two 
rows, one from each table, are joined if their 
values satisfy a specified Boolean (the join 
condition) condition. Using the example of 
Section 4.1, joining the COMPANY and 
PRODUCT tables where the COMPANY- 
NAME of a COMPANY equals the COM- 
PANY-NAME of a PRODUCT results in 
a single table consisting of columns of both 
the COMPANY and PRODUCT tables. 
Using code generation techniques, it is pos- 
sible to automatically generate code con- 
sisting of two nested loops. The outer loop 
reads successive COMPANY records. The 
inner loop reads successive PRODUCT rec- 
ords in the PRODUCES set (owned by 
COMPANY) and constructs rows of the 
joined table. 
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This idea can be generalized as follows. 
For each relational operation, R, develop 
an algorithm, A, which generates equiva- 
lent CODASYL code. For each nested op- 
eration, Rl and R2, develop an algorithm 
for using the corresponding generation al- 
gorithms Al and A2 to generate an equiv- 
alent CODASYL code. For example, if a 
query involves joining the DISTRIBUTOR 
table with the result of joining the COM- 
PANY and PRODUCT tables, then gen- 
erate two nested loops that perform the 
join of COMPANY and PRODUCT and 
place those two loops inside another loop 
that generates the join of DISTRIBUTOR 
table with the result of joining COMPANY 
and PRODUCT. 

Another approach involves generating all 
possible strategies for performing nested 
relational operations, then selecting the 
best strategy. Heuristics can be used to 
generate only promising strategies, de- 
creasing the time to perform optimization 
at the cost of producing a near-optimal 
rather than optimal strategy. Rules for con- 
verting one strategy into a better strategy 
are described by Chu and Hurley [1982] 
and Ceri and Pelagatti [ 19841. 

An approach taken by some researchers 
is to use an intermediate language that can 
serve as an umbrella for multiple target 
languages and be able to express most, if 
not all, of the operations expressed in the 
target languages. Piatetsky-Shapiro and 
Jakobson [1987] define a language called 
DELPHI that combines the power of rela- 
tional algebra with many additional 
database operations, including grouping, 
sorting, aggregates, and nested queries. 
They also describe rule-based transforma- 
tions to convert DELPHI to different tar- 
get query languages such as SQL and 
fourth-generation languages. In CALIDA 
[Jacobson et al. 19881, which is a loosely 
coupled FDBS, a user’s interactions with a 
menu-based interface results in a query in 
DELPHI, which is then converted into 
queries in the desired target language. 

5.2.2 Converting a Procedural Language into a 
Nonprocedural Language 

An example of converting a procedural lan- 
guage into a nonprocedural language is syn- 
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thesizing relational algebraic operations 
from a sequence of CODASYL program- 
ming language statements. This problem is 
quite difficult. Demo [ 19831 suggests a data 
flow analysis approach that may be used 
for some cases. Solving the general case is 
an open research problem. Fortunately, the 
need for this type of transformation seldom 
arises because a procedural language is sel- 
dom chosen for the federation level. 

5.3 Query Processing and Optimization 

In a loosely coupled FDBS, the FDBMS 
can support little or no query optimization 
(see Section 2.1). In a tightly coupled 
FDBS, the FDBMS can perform extensive 
query optimization. Query processing in- 
volves converting a query against a feder- 
ated schema into several queries against 
the export schemas (and the corresponding 
component DBSs) and executing these 
queries. Query processing in an FDBMS is 
similar to that in a distributed DBMS (see 
e.g., [Yu and Chang 19841 for a survey of 
query-processing techniques for distributed 
DBMSs). In an FDBMS, however, the 
following additional complexities may 
be introduced due to heterogeneity and 
autonomy: 

The cost of performing an operation may 
be different in different component 
DBSs. Due to autonomy of a component 
DBS, the cost of performing the opera- 
tion in a component DBMS may not be 
known or may only be approximately 
known. In addition, this cost may vary 
from time to time as the local system load 
changes. 
The component DBMSs may differ in 
their abilities to perform local query 
optimizations. 
The system and database operations pro- 
vided by each of the component DBMSs 
and the FDBMSs may be different. Ex- 
amples of system operations include the 
ability to create temporary relations and 
the ability to receive and reference data 
from other sites. Examples of database 
operations include the different rela- 
tional algebraic operations (join, selec- 
tion, etc.) and aggregations. Not all 
component DBMSs may support the 
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same operations and aggregations (or 
their semantics may vary, e.g., one com- 
ponent DBMS may remove duplicates 
but another may not). 

Landers and Rosenberg [1982] discuss 
optimization problems and solutions 
adopted for some of the above issues in 
Multibase. Mermaid has implemented and 
tested comprehensive algorithms for query 
optimization [Chen et al. 19891 that involve 
a dynamically changing network environ- 
ment and different processing costs at dif- 
ferent component DBMSs. 

A query evaluation plan can be formu- 
lated as a program in an intermediate task 
specification language and then executed. 
DOL (Distributed Operation Language) 
[Rusinkiewicz et al. 19901 is an example of 
such a language. Its main functions include 
invocation of local and remote tasks (proc- 
esses), synchronization of their execution, 
data exchange between tasks (including re- 
formatting), and exception handling. The 
commands for the local systems can be 
embedded in the DOL programs that are 
forwarded to the local systems and executed 
under local control. 

Query processing in an FDBMS can be 
divided into global processing performed by 
the Global Data Manager (GDM) (a con- 
structing processor) of an FDBMS and Zocal 
processing performed by the Local Data- 
base Interface (LDI) (a transforming pro- 
cessor) associate with a component DBS. 
Global query processing and optimization 
relate to processing a query or transaction 
submitted by a federation user, called a 
global transaction, and dividing it into mul- 
tiple subtransactions, called local transac- 
tions, for the LDIs of the appropriate 
component DBSs. Local query processing 
and optimization relate to processing a lo- 
cal transaction at a single component DBS. 
Each is discussed below. 

Global optimization involves evaluating 
the following trade-offs: 

l The amount of work done by the GDM 
and the complexity of the LDI, and 

l The amount of communication and pro- 
cessing done by different component 
DBSs. 

Similar trade-offs exist in a distributed 
DBMS, but the heterogeneity and auton- 
omy add considerably to the complexity. 
Three FDBMS query optimization design 
approaches are as follows: 

Simple LDIs and GDM: The GDM 
transforms the global transaction into 
the smallest possible local transactions. 
An LDI (and hence a component DBS) 
receives multiple local transactions for 
each global transaction. The LDI sends 
the result of each local transaction to the 
GDM. The GDM merges all the results. 
Multibase takes this approach. It results 
in heavy workload for the GDM and sig- 
nificant communication between the 
GDM and the LDIs. 
Medium complexity of the GDM and 
LDIs: The GDM transforms the global 
transaction into a set of the largest pos- 
sible local transactions (one for each rel- 
evant component DBS). This reduces the 
GDM workload and communication be- 
tween the GDM and the LDIs. Fewer 
local transactions are sent to LDIs, and 
the data returned to the GDM is a result 
of processing a more complete local 
transaction). 
Complex GDM and LDIs: In this case, 
GDM generates efficient programs that 
involve participation of LDIs in the 
global optimization. Partial results can 
be sent to the GDM or other LDIs. LDIs 
have to support additional functionalities 
like sorting, removing duplicates, and 
handling and merging temporary files. 
DDTS and Mermaid take this approach. 
It results in a further reduction in com- 
munication and GDM workload. Rusin- 
kiewicz and Czejdo [1987] discuss an 
algorithm that attempts to maximize lo- 
cal processing and minimize data transfer 
between component DBSs. 

Local optimization involves optimizing 
execution of local transaction received from 
the GDM. An FDBMS provides additional 
requirements as well as opportunities for 
local optimization as follows: 

l Query languages for the component 
DBMSs may be different. Thus, opera- 
tion transformation for different pairs of 
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the query language used by the FDBS 
and the query language provided by a 
component DBMS may involve different 
techniques. 

l Physical database organization of each of 
the component DBSs may be different. 
Similarly, criteria for access path selec- 
tion for different component DBMSs 
may be different. Due to the autonomy 
of the component DBMS, however, the 
GDM or an LDI may not have enough 
information on these matters. 

Onuegbe et al. [1983] and Dayal and 
Goodman [1982] develop strategies for 
local query optimization in DDTS and 
Multibase, respectively. 

5.4 Global Transaction Management 

The Global Transaction Manager (GTM) 
is responsible for maintaining database 
consistency while allowing concurrent up- 
dates across multiple databases. Support- 
ing global transaction management in an 
environment with multiple heterogeneous 
and autonomous component DBSs is very 
difficult. This is underlined by the fact that 
none of the prototype FDBMSs support 
global transaction management. Nowhere 
does the autonomy of component DBMSs 
present more problems than in supporting 
updates. 

There are two types of transactions to be 
managed: global transactions submitted to 
the FDBMS by federation users and local 
transactions directly submitted to a com- 
ponent DBMS by local users. The basic 
problem in supporting global concurrency 
control is that the FDBMS does not know 
about local transactions since a component 
DBMS is autonomous. That is, local wait- 
for relationships are known only to the 
transaction manager of the component 
DBMS. Without knowledge about local as 
well as global transactions, it is highly un- 
likely that efficient global concurrency con- 
trol can be provided. Due to the existence 
of local transactions, it is very difficult to 
recognize when the execution order differs 
from the serialization order at any site [Du 
et al. 19891. Additional complications occur 
when different component DBMSs and the 
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FDBMS support different concurrency 
control mechanisms [Gligor and Popescu- 
Zeletin 19861. The problem of global dead- 
lock detection must also be addressed 
[Logar and Sheth 19861. 

Several researchers are currently study- 
ing these problems [Alonso et al. 1987; 
Breitbart and Silberschatz 1988; Elmagar- 
mid and Helal 1988; Pu 19871. As argued 
by Barker and Ozsu [1988] and Du et al. 
[ 19891, however, the published solutions 
often make unrealistic and pessimistic as- 
sumptions, support a low level of concur- 
rency, and/or sacrifice autonomy in order 
to obtain higher concurrency. 

It is unlikely that a theoretically elegant 
solution that provides conflict serializabil- 
ity without sacrificing performance (i.e., 
concurrency and/or response time) and 
availability exists. One often accepted 
trade-off is to limit the functionality of 
concurrency control in favor of preserving 
site autonomy. Examples of this would be 
to allow only unsynchronized retrievals, 
preclude multisite updates, or perform local 
updates off-line. Another approach is to 
devise mechanisms that specifically suit the 
limitations of a given environment and 
provide the required level of consistency. 
Eliassen and Veijalainen [1987] propose a 
concept of S-Transactions (for semantic 
transactions) suited for a banking environ- 
ment consisting of a network of highly au- 
tonomous systems. It may be desirable to 
devise solutions that do not meet the con- 
flict serializability criteria but that are 
practical and meet a desired level of consis- 
tency. Du and Elmagarmid [1989] propose 
a weaker consistency criterion called Quasi- 
Serializability8 that works provided there 
are no value dependencies (e.g., referential 
integrity constraints) across databases. 
Garcia-Molina and Salem [1987] and 
Alonso et al. [1987] propose a concept of 
Sagas that provides semantic atomicity but 
does not serialize execution of global trans- 
actions. More work on weaker consistency 

‘A Quasi-Serializable schedule is one in which the 
local transaction schedules are serializable and the 
global transactions are executed serially. We need to 
understand the practical significance of this and other 
proposed weaker consistency criteria better. 
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criteria and a better understanding of their 
significance in practical terms is needed. 
Techniques to specify and execute the 
transactions that selectively provide ato- 
micity, isolation, and durability properties 
need to be further researched. Little atten- 
tion has been given to the problems of fault 
tolerance, ensuring the integrity of redun- 
dant data, and supporting integrity con- 
straints across component databases. 

6. FUTURE RESEARCH AND UNSOLVED 
PROBLEMS 

We discussed the concept of federation in 
the context of database systems. A feder- 
ated database system is a collection of co- 
operating but autonomous and possibly 
heterogeneous database systems. A refer- 
ence architecture was used to study various 
FDBS architectural alternatives and their 
implications. A methodology for developing 
FDBSs, particularly the tightly coupled 
FDBSs, was discussed. Finally, we dis- 
cussed important tasks that need to be 
performed in order to develop and operate 
FDBSs. 

Several problems need further research 
and development. They include the 
following: 

Identifying and representing all seman- 
tics useful in performing various FDBS 
tasks such as schema translation and 
schema integration and determining con- 
tents of schemas at various levels. 
Lack of software tools to aid in perform- 
ing various FDBS tasks with a high de- 
gree of automation and an integrated 
toolset for developing, maintaining, and 
managing FDBSs. 
Lack of adequate transaction manage- 
ment algorithms that provide a specified 
level of consistency (i.e., are correct with 
respect to a given consistency criteria) 
and fault tolerance at acceptable perfor- 
mance within the heterogeneity and au- 
tonomy constraints of an FDBS. 
How to address management and effi- 
ciency issues related to autonomy of com- 
ponent DBSs. 

The focus of the past activities in FDBSs 
has been on databases that store more 
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structured data, often called business data. 
Recently, however, there has been a great 
deal of activity for constructing DBMSs 
that manage data for the so-called nontra- 
ditional applications. These applications 
require less structured data in the forms 
such as text, image, graphics, and voice. 
Current database research activities, par- 
ticularly related to object-oriented database 
systems, address centralized management 
of these types of data. We now need to 
investigate issues in integrating such sys- 
tems [Sheth 1987b, 1988131. 

The second significant extension is to 
create information systems that not only 
include database systems but also applica- 
tion programs and expert systems. Such a 
system may be called a federated knowledge 
base system. One of the main problems is 
to represent information contents, process- 
ing capabilities, and semantics (including 
behavioral aspects) of programs and expert 
systems adequately. We need to define a 
description that plays a role with respect to 
an application program that is equivalent 
to the role a schema plays for a database. 
One such effort is that of a “capability 
schema” for an application program 
[Ryan and Larson 19861. Models for fed- 
eration also need to be developed for such 
environments. 
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GLOSSARY 

Accessing Processor: Software that ac- 
cepts commands and produces data by 
executing commands against a database. 

Class of Users: A set of users performing 
closely related tasks. 

Common Data Model (CDM): A data 
model to which schemas of different com- 
ponent DBMSs are translated for the 
purpose of representation in a com- 
mon format and facilitation of schema 
integration. 

Component Database Administrator 
(component DBA): The administrator 
of a component DBS (also called local 
DBA) who, among other things, decides 
data access rights of local users as well 
as (individuals and/or classes) of federa- 
tion uses. It is the component DBA’s 
responsibility to manage the local 
schema, translate it to create the com- 
ponent schemas, and define export 
schemas. 

Component DBMS: A DBMS participat- 
ing in a multidatabase system. A com- 
ponent DBMS participating in an FDBS 
is autonomous and allows local opera- 
tions as well as global (federation) oper- 
ations that meet its constraints. 

Component Schema: A translation of a 
local schema into an equivalent schema 
in the common data model. 

Constructing Processor: Software that 
partitions and/or replicates operations 
produced by a single processor for exe- 
cution by two or more processors. Also 
software that merges data produced by 
two or more processors for consumption 
by another processor. 

Database Management System 
(DBMS): Software that manages a col- 
lection of structured data. Management 
includes providing data management 
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services including data access, constraint 
enforcement, and consistency manage- 
ment. 

Database System (DBS): A database 
system (DBS) consists of a DBMS that 
manages one or more databases. 

Distributed DBMS: A system that man- 
ages multiple databases. 

Export Schema: A subschema of a com- 
ponent schema specifically defined to ex- 
press the access constraints on a class of 
federation users to access the data rep- 
resented in the component schema. 

External Schema: A subschema or a 
view defined over a federated schema 
primarily for a pragmatic reason of not 
having to define too many federated 
schemas or to tailor a federated schema 
for smaller groups of federation users 
than that of a federated schema. 

Federated Database System (FDBS): 
A system that is created to provide op- 
erations on databases managed by auton- 
omous, and possibly heterogeneous, 
DBSs. The software that manages an 
FDBS is called a federated DBMS 
(FDBMS). 

Federated Schema: An integration of 
several export schemas created to repre- 
sent data access requirements and rights 
of a class or group of federation users. 

Federation Administrator (federation 
DBA): The administrator of a federated 
schema or the federated database sys- 
tem who, among other things, creates 
and maintains federated and external 
schemas. 

Federation User: A user of an FDBS or 
an application running over an FDBS. 

Filtering Processor: Software that con- 
strains operations that can be applied 
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or data that can be passed to another 
processor. 

Global (or External) Operation: An op- 
eration that is not submitted by a local 
user (e.g., an operation submitted to the 
component DBS by the FDBMS or an- 
other component DBS). 

Local Schema: A schema of a component 
DBS in a native data model of the com- 
ponent DBMS. 

Local User: A user of a component DBS. 
Multidatabase System (MDBS): A sys- 

tem that allows operations on multiple 
databases. 

Processor: Software that performs oper- 
ations on data and commands. 

Schema Object: A description of a data 
element in a schema. For example, a 
schema expressed in the Entity Relation- 
ship model has three types of schema 
objects: entity types, relationship types, 
and attribute definitions. An example of 
an entity type schema object is an “Em- 
ployee” entity type. 

Schema, Subschema, and View: A rep- 
resentation of the structure (syntax), se- 
mantics, and constraints on the use of a 
database (or its portion) in a particular 
data model. A schema is a collection of 
schema objects. A subschema is a collec- 
tion of subsets of that schema’s objects. 
A view is any connected portion of a 
schema. In other words, a schema is a 
collection of views. 

Transforming Processor: Software that 
translates commands from one language 
or format to another language or format 
or translates data from one format to 
another. 

User: An individual or an application us- 
ing a database system. 

Appendix: Features of Some FDBS/Multi-DBMS Efforts 

Table A.1 summarizes the choice of a common data model and the types of component 
DBMSs integrated into some of the experimental prototype systems. Table A.2 gives an 
empirical and partial list of significant or interesting features of some of these efforts. 
No effort is made to present all systems that exhibit FDBS features or to capture all 
important details of those mentioned. 

ACM Computing Surveys, Vol. 22, No. 3, September 1990 



236 l Amit Sheth and James Larson 

Table A.l. Data Models of Various Multi-DBMS/FDBS Efforts 

Effort CDM 
Types of Component 

DBMSs Reference 

ADDS Extended Relational 
CALIDA Relational like 

DDTS 
DQS 

Relational 
Relational 

IISS 
Mermaid 

E-R Variant (IDEFlx) 
Relational (DIL) 

MRDSM 
Multibase 
OMNIBASE 
SIRUS-DELTA 
SCOOP 

Relational 
Functional (DAPLEX) 
Extended Relational 
Relational 
E-R 

Hierarchical, Relational, Files 
Relational, Relational like, 

Files 
Network, Relational 
Hierarchical, Network, 

Relational 
Network, Relational 
Relational (partial integration 

of text) 
Relational 
Network, Relational 
Relational 
Network, Relational 
Hierarchical, Network, 

Relational 

[Breitbart et al. 19861 
[Jacobson et al. 19881 

[Dwyer and Larson 19871 
[Belcastro et al. 19881 

[IISS 19861 
[Templeton et al. 1987b] 

[Litwin 19851 
[Landers and Rosenberg 1982 ] 
[Rusinkiewicz et al. 19891 
[Litwin et al. 19821 
[Spaccapietra et al. 19821 

’ Extended E-R is used for integrity constraint enforcement at the federated schema level and at the external 
schema level. The primary CDM can be said to be relational since the internal command language is based on 
the relational algebra. 

Table A.2. Significant Features 

Effort 

ADDS 
CALIDA 

DDTS 

DQS 

IISS 

Mermaid 

MRDSM 

Multibase 

OMNIBASE 

Tightly coupled, limited updates, in-house use of the prototype system 
More like loosely coupled, intermediate language, interactive, menu- 
driven user interface, data dictionary editor/browser, in-house use of the 
prototype system 
Tightly coupled architecture, integrity constraint checking, local query 
optimization, use of local and long haul communication 
Tightly coupled, completeness of implementation, auxiliary schema, IBM 
environment, attention to autonomy 
More like tightly coupled, queries must be compiled, forms-based user 
interface 
Tightly coupled, completeness of implementation, data dictionary, access 
control, global query optimization, extensions to include texts, experience 
with communication systems, workstation environment 
Loosely coupled architecture, multidatabase language, dealing with mul- 
tiple semantic interpretations 
Tightly coupled, completeness of implementation, schema integration, 
global query optimization, auxiliary schema, architecture, number of 
component DBMSs integrated in various prototypes 
Loosely coupled, DEC environment, query processing, distributed DBMS 
as a comnonent DBMS 
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