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ABSTRACT

The design of distributed applications in a CORBA based
environment can be carried out by means of an incremental
approach, which starts from the specification and leads to
the high level architectural design. This is done by
introducing in the specification all typical elements of
CORBA and by providing a methodological support to the
designers. The paper discusses a methodology to transform
a formal specification written in TRIO into a high level
design document written using an extension of TRIO
named TC. The TC language is suited to formally describe
the high level architecture of a CORBA based application.
The methodology and the associated language are presented
by means of an example involving a real Supervision and
Control System.
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1 INTRODUCTION

During the past few years, distributed computing has
gained more and more importance in the Information
Technology domain. One of the most promising approaches
to the development of distributed systems is represented by
the Object Management Group (OMG) Common Object
Request Broker Architecture (CORBA) [19, 20].

____________________________
§ This work has been partiall y supported by the
Commission of the European Union – ESPRIT Project
OpenDREAMS-II and by the Italian Ministero
dell ’Università  e della Ricerca Scientifica – Progetto
Mosaico

The OMG has also defined a complete architecture
(OMG/OMA, [25]) addressing both general issues and
particular needs of specific application domains (e.g.,
Banking, Telecom, Supervision and Control Systems) by
defining high level li braries or frameworks [9]. However,
the OMG and CORBA mainly address the technological
aspects of distributed computing without too much
emphasis on the development process.

Application development is composed of three major
phases: requirement analysis and specification,
architectural design, implementation. Great benefits (in
terms of validation of the user requirements and
verification of the implemented system) can be obtained if
the specification is expressed in a rigorous (possibly
formal) way, and if the application designer is supported by
a methodology (and related tools) for deriving the
architecture of the application from the specification.

Popular object oriented (OO) methodologies (and notations)
such as [5, 6, 24] do not specificall y address the issues of
OOA/OOD over CORBA. Moreover, they do not allow a
formal description of requirements since they lack a
rigorous underlying mathematical model, even though
some work has been carried out lately to couple these
methodologies with formal specification languages [12].

This state of the art is extremely unfortunate since the
identification of requirements is the most criti cal phase in
system development. Errors and ambiguities at this level
often yield significant cost increases in the successive
design phases or, even worse, the design of incorrect
systems that can cause severe damages to people or to the
environment. In particular, the use of formal methods in
the context of Supervision and Control Systems (SCS) is
particularly effective since such systems typicall y impose
high reliabilit y and real-time requirements.

SCS are usually implemented as closed systems based on
proprietary hardware and software and thus, they are
usually not portable and can not be extended or integrated
into more complex systems. As a result, adding new
functionaliti es to an existing SCS often leads to building
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new independent systems. For instance, an Energy
Management Systems is typicall y composed of several
independent applications each of them having their own
sensors, hardware processors, databases and speciali zed
software, even though conceptually they share the same
information. Since the functional architecture of all these
applications is very similar several components are
duplicated (e.g., there is a data acquisition component for
each application).

One possible solution in order to overcome this situation is
to use the high level abstract interface provided by CORBA
to define an open environment in which different
applications can coexist and share information. In this way
it would be possible to extend a SCS by adding new
components whenever they are developed, thus reducing
development time and cost. For instance, alarms could be
recorded by the alarm managing subsystems and accessed
through a global database by the diagnostic subsystem. To
full y achieve such a goal, however, two crucial issues must
be addressed:

• CORBA does not presently address some of the issues
that are criti cal for SCS such as reliabilit y and real-
time. This creates a "semantic hole" that hampers
rigorous design and verification;

• A big gap must be fill ed by design to move from
system requirements to a complete implementation in
terms of the CORBA architecture.

This paper addresses the latter issue by presenting an
approach to the design of distributed systems in a CORBA
environment, based on an initial formalization of the
requirements given in terms of TRIO [10, 18]. TRIO is a
first order temporal logic which has shown to be very
effective for specifying criti cal systems, such as SCS [8].

The presented approach consists in moving from the TRIO
representation of the requirements to a new formalization
representing the high level architectural design in which
the technological target i.e., CORBA, is taken into account.
This transformation is supported by a language, whose
name is TC (TRIO/CORBA), obtained by introducing in
TRIO the basic concepts characterizing CORBA. The
integration of a formal approach during the specification
phase with CORBA concepts, at the design level, is
expected to enhance the development process.

Even though the example presented in this paper refers to a
SCS, namely an Energy Management System, the results
are general enough to be applied in almost any domain. As
a consequence this paper does not focus on the criti cal
requirements of the application but rather on the design
language and methodology used to design such system.

The paper is organized as follows: Section 2 provides a
short introduction to TRIO; Section 3 discusses the main

features of TC; Section 4 presents the methodology by
means of an example in which TC is used to design a
Supervision and Control System; finall y Section 5 draws
some conclusions.

In what follows we assume the reader has already some
knowledge of the basic CORBA concepts and terms.

2 THE TRIO SPECIFICATION LANGUAGE

TRIO [10, 18] is a first order temporal logic language that
supports a linear notion of time. Besides the usual
propositional operators and the quantifiers, one may
compose formulas by using a single basic modal operator,
called Dist, that relates the current time, which is left
implicit in the formula, to another time instant: the formula
Dist(F, t), where F is a formula and t a term indicating a
time distance, specifies that F holds at a time instant at t
time units from the current instant.

Several derived temporal operators can be defined from the
basic Dist operator through propositional composition and
first order quantification on variables representing a time
distance. For example, the operator

Past(A, d) =def  d>0 ∧ Dist(A, -d)

states that A held d time units in the past; the operator

SomP(A) =def  ∃d (d>0 ∧ Dist (A, -d))

states that A held sometimes in the past;

WithinF(A, d) =def  ∃t (0 < t < d ∧ Dist (A, t))

states that A will hold at some time within the next d time
units.

TRIO also defines the so-called ontological constructs,
which support the natural tendency to describe systems in a
more operational way, i.e., in terms of states, transitions,
events, etc.

An event is a particular predicate that is supposed to model
instantaneous conditions such as a change of state or the
occurrence of an external stimulus. Events can be
associated with conditions that are related causally or
temporall y with them. A state is a predicate representing a
property of a system. A state may have a duration over a
time interval; changes of state may be associated with
suitable pre-defined events and conditions. Altogether,
events, states, and conditions define a comprehensive
model of the system evolution.

For specifying large and complex systems, TRIO has the
usual OO concepts and constructs such as classes,
inheritance and genericity. Classes can be either simple or
structured –the latter term denoting classes obtained by
composing simpler ones. A class is defined through a set of
axioms premised by a declaration of all it ems that are
referred therein. Some of such items are exported, that is
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they may be referenced from outside the class.

TRIO is also endowed with a graphic representation in
terms of boxes, lines, and connections to depict class
instances and their components, information exchange, and
logical equivalence among (parts of) objects.

For example, in Figure 1 plain lines represent logical items
(It1, It2), li nes with dots are events (Ev1, Ev2) and bold
lines represent states (St1, St2). The plain box represents a
single object of class C1, while the stacked box represents a
set of objects of class C2.

It1

Ev2

C1

St1

Ev1 C2

It2

St2

Figure 1: An overview of TRIO graphical symbols

An example of a TRIO specification is provided in Sect. 4.

3 THE TC LANGUAGE

The TRIO/CORBA (TC) language enriches TRIO with the
typical elements of CORBA that allow one to refine a TRIO
functional specification by introducing architectural
elements. TC has the formal rigor of TRIO, but is suitable
for describing the high level design of an application. Thus,
it allows designers to formally define the behavior of the
objects composing an architecture and the way in which
they interact.

TC introduces all CORBA basic concepts such as
operations, attributes, exceptions, interfaces, application
objects, while complex concepts (services, frameworks) are
built from such basic elements. These concepts are
formalized by means of TRIO axioms whose aim is to
describe the low-level aspects defining the behavior of any
CORBA-based system. As a consequence, the designer can
focus on (higher-level) user-defined requirements.

In order to formalize such concepts TC defines four
different meta-classes, some of which aim at capturing the
intrinsic semantics of CORBA basic concepts. The meta-
classes are: TRIO, Application Object, Interface
and Environment1.

Interface and Application Object meta-classes
model CORBA IDL interfaces and application objects
respectively; TRIO meta-class models the usual TRIO
classes; finall y Environment meta-class is used to
structure the description of an architecture in terms of the
above mentioned meta-classes.

In the rest of the paper the following convention is adopted:
                                                       
1 The courier font denotes TC meta-classes.

Application Object denotes the name of a TC meta-
class while Application Object Class C2 denotes a
class named C instance of the meta-class Application
Object. For the sake of readabilit y whenever no
ambiguity can arise we refer to an Application
Object Class C as Application Object C.

Figure 2 shows the relationships allowed among instances
of the meta-classes in terms of inheritance and inclusion.

Interface Classes

Application Object Classes

TRIO Classes

can inherit from

can contain

Environment Classes

Figure 2: The Relationships among TC meta-classes

In what follows a short discussion of the main features of
the different TC meta-classes is provided.

Application Object

All classes that are instances of the meta-class
Application Object share a set of properties
(expressed by means of axioms) whose aim is to formalize
the features of CORBA application objects.

For example, all i nstances of Application Object
have an item _id that is used to uniquely identify every
instance of an Application Object class

_id : OID

OID is a TC basic type representing the set of all possible
identifiers that can be assigned to an instance of an
Application Object class.

Notice that _id can be used to model both the standard
CORBA object reference and the object identity as defined
by the IdentifiableObject interface of the CORBA
Relationship service. Let us consider an object O whose
item _id evaluates to val_id: in the former case val_id
represents the “value” to which any other object must point

                                                       
2 The reader should not be confused by the term
Application Object Class. In fact the term Application
Object comes from CORBA jargon where a run-time view
is adopted, and denotes the objects accessible from the
ORB. This paper, instead, discusses design issues and thus
refers to classes rather than objects. As a consequence an
Application Object Class is a class whose instances are
application objects in CORBA sense.

190



in order to access O; in the latter case val_id represents the
identity of object O.

As a second example let us consider operations3. In TC the
i-th invocation of an operation Op(a1,…,an) is represented
by the TRIO event Op(i).invoke, while the event
Op(i).return denotes the termination of the i-th invocation
of operation Op and Op(i).ak, 1≤ k ≤ n, denotes the value of
ak. Since an operation returns only if it was previously
invoked, the following axiom is defined for
Application Object:

Op(i).return → SomP(Op(i).invoke)4

Notice that each Application Object class can
introduce a set of items and axioms to define the specific
semantics of the CORBA application objects that one wants
to model.

Interface

CORBA application objects implement CORBA IDL
interfaces and thus, all operations and attributes exported
by an object are defined in its interface. As a consequence,
all CORBA application objects implementing the same IDL
interface export the same operations/attributes.

In TC, IDL interfaces are modeled by the meta-class
Interface. Thus, a CORBA application object
implementing a CORBA IDL interface is modeled by an
Application Object class inheriting from an
Interface class modeling the latter. In this way
different Application Object classes might be
designed to provide different semantics to the same
Interface class, according to the definition of CORBA
IDL interface.

An Interface class IF contains only the signature of the
operations/attributes declared therein that is, no axioms are
defined. Their semantics is defined in the Application
Object class inheriting from IF. Finall y, all
operations/attributes of an Interface class are visible to
outer classes.

Notice that Application Object classes are not
required to inherit from an Interface class while every
CORBA application object must implement an IDL
interface. The main consequence of this being that
Application Objects classes can be used to model
either CORBA application objects or plain objects
interacting with a CORBA application object. Thus,

                                                       
3 In this example only CORBA synchronous operations are
taken into account. For a discussion of all the different
CORBA invocation mechanisms see [19].
4 Free occurrences of variables are implicitl y assumed to be
universall y quantified.

according to CORBA jargon an Application Object
class can model either server objects or client objects. The
main reason for this is that both servers and clients have
the same underlying semantics differing only for the way in
which invocations may occur at run-time (servers are
invoked while clients do invoke).

TRIO

TRIO classes are used to model entities that do not
correspond to CORBA application objects nor to CORBA
clients. For example, a TRIO class could be used to model
some physical device such a sensor not connected to an
ORB, or possibly a human operator.

The syntax and the properties of TRIO classes correspond
to those of typical TRIO classes. Thus, TRIO classes can
contain, and/or inherit from other TRIO classes, while they
can neither contain nor inherit from any instance of other
TC meta-classes.

Environment

An Environment class is very similar to a TRIO class,
except for the fact that it can include classes of any type.
Environment classes are meant to describe how the
other classes composing a system interact. For instance,
requirements involving operations belonging to different
Application Object classes are stated by means of
axioms in an Environment class.

4 THE TC METHODOLOGY

High level design essentiall y consists of identifying the
classes composing the system whose instances will provide
and use services by exchanging messages through the ORB.

The TC methodology allows one to start from a TRIO
specification in order to design the high level architecture
of a CORBA-based system. According to this methodology,
the designer smoothly moves from the specification toward
a high level design in a step-wise fashion. At each step a
different aspect is taken into account so that the complexity
of the whole design is kept under control. Moreover, at
each step a “design document” is produced in order to keep
track of the different choices made.

In what follows the steps are presented as if they were
meant to be executed sequentiall y. However it is useful to
remind that they are not completely independent and that,
in practice, mutual feedbacks among the various phases and
sub-phases are unavoidable according to the philosophy of
the spiral approach [4].

The methodology is mainly structured into the following
five major steps:

• identification of data flows between the specification
classes;

• identification of operations;
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• identification of interfaces and application objects;

• identification of the semantics of operations and
attributes;

• identification of services and non-architecture-
impacting frameworks.

Notice that some frameworks (naturall y called
architecture-impacting) contain in their very definition
architecture-shaping concepts. Thus, their use must be
carefull y considered at the beginning of the design process
if not in the specification. For space reasons this paper does
not address this issue, even though in the real application it
has been taken into account.

Another point not addressed in this paper concerns the
feasibilit y of using CORBA for applications with strict
timing requirements. In this case a special analysis is
needed to check the ORB features against the application
temporal requirements. However, since the emphasis of this
paper is on design rather than on temporal requirements,
this issue is not discussed any further.

The methodology is ill ustrated by means of an example
based on a Maintenance System currently developed by
ENEL, the Italian agency of energy, within the ESPRIT
Project OpenDREAMS-II [ 22].

The ENEL Maintenance System

The goal of the Maintenance System (MS) is to monitor the
activity of field devices (sensors, actuators, etc.) installed in
a power plant, in order to quickly detect possible failures
and malfunctions.

Figure 3 shows the main components of the application and
their mutual interactions.

ControlSystem

GlobalPlantDBIMS

AlarmManager HMI

Devices

Figure 3: The MS application

The core of the system is the Instrumentation Maintenance
System (IMS), which is in charge of collecting and
validating data (i.e., measures) coming from the field
devices. Whenever the validation process detects an
anomaly in the behavior of such devices the IMS sends an
alarm to the Alarm Manager, which in turn notifies a
human operator by means of a Human-Machine Interface
(HMI).

Notice that the IMS does not communicate directly with the
field devices: all the data collected by these devices are
stored in a database named Global Plant DataBase (GPDB).
Thus, the IMS queries the GPDB to obtain the desired data.
Using the same communication mechanism the IMS can
also send commands to these devices or can make a device
perform a self-test to verify its correct functioning.
However, before sending a command to a device, the IMS
must get from the Control System the rights to access such
device. After having completed the desired operations, the
IMS notifies the Control System, which in turn releases the
device.

For the sake of simplicity, this paper focuses on the part of
the system composed of the IMS, the GPDB, and the
devices (i.e., the dotted area of figure 3).

The TRIO Specification

Figure 4 shows the TRIO class diagram that represents the
part of the system taken into account. The depicted classes
are connected by means of TRIO logical items (predicates,
functions, variables, states, events) defining the behavior of
each class.

For example, item test_request is an event that is true when
the IMS asks a device, via the GPDB, to perform a self-test,
while access_avail  is a non-exported state representing
whether or not IMS has acquired the access rights from the
Control System.

IMS GPDB

MeasuringChannels

chan_status

measure

status

detailed_status

chan_detailed_status

measure_info

command_send

cyclic_acq

on_variation_acq

test_request

test_end

access_avail

Figure 4: TRIO class diagram of the MS application

The following axiom in the specification of class IMS states
that if a self-test is started (test_request) or any other
command is sent to a device (command_send) then the IMS
has already acquired the access rights from the Control
System (access_avail ).

( test_request(i, MC, test_cmd) [ax1]
∨ command_send(i, dev, dev_cmd))
→ access_avail

Furthermore, the following axiom states that if the testing
activity (test_cmd) on a device ends (i.e., test_end is true)
then it was previously started (i.e., test_request is true).
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test_end(i, MC) [ax2]
→ ∃ test_cmd (SomP(test_request(i, MC, test_cmd)))

Finall y, the following axiom states that when the GPDB
sends the status of a device to the IMS (i.e., cycli c_acq is
true) the data previously read from the device (status) are
sent by means of chan_status (T is the system-dependent
constant representing the maximum delay between the
instant when data are collected from the devices, and the
instant when they are sent to the IMS).

cycli c_acq(i, MC) [ax3]
→ ∃ dev_s, om, ac_p

( chan_status(MC, dev_s, om, ac_p)
∧ WithinP(status(MC, dev_s, om, ac_p), T))

From the Specification to the Design

In what follows the methodology is applied to the example.

Step 1: Data Flows

This step aims at identifying explicit information
exchanges among the classes identified in the specification.
These exchanges are called data flows and are a first step to
move from the concept of sharing logical items (predicates,
functions, etc) - typical of TRIO classes - towards the
concept of exported operations - typical of CORBA. A data
flow can be viewed as a complex merge of TRIO items.

For example, item test_end, shown in figure 4, denotes the
end of a test whose beginning is represented by test_request
that is, test_end is true when the results are sent back to the
IMS. Furthermore, the results of the test are described by
measure_info, chan_status and chan_detailed_status. Since
these items are closely related they can be grouped into a
single data flow named test.

The class diagram of the system is therefore modified
replacing original TRIO items with data flows. Moreover,
every data flow is textuall y defined. For example the
definition of test is as follows:

Connection between IMS and GPDB
Dataflows

test (from test_request,
to test_end,
to chan_status,
to chan_detailed_status,
to measure_info);

Conversely, items measure, status and detailed_status,
connecting classes GPDB and MeasuringChannels, do not
change. They represent the information flowing from the
devices to the GPDB and since the design choice made is to
use a field-bus5 [11] to make them communicate with
                                                       
5 A field-bus is a typical SCS digital channel used to
connect sensors and other equipments to computers.

GPDB, their representation remains as it was in the
specification. However, the field-bus imposes to introduce a
new item (ctrl) connecting the GPDB with the devices,
representing a control signal. In fact only when ctrl is true,
measure, status and detailed_status have meaningful
values that can be accessed by the GPDB.

Step 2: Clients and Servers

In the second step, every data flow is categorized as either
operation or attribute. For each operation one has to choose
which class will export it (server) and which classes will
invoke it (clients); moreover for each attribute one has to
choose which class will declare it and which classes will
access it.

In the example the data flow test becomes an operation
(with the same name). The arrow drawn on the
corresponding line of figure 5 defines that operation test is
exported by GPDB and is invoked by IMS.

IMS

measure

status

detailed_status

get_measure

variation

test

command

access_avail ctrl

MeasuringChannels

GPDB

Figure 5: The new class diagram after steps 1 and 2

Notice that GPDB exports two other operations, command
(derived from item command_send) and get_measure
(derived from item cycli c_acq), while it invokes the
operation variation (derived from item variation_acq)
exported by IMS.

Step 3: Application Objects and Interfaces

This step aims at identifying all CORBA application
objects that need to be implemented. The identification of
such objects (and their interfaces) is based on the
operations/attributes introduced in the previous step.

Every class exporting/importing at least one operation
(attribute) is candidate to become an instance of the TC
Application Object meta-class. However, it may be
necessary to split and/or group some of the classes of the
specification in order to come up with a real object-oriented
architecture. In fact even though the TRIO specification
language supports the object oriented paradigm, the
experience has shown that very often specifiers tend to give
a functional-oriented specification. This is not a bad
practice per se but may lead to a class structure that needs
to be restructured in order to identify the CORBA
application objects.

For example, the classes IMS and GPDB are candidate to
become Application Object classes since they both
export at least one operation. However, class GPDB is
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divided into two parts, named Gateway and DataRep, as
shown in Figure 6. The former acts as a gateway for
sending commands while the latter acts as the actual
database, storing all the measures collected by the devices).
As a result there are three Application Object
classes.

The class MeasuringChannels does not correspond to any
CORBA object, since it does not interact with the rest of
the application by means of CORBA operations and/or
attributes as discussed before. As a result it i s viewed as an
instance of the TRIO meta-class.

IMS

measure

status

detailed_status

get_measure

variation

test

command

access_avail ctrl

DataRep

MeasuringChannels
Gateway

Figure 6: The Application Object classes

Moreover, in order to satisfy the properties stated in the
specification, each instance of Application Object
has to satisfy also the axioms stated in the specification.
However, since in the previous steps TRIO items have been
merged into data flows it is necessary to rewrite such
axioms. This point is further discussed at the end of this
section.

The last point of this step consists in providing the needed
interfaces to every Application Object class acting
as a server. This is done by introducing instances of the
Interface meta-class and making them ancestors of the
Application Object class exporting at least one
operation/attribute.

In our example, three different interfaces are introduced
(one for each Application Object class) as shown in
Figure 7, where an overlapping box is used to represent an
Interface class.

IMS

measure

status

detailed_status

get_measure

variation

test

commandaccess_avail

Gateway

ctrl

DeviceManager

DataManager
DataRep

DataReceiver

MeasuringChannels

Figure 7: The class diagram after step 3

Once the Application Object classes and their
interfaces have been identified the structure of the
architecture is defined.

Step 4: Semantics of Operations and Attributes

This step focuses on the semantics of operations and
attributes. In fact, CORBA operations are usually

synchronous (by default), but they can also be declared as
asynchronous or oneway.

TC allows one to add the stereotypes (in a UML fashion)
«noblock» and «oneway» on operations’ names to specify
what kind of semantics the operations have. In the same
way attributes can be declared read-only through the
«readonly» stereotype.

In the example, all operations are synchronous and thus no
stereotype is added.

Step 5: Services and Frameworks

As last step of the methodology, CORBA services and
frameworks can be introduced in the architecture. The
CORBA Services taken into account are event, transaction,
query, repli cation (this is not a CORBA service yet) and
persistency, and a TC formalization has been made for
some of them [23].

Replication and persistency are used by application objects
while query and transaction involve operations on
application objects. All these services can cooperate in
order to allow an application object to fulfill it s
requirements. Since in a CORBA based environment a
service is viewed as a set of IDL interfaces, services are
used by making the Application Objects classes
inherit from their interfaces.

For example, operation variation is invoked by DataRep to
notify the IMS that there is an abnormal variation of some
measured quantity. Since this communication will be
implemented using the CORBA Event Service [20],
operation variation is marked with the stereotype «event»
(see figure 8).

Furthermore, since DataRep is a criti cal component it
needs to be repli cated to satisfy the fault tolerance
requirements of the system. One way of repli cating
CORBA objects is using the Replication Service developed
in the OpenDREAMS-II project [23]. This is graphicall y
represented adding the «replicated» stereotype to DataRep.

_value

command

IMS

measure

status

detailed_status

get_measure

  «event» variation

test

access_avail

ctrl

DataManager

«replicated»
DataRep

DataReceiver

BPValue

odFloat
MeasuringChannels

Gateway

DeviceManager

Figure 8: The final class diagram

Finally, the Base Process Value framework [7], defined and
implemented in the OpenDREAMS-II project, is
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introduced. This framework provides a way to store and
manipulate the values coming from devices along with
some related information such as time stamps and validity.
It is meant for SCS and it defines several different
interfaces, one of which (odFloat) is used in the example by
DataRep, Gateway and IMS to exchange information about
the measured values.

At the end of this step, the IDL interfaces of the application
objects modeled by the Application Object classes
are automaticall y produced. For space reasons this point is
not addressed in this paper.

Tuning up the axioms

Once the structure of the system architecture is defined one
can express the semantics of the different classes by
adapting the axioms of the specification in order to take
into account all the transformations that have occurred
during the different steps.

For example, during steps 1 and 2 TRIO items test_request
and test_end were associated with the invocation of
operation test and the moment when this operation returns,
respectively. Thus [ax1] is transformed into the following
TC axiom of class IMS in which data flows are involved6

(test(i).invoke ∨ command(i).invoke)→access_avail [ax1’]

Moreover, axiom [ax2] can be dropped since it is implied
by the definition of operation given in TC.

As a second example let us consider axiom [ax3] of class
GPDB. In this case one has to take into account that the
TRIO item cycli c_acq has become the operation
get_measure and that when the latter ends the information
sent back is described in a more detailed way, since a data
structure made up of three fields (status, oper_mode and
acc_perm) is used. As a consequence axiom [ax3] is
rewritten as follows:

( get_measure(i).end [ax3’]
∧ Past( get_measure(i).invoke

  ∧ get_measure(i).device = dev, T)
∧ MC_address(dev, MC_ad)
∧ WithinP(status(MC_ad, dev_s, om, a_p), T))
→
( get_measure(i).brief_status.status = dev_s
∧ get_measure(i).brief_status.oper_mode = om
∧ get_measure(i).brief_status.acc_perm = a_p)

Furthermore, the TC description may contain axioms that
do not exist in the specification. Such axioms typicall y
describe some lower-level behaviors not previously taken
into account.

                                                       
6 Notice that item access_avail  remains unchanged since it
does not belong to any data flow.

For example, operation variation has an input parameter,
named calibrations, composed of five fields (calibID, date,
zero_error, span_error and li n_eq) used to send some
calibration data to the IMS. A new axiom is introduced to
specify that when calibration data are sent all the
information must be defined.

variation(i).calibrations(l).calibID = cal [axN]
→ ∃ d, z_e, s_e, lin_eq

( variation(i).calibrations(l).date=d
∧ variation(i).calibrations(l).zero_error = z_e
∧ variation(i).calibrations(l).span_error = s_e
∧ variation(i).calibrations(l).lin_eq = lin_eq)

This level of detail was not taken into consideration in the
specification, but is suitable for an architectural description.

As a last example let us consider the choice, discussed
during step 1, of using a field-bus to implement the
communication between the GPDB (currently represented
by the Application Object DataRep and Gateway)
and the field devices. Moreover, let us suppose that one
wants to state that every value coming from the devices
(i.e., whenever ctrl is true) represents

1. the result of a test/command issued by IMS via the
Gateway, which must be sent within T1 time units to
IMS, or

2. the result of a cycli c data acquisition performed by IMS
via the DataRep, which must be sent within T2 time
units to IMS, or

3. a variation occurred in some device that must be
notified to the IMS within T3 time units.

This property involves several different components of the
architectural description of the system and thus is
formalized by means of an Environment class:

Environment Class IMSApplication
...
axioms
...

MeasuringChannels[j].ctrl
→ ∃ i,dev

( ( WithinF( Gateway.test(i).return
∧Gateway.test(i).device = dev, T1)

∨WithinF( Gateway.command(i).return
∧Gateway.command(i).device = dev, T1)

∨WithinF( DataRep.get_measure(i).return
∧DataRep.get_measure (i).device=dev,T2)

∨WithinF( IMS.variation(i).invoke
∧ IMS.variation (i).device = dev, T3))

∧ GPDB.MC_address(dev, j))

where MC_address is a predicate binding each instance of
a device (index j) with its symbolic name, used by IMS
(variable dev).
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Furthermore, other axioms, not reported here, ensure that
each time ctrl is true only one of the above operations
occurs.

5. CONCLUSIONS

This paper proposed and ill ustrated a formal method to
develop distributed applications based on CORBA. The
method exploits the OO logic language TRIO and drives
the designer to derive a complete CORBA architectural
design through a smooth sequence of steps starting from
the specification of the application requirements.

The method enjoys the typical benefits of formalit y, i.e.,
rigor and precision, both in specification and in verification
and the possibilit y of using powerful tools (e.g., to generate
(semi) automaticall y test cases for the implementation). In
particular, the fact that the semantics of both application
specification and architectural design is expressed in terms
of logic formulas allows one, at least in principle, to prove
the correctness of the design as a typical logical
implication.

In our approach we choose not to modify in any way the
definition of CORBA (e.g., we do not propose any formal
extensions to IDL). Instead, we decided to preserve its basic
features, coupling them with a formal definition. This
TRIO-based method should not be seen as an alternative to
existing non-formal, non CORBA-oriented methods such
as UML; rather, it is well suited to augment, and be
integrated with, several existing informal practices [8].
Moreover, even if we focused on CORBA-based
architectures, the same approach in principle could be
adapted and applied to other (object-oriented) middleware
such as DCOM and Java/RMI.

Another distinguishing feature of our method with respect
to other approaches such as Darwin [13], Durra [3] is being
tailored towards SCS, which are mostly demanding in
terms of reliabilit y -and often are hard real-time systems.
Such an orientation, however, does not affect the whole
method, which in large part is well suited for general
distributed applications based on CORBA; only the final
step, which exploits typical services and frameworks, is
speciali zed towards this application domain. In fact, we
also applied the method to other, non-SCS applications
[17].

This paper focused on the essentials of the method. The
reader is referred to the bibliography for a more thorough
and detailed exposition. In particular, [21] describes the
method and the application case study in full detail . The
fundamental issue of managing real-time aspects in
CORBA-based systems, not considered in this paper, is the
objective of a companion paper [14] where the recent real-
time extension of CORBA [2] is analyzed and formalized

and it is shown how to build -potentiall y- guaranteed real-
time applications on top of it.

Several prototype tools are available to support the method:
a graphical interactive editor supporting the documentation
of all phases, from requirement specification to
architectural design; a test case generation tool [15, 16]; a
correctness prover -or disprover- based on the translation of
the TRIO formalism into PVS [1].

We expect to consolidate and augment the results of our
research in the near future so that they can be easil y
accessible and widely usable in the industrial environment.
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