Alternative Edge-Server Architectures
for Enterprise JavaBeans Applications

Avraham Leff and James T. Rayfield

IBM T. J. Watson Research Center, P. O. Box 704 Yorktown Heights, NY 10598

{avraham, jtray}@us.ibm.com

Abstract. Edge-server architectures are widely used to improve web-
application performance for non-transactional data. However, their use
with transactional data is complicated by the need to maintain a com-
mon database that is shared among different edge-servers. In this paper
we examine the performance characteristics of alternative edge-server ar-
chitectures for transactional Enterprise JavaBeans (EJBs) applications.
In one architecture, a remote database is shared among a number of
edge-servers; in another, edge-servers maintain cached copies of transac-
tionally-consistent EJBs. Importantly, the caching function is transpar-
ent to applications that use it.

We have built a prototype system in which edge-servers are enhanced
with an EJB caching capability. The prototype enables a realistic com-
parison of these architectural alternatives. We use a benchmark EJB
application to drive a performance analysis of the architectures. We also
compare these edge-server architectures to a classic clustered datacenter
architecture.

1 Introduction

1.1 Edge-Server Architectures

Edge-server architectures [16][6][2][5] are widely used to improve web-application
performance by moving web-content from back-end servers to the edge of the
network (e.g., internet service providers). By caching data at the “edge”, edge-
servers increase throughput (by offloading traffic from back-end servers), and
reduce application latency (by moving data closer to the client).

Unfortunately, the data replication and update algorithms used in current
edge-server architectures are severely limited. First, updates take place at a
single central server (the master copy of the database). Updates to shared data
cannot be made at the edge servers. Second, updates are pushed (or pulled)
from the central server to the edge servers in a non-transactional fashion. Thus
different edge servers will receive the updates at different times (i.e. the data as
seen across all edge servers is not consistent).

For many web applications, these are reasonable compromises which are made
in order to achieve high performance and scalability. In a typical ecommerce

H.-A. Jacobsen (Ed.): Middleware 2004, LNCS 3231, pp. 195-211, 2004.
© IFIP International Federation for Information Processing 2004

196 Avraham Leff and James T. Rayfield

application, it is not critical to have all the edge-cached catalogs updated trans-
actionally. Similarly, it is not necessary to allow applications running at the edge
to update the shared catalog database.

However, for transactional data (e.g. bank accounts), this is not sufficient.
Bank accounts must show the same balance at every edge server, and update (e.g.
debit) operations must happen in an ACID[11] fashion. The simple approach is
to centralize transactional data, and not to replicate or cache it. Unfortunately
this brings back the latency and bandwidth problems that were addressed by
edge servers for non-transactional data.

This paper explores whether the benefits of edge-server technology can be
extended to applications requiring the use of transactional data. Specifically, we
examine whether Enterprise JavaBeans[4] (EJBs) applications can be deployed
to edge-server architectures. EJBs are an example of a transactional component
model; and, while this paper is focused on EJB technology, it applies more
generally to any framework for distributed enterprise components[13].

1.2 Enterprise JavaBeans Component Model

EJBs are a component model for enterprise applications. (We refer here to the en-
tity bean flavor of EJBs, in contrast to the session bean flavor.) Like CORBA[3]
and RMI[17], EJBs are a distributed component model, and, as such, encap-
sulate both “data” (the component’s state) and “code” (business logic in the
component’s methods). In addition, EJBs automatically supply common require-
ments of enterprise applications such as persistence, concurrency, transactional
integrity, and security. Bean developers focus on the business logic of their ap-
plication; when deployed to an EJB container, the components are embedded
in an infrastructure that automatically supplies the above requirements. For ex-
ample, a deployer might specify that an Employee entity bean’s state is backed
by persistent storage in the HR relational database, specifically in its Employees
table. EJBs use declarative transaction management on a per-method basis, so
that the incrementSalary method might be declared to require a transactional
scope.

1.3 Edge-Servers and EJBs

While edge-servers currently cache both dynamic and static web-content, the
cached data are not transactional. Static data are especially easy to cache be-
cause they are infrequently updated. Even when dynamic data are cached, up-
dates typically do not need to be propagated atomically throughout the web
cluster, since no transactional model is provided. Web-servers can therefore use
algorithms which are expensive for write operations, and which do not provide
a traditional ACIDI[11] transaction model[12]. Such applications and environ-
ments differ greatly from that of EJBs in which writes are frequent and strong
transactional guarantees must be provided.

Alternative Edge-Server Architectures for Enterprise JavaBeans Applications 197

Specifically, edge-server caching of EJBs faces the following challenges:

— EJB caching must deal with read/write data as well as read-only data.

— As a stronger requirement than read/write capability, EJB caching must
provide transactional consistency among the cached replicas.

— “Cache-enabling” existing applications and J2EE application servers must
involve little effort. Customers should not be forced to modify existing ap-
plications in order to improve performance. Customers will also not want
to maintain two programming models: one, for non-cache-enabled applica-
tions, and one for cache-enabled applications. Specifically, an EJB caching
framework should have the following features:

e It should not inject a new application component model, but instead use
the EJB model of session and entity beans.

e Although the runtime of cache-enabled application servers differs from
standard J2EE application servers, the application developer should not
be forced to write new code to access the runtime. Instead, tooling should
take standard EJBs as input and produces cache-enabled EJB implemen-
tations with the same Java interface as output.

e The cache-enabled version of the EJBs should support the same transac-
tional model as described in the EJB specification: i.e., it must provide
concurrency and transactional isolation.

While EJB caching has been successfully applied [14] to improve through-
put in low-latency, clustered, environments, it does not necessarily follow that
caching will be useful for high-latency (several hundred milliseconds per interac-
tion) edge-server environments. The key issue is that transactional consistency
requires that the EJB state at each of the edge-servers be synchronized with the
persistent state of the remote database. This implies that whenever a transac-
tion commits, at least one high-latency round trip must be performed between
an edge-server and the remote database. First, the edge-server must transmit its
transactional state (e.g., the set of EJBs modified during the transaction) to the
remote database. In contrast to non-transactional data, an edge-server cannot
independently commit local modifications to the EJBs because it must ensure
that these changes do not conflict with the actions of other edge-servers. Sec-
ond, after receiving the transaction state, the remote database must determine
whether the transaction can be committed or whether it must be aborted; it
then informs the edge-server of the transaction’s outcome. The duration of this
round-trip may be sufficiently long as to counter one of the basic motivations
for edge-server architectures: namely, to use cached data to reduce application
latency

1.4 Relationship to Other Caching Work

We have already explained that the key difference between classic web-caching
and edge-server caching of EJBs involves the fundamental requirements of trans-
actional data. EJB-caching more closely resembles distributed client-server data-
base systems. Typically, such systems use one of two approaches: function

198 Avraham Leff and James T. Rayfield

(query) shipping or data shipping. In function-shipping systems, operations ap-
plied to shared data are propagated to the shared server. In data-shipping sys-
tems such as ours, the database clients cache a portion of the database, and
operations are executed against the cached data on the client. Data-shipping
systems require the use of a transactional cache-consistency algorithm in order
to maintain ACID properties among the different client applications. A common
approach is to designate one copy of the database as the “master” copy, and use
algorithms which synchronize access (and recovery) against this copy.

Many such algorithms have been proposed and studied for distributed client-
server database systems[8]. In terms of this taxonomy, we use a detection-based
algorithm, with deferred validity checking, and invalidation when notified by the
server about an update. Our system is somewhat different, using a component-
server model rather than page-based models. In our work, we have extended the
transactional consistency algorithm to include predicate-based queries, rather
than simply direct access. This forces us to deal with more complex isolation
issues such as the “phantom-read” problem.

Most importantly, our work addresses the issue of transparently cache-enab-
ling an existing, high-level component API such as the EJB model.

More recent work in distributed client-server caching attacks performance
issues by relaxing the consistency requirements. For example, DBCache[15] uses
the federated features of DB2 to maintain a partial copy of a database that is
weakly synchronized with the database server. Application queries are then exe-
cuted against the cached database. DBProxy|[1] retains the results of previously
executed queries in a cache; this cache is then used to satisfy subsequent queries
or subsets of the original query. Both of these approaches improve performance at
the cost of replacing the traditional transactional guarantees with “time-based”
guarantees: the data are only guaranteed to be up-to-date within some speci-
fied time period. In contrast to some of this database caching work, we assume
that cached-enabled applications will expect the same transactional model as
non-cached-enabled applications (i.e. strict ACID semantics). Furthermore, we
examine the caching of transactional data to high-latency environments such as
edge-servers.

1.5 Key Contributions

One contribution of this work is to advance the “state of the art” of edge-
server architecture by demonstrating that edge-servers can successfully cache
transactional, as well as non-transactional, data. We quantify the benefits of this
approach by comparing the performance of a benchmark EJB application when
deployed to (1) a cache-enabled edge-server architecture and (2) a “vanilla” edge-
server architecture that must access a remote EJB application server whenever
an application accesses EJBs. Further, we examine which of two alternate EJB
caching architectures are best suited to an edge-server environment.

Another contribution of this work is to question whether edge-servers should
cache transactional data at all. As explained above, transactional requirements
imply that at least one high-latency round-trip be performed whenever a trans-

Alternative Edge-Server Architectures for Enterprise JavaBeans Applications 199

action commits. This raises a intriguing question: perhaps a classic, clustered
(non-edge) data-center architecture is best suited for high-latency transaction
environments. Rather than clients running application on edge-servers, clients
may be better served by directly accessing a remote EJB application server.
This paper quantifies the benefits of the clustered data-center for transactional
applications deployed to high-latency environments, and shows that the (cache-
enabled) edge-server architecture is a valid architecture even for transactional
applications.

1.6 Paper Organization

The rest of this paper is organized as follows. First, we describe the EJB caching
in some detail; then, we describe a set of alternative high-latency architectures for
EJB (transactional) applications. The remainder of the paper is a performance
evaluation of these architectures based on a benchmark EJB application.

2 Caching Framework

2.1 Application Components

Our caching framework [14] substitutes Single Logical Image (or SLI) Home
and bean implementations for the standard JDBC Home and bean implementa-
tions used in the non-cache-enabled application. The caching runtime copies the
state of the relevant persistent EJBs into transient EJBs as necessary, and then
transparently delegates to them. The SLI bean introduces no business logic of its
own; it simply delegates all method invocations to the transient bean. Because
the transient bean implements the same interface as the original, JDBC, bean
and differs only in the way it accesses its datastore, the business logic of the
application is unchanged.

Since the EJB specification requires that EJBs cannot be serialized (rather,
they are passed by reference), we must provide “value objects” that can be
passed between address spaces. We term these value objects mementos[10].
Mementos have the same notion of “identity” as EJBs, as they support the
getPrimaryKey method. Transient EJBs introduce two memento-related meth-
ods: create(Memento) (on the EJB home) so that they can be created from
persistent state; and Memento getMemento() (on the Remote interface) so that
the caching runtime can update the persistent state from the client’s cached
state. The memento containing the state at the beginning of a transaction is
called the before-image; the memento containing the state at the transaction’s
end is called the after-image. The cache-enhanced application server maintains
a transient datastore of memento instances.

The EJB container that manages the transient and SLI Homes is a standard
container. The SLI and transient beans are fully compliant EJBs with Remote
and Home interfaces and a Bean implementation. They differ from the familiar
persistent, jdbc, beans only in that they use a transient datastore when loading

200 Avraham Leff and James T. Rayfield

and storing bean state. A SLI and associated transient bean share a common
identity because getPrimaryKey returns the same value; this value is identical
to that returned by persistent bean in the original application.

2.2 Populating the Cache

The EJB cache is populated in one of the following ways:

1. Direct application access through the bean’s primary key, via an ejbLoad or
findByPrimaryKey invocation.
In this case, the cache runtime first determines whether the bean is already
cached. If a cache miss occurs, the cache runtime fetches the before-image
directly from the persistent datastore and caches it for subsequent use.

2. Indirect application access, when the bean is part of the result set returned
by a custom finder method invocation.
Unlike a direct access, the cache runtime must first run the query against
the persistent datastore because only that datastore is guaranteed to have
the entire (potential) result set available. The result set returned by the
persistent datastore is then used to populate the cache. However, in order
to guarantee that the application sees its prior updates, the runtime en-
sures that result set elements that were cached prior to the custom finder
invocation are not overlaid with the current persistent state. Finally, with
the finder’s entire result set available in the cache, the custom finder is run
against the transient Home, and that result is returned to the application.
Other transactions may commit their state to the persistent datastore while
a given transaction executes on a cache-enhanced application server. This
implies that the algorithm used to implement custom finders can add mem-
bers to the result set if the application executes the finder multiple times
in a single transaction. The isolation model supplied by the framework is
therefore slightly less powerful than serializable isolation, and corresponds
instead to repeatable-read isolation[11].

3. Explicit bean creation by the application.
In this case, the appropriate create method is invoked on the SLI home,
delegated to the transient Home, and the resulting bean is cached.

2.3 Implementing Transactions

Populating a transient EJB cache is only one part of an EJB caching framework.
The system must also provide transactional semantics identical to that provided
by a non-cache-enabled runtime to a J2EE application. Because we want to al-
low inter-transaction caching (i.e., to allow EJBs cached by one transaction to
be available to other, concurrent and subsequent, transactions) the system uses
optimistic rather than pessimistic concurrency control[11] (or detection based
rather than prevention based[8]). Under the pessimistic approach, one transac-
tion cannot use data cached on behalf of another transaction because cached
data must be locked throughout the period that it’s accessed. The long duration

Alternative Edge-Server Architectures for Enterprise JavaBeans Applications 201

of the lock period implied by inter-transaction caching makes the pessimistic
approach much less feasible than the optimistic approach.

In our approach, a common transient store (not EJB-based) is maintained
alongside a per-transaction transient store. When a direct-access operation re-
sults in a cache miss on the per-transaction store, the common store is checked
for a copy of the EJB data before an attempt is made to access the persistent
EJB. The disadvantage of this approach is that, since each cache-enabled appli-
cation server maintains its own common transient store, the “conflict window”
(i.e., the period of time in which an application’s persistent state can be con-
currently modified by some other transaction) widens. Just as we replace the
original application’s JDBC Homes and beans with their SLI equivalents, we
replace the original pessimistic JDBC Resource Manager with an optimistic SLI
Resource Manager.

Whenever the cache runtime must access the persistent EJBs (in any of the
“populate” scenarios discussed above), it creates a separate (non-nested) short
transaction for the duration of the access. This transaction is committed im-
mediately after the access completes so that locks are released quickly by the
persistent store. The application-generated transactions are thus decoupled from
the datastore transactions used to provide data to the cache and update data
from the cache. A single application transaction thus typically brackets multi-
ple persistent datastore transactions. Finally, when the application transaction
running on the cache-enabled application server commits, a persistent datastore
transaction is run to commit the application’s state changes.

The isolation semantics provided to the application are the following. If an-
other transaction, to, modifies the persistent datastore’s data from the state that
existed at the beginning of the application’s transaction t1, t; will be aborted.
We implement this behavior by comparing the before-image of every bean ac-
cessed in the transaction to the current corresponding image in the datastore at
commit time. Only if no conflicts exist are t1’s EJBs committed to the datastore.
During a successful commit, the transaction’s set of after-image mementos are
written to the datastore in a single datastore transaction. More subtly, if the
application creates an EJB, the system must also verify that no EJB with the
same key exists at commit time. Similarly, if the application removes an EJB,
the system must also verify that the current-image still exists before deleting it
and committing the transaction.

2.4 EJB Caching Architectures

Two EJB-caching configurations are discussed in this paper. In the split-servers
configurations, the cache-enhanced application server requires a back-end appli-
cation server that is one deployment “tier” removed from the client. The logic
that handles cache misses and the logic that implements the optimistic concur-
rency control algorithm reside on the back-end server (see Figure 1). In the com-
bined servers configuration, the back-end-server function is merged in the cache-
enhanced application server (see Figure 2). This has the advantage of removing
cross-address-space communication between the application servers, which im-

202 Avraham Leff and James T. Rayfield

proves performance under some scenarios. The disadvantage of the combined-
servers approach is that the communication protocol between the cache-enabled
application server and the database is whatever the JDBC driver uses to commu-
nicate with the database. Such protocols are typically not suitable for internet
or Grid[9] usage due to firewall and security issues. In contrast, the back-end
server approach introduces a known interface between the application server
and back-end server. The protocol used to bridge this gap can be customized
appropriately to the environment.

Cache-enhanced Back-End
Application Server Application Server

getValue() Serviets findByPrimaryKey(42) _Cgche-Mlss el‘nd]
JSPs Optimistic Commit Logic

Replicated EJB Home(s) PireICt_to_JtDtl'BC
SLI Home Implementation
T

Database || Server

O lational Table
®

Transient Home (Cache)

42] [

Fig. 1. Split-Server Configuration

3 High-Latency Architectures for EJB Applications

High-latency communication is a principal characteristic of internet environ-
ments. In order to better evaluate the benefits of edge-server use of EJB-caching,
we characterize three architectures in terms of the location of the high-latency
communication path.

1. An architecture in which a remote database is shared by a number of edge-
servers. We term this an ES/RDB architecture. The edge-servers can be op-
tionally enhanced with an EJB-caching capability. In that case, the ES/RDB
configuration corresponds to the “combined-servers” EJB-caching configu-
ration (Figure 2).

In the ES/RDB architecture, the high-latency communication path lies be-
tween the application servers and the database (see Figure 3).

2. An architecture in which cache-enhanced application servers coordinate
transactional activity using a common, remote, back-end server. The re-
mote back-end server is closely clustered with a database. We term this an
ES/RBES architecture.

Alternative Edge-Server Architectures for Enterprise JavaBeans Applications 203

Cache-enhanced Application Server

%
Web getValue() Servlets findByPrimaryKey(42) .C?Che'MES ?nd)
Browser JSPs T 4 Optimistic Commit Logic

/ N /)

/ Replicated EJB Home(s) | / Direct-to-JDBC
T / implementation
(SLI Home /

Database [Server

Relational Table

42] |

Transient Home (Cache)

Fig. 2. Combined-Server Configuration

- Application Server
Z_ﬁ\ HTTP i J
ﬂsi- Business’

—a <

= Data /
Serve w ACGosS P |)

. respbnse ¥

_ ad I (Cached) EJBs delay

—== or JDBC

-

Enterprise
Data
Application Server /
HTTP|req legt Business’ \s/

Access

resppnse ¥

— (Cached) EJBs delay

or JDBC

m i
\ /

b

Fig. 3. Edge-Servers Sharing a Remote Database (ES/RDB)

In the ES/RBES architecture, the high-latency communication path lies be-
tween the cache-enhanced application servers and the back-end server that
provides the cache-miss and transaction commit logic (see Figure 4). This
architecture is meaningless to anything but a EJB-caching architecture, and
corresponds, specifically, to the “split-servers” configuration (Figure 1).

3. A classic clustered datacenter architecture, in which clients do not interact
with edge-servers but instead communicate directly with remote application
servers. We term this a Clients/RAS architecture.

In the Clients/RAS architecture, the high-latency communication path lies
between the web-clients and the remote application servers (Figure 5). As
explained previously, in a transactional high-latency environment, this is a
plausible alternative to an edge-server architecture.

204

EJB Cache +

Application Serve
Business

est
b
Access
mo ¥ A
;
a

— Cached EJBs

Edge Servers

EJB Cache + /
/

Application Serve

s—
Serve|

resppnse ¥
— Cached EJBs

N

delay

delay

4 Performance Evaluation

In this section we evaluate:

Avraham Leff and James T. Rayfield

== \ HTTP readegt Business
J; Foaan delay

Back-End Server

Back-End Server
Cache miss

HTTP requg& 220 :
commit logic/ (= EntDer;::se
al

resppnse 1

Fig. 4. Edge-Servers Sharing Remote Back-End Application Server (ES/RBES)

Application Server
reqdegt [Business
v Access

o

e — (Cached) EJBs
or JDBC

Enterprise
Data

HTTP| reqyesgt
Access
Y

\../]
N
- ~<— | Serve|

Application Server

Business'

O (Cached) EJBs
or JDBC

Fig. 5. Clients Accessing Remote Application Servers (Clients/RAS)

1. Whether, and to what degree, Cache-enabled edge-servers improve the per-
formance of EJB applications as compared to “vanilla” edge-servers.
2. Which version of the EJB-caching architecture is best suited for an edge-

server environment.
3. Whether edge-servers — even when cache-enabled — are in fact suitable for

transactional applications.

We do this by running cache-enabled and non-cache-enabled versions of a
sample application in each of the three latency configurations discussed in Sec-
tion 3. Before describing the test application, we describe the test configuration.

Alternative Edge-Server Architectures for Enterprise JavaBeans Applications 205

4.1 Test Configuration

System Components. The application server, delay-proxy server, back-end
server, and database server run on four separate machines. Each is a unipro-
cessor, Pentium III, 1266MHz Intel machine with 256 MB physical memory and
1GB paging space. The machines run RedHat Linux 7.1 (kernel 2.4.2-2), and are
connected with a 100 Mbit Ethernet. DB2, version 7.2 provides the persistent
datastore. The JVM is IBM’s JDK Version 1.3.1; and the J2SDKEE version is
1.2.1. Tomcat, version 4.1.12 is used as the servlet engine. A prototype J2EE
container is used for the SLI, persistent, and transient containers.

Delay Proxy. Our machines are deployed in a LAN environment with latency
of, at most, several milliseconds. Because the performance evaluation requires
that the application be deployed in an environment with latency of tens of mil-
liseconds, we use a proprietary delay proxy to emulate a high-latency communi-
cation path. The delay proxy process runs on a dedicated machine. Depending
on which communication path has high-latency, all communication between the
specified endpoints (e.g., application servers and the database server) is inter-
cepted by the delay proxy listening at a specific port. The proxy reads the
incoming data, interposes a specified amount of delay, and only then writes the
incoming data to the original destination. The data interception is functionally
transparent to both the load generation program and the application. Perfor-
mance results were generated by varying the delay injected by the proxy and
determining the resulting application client latency.

4.2 Test Application

Trade2 is a publicly available application developed by IBM that “models an
online brokerage firm providing web-based services such as login, buy, sell, get
quote and more”. Table 1, extracted from the application’s documentation, de-
scribes the Trade2 runtime and database usage characteristics. A client inter-
action with the application involves a random sequence of the “trade actions”
listed in the Table, bracketed by a “login” and “logout”. The client web-browser
sends a trade action request to a servlet; the servlet invokes the appropriate
session bean method; the method, in turn, drives methods on or more entity
beans. Finally, the result of the “trade action” is constructed in a JSP and re-
turned to the client browser. On average, a single session consists of about 11
individual trade actions. We consider Trade2 to be a sufficiently complex ap-
plication to make it a suitable J2EE benchmark. We downloaded version 2.531,
cache-enabled it, and then evaluated its performance.

4.3 Results Roadmap

To evaluate the effectiveness of a given architecture, we focus on two statistics:
the latency of a client/server interaction, and the bandwidth required to service

206 Avraham Leff and James T. Rayfield
Table 1. Trade Runtime and Database Usage Characteristics
Trade |Description CMP Bean/HTTP Session |DB Activity
Action Operation (C/R/U/D)
Login User sign in, session|Update Create, Update |Registry R, U Ac-
creation count R
Logout |User sign-off, session|Update Read, Destroy Registry R, U
destroy
Register |Create a new user pro-|Multi-Bean |Create, Update |Account C, R,
file and account Create Profile C, Registry
C
Home Personalized home|Read Read Account R
page including current
market conditions
Account |Review current user{Read Read Profile R
profile information
Account [“Account” followed by|Read/Update [Read ProfileR, U
Update |user profile update
Portfolio [View users current se-|Read Read Holding R
curity holdings
Quote |View a current security |Read Read Quote R
quote
Buy “Quote” followed buy a|Multi-Bean |Read Quote R, Account
security purchase Read/Update R, U Holding C,
R
Sell “Portfolio” followed by|Multi-Bean |Read Quote R Account
the sell of a holding Read/Update R, U Holding D,
R

the client’s request. These results are presented for the performance of the Trade2
benchmark in the three architectures discussed above.

Within a specific architecture, the effectiveness of EJB caching is evaluated
by comparing its performance against two, non-cached-enabled, versions of the
application.

— JDBC: a pure JDBC [7] implementation, included in Trade2. We include
this algorithm because JDBC implementations are commonly understood
to provide better performance than “higher-level” implementations such as
EJBs.

— Vanilla EJBs: an implementation using non-cached EJBs with bean-mana-
ged-persistence (BMP), with persistence provided by DB2. This corresponds
to the EJB-ALT mode in Trade2.

Results were obtained in a “low-load” situation so as to factor out queuing
delay effects: specifically, one virtual client makes repeated requests to the Trade2
running on a single application server. The latency metric represents average
latency of a round-trip interaction between the client and the application as
a function of the (one-way) delay injected by the delay proxy at the specified

Alternative Edge-Server Architectures for Enterprise JavaBeans Applications 207

700 /
600 /
— 500

>

400

liseconds

Tl e
100 / W

Response time

0
0 20 40 60 80 100
One-way delay
(milliseconds)
¢ ES/RDB + JDBC % Clients/RAS (cached EJBs)

A& ESIRBES (cached EJBs)

Fig. 6. Comparison of High-Latency Architectures

communication path. The set of possible trade actions are those listed in Table
1. (Both latency and the delay are specified in milliseconds.) In addition to
individual data points, we show a linear curve extrapolating the data with an R?
(quality of fit) of 99%. Client requests are driven by a load generator program on
a dedicated machine. Reported latency is the batched (over 20 batches) average
of a run consisting of 300 sessions. Each session consists, on average, of about 11
client /server interactions. A warmup period, consisting of 400 sessions, preceded
each run.

4.4 Results

Figure 6 shows the latency behavior of the application when deployed to the three
architectures; Figure 8 shows the bandwidth required to service client requests
for the architectures.

We first observe that the non-edge-server architecture (Clients/RAS, “stars”)
has lower latency than either of the two edge-server architectures. We also
observe that, of the two edge-server configurations, EJB-caching enables the
ES/RBES architecture (“triangles”) to perform far better than the best algo-
rithm of the ES/RDB (“diamonds”) architecture.

One way to understand these results is to examine latency sensitivity (Table
2), defined as the increase in the latency of a single client interaction for each
unit increase in communication delay.

We see that the non-edge-server architecture is the least sensitive to increases
in latency: every increase in one-way latency causes a two-fold increase in round-
trip latency. This is because once the request is received by the application server,

208 Avraham Leff and James T. Rayfield

Table 2. Algorithm Sensitivity to Communication Latency

ES/RDB ES/RBES Clients/RAS
Algorithm Sensitivity |Algorithm Sensitivity | Algorithm Sensitivity
Cached EJBs |13.0 Cached EJBs |3.1 Cached EJBs (2.0

JDBC 9.4 JDBC N/A JDBC 2.0
Vanilla EJBs (23.6 Vanilla EJBs [N/A Vanilla EJBs (2.0

latency does not affect processing of the request in any way. In contrast, even the
best performing algorithm of the ES/RDB architecture is much more affected
by latency (9.4) since it incurs this penalty every time that a database access is
performed. Note that multiple database requests are required per client request.
Also, the JDBC implementation in the ES/RDB architecture is less affected by
latency than either vanilla or cached EJBs (see Figure 7). This is likely because
the (hand-crafted) JDBC implementation is better optimized than the tooled
EJB implementation. For example, BMP EJBs have difficulty caching the results
of a findByPrimaryKey operation, even though such results are typically reused
immediately.

1500 &
—_ A
[&]
2
£ 1000 A a
@
= & =
<&
5 500 5 x .
@ o
Py <
&
0 &
0 20 40 60 80 100
Delay (msec)
¢ JDBC 2 VanillaEJBs = Cached EJBs (combined
servers)

Fig. 7. Edge-Servers Accessing Remote Database

Compared to vanilla EJBs, EJB-caching is quite effective in reducing latency
sensitivity. In the ES/RDB architecture (Figure 7), sensitivity is reduced from
23.6 to 13.0; in the ES/RBES architecture, sensitivity is reduced to 3.1. Caching
is effective because fewer calls have to be made to access data across the high-
latency path. Why is caching more effective in the ES/RBES architecture than

Alternative Edge-Server Architectures for Enterprise JavaBeans Applications 209

in ES/RDB? The reason has to do with the way that the combined-servers
(ES/RDB using cached EJBs) and split-server (ES/RBES) architectures commit
a transaction. The combined-servers configuration requires multiple database
server accesses, one per memento image. Assuming no cache misses, the split-
server configuration requires only a single access to the back-end server. This
access is done at commit time in order to transmit the set of memento images
involved in the transaction. Of course, the back-end server will, in turn, perform
multiple accesses to the database server. However, these occur over a low-latency
path. In contrast, the combined-servers configuration has large delays between
the cache-enhanced application server and the database server. In consequence,
the extra round-trips incurred when a transaction commits dominates the extra
address-space crossing required by the split-server configuration.

9
8
7
c
S
§ 6
T »
EE s [JJpBC
58 M vanilla EJBs
S 2 4 [cached EJBs
‘6 [=
(=%
® 3
&
2
1
0
ES/RDB ES/RBES Clients/RBES

Fig. 8. Bandwidth

Why do the edge-server architectures, even using EJB caching, have greater
latency than the remote data-center architecture? With the transactional caching
algorithms that we have examined, at least one call to the database or back-end
server is required for each commit operation. In Trade2, each client request in-
volves at least one commit operation, because all client requests require access
to some transactional data. Therefore, each client request involves at least one
round-trip call to the back-end server, and possibly more calls to handle cache
misses. These transactional caching algorithms cannot yield an edge-server with
lower latency than a non-edge-server configuration. Although we use optimistic
concurrency control (Section 2), the use of pessimistic concurrency-control algo-
rithms will not improve the situation. Pessimistic concurrency control requires
at least as many calls to acquire and release locks at the back-end server.

We do not claim that non-edge-servers will always supply lower-latency than
edge-servers for transactional applications. Other applications may not require

210 Avraham Leff and James T. Rayfield

access to transactional data on every request. For example, workflow techniques
could batch the commit of multiple client requests as a single transaction.

Although latency performance suggests that the non-edge-server architecture
is best suited for transactional applications, Figure 8 shows the weakness of this
architecture. We see that every client/server round-trip transmits more than
7000 bytes to the back-end server, while the edge-server architectures transmit
far fewer bytes. ES/RBES transmits 3000 bytes and ES/RDB transmits 2000
bytes. These differences relate to one of the basic motivations for edge-servers:
to reduce the amount of bandwidth that must be provisioned for the back-end
server. In the Clients/RAS architecture, the presentation portion (HTML, im-
ages, JavaScript) of an application must all be transmitted on connections to the
back-end server. (Because Trade2 does not contain images or static HTML, we
expect that other applications would show an even greater “bandwidth effect”.)
In contrast, the edge-server architectures transmit this data on smaller, local
pipes, between the clients and the edge-servers. Much smaller amounts of traffic
needs to be transmitted to the shared site (back-end server or database).

As shown by Figure 6, using EJB caching on the ES/RBES architecture
provides latency that is almost as good as Clients/RAS — while using much
less bandwidth. We consider this configuration to be a superior compromise to
optimize these two goals.

5 Summary

In this paper we examined the effectiveness of edge-server architectures for trans-
actional applications. We showed that, in order to maintain transactional consis-
tency, such applications require more interaction between edge-servers and the
back-end server than non-transactional web-data. While this causes a non-edge-
server architecture to have superior latency behavior than edge-server architec-
tures, we showed that EJB-caching allows edge-servers to provide almost the
same latency performance as the non-edge-server architecture, while providing
much better bandwidth behavior.

Acknowledgements

We would like to thank Vikaram Desai, Jiwu Tao, and Michael Young (IBM
Pittsburgh Lab) for their help in architecting and implementing an earlier version
of the ejb caching framework.

References

1. K. Amiri, R. Tewari, S. Park, and S. Padmanabhan. On Space Management in
a Dynamic Edge Data Cache . Fifth International Workshop on the Web and
Databases (WebDB 2002). 2002.
http://www.db.ucsd.edu/webdb2002/papers/42.pdf

Alternative Edge-Server Architectures for Enterprise JavaBeans Applications 211

2.

10.
11.

12.

13.

14.

15.

16.

17.

A Distributed Infrastructure for e-Business.
http://www.akamai.com/en/html/services/white_paper_library.html. 2002.

OMG Specifications and Process. http://www.omg.org/gettingstarted, 2002.
Enterprise JavaBeans Specifications.
http://java.sun.com/products/ejb/docs.html, 2002.

Edge Side Includes (ESI). http://www.esi.org/index.html, 2002.

WebSphere Edge Server.
http://www-3.ibm.com/software/webservers/edgeserver/, 2002.

JDBC Data Access API http://java.sun.com/products/jdbc/, 2002.

M. J. Franklin, M. J. Carey, and M. Livny. Transactional Client-Server Cache Con-
sistency: Alternatives and Performance. ACM Transactions on Database Systems.
Vol. 22, No. 3. September 1997. 315-363.

I. Foster, C. Kesselman, and S. Tuecke. The Anatomy of the Grid: Enabling Scal-
able Virtual Organizations. International Journal of High Performance Computing
Applications. 15(3). 2001. www.globus.org/research /papers/anatomy.pdf. 200-222.
E. Gamma et al. Design Patterns. Addison Wesley Longman, Inc. 1995.

J. Gray. A. Reuter. Transaction Processing: Concepts and Techniques. Morgan
Kaufmann. 1993.

J. Gwertzman and M. 1. Seltzer. World Wide Web Cache Consistency. USENIX
Annual Technical Conference. 1996. 141-152.

A. Leff, P. Prokopek, J. T. Rayfield, and I. Silva-Lepe. Enterprise JavaBeans and
Microsoft Transaction Server: Frameworks for Distributed Enterprise Components.
Advances in Computers, Academic Press. Vol. 54. 2001. 99-152.

A. Leff and J. T. Rayfield. Improving Application Throughput with Enterprise
JavaBeans Caching. May 2003. 23rd International Conference on Distributed Com-
puting Systems.

Q. et al Luo. Middle-tier Database Caching for e-Business. Proc. ACM SIGMOD
International Conference on Management of Data, 2002.

M. Rabinovich. O. Spatscheck. Web Caching and Replication. Addison Wesley
Professional, 2002.

Java Remote Method Invocation (RMI).
http://java.sun.com/docs/books/tutorial /rmi/, 2002.

	1 Introduction
	1.1 Edge-Server Architectures
	1.2 Enterprise JavaBeans Component Model
	1.3 Edge-Servers and EJBs
	1.4 Relationship to Other Caching Work
	1.5 Key Contributions
	1.6 Paper Organization

	2 Caching Framework
	2.1 Application Components
	2.2 Populating the Cache
	2.3 Implementing Transactions
	2.4 EJB Caching Architectures

	3 High-Latency Architectures for EJB Applications
	4 Performance Evaluation
	4.1 Test Configuration
	4.2 Test Application
	4.3 Results Roadmap
	4.4 Results

	5 Summary
	Acknowledgements
	References

