

JEstelle
Novel approach to the distributed Java systems

specification and development
Marcin Czenko

Warsaw University of Technology
Institute Of Computer Science

Nowowiejska 15/19
00-665 Warsaw, POLAND

M.Czenko@elka.pw.edu.pl

Jean-Luc Raffy
GET/INT

CNRS Samovar
Software-Networks Department

9 rue Charles Fourier
91011 Evry CEDEX, FRANCE

jean-luc.raffy@int-evry.fr

ABSTRACT
The design of distributed Java applications is a very complicated
task. Regardless of Java's ease of use and portability, a method
that provides a means of testing and validating complex systems
in a satisfactory manner is still lacking. In addition system
portability is often decreased due to strong dependencies between
subsystem implementation and the way they communicate. In this
article we would like to introduce JEstelle – the union of Java and
the Estelle Formal Description Technique. JEstelle provides a
solution that can significantly simplify the distributed Java
applications development. JEstelle introduces some level of
formalism to the communication part of a distributed Java
application, thus allowing for its validation and improving
readability of the system design. JEstelle does not introduce
serious Java API restrictions and naturally supports automatic
implementation code generation. Development of JEstelle support
tools is simplified due to a combination of specific features of
Java technology and the use of existing Estelle development tools.
JEstelle is easy to use and practically does not require the designer
to be familiar with Formal Description Techniques at all, and with
Estelle in particular.

Categories and Subject Descriptors
D.1.3 [Programming Techniques]: Concurrent Programming –
distributed programming, parallel programming.

D.2.1 [Software Engineering]: Requirements/Specifications –
languages, methodologies, tools.

C.2.2 [Computer/Communication Networks]: Network
Protocols – protocol architecture, protocol verification.

C.2.4 [Computer/Communication Networks]: Distributed
Systems – distributed applications.

General Terms
Documentation, Reliability, Standardization, Languages,
Verification.

Keywords
Distributed Systems, Java, Estelle, Software Engineering, Formal
Description Techniques.

1. INTRODUCTION
Distributed and concurrent systems constitute a significant
fraction of the today’s software. It is not only distributed software,
used for solving complex computational problems but also a great
number of commercial products that incorporate some kind of
concurrency to improve their performance. Since Java has been
introduced it has been shown to be a great solution to
programming problems on the World Wide Web and for
distributed software design. This is because of its portability and
programmability that both make platform-independent
development simpler. Even here, however, problems arise.
Problems concerning the development process and reliability of
Java distributed systems still need special attention to make the
system more efficient. Even though there are well-tested methods
for the synchronous systems design, it is not always true that we
can use them in distributed applications with satisfactory results.
To make distributed and parallel software design simpler and
more efficient we thus need a unified approach to concurrent
system modelling and implementation. It is especially important
for proper communication between a number of subsystems that
make up the whole distributed architecture. Using a standard
approach to the Java distributed application development process
we are unable to easily keep the system independent from the
particular communication channel implementation, thus making
system consistency harder to maintain. Going further, it is clear
that to design distributed systems that are safe and secure in use,
we need an efficient method for their validation. The validation is

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.
PPPJ 2003, 16-18 June, 2003, Kilkenny City, Ireland.
Copyright 2003 ISBN: 0-9544145-1-9 …$5.00.

213

especially important for the communication part of a system, as
this is the point where uncertainty in the design results in
unexpected behaviour of the whole system. To make it possible
we introduce a level of formalism to the Java distributed systems
development process. The formalism should concern only the
communication part of the distributed system not touching the rest
of the code. Using Unified Modelling Language (UML)
terminology we want to distinguish between description of the
system activities in a particular state, which should lean towards
the implementation language, and the description of the way
system states changes, which might be formalised and expressed
in the intermediate form before final implementation. Formal
Description Techniques (FDTs), which are well known and
widely used in the protocols development, can be used to make
Java design more formal and provable. Out of all FDT techniques
commonly used today, we found Estelle [1] to be the best
foundation to the formal extensions to Java language. What makes
Estelle so interesting for our approach is that it permits a clear
separation of the description of the communication interface
between components and the description of the internal behaviour
of each such component. Whilst components description shall be
done purely with Java, the communication mechanism between
them might be expressed with the Estelle framework. As a result
we obtain a language, JEstelle, which merges the power of Java
programming with the formalism of Estelle.
In section 2 we present in more detail the structure of JEstelle and
a simple example. Section 3 presents the JEstelle development
cycle and introduces the JEstelle Native Interface (JENI). In
section 4 we give an example. We then present our current
development and make some conclusions.

2. JESTELLE
Estelle can be viewed as a set of extensions to ISO Pascal [7]
level 0 and in the similar manner JEstelle can be regarded as a set
of extensions to Java language. JEstelle extensions model a given
system as a hierarchical structure of communicating automata.
These automata, that can be also regarded as separated
components of a distributed system, can run in parallel, and
communicate by exchanging messages and by sharing, in a
restricted way, some variables. Each active component is an
instance of a module (comparable to the class definition in Java)
defined within the JEstelle code by a module definition. Thus, it is
appropriate to call components module instances, but unless this
leads to confusion we will use the term module rather than
module instance [1]. The description of a module is composed of
a module header declaration and a module body description. A
module header can be imagined as an external interface to the
module which is defined as a set of input/output access points and
exported variables. The module body provides the internal
description of a component and can include definitions of child
modules and internal interaction points. The behaviour of a
module is specified by the set of transitions (of an extended state
transition model [1]) that the module may perform. Informally, a
module can be represented graphically as a box possibly with
points on its boundary (external interaction points) and inside of it
(internal interaction points). Several modules instances can then
communicate by exchanging messages using communication
channels between external interaction points and by exported
variables from the parent modules. Estelle used Pascal level 0
language [7] to describe modules behaviour while JEstelle uses

Java. Despite the fact that some more complicated Java structures
are not allowed in JEstelle source code [6] there is no objection to
the use of the Java standard API. We can bypass most of the
syntactic restrictions in a JEstelle program by providing external
Java libraries in the form of *.class files (see next paragraph). In
the JEstelle module body definition we can point out the exact
correspondence between fragments of the JEstelle automaton and
the elements of the visual modelling languages like UML (Unified
Modelling Language). JEstelle modules correspond well to the
UML State Machine View as all of them might be treated as
classes while active modules as instances of such classes. Figure 1
presents an example state machine diagram and figure 2 the

JEstelle module body transition part fragment that could be
equivalent to this UML diagram. A typical behaviour of the
JEstelle module is awaiting events that take the form of
interactions sent by other modules. When a new interaction
arrives we speak of an external transition having occurred
changing the object state. With the presented UML diagram all
activities performed by the module during its change from state
SND to RCV can be expressed within the JEstelle program with a
single call to the appropriate class object method (in the example
we call method Process_request for the obj object) that
encapsulate all lower level details of the processing for this
transition. The important feature of JEstelle programming that
should be noted is that the implementation of the class for the obj
instance can be external to the JEstelle program. This means that
the class for the obj instance can be implemented with full-

featured Java language.
As JEstelle is a merger of Java and Estelle it would be desirable to
take advantage of development support that exists for the both.
Even if possible, it is not a good idea to build the execution
environment for JEstelle from the ground up as it would take
years to make design with JEstelle possible. The best we can do is
to adopt the existing Estelle toolset by extending it with the Java

// JEstelle module body transition part

// fragment

 trans

 from RCV

 to SND

 when ip.Message

 name Interaction_received

 {

 obj.Process_request(data) ;

 }

Figure 1. UML state machine diagram.

Figure 2. JEstelle specification fragment reflecting UML
state machine digram from figure 1.

214

Virtual Machine to execute Java code without semantic lost. To
do that the JEstelle program must be convertible to Estelle code.
In practice this reduces to the problem of conversion of Java
statements to the Pascal level 0 used in Estelle. To support this we
developed what we call the JEstelle Native Interface (JENI).
Furthermore as the process should transparent to the designer, the
conversion will be automatized.

3. JESTELLE DEVELOPMENT
The JEstelle development idea is presented in figure 3. A JEstelle
project includes the JEstelle program file and possibly several
user’s Java class files (*.class) obtained form the corresponded
java sources (*.java). User provided classes and the standard Java
API determine resources that are accessible from the JEstelle
program and must be visible to the JEstelle executive
environment. As we want to take advantage of the existing Estelle
support tools the JEstelle program must be converted to the
Estelle equivalent. This is the moment where JEstelle Native
Interface (JENI) comes in, replacing all Java statements with
appropriate collection of Estelle primitives.
JEstelle Native Interface (JENI) is the programming interface that
allows Java calls to be made from within the Estelle specification
file. JENI is provided to help with the JEstelle support tools
development. Using the JENI library (it means the implementation
of JENI functionality) it is possible to use existing Estelle
development tools to debug and validate JEstelle programs.
Existing Estelle tools, in the simplest case, when desktop version
of the software is to be used, do not need to be altered. The only
practical requirement is to extend the native library to include the
JENI implementation. JENI in the principle, is the interface
containing the set of Estelle primitive functions and pure

procedure declarations [1]. Using this set of primitives, operations
on Java class objects can be expressed in the Estelle specification.
The JEstelle Native Interface has been modeled on Java Native
Interface [2]. Similarities of the both native programming
interfaces should be helpful for Java programmers to more easily
understand the Estelle code which makes use of JENI. Note,
however, that the JENI native interface has been created with the
objective to standardize the JEstelle to Estelle translation by
automatic parsers rather than by programmers themselves. The
objective of JENI is to support JEstelle development and not to
facilitate to use Java functionality in Estelle programs by Estelle
users. The designer should rather use JEstelle and automatic tools
to generate the correct Estelle code.

Designing with JEstelle might be eased if special support tools are
accessible to the designer. For example, by providing a JEstelle
Graphical Editor, the JEstelle program framework can be
expressed with easy-to-learn graphical representation. We will
adapt the Estelle Graphical Editor [4]. It uses the well-known
graphical representation of SDL (Specification and Description
Language) [8]. This way the required knowledge concerning
textual Estelle representation is minimal. Figure 5 presents
recommended JEstelle development cycle using JEstelle
Development Package and XEDT (Xwindow Estelle Development
Toolset) execution environment. JEstelle Development Package
consists of JEstelle/GR graphical editor, JEstelle/Estelle parser
and Java implementation code generator. To work properly the
Java implementation code generator needs the EstellLib package
and all user Java source files. The EstelleLib [3] package provides
Java classes for the Estelle extended state transition model
implementation in pure Java code.

Figure 3. JEstelle development idea.

JENI

215

4. EXAMPLE
In this section we present a short example. Figure 4 presents
definition of a native Java class that we want to use inside a
JEstelle specification (figure 5). The JEstelle specification
describes an example system consisting of two communicating
components. The components simply exchange data and during
the change of their internal state from RCV to SND the
PrintHello method of the Prog user Java class is called and the
Hello from JEstelle string is printed to the Java console. Figure 6
shows automatically generated Estelle specification where we can
find out how the JENI interface is used to produce the correct
Estelle code. The reader is referred to the JENI reference manual
[5] for detailed information about JENI.

public class Prog {
 public void PrintHello(String[] args)
 {
 System.out.println(args[0]);
 }
};

specification example systemactivity;
 default individual queue;
 timescale second;

 // channel definition

channel CommChannel(Send,Recv);
 by Send, Recv:
 SendMessage(int i);

module A activity(boolean m);
 ip p1 : CommChannel(Send);
 p2 : CommChannel(Recv);
 };

 // body definition for module header A

body Abody for A;
state SND, RCV;

 // local module data

 int d ;
 Prog obj ;
 String str ;
 String[] strArray ;

 // module initialization

initialize
 provided m
 to RCV {};
 provided not m
 to SND { d = 0 ; } ;

 // transition part

trans
 from SND

 to RCV
 name sending {
 output p1.SendMessage(d) ;
 };

trans
 from RCV
 to SND
 when p2.SendMessage
 name receiving {
 d++ ;
 str = new String(
 “Hello from JEstelle”);
 strArray = new String[1] ;
 obj = new Prog() ;
 strArray[0] = str ;

 obj.PrintHello(strArray) ;

 };

}; // end of Abody definition

 // modules declaration

modvar
 A X, Y ;

 // specification module initialization

initialize
{

 // X is a receiver instance

 init X with Abody(true);
 init Y with Abody(false);
 connect X.p1 to Y.p2;
 connect X.p2 to Y.p1;
};

}. // specification module

specification example systemactivity;
 default individual queue;
 timescale second;

 const
 MAXJVSIZE = 25 ;
 type
 String = packed array[1..MAXJVSIZE]
 of char ;
 jeobject = integer ;
 jestring = integer ;
 jeobjectArray = integer ;

 jevalue = record
 z : jeboolean ;
 b : jebyte ;

Figure 4. Prog.java.

Figure 5. example.jstl.

216

 c : jechar ;
 s : jeshort ;
 i : jeint ;
 j : jelong ;
 f : jefloat ;
 d : jedouble ;
 l : jeobject ;
 dsc : char ;
 end ;

 value_arg = array[1..10] of jevalue ;
 jevalueArray = record
 num_of_args : integer ;
 arr : value_arg ;
 end ;

 { JENI interface declarations }

function NewString(s : String) : jestring ;
 primitive ;
function NewObject(classSignature,
 constructorSignature : String ;
 args : jevalueArray) : jeobject ;
 primitive ;
function NewObjectArray(length : integer ;
 elementClass : String ;
 initialElement : jeobject) :
 jeobjectArray ; primitive ;

pure procedure CallVoidMethod(
 objectInstance : jeobject ;
 methodName,
 methodSignature : String ;
 args : jevalueArray) ; primitive ;
function InitReference(ref : jeobject) :
 jeobject ; primitive ;
function AssignReference(ref1, ref2 :
 jeobject) : jeobject ; primitive ;
pure procedure DecreaseReference(
 ref : jeobject) ; primitive ;

 { channel definition }

channel CommChannel(Send,Recv);
 by Send, Recv:
 SendMessage(i : Integer);

module A activity(m : boolean);
 ip p1 : CommChannel(Send);
 p2 : CommChannel(Recv);
 end;

 { body definition for module header A }

body Abody for A;
state SND, RCV;

 { local module data }

var
 d : integer ;
 obj : jeobject ;
 str : jestring ;
 strArray : jeobjectArray ;

 args : jevalueArray ;

 { module initialization }

initialize
 provided m
 to RCV
 begin
 end;
 provided not m
 to SND
 begin
 d := 0 ;
 end;

 { transition part }

trans
 from SND
 to RCV
 name sending : begin
 output p1.SendMessage(d) ;
 end;

trans
 from RCV
 to SND
 when p2.SendMessage
 name receiving : begin
 str := InitReference(str) ;
 strArray := InitReference(strArray) ;
 obj := InitReference(obj) ;
 str := AssignReference(str,
 NewString('Hello
 from JEstelle\0 ')) ;
 strArray := AssignReference(strArray,
 NewObjectArray(1,
 'java/lang/String\0 ',
 str)) ;

 args.num_of_args := 0 ;
 obj := AssignReference(obj,
 NewObject('Prog\0 ',
 '()V\0 ',
 args)) ;

 args.num_of_args := 1 ;
 args.arr[1].dsc := 'L' ;
 args.arr[1].l := strArray ;

 CallVoidMethod(obj,
 'PrintHello\0 ',
 '([Ljava/lang/String;)V\0 ',
 args) ;

 DecreaseReference(obj) ;
 DecreaseReference(strArray) ;
 DecreaseReference(str) ;

 end;

end; { end of Abody definition }

 { modules declaration }

217

modvar
 X, Y : A ;

 { specification module initialization }

initialize
 begin

 { X is a receiver instance }

 init X with Abody(true);
 init Y with Abody(false);
 connect X.p1 to Y.p2;
 connect X.p2 to Y.p1;
 end;

end. { specification module }

5. CURRENT DEVELOPMENT
We have successfully tested the idea using the Xwindow Estelle
Development Toolset working on Unix/Linux based systems. The
current version of the JENI interface implementation works on
Linux systems and uses Java Native Interface (JNI – do not
mislead with JENI) technology to achieve proper Java code
execution. JENI implementation consists of the JENI library
(libJENI) linked in with the Estelle simulator from the XEDT
package and the JENI server that services requests for Java native
code execution. JENI server and Estelle execution environment
communicate using CORBA technology. The work on the JEstelle
Development Package is on-going.

6. CONCLUSION
In this document the novel approach to Java distributed
application development has been presented. In its novelty it
merges the Estelle formalism with the ease-of-use of Java
development. The possibility of using user designed libraries
during the design phase gives designers a new effective method
for distributed system development in which the implementation

code can be used even in the design phase. The application area is
potentially unlimited and ranges from formal protocol
specification to the design of distributed Java applications and
multi-agent systems. With JEstelle the system design reliability
and readability can be improved and the implementation code
generation process can be simplified reducing the time-to-market
rate. Using JEstelle Development Package designers working
with SDL (Specification and Description Language) and with
Estelle in particular can quickly move to JEstelle and take
advantages of the Java power. At the same time Java programmers
can take advantage of formal distributed system modelling with
minimal learning required.

7. ACKNOWLEDGEMENTS
We would like to thank Justin Templemore-Finlayson who was at
the beginning of this work and Nico de Wet who made some
corrections.

8. REFERENCES
[1] Estelle standard ISO/IEC 9074:1997.
[2] JNI - Java Native Interface specification:

http://java.sun.com/j2se/1.3/docs/guide/jni/spec/jniTOC.doc.
html.

[3] Justin Templemore-Finlayson “JEstelle - A super Java-
Estelle idea” INT Evry, France 2000.

[4] Justin Templemore-Finlayson “The Estelle/GR Editor - User
Guide” INT Evry, France, 2000.

[5] Marcin Czenko “JENI - JEstelle Native Interface - Reference
Manual”, Tech. Report, LOR department, INT Evry, France,
2002.

[6] Marcin Czenko “Using Java in JEstelle specification”, Tech.
Report, LOR department, INT Evry, France, 2002.

[7] Pascal standard ISO 7185.

[8] Specification and Description Language standard ITU
(International Telecommunication Union) Recommendation
Z.100.

Figure 6. example.stl.

218

