

A Stakeholders Centered Approach for Conceptual Modeling of
Communication-Intensive Applications

Vito Perrone Davide Bolchini Paolo Paolini
HOC (Hypermedia Open Center) TEC-Lab HOC (Hypermedia Open Center)

Politecnico di Milano, Italy University of Lugano, Switzerland Politecnico di Milano, Italy
perrone@elet.polimi.it davide.bolchini@lu.unisi.ch paolini@elet.polimi.it

ABSTRACT
To be successful, any engineering product should accomplish the
needs and expectations of its potential stakeholders. Similarly,
design models should be defined taking into account goals and
requirements of their users, i.e. the practitioners who daily conceive,
develop and deploy applications. Neglecting stakeholders’ needs
can bring to lack of attention towards these engineering products
(design models) while fitness to requirements can drastically
increase their acceptability in the real world. This paper focuses on
the domain of Communication and Interaction Intensive
applications (C&II applications) by presenting a suite of two
conceptual models (namely IDM and E-WOOD) belonging to a
more comprehensive methodological framework addressing the
analysis and design of such a kind of applications. The focus of the
paper is not on the presentation of the methods but on highlighting
their fitness to the requirements of the potential adopters of such
methods. To this end, the overall framework has been defined on
the basis of an accurate analysis of potential stakeholders’ goals and
requirements gained from our training experience to professional
designers and from adoption of our previous conceptual methods in
several real-life projects.
Categories and Subject Descriptors
D.2.10 [Design]:Methodologies; D.2.1
Requirements/Specifications: Methodologies

General Terms
Design, Documentation, Human Factors

Keywords
Web application design, design usability, documentation usability,
UML, design requirements.

1. INTRODUCTION
Industrial stakeholders are still reluctant to use academic

models and methodologies for the analysis and design of
interactive applications [[1]]. As a matter of fact, they do not see
(or are not educated to see) the actual benefit (if any) of the
proposed models (and the corresponding methodologies)
developed within the academic research arena.

This is particularly evident in the domain of Communication and
Interaction Intensive applications (C&II applications). These are
applications (including the most part of complex web
applications) whose main asset is the content to communicate to
the users. Cultural-heritage web sites, educational web sites,
institutional web sites, promotional and corporate web
applications, and even a large part of e-commerce web sites are
just a few examples of domains in which sites are designed first
and foremost as means to communicate content and also as a tool
for accomplishing operations and transactional tasks. In such
domains, stakeholders need to address communication goals, i.e.
they wish to use the site to get across structured messages and
content to a variety of users. In turn, potential users have their
own goals with the respect of the application; they expect to find
usable site architecture by which learning to be engaged, to
retrieve information and execute operations and processes.

In spite of the abundant offer of models and methods, coping with
the analysis and design phases within the overall lifecycle of these
applications, various factors hinder the adoption of systematic
approaches for modeling. These factors can be summarized
according to some important criteria offered by the Diffusion
Theory [27]:

a) cost/benefit ratio is not clear. Costs involved in learning the
methods, using them efficiently, properly training project teams,
and granting the transfer of knowledge across projects are often
considerable and not justifiable with respect to the actual impact
on the quality of the final application. Success cases have to
demonstrate that the use of a given design was the main driver for
the quality of the application.

b) Complexity. Even before coping with the cost issue,
conceptual tools appear too hard to understand and frighten the
potential adopters [[14]] because they are overly complex.
Usability (which surely facilitates adoption) should replace
expressiveness (which do not guarantee quality design).
c) Triability. It is often the case that methods and models are
offered and presented as “one block”, without providing the
conditions and the opportunities to “try” them on a limited basis
before adoption. If it works (i.e. if only a small subset of the
method is worth the effort) then other components can be easily
adopted.
d) Relative advantage. Why should a stakeholder adopt a given
method instead of another, among the dozens available in the
research arena? Are the scopes and the modelling boundaries of
each method clearly defined? Are there comprehensive
comparative studies or experience-based ranking of the methods
available? This information is important for stakeholder to decide
upon which method to invest in. The lack of this information fail

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies
are not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.
SIGDOC’05, September 21-23, 2005, Coventry, United Kingdom.
Copyright 2005 ACM 1-59593-175-9/05/0009…$5.00.

25

to attract stakeholders towards academic method: “there are so
many, where should I start?”
Modelling conceptual tools, especially those dedicated to the
design phase should possess a number of essential requirements to
be effectively and efficiently adopted by professionals on the
field. Lightweight design processes and usability are being
recognized as key factors for the success of a design method.
Successful conceptual tools should be:

� easy to teach to anyone (from students to practitioners).
Professionals, especially, do not have time and resources to
invest for learning new methodologies; one of the success
factors of “Entity Relationship” (probably the most
successful design model, ever) stems from the fact that it was
very easy to transmit its basic concepts, both in academia and
professional environment;

� effective for brainstorming, i.e. for generating and
discussing ideas among developers, with stakeholders, and
with potential users. It is of little use to have a design model
capable of representing only fully developed solutions;

� requiring little time to write down design ideas: analysts
and designers do not like to spend too many resources in
preliminary activities;

� enabling to move, smoothly, from a general design, to
more detailed design, without need for excessive reworking
and without need for completeness;

� enabling a intuitive mapping between analysis, design and
implementation artefacts. Implementers often complain
that design specifications are hard to code so they are forced
to do as their thinks fit.

These factors are considered in our stakeholder-centered
approach, where design models are crafted taking into account the
needs, goals, roles, attitudes and expectations of the stakeholders
of the model. By stakeholders in this case we mean those who can
gain direct benefit from the adoption and the use of the modelling
method, being them the developers, the designers, the project
managers, or other relevant actors.

This paper introduce our so called stakeholder-centered approach
for the development of C&II applications focusing on a suit of
two conceptual modelling tools (namely IDM and E-WOOD)
which try to best correspond to the needs of the different
stakeholders of a design model. The features of these design
models (one focussing more towards analysis and the other more
towards detailed design) represent an important step forward
towards the deployment of modelling techniques that can be
efficiently and effectively adopted by practitioners.

The remainder of the paper is as follows. Section 2 discusses the
relevant achievements on the field of design models and methods
for the development of C&II applications. The scope of this
section is not to encompass an exhaustive bibliography, but rather
to quote some of the several approaches from where we
“borrowed” ideas. Section 3 illustrates the elements of a
stakeholder-centered approach to design models, discussing the
requirements for a modelling method supporting the analysis
phase and for one supporting the proper design phase. Section 4
demonstrates how the proposed models are a “good enough”
solution to correspond to the requirements of the stakeholders and
explains the essential features of the models through some
examples. Conclusions and future works are discussed in Section
5.

2. APPLICATION DESIGN: RELATED
WORKS AND MOTIVATIONS

Along the last ten years a number of methods have been
proposed for supporting the design of Web applications. In this
section we briefly resume the main characteristics of these
methods from two perspectives – the academia and the industry –
and considering their role in the analysis and design phases.

Looking at the academic community, some of the most known
existing methodologies are HDM [[4]], W2000 [[18]], OO-HDM
[[6]], WebML [[8]], UWE [[9]], WSDM [[7]], OO-H [[11]], and
many others. Roughly speaking, they specify the design of a Web
application at the conceptual level, neglecting technological
aspects and constraints. Besides technical (minor) differences,
these methods share lots of common features. All of them are
based upon an information-navigation paradigm to describe the
user interaction, recognize the importance of the semantics as
guidance for conceiving the application design and share the
fundamental principle of separation of concerns. On the other
hand, they differ in terms of the proposed design primitives,
notation and support tools.

Let us consider the key features of one of these methods
(W2000), arguing that the considerations valid for it can be easily
generalized to many of the existing approaches. According to
W2000 [[18]] terminology, the design of a Web application is
divided into four dimensions: Information and Access Structures
design, defining the basic conceptual information units (entities)
as perceived by the user, the navigational infrastructure in terms
of semantics associations between entities, and access structures
(navigational paths enabling users to locate and reach the content
of interest); Operations and Business Process design, defining
operations (e.g. “add to shopping cart”) and processes (e.g.
“check-out”, “registration”); Navigation design, defining the
navigation network allowing users browse information and access
structures and execute operations and processes; Presentation
design, defining the page structure in terms of lay-out aspects and
graphical elements and the page organization and navigation.
If properly used, current academic methods unleash the potential
of enabling designers to conceive high quality (usable and
effective) applications. However, these methods suffer, of some
deficiencies which contribute to a poor acceptance from the
industrial environment [[1]],[[3]]. These limits can be summarized
as follows: (1) providing sophisticated and semantically rich
primitives often takes too much effort and time to learn and start
using the methods; (2) modelling purpose is only badly or vaguely
specified with the respect of the overall development process. It is
often claimed that models are intended as support tool during the
early analysis activities, but then these models are also used to
automatically generate the running application [[11]] [[8]]; (3)
cumbersome design documents are generally produced as output
of the design activities. These documents risk being hard to read
and use both during the analysis activities and the following
implementation ones; (4) proprietary concepts and notations are
generally proposed (except a few cases like [[9]]) by each method,
thus increasing the learning time and the consequent negative
perception of practitioners [[14]]; (5) ad-hoc and in-house made
support tools are generally proposed instead of commercial ones.

With regards to the methods proposed by the industrial world,
UML [[13]] is definitively considered the standard de-facto in the
design practice. Referring to the Web application domain, the
only recognized method coming from the industrial environment
is the one proposed by Conallen in [[10]]: the Web Application
Extension (WAE). WAE, like other UML native methods, adopts

26

an implementation oriented approach, in that most of the
modelling primitives directly abstract from concrete
implementation artefacts1. Due to this characteristic, they are
quite easy to understand and use by technicians for supporting the
software design activities and broadly supported by commercial
tools. On the other hand, concerning C&II applications, it is
known [[12]] that UML lacks of proper semantics for supporting
the design of communication and navigation aspects both during
the analysis and design phases.

 Finally, the topic of explicitly considering stakeholders and their
requirements for shaping a suitable design method has been barely
fronted by existing approaches. In most of examined literature
when a new modelling method is proposed, the well-known and
high level software engineering principles are, at most, cited. For
example in [[12]] it is argued that the next generation of OO
methods “…should be sufficiently user-friendly to all kinds of
possible stakeholders. That is, for all stakeholders of any model,
its relevant parts expressed in the modeling language, must be
understandable, must be clear even. For the modeler as well as
for all other persons involved in the modeling activity, any model
must be expressive, precise and clear as well”. However, besides
these well known software engineering principles, we also
advocate that, due to the diversity of all possible stakeholders, the
lack of an explicit consideration of what every potential
stakeholder expects by the modeling method could be one of the
main reasons of the existing gap between current proposals and
industry practice.

3. STAKEHOLDERS CENTERED
CONCEPTUAL DESIGN

In [[16]] Mylopulos discusses about the role of conceptual models
in the system development lifecycle observing that they provide
semantic terms that are used both to support reasoning in the
analysis activities and to define a user oriented solution in the
design activities. In particular, they act as a bridge towards a more
technical design of the system, usually known as logical design. It
is thus clear that they play a central role in the whole software
engineering life cycle. Given the scenario sketched above, we
defined our approach for the conceptual modeling of C&II
applications starting by a fine analysis of stakeholders and their
needs for both the facets of a conceptual model, that is, analysis
tool and bridge towards the software design and implementation.
The next two paragraphs describe the result of our analysis.

3.2 Requirements for a modeling method in the analysis phase

After a requirements analysis activity, where the needs and the
goals of the various stakeholders of the application have been
elicited and gathered, projects should smoothly to a highly-
iterative phase in which possible design ideas are devised,
negotiated and discussed at the light of the requirements.
As better explained by the next section, this phase lays between
the traditional “requirements analysis” and “design” activities, as
it is an activity needed for discovering and assess requirements
but, at the same time, it features creativity and generation of ideas

1 Examples of WAE’s primitives are server side and client
side pages, applets, Java Scripts, ActiveX controls, frames,
etc. They are obtained by stereotyping UML classes.

typical of design activities. We will call this phase “Requirements
Design”. It is also in fact different from the proper “design”
phase, where detailed solutions are refined, specified and
consistently organized to provide a structured input for the
technical implementation.

What conceptual model can support this activity? To start
answering this question, we firstly have to understand who the
main stakeholders of such a modeling method are. In the
following, different types of stakeholders for such “design” model
are illustrated. These are intended to be “roles” of possible
stakeholders or users of the design model. Therefore, a given
person in the same project may play one or more of the following
roles.

Analysts: are responsible for the traditional activity of
“requirements analysis”. They have to manage the proper
elicitation, organization, specification, refinement and analysis of
the requirements for the application. Given the volatile nature of
the requirements, and being no clear-cut boundary between
requirements and design, they need to see the impact of their
requirements on the actual design of the application with little
effort and time. The modeling method should enable to quickly
turn ideas into possible solutions (A1). Models should be suited to
support communicating these ideas among other analysts and
client counterparts (A2) and stimulate the discussion of both ideas
and possible alternative solutions (A3). Moreover, relationships
between early design decisions and requirements should be
mastered (A4).

Project Managers: are in charge of monitoring the proper
development of the project. They should be able to master the
requirements and design picture in order to easily infer the
expected costs and effort needed for the application management
and enhancement over time. They needs for a method that allows
tracking decisions performed passing from the analysis to design
activities (A5). Moreover, to effectively master the whole
development activities, the method should also enable to pass
from the whole picture to single details (A6).

Decision Makers (Opinion Makers): represent that part of the
client (external to the clients but able to influence its decisions)
who have the actual decision and contractual power on the project
(who may understand better the client organization’s work and
needs and thus influence the project development). They, or their
delegates, are the primary communication partners of the
project team (represented by analysts or designers) should be
involved, on a regular basis, all along the project the lifecycle. All
these stakeholders are typically non technical thus the models
should communicate ideas, scenarios, goals and requirements
(A8) using concepts easy to understand by non computer experts
(A7). Being these stakeholders responsible of the system quality
and effectiveness with the respect of the whole client
organization, they also need to get a clear, even if in-the-large,
picture of the main communication and operative features (A9) of
the application and to be able to intervene on the design to make
suggestions (A10).

Domain/Content Experts: represent an important source of
knowledge and expertise about the specific topics, contents and
services the application is supposed to offer. Communication
strategies are significantly affected by the content that is either
available or producible; therefore domain experts can be crucial to
shape the communication effectiveness, to understand the levels
of details by which the content has to be conveyed, and the users
to whom this content is addressed. Being the content still the most
important asset of such a kind of applications, domain experts are
important partners in the analysis and design activities because

27

they may be those who will actually provide the contents to the
project team. In particular, in this phase they need models that can
provide a clear idea of the quantity and quality of the content to
be produced and managed (A11).
Designers: are in charge of system design but in this phase they
work closely with analysts on the bridge between requirements
and design. Their main goal is to master the complexity of the
application design and to anticipate its impact on the subsequent
development activities (A12).

3.2 Requirements for a modeling method in the design
phase

Conceptual models are used at the beginning of the overall design
activities, as intended in the software engineering discipline,
which will finally lead to the detailed specification of the software
modules to be coded. In this phase, the main goal of conceptual
models is to clearly define the solution (application to-be)
characteristics, even if still avoiding implementation details.
Models should be well structured and their primitives should gain
concreteness. Some of the previous stakeholders are still present
in this phase, even if their goals can change, but newer must be
considered.

Designers: are, as said above, in charge of the system design.
Depending on the reference community, the terminology adopted
within a company, the kind of application, and so on, different
professional figures (e.g. information architects, interaction and
usability experts, and so on) might be attributed to play this role.
Usually several designers work both in the analysis and design
phases thus first goal is to ease the communication with the
analysis activities and among different designers in the design
activities. For the former, some form of guidance should be
provided to support the passage from the early solution devised in
the analysis activities to the actual design of the system (R1). This
mapping should compromise between rigour – to enable some
form of automatic passage – and flexibility – to not constraint
choices designers have to perform in the design phase (R2). In this
phase, they have to design models very close to the application to-
be, thus inevitably these models are rich in details and the
specification is often composed by several heterogeneous
diagrams representing different application concerns. To master
the overall design complexity (avoiding naive designers feel lost)
the method should provide an explicit framing strategy (R3).
Furthermore, model drawing is time-consuming activity that
needs proper tool support. In order to be used in professional
environments, support tools should adhere to the commercial
standards. Since building such tools is an expensive activity, new
modeling methods should be defined so that existing commercial
tools can be exploited (R4).

Usability experts and Graphical designers: depending on
project parameters like those mentioned above, these roles could
be attributed to designers or other professionals with non technical
skills. However, in C&II applications these aspects are taking
more and more importance and require specific competences.
Whatever is the case, these figures are interested in carefully
defining and reviewing usability and graphical aspects of the
application to-be, thus concerns impacting usability and
layout/graphical aspects should be explicitly modeled and made
easy to access (R5). These experts are used to analyze and discuss
about usability and graphical concerns by means of mock-up or
other similar representations that closely reproduce the application

to be. Thus, to achieve an effective communication with usability
and graphical experts, models should also look as close as
possible to the actual application (R6).

Software designers and Implementers: define and implement
the software modules that will actually realize, on the basis of the
chosen system architecture, the application specified by the
conceptual models. From our experience on the field, a
recognized lack of existing conceptual models is that they require
a considerable effort to be mapped into software artifacts. Often,
it is hard to understand which diagrams should be considered for
obtaining a single software artifact and, most of times, several
different diagrams must be composed. For example in the web
domain, to design a server page, software designers have to refer
to information models for the page data, operation and business
process models for the business logic, navigation models for the
navigation logic and presentation models for graphical and layout
aspects. Software designers consider this activity being time
consuming and, if not properly supported by tools, a possible
source of mapping mistakes. On the basis of these considerations,
models should embody modeling primitives as closer as possible
to concrete counterparts (R7) and that as less as possible
diagrams should be considered to define a software component
(R8). Also the design documentation to be used for supporting the
implementation activities should be contained and easy to read
(R9) (many cross-reference are considered highly annoying).
Another highly desirable feature a modeling method should own,
for these stakeholder types, is to provide predefined mapping
strategies (mapping patterns) towards the most known
architectural patterns (R10). Finally, most of the interviewed
software designers and implementers were already used to the
UML and related CASE tools, thus they showed a remarkable
preference in having conceptual models described in UML-like
notation and following the UML philosophy, that is, modeling
methods should belong to the UML family (R11).

Product manager: this stakeholder type represents the most
important client counterpart dealing with the application design,
and act as interface of decision makers, opinion makers, clients
and content/domain experts (described above). Product managers
are usually in charge of assuring the envisioned application will
be able to satisfy the client company expectations, but they also
are responsible of a number of other specific tasks. Among others,
one the most important is to set up the editorial chain. Their main,
somehow opposite, goals are to take the control of the overall
application at a glance and to get details of specific aspects
(related to their tasks). Desirable features for the method should
be to review models at different levels of detail (R12), to embody
most of the needed information to set up the editorial chain (R13)
and to enable some form of requirements tracking (R14).

Final Users: this stakeholder category is the more important
for tuning the application interaction even if it is also the less
accessible for several reasons. In fact, they usually are not part of
the client, are barely identifiable and their characteristics can vary
remarkably. Nevertheless, gathering some feedback from
potential users before the coding activities start can bring several
advantages since modifying models is much less expensive than
modifying code. From our experience [[24]], a discussion with
users mediated by models is usually ineffective because they need
to see and handle application as it were running. Application
prototypes are much more effective in this development stage,
thus models should be easy to turn into prototypes (R15).

28

Testers and Evaluators: models produced in the design phase
are also used by testers and evaluators once the application has
been implemented. In these phases, models should provide the
ground for setting up the testing or evaluation plan. Testers and
evaluators need different concerns to be evaluated being easily
identifiable (R16) in the implemented application. Moreover,
models should look very close to the implemented application
(R17) so that testers and evaluators can easily match the running
product to the originating models.

4. OUR MODELING APPROACH (TO
SATISFY THE REQUIREMENTS)

In this section we briefly introduce the whole methodological
framework to better contextualize the proposed conceptual
modelling methods. In all the section, we specify precise
references to the requirements discussed above as it becomes
necessary.

In Figure 1 the composing phases are shown. A different
modelling method is proposed for each of them. As well as other
software development processes, we assume that these phases
should be executed in an iterative and incremental way, therefore
the picture only purpose is to express the phases order within the
whole process. Considering the entire development process of a
web application, we can say the framework covers both the
analysis and design activities [[23]]. Moreover, adopting the
Jackson terminology [[15]], we distinguish between the problem
and the solution domains. These dimensions, the process and the
domain, are used to organize the following discussion.

R equirem ents
elicitation/analysis

Problem D om ain

R equirem ents
design

Solution D om ain

U X design

U ser O riented

Softw are design

System O riented

P hase 1 P hase 2 P hase 3 P hase 4

C onceptualD esign

A n alysis D esign

Figure 1: Phases in the development process of Web
applications

The two left more phases are both achieved during the analysis
activities. For supporting the requirements elicitation and
analysis (phase 1) we propose AWARE [[1]], a goal-oriented
method specially suited for web application requirements
engineering. AWARE primitives include goals and requirements
which definitively belong to the problem domain. However, in our
experience, discussing with stakeholders (analysis) about needs
and goals can be too abstract for a fruitful reasoning about relative
importance of various goals and requirements and for eliciting
new ones [[24]]. A first very high level solution, focusing on
specific topics, can help validation and elicitation activities (e.g.
interviews) enabling a more concrete discussion about the
problem (A2, A4). We call this activity Requirements Design
(phase 2) meaning that in this phase requirements take a more
concrete form accomplishing a preliminary hop from the problem
domain to the solution one. In this phase we use IDM [[22]].
Although in traditional SE approaches requirements are directly
used for designing the software architecture (e.g. class diagrams,
component diagrams, etc. using the UML terminology), in
applications where the user interaction and the communication

potential play crucial roles, the software design has to be
postponed to the user experience design [[10]]. In this phase the
application is designed as perceived by final users, neglecting
how the software will be realized. Here, designers have to
precisely define how users interact with the application to
accomplish their tasks, taking care of the application usability and
effectiveness with the respect of user requirements and quality
expectations. In our framework, we achieve the concrete passage
into the design phase by translating (A2,A4,A5) IDM models
(phase 2) into E-WOOD ones (phase 3). IDM and E-WOOD,
together, build up our approach to the conceptual design of C&II
applications. Both methods take their foundations in W2000
[[19]], last heir of HDM [[4]] recognized as one of the first
conceptual methods for web application design. As described in
section 2, W2000, as well as other similar conceptual models,
implements the separation of concerns principle by structuring
the design in four dimensions. Both our methods keep this
principle at the basis of their definitions but projecting the
previous dimensions in a sole dimension for the sake of
conciseness, for reducing the number of concepts to be learnt and
references among diagrams (A1,R8,R9). The last step (phase 4)
consists of a detailed design of the software that will be
implemented to realize the desired user experience. This is
generally called logical design of the system to-be. Passing from
phase 3 to phase 4, a paradigm shift is achieved since, in phase 4,
designers have to design the system that will realize the modelled
user experiences. This passage is far to be straightforward and a
number of trade-offs with the architectural constraints and various
decisions have to be undertaken [[20]]. Models produced in this
phase should specify a design easy to code. Here, we adopt the
modelling method proposed by Conallen, namely WAE [[10]].
Our choice has been driven by two main reasons. First, it is
already recognized in the industrial environment as the UML
method for designing the software for web applications and a
number of CASE tools already support its diagram drawing (e.g.
Rational Rose, MS Visio). Second, as shown in paragraph 4.2, it
is very easy and intuitive mapping WAE models upon E-WOOD
as far as most of times, only one E-WOOD artefact is needed to
define a set of related WAE artefacts (R8,R9).

Finally, the methodological framework also includes a number of
guidelines on how to use every method within each phase and
how to move forward and back between adjoining phases.
Guidelines are informally described in terms of patterns [[25]] so
providing an useful but flexible guidance (A5,A4,R1,R2). They
also front specific design issues like the multi-user and multi-
channel design. Lack of space prevents us to describe this aspect,
but the complete set of guidelines can be found in [[20]].

4.1 IDM: supporting analysis with early solutions

IDM (Interactive Dialogue Model) [28] is a design model for
interactive applications based on linguistic concepts of human
dialogue. It bases on the interpretation of the interaction between
the user and the application as a sort of dialogue (A7). It is simple
to grasp, and effective in representing the most relevant features
of the application in terms of content of the dialogue and dialogue
moves (A1,A9). In fact, three simple design elements characterize
IDM: “topic”, “relationship”, and “group of topic”. An interactive
application may describe a “topic” (e.g. a “print”, or a
“technique”); or it may allow the user to switch to a “related
topic” (e.g. switching from a “print” to the “technique” used for
it); or it may allow the user to start from a “group of topics” (e.g.

29

“the masterpieces”, or “the prints dealing with sickness”) and then
browse within the group. The above simple ideas have been
translated into the following IDM design primitives (to
understand the quoted example please refer to the schema in
Figure 2 and to the website www.munchundberlin.org, design
using IDM).

Topic: something that can be the subject of conversation between
the user and the interactive application. “DRYPOINT” (a
technique for prints), “THE SICK AN THE CHILD” (a print by
Munch), “INTRODUCTION TO MUNCH” are example of
topics, i.e. possible subjects of a dialogue between the user and
the application.

Kind of Topic: the category of possible subjects of conversation.
“Technique”, “print” are kinds of topic. “DRYPOINT”. is an
example of “technique”.

Change of Subject (or Relevant Relation): it determines how
the dialogue can switch from a kind of topic to another one.
“made with” is a possible change of subject relating any PRINT to
one TECHNIQUE.

Group of Topics: it determines a specific group of topics,
possible subject of conversation. MASTERPIECES is a specific
group of PRINTS, while ALL_PRINTS is another, larger, group.

Multiple Group of Topic: it determines a family of group of
topics. It could be nice, for example, to group the prints according
to the themes, sources of inspiration for Munch. All the prints of
the same theme are a group of topics; “prints by theme”, overall,
is a family of groups of topics (as many as there are themes). Each
multiple group of topics has a corresponding ”higher-level” group
of topics (e.g. “all themes”), which allows to select the specific
group of topics of interest (e.g. “prints about theme “sickness”).

The above list of terms and concepts (including other advanced
primitives which are not presented here for lack of space) has a
number of advantages over most of the current design models and
methods:

• The number of concepts is short, and therefore easy to teach
(and to learn);

•

•

• Despite their limited number, the concepts are expressive

enough for describing the concept of most C&II applications;
• Concepts (and terms) relate to the dialogue experience, rather

than to informatics, therefore they can be more effectively
conveyed to people without a computer science or
engineering background (A2,A7);

• Concepts are of the proper “level” to allow an in depth
comparison between requirements and design decisions (if

• requirements have been explicitly stated, of course)
(A3,A4,A5).

• Design primitives represents clear concepts but none
predefined structrure is imposed to enrich their description.
Besides the graphical diagrams, they can be described at the
needed level of detail adding information about, for example,
editorial or architectural aspects (A8,A11,A12). The
framework includes some guidelines about how to describe
every concept type in order to improve the matching with the
user experience and software design.

Figure 2 shows the visual representation of an IDM design
schema (the dialogue map), namely the one used for the design of
the website www.munchundberlin.org, dedicated to the the
temporary exhibition of Edvard Munch’s printed hosted at the
National State Museum in Berlin during summer 2003.

A number of further considerations can be derived from this
diagram.

• The schema is quite simple and it does not take too much
time to write it down (any common editor tool or even paper
and pencil may fit) (A1).

• The schema can be used to brainstorm, debate alternatives,
and discuss preliminary decisions (A8).

• Due to its conciseness and intuitiveness, it is easy to make
suggestions about alternative solutions (A3,A9,A10).

• The schema conveys the basic interaction ideas, without
commitment to a specific software system (it could be a web
application, a vocal interaction system, a mobile application
and so on).

Figure 2: IDM dialogue map of www.munchundberlin.org.

30

4.2 E-WOOD: modeling the user experience

Our proposal for designing the user experience, called E-WOOD,
has been defined as a UML extension. UML has been chosen as
modelling language to meet R11, while the extension mechanism
has been preferred to defining a metamodel in order to exploit
easily existing commercial tools (R4). Our model extends an
existing proposal for designing the user experience, that is, the
UX [[10]] since, as shown in the Conallen’s book, mapping WAE
models upon UX ones is easy and intuitive (R8,R10,R17). UX’s
high level primitives are screen and links, and an application is
merely considered as made up of a number of screens connected
by links. Typically, a set of WAE artefacts are mapped upon a
screen by means of realization associations (stereotyped as
<<build>>), specifying which logical elements (WAE models)
build the various parts of the screen (contents and links). Our
main goal in extending the UX has been to add the needed
semantics (extracted by the W2000 primitives) to enable the
separation of concerns impacting the application usability, its
functionalities and the whole quality (R5,R13,R16). In E-WOOD
different concerns are specified in different views and by
introducing specific design concepts. These concepts have been
defined extending standard class and association elements in
terms of stereotype, semantic description, constraints, tags
properties. An additional property (mapping constraints) has been
also introduced to specify mapping constraints between IDM and
E-WOOD models (R1,R2). As well as in UX, E-WOOD high
level primitives are screens and links. Screens can aggregate both
content and input forms; links can be used to perform a simple
navigation among pages or to provide inputs to operations and
processes. E-WOOD models are thus very close to the application
to-be (R6,R7,R17) and easy to turn into prototypes or mock-ups
(R15). Keeping these basic primitives we have also preserved the
proven mapping capabilities towards the WAE (R10,R8).

The introduced semantics is also used to define a framing strategy
(R3) which helps designers organize the overall design activities,
fosters reuse and make design documentation more readable (R9).
The framing strategy mostly reflects the W2000’s design
dimensions. E-WOOD proposes to organize the design of the
overall application in five views. Each view includes several
diagrams and makes use of specific stereotyped classes. Due to
the lack of space, in the following we only describe three out of
five views to show the philosophy behind our method and how we
have tried to accomplish the above stated requirements. The
complete specification can be found in [[20]].

The Template View is used to define common contents and links
of page sets. Examples of common contents could be the
copyright information, the company logo and so on, whilst
examples of common links could be those connecting to the home
page or to the various site’s sections (like those on the bottom of
many web sites). Typically the template design involves the
graphical designers who are in charge of the application look-and-
fell (R5). The basic primitive used in these diagrams is the
<<Screen Template>>, an abstract class used as place-holder for
content and links belonging to a set of screens. Layout contents
(both information and graphical elements) and common links are
modelled respectively by means of <<Layout Content>> and
<<Landmark link>> primitives. The Structural View is used to
define pages enabling users explore information concerning the
domain entities or IDM’ topics. <<Content>> classes are
aggregated to screen classes and models portions of the whole
topic information. <<Structural link>>s are used to model the

navigation achieved across pages belonging to the same topic. For
example, as depicted in Figure 3 (a), the overall information
concerning the “Print” entity are organized in three pages
(Introduction, Big Image and Description) which are connected by
means of bi-directional links originating from the “Introduction”
page. Each IDM topic is mapped on a number of content classes
(and relative pages) equivalent to the number of its dialog acts.
Content classes are then enriched by a fine-grain definition of data
slots which can be used as input for setting up the editorial chain
(R13). Content classes contain a Boolean tagged value called
entry point whose purpose is to specify whether that portion of the
content can be used as starting point for exploring the entity
information. Following our framework guidelines, such pages
should include, at least, a minimal set of entity attributes that can
be used by the user to understand what the entity instance talks
about. Information organization, kind of navigation and entry
points are concerns usually discussed with communication and
usability experts (R5,R16) taking in mind that when users
navigate these pages are clearly interested in improving their
knowledge about the entity.

<<Screen
Template>>

General
Template

Print

Big Image Description
<<Structural>>

<<Content>>

Print.BigImage

Name: String
Big Image: Image
Print’s Data: String

<<Content>>

Print.Description

 Name: String
Small Picture: Image
Description: String
Print’s Data: String

Introduction

<<Content>>

Print.Introduction
EntryPoint=true

Name: String
Small Picture: Image
Introduction: String
Print’s Data. String

<<Structural>>

(a)

P rint

P eriod of lifeT echnique

< < A sso cia tio n
C o n te n t> >

< < A sso cia tio n
C o n te n t> >

A sso cia tio n L in k
1..1

A sso cia tio n L in k
1..n ,2

Is M ade w ith W as m ade during

T e ch n iq u e.N a m e P e rio d O fL ife.N a m e

(b)

T echnique

< < A sso cia tio n
C on te n t> >

P rint

A sso cia tio n Link
1..n ,1 0

P rints of the
techinique

lin k

W as used for

P rin t.N am e
P rin t.S m a llP icture
P rin t.D ata

(c)

Figure 3: a) Structural view for the "Print" topic; b) and c)
Association views

In the Association View designers specify how to pass from a
discovered interesting topic to a related one (relevant relation in

31

IDM). For this part of the user experience design, it is very
important to carefully decide how to allow users understand
which of the possible target topic instances they are actually
interested in. This aspect is called, in the HCI community,
information scent and is one of the factors strongly impacting the
application usability. In E-WOOD we use to this purpose the
<<Association Content>> (Figure 3 (b) and (c)). In (b) these
information are integrated in all the “Print”’s pages (it is
aggregated to the abstract page representing the common features
of all the structural pages) and <<Association link>>s connect
these pages to the target one. In (c), the “Technique” page
includes a <<Link>> association which brings to new page
“Prints of the Technique” whose only purpose is to list the
possible target “Prints” which have been produced using the
source “Technique”. From this page a <<Association link>> point
to the destination pages. The <<Association link>> primitive
includes a tagged value that specifies the association multiplicity
in terms of min, max and expected values. In particular, the
expected multiplicity provides a useful indication about how
many instances of the target entity are in general addressed by the
association. This information can be used for taking some design
choices like attaching the <<Association content>> to the source
page or defining a new ad-hoc page (the two possible solutions
shown above). Having max or expected cardinality very small, our
guidelines suggest aggregating the <<Association Content>> to
the source pages, while in case the expected number grows up, we
suggest the other solution.

Similarly to the structural and association views, the Access View
and Operation/Business Process View are used to design
respectively pages supporting access structures (e.g. book
categories in an e-commerce web site) and operations and
business processes (e.g. the “add to shopping cart” operation or
the “check out” process). Besides these main views, we also
propose a Navigational Map View that summarizes the main
navigational features of the entire application. Our guidelines
suggest how to choice candidate pages, among the overall defined
in other views, to be included in the navigational map. Switching
from the navigational map to the detailed design of contained
screens it allows R12 being accomplished. Finally, following our
guideline, the navigational map looks very similar to the IDM
dialog map making easier referring back to analysis artefacts
(A5,A12,R1).

5. CONCLUSIONS AND FUTURE WORKS
We all know that the existing literature about conceptual methods
addressing the design of Web applications is (over)abundant. On
the other hand, we also know that a remarkable gap between
theory and practice still exists [[1]],[[3]]. Which are the reasons
behind the poor acceptance by the practitioners? Starting from
these considerations, in this paper we have claimed that a possible
reason could be that existing proposals have failed short in
neglecting stakeholders’ goals and expectations. In this light and
focusing on the development of C&II applications, we have
carefully analyzed the environment where a design method should
operate identifying which are the potential stakeholder types and
their goals and requirements. On the basis of this analysis, instead
of inventing new design methods, we have reused or extended the
best, in our view, of current approaches both in the academic and
industrial communities. The approach covers both analysis and
design activities and consists of four phases, executed in an
iterative and incremental way. Defining it, we put in practice most
of our experience achieved working on the field with conceptual

design methods for Web applications [[3]], [[24]]. By this
experience we realized that stakeholders’ needs and expectations
in a conceptual model vary when moving from the analysis
towards the implementation in the development lifecycle.
Within this framework, our design methods IDM and E-WOOD
have been defined taking explicitly into account their users and
their audiences in order to improve their effectiveness on the field.
IDM is a lightweight method that should be used to sketch the
main aspects of very early stage solutions for supporting the
problem understanding in the analysis phase, while E-WOOD
should be used to design a complete solution, from the user point
of view (user experience), that is, to specify what the
implementation should realize.

IDM is a good candidate to meet the requirements of the
stakeholders in the analysis phase, since it offers easy-to-learn
tools to master the delicate process of passing from requirements
to design and enables to capture the complexity of the user-
application dialogue with a limited number of concepts, which are
familiar also to people without a technical background.

E-WOOD is a UML profile that enables to specify the user
experience in terms of pages and links but that embodies
semantics enabling different stakeholders reason about crucial
concerns heavily impacting the application usability and
effectiveness, that is, its perceived quality. Moreover, due to its
definition, E-WOOD can exploit existing commercial tools for
supporting the model drawing and perfectly match an existing and
already affirmed, among practitioners, method for designing the
software modules of a C&II application.

The approach has been applied in several design and reverse
design case studies and industrial projects. Its transferability in
industrial environments has been also experimented in two
projects in cooperation with two Italian software companies (in
the context of the GENESIS-D projects [[20]]). From these first
experiences a number of considerations can be drawn out.
Compared to W2000, we have noticed a significant decrease of
the required learning time. Practitioners were able to use both
methods after a short but intensive course (2-3 days). They drew
IDM models using paper and pencil, while used VISIO™ stencils
for designing E-WOOD and WAE models. In all the achieved
experiences, we spent, with E-WOOD, on the average one third of
the time required by W2000 to produce the same level of detail in
the specification of several application designs. This has to be
summed to the time required for manually drawing IDM models
which is, however, very contained. Compared to UX, we obtained
several advantages mostly due to the introduced semantics.
Models are more expressive and easy to be revisited; the framing
strategy enables a suitable organization of the overall design
activities; a number of well know design patterns, developed in
the web engineering community, can be exploited to produce
quality applications.

Finally, concerning future works, we are working in two main
directions: (i) enriching the framework with guidelines and
patterns for fronting specific aspects like the multi-channel design
and the mapping of E-WOOD models upon the most known
software architectures (JAVA and MS.NET); (ii) defining and
implementing a complete set of supporting tools. Concerning the
second point, we have already realized an ECLIPSE [[25]] add-in
for supporting the model drawing of each method belonging to the
framework. In the next months we aim at defining further add-in
modules that should support the semi-automatic translation of
models belonging to contiguous phases so as to enable

32

requirements and design tracking and the automatic generation of
mock-ups or throw-away navigational prototypes.

REFERENCES
[1] Barry, C.; Lang, M. A Survey of Multimedia and Web

Development Techniques and Methodology Usage. IEEE
Multimedia. 8(3) - 2001, pag. 52-60

[2] Bolchini, D., Paolini, P. Goal-Driven Requirements Analysis
for Hypermedia-intensive Web Applications. Requirements
Engineering Journal, Special Issue RE03, Springer 2003.

[3] Garzotto, F., Perrone, V. On the Acceptability of Conceptual
Design Models for Web Applications. In Pro. of ER’03
Workshops, (IWCMQ’03), October 2003 , Chicago, USA.

[4] Garzotto F., Paolini P. HDM- A Model-Based Approach to
Hypertext Application Design. In ACM Transactions on
Information Systems, Vol. 11, No1 January 1993, p1-26.

[5] Isakowitz T, Stohr EA., Balasubramanian P. (1995) RMM: A
design Methodology for Structured Hypermedia Design. In
Communications of the ACM Vol.38 No8 August pp 34-44.

[6] Schwabe, D., Rossi, G. An Object Oriented Approach to
Web-Based Application Design. Theory and Practice of
Object Systems, 4 (4), J. Wiley, 1998

[7] De Troyer, O., Leune, C., WSDM: a User-Centered Design
Method for Web Sites, in Proceedings 7th International
Wolrd Wide Web Conference, Brisbane, 1997.

[8] Ceri, S., et al., Designing Data-intensive Web Applications,
Morgan Kaufmann, 2002.

[9] Hennicker, R., Koch, N. A UML-based Methodology for
Hypermedia Design. In volume 1939 of LN in Computer
Science, York, England, October 2000. Springer Verlag.

[10] Conallen, J., Building Web Applications with UML (second
edition), Addison-Wesley, 2003.

[11] Gómez, J., Cachero, C., Pastor, O., Conceptual Modeling of
Device-Independent Web Applications, IEEE Multimedia,
April-June 2001 (Vol. 8, No. 2).

[12] Engels, G., Groenewegen, L. Object-oriented modeling: a
roadmap. In A. Finkelstein, editor, "The Future of Software
Engineering", Special Volume published in conjunction with
ICSE 2000, 2000.

[13] OMG, Object Management Group: Unified Modeling
Language (UML), version 1.5

[14] Kaindl, H., et al. Requirements Engineering and Technology
Transfer: Obstacles, Incentives and Improvement Agenda.
Requirement Engineering journal 7(3): 113-123 (2002)

[15] Jackson, M. The World and the Machine. In Proceedings of
ICSE-17; ACM Press, 1995.

[16] Mylopoulos, J., Information Modeling in the Time of the
Revolution. Information Systems, Vol. 23, 1998

[17] Bolchini, D., Paolini, P., Dialogue-based Design for
Multichannel Interactions. In Proc. of IWWOST04 workshop
held in conjunction with ICWE’04, München, Germany.

[18] Baresi, L., Garzotto, F., Paolini, P. From Web Sites to Web
Applications: New Issues for Conceptual Modelling. In Proc.
WWW Conceptual Modeling Conf, October, 2000.

[19] Baresi L., Garzotto, F., Paolini, P., Perrone, V. Hypermedia
and Operation Design. Deliverable D7, European IST project
UWA (Ubiquitous Web Applications), www.uwa-project.org

[20] Balconi, A., Mainetti, L., Paolini, P. Perrone, V.: GENESIS-
D: Formal specification of the conceptual and logical
models. Politecnico of Milan, deliverable D2.2, project
Genesis-D (October 2004).

[21] Rogers, E., Diffusion of Innovation, MT Press, 1995.
[22] Bolchini, D., et al. IDM – A User-Centred Model Shaping

User Interaction as a Dialogue. In proc. HCII 2005
International Conference on Human-Computer Interaction,
Las Vegas, USA, 2005.

[23] Ghezzi, C., Jazayeri, M., Mandrioli, D.: Fundamentals of
Software Engineering. Prentice-Hall, 1991.

[24] Perrone, V., Bolchini, D., Designing Communication
Intensive Web Applications: Experience and Lessons from a
Real Case. In proc. of WER 2004, 9-10 Dec. 2004 - Tandil,
Argentina. To appear in a special issue on Req. Engineering
of the Journal of Computer Science & Technology, autumn
2005.

[25] Gamma, E, Helm, R., Johnson, R. and Vlissides, J. Design
Patterns: Elements of Reusable Software Architecture.
Addison-Wesley, 1995

[26] Eclipse consortium. Eclipse – Home page. www.eclipse.org/.

33

