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Abstract

The term “Distributed Software Engineering” is

ambiguous’. It includes both the engineering of

distributed software and the process of distributed

development of software, such as cooperative work. This

paper concentrates on the forme~ giving an indication of

the special needs and rewards in distributed computing.

In essence, we argue that the structure of these systems as

interacting components is a blessing which forces

software engineers towards compositional techniques

which offer the best hope for constructing scalable awl

evolvable systems in an incremental mannez We offer

some guidance arrd recommendations as to the approaches

which seem most appropriate, particularly in languages

for distnbutedprogramming, specification and analysis

techniques for modelling and distributed paradigms for

guiding design.

1. Introduction

Distributed processing provides the most general,

flexible and promising approach for the provision of

computer processing. Interconnected workstations rae

widely used for local processing, to support user

communication for interaction and cooperation, and to

provide access to shared facilities and information.

Conventional and special purpose processors m

interconnected to support a wide range of applications

from chemical plants to cars, from stock market trading

to campus meal reservations.

Why are distributed systems so attractive? The answers

are as multifarious as the applications. The users of

computers, the information they require and provide and

the applications themselves are often physically

distributed. To match these needs, both the hardware and
software can be designed and constructed in a flexible

1This ambiguity is exploited by covering both aspects

in the DSE Research Section at Imperial College.

modular fashion - as interconnected and interacting

components. Particular resources, services and

information can be accessed across the network and shard

among the system users. Some seek to exploit the

potential for improved availability by the use of

replication and the removal of single failure points.

Others seek performance gains by improving the response

time through local processing or the throughput by the

use of parallel processing. Thus distributed computing

offers advantages in its potential for improving

availability and reliability through replication;

performance through parallelism; sharing ml

interoperability through interconnection, and flexibility,

incremental expansion and scalability through modularity.

However, to gain these benefits, we must cope with

the issues that distributed computing raises. The

interactions between the concurrent components give rise

to issues of non-determinism, contention and

synchronisation. Component separation and autonomy

gives rise to issues of partial information and partial

failure. These issues demand that we adopt effective

engineering methods and tools. Our techniques must

avoid constraining the resultant software unnecessarily by

the use of conventional sequential or centralised designs

but take cognizance of and exploit the component-based

nature of these systems. Software engineering itself must

be extended and adapted to address these distribution

issues: hence Distributed Software Engineering (DSE)

[Shatz 89].

It is not possible or sensible to cover the whole area of

DSE. What is presented is the author’s unashamedly

biased view of the field, hopefully conveying some

insight into what is so special and exciting about

distributed systems. The paper provides a brief overview

of some of concepts in distributed systems as background

material for later discussions. We then examine the
particular need for appropriate concurrency and

distribution models and the associated specification and

analysis techniques. Software development methods m

253
02’70-5257194$3.00 G 1994 IEEE



briefly discussed together with the need to consider and

utilise distributed algorithms. Finally we briefly discuss

the construction of a successful, very large, international

information distribution system.

2. Distributed Systems Overview

One of the major advances towards distributed

computing was the provision of standard and reliable

serial communication networks. This lead to the

provision of Networked Systems: autonomous computers

with independent operating systems connected to the

network for information immsfer. These systems exhibit

no single system master, and interaction between the

individual systems is essentially for file transfer rather

than close cooperation.

Distributed Systems are essentially an extension of

these networked systems except that the interaction is

expected to include closer cooperation [Sloman 87]. This

implies some form of system-wide management and

control. Such control is complicated by the fact that there

is no global colyment view; the overall system “state” is

partitioned and’ distributed across its constituent

computers. It must therefore be capable of making

decisions based on partial information. Terms such as

“open” and “loose-coupling” are used to denote the ease

with which distributed systems support interaction and

yet ensure autonomy and independence of their constituent

components.

A Distributed Environment

The most common use of distributed systems is the

provision of shared services which are provided

transparently by the cooperative effort of local and remote

processors. The provision of services by server processors

is illustrated by a simple example from office

automation. Figure 1 gives an outline of such a system

in which users access the system services from terminals

and workstations. Different services are offered by servers,

which provide access to a variety of facilities such as file

stores, printer services, mainframe processing and

database services. Some services are provided locally at
the site and accessed via a LAN, others at remote sites

accessible via a gateway to the Internet.

User and application programs act as the clients to

servers in a client-server relationship. Client processes

make requests for service and are allocated a server process

which is relinquished after use. A server may well use the

services of other servers in the performance of its

function. A name server (or trader) provides a directory

service to the system to enable services to be registered
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Figure 1 - Distributed Office Automation

and subsequently found by users and application

programs. Clients may thus dynamically join systems,

locate and use required services and then depart.

Distributed System Infrastructure

A Distributed Operating System (DOS) provides the

system-wide management of distributed services. It

utilises local management for local services and

cooperates with the DOS component of remote nodes to

provide access to remote and distributed services, such as

file transfer, remote execution, security services

(authentication and encryption), synchronisation services
for atomic transactions and global scheduling of resource

access. One of its primary responsibilities is to coordinate

resource usage, providing resource sharing, protection,

and recovery. It aims to pt-ovide the “open” access required

for distributed use. Transparency requires coherent and

uniform naming and access conventions to permit local

and remote resources to be accessed without knowledge of

their physical distribution. Hence, users generally specify

their required service rather than the particular server. DOS
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components are usually organised as cooperative but

autonomous in that they can refuse requests and remain

mutually suspicious in order to protect their domain.

The advantages of the client-server approach and the

use of shared services in a distributed system (cost,

extensibility, performance, availability) are such that

many general computing systems are now provided in

this way. They are generally partitioned functionally into

a number of services, each of which may be provided by a

number of servers. It is usually easier to provide

centralised services, with replication for fault tolerance,

than to try and provide the more general and robust

decentralised solutions.

For instance, the Athena distributed computer system

implemented at MIT [Chanpine 90] provides computing

services to around 10,000 users. In 1990 it reportedly bad

about 1000 workstations in 40 clusters. It is based on the

client-server model, providing file servers, postscript

printers, name servers (Hesiod), post office servers for

electronic mail, notification servers (Zephyr) and

authentication servers (Kerberos). Moira provides a

centralised management service, keeping track of the

hardware and software configuration, allocation, and

access control lists. These services are replicated for fault

tolerance. The services are built on and compatible with

the Berkley UNIX programming and user interface. The

workstations act as dataless nodes. The software is loaded

and cleared at the start and end of each user session, and

the application processing is generally performed on the

workstation itself. Hence, although services are generally

remote and distributed (eg. the mail service), the

processing is generally local.

At a different level, the Mach kernel (Carnegie Mellon)

[Rashid 86, Accetta 86] is designed as a specialised kernel

of a DOS to support both tightly-coupled and loosely-

coupled multiprocessors. It provides multiple threads

(tasks) in clusters (large virtual address space) with

synchronous message-based communication via ports.

The kernel is designed to support a variety of

programming interfaces, including Berkley UNIX. The

Andrew File System [Morris 86], also used in Athena,

was developed for use with Mach. Other examples of

research work on kernels and DOS facilities are the V

kernel (tested for lightweight processes and interprocess

communication experiments) [Cheriton 88], Amoeba

(threads and objects with capabilities for protection)

[Mullender 90], Chorus (threads, clusters and ports to

provide UNIX-like distributed processing) [Rozier 87] ,

and the ANSA (Advanced Networked Systems

Architecture) platform (an object-oriented platform for
open distributed processing) [Oskiewicz 88, ANSA 91].

The research is mature and much of the work on

distributed systems infrastructure has been adopted in

standards. OSF (Open Software Foundation), a

consortium of more than 300 companies, have produced

and made available an implementation of UNIX based on

the Mach kernel. OSF/DCE, their distributed computing

environment, provides facilities for threads, remote

procedure calls (rpc), a distributed directory service, a time

service, distributed file system and a security service

[OSF 92]. Other standards organisations are also active.

OMG (Object Management Group) promote CORBA

(Common Object Request Broker Architecture)

supporting distributed objects and object interaction

[OMG 91]. ISO/ODP (Open distributed Processing) offer

support for rpc communication and trading [1S0 93].

CCITT provide the X.400 [1S0 88] and X.500 [1S0 89]

standards for communication and directory services. In

addition, the computer vendors, such as SUN, HP, and

DEC, offer products with features similar to DCE and

CORBA.

How should one use these facilities to construct

distributed services and programs? What languages,

methods and tools are available? Unfortunate y, there is

less consensus as to the answers to these questions.

Nevertheless, we can examine some of the requirements

and assess the current state-of-the-art.

30 Distributed Programming: the need
for languages

Although distributed systems can be constructed using

the infrastructure facilities described above, this is

reminiscent of the use of assembly languages. High-level

languages with access to distributed programming features

are needed to provide a safer programming environment.

In this section we briefly overview some of the basic

language requirements.

Distributable Components

In order to provide software which can be distributed

and execute concurrently in a distributed environment, we

need modular software components (cf. objects in 00P)

which do not share memory but interact by some form of

communication. In its simplest form, a component can

be a simple sequential process (eg. tasks in Conic ~gee

89]); however many systems provide for some form of

shared data component (cf. cluster) which can contain a

number of threads or light-weight processes (resources in

SR [Andrews 88]). Note that, if multiple

threads/processes do share data in the cluster, it is
necessary to provide some means for synchronizing such

access. The main principle is that the component

encapsulates resources in the form of data or devices.
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Each component should provide an interJace for

interaction with other components. This interface

describes the services offered and required, including the

type of the information received or transmitted by the

component. In order to provide context independent

components - capable of being used in different

circumstances and interacting with different components -

they should not directly address any external entity, but

rather accept and make calls at local service points offered

or required at their interface. In heterogeneous

environments in which components of different types

communicate, data transforms can be invoked. A separate

Interface Definition Language (IDL) is frequently used as

a common language for interface descriptions aad

checking, including interaction points and data typing (eg.

Matchmaker [Jones 85], MLP [Hayes 87], IDL [ANSA

91] and CORBAIDL [OMG 91].

Components should be defined as a type (cf. class)

from which instances can be created. A distributed

program is then constructed as a structure or

configuration of interconnected instances of components.

Instances must be mapped (allocated) to the physical

structure of interconnected computer nodes. For instance,

the logical configuration given below could be described

as follows, where the pe~ormance component type

requires service data, the analyser offers in and requires

out and the reporter offers prin~ :

use performance, analyser, reporter;

{component types}

inst MONITOR:performance;

ANALYSER: analyser;

PRINTER: reporteu

{instances}

bind MONITOR.data’- ANALYSER.in;

ANALYSER.out -- PRINTER.print;

{interconnection}

Configuration information is often specified in the

distributed programming language, or as operating system

commands. However work on Conic [Kramer 85, Magee

89], REX [Kramer 92], Regis [Magee 94], Polylith

[Purtilo 92] and Durra ~arbacci 93] suggests that there is

a benefit in clarity and system management if a separate
language (such as that used above) is provided specifically

to express configuration structure [Kramer 90].

Component instantiation and interconnection (binding)

can take place at configuration time before allocation and

also at run time to provide the greatest flexibility.

Client-server binding is usually required to be

performed at run time, according to client need and service

availability, and is not predefine in a configuration

description. As mentioned above, a client uses a binding

to a name server, service broker or trader to locate a server

providing a particular service. For their part, servers

register their interfaces, names, addresses and type/quality

of service with the broker. Clients and servers thus use

the broker as an intermediary to perform run time

binding. For instance, the ANSA platform provides a

trader [ANSA 91] for this purpose. Although this

provides a highly flexible form of interconnection, there

are obviously execution overheads in registering and

deregistering services, and in performing the lookup and

dynamic bind operations.

Interaction

Distributed components communicate in order to

cooperate and synchronise their actions. The underlying

communication service provides for messages to be sent

from one component to another. This service is offered to

the application in a number of different forms, from

simple unblocked (asynchronous), unidirectional

communication analogous to the datagram, to the blocked

(synchronous), bidirectional remote procedure call (rpc)

analogous to the conventional procedure call. The choice

of communication primitives determines how easily

systems can be designed and implemented, given that they

execute in an environment which is subject to delays and

failures.

As mentioned, the remote procedure call (rpc) is the

most widely adopted and accepted approach for general

client-server interaction. It is provided by most operating

systems for remote communication, and embedded in

languages such as Concurrent CLU [Cooper 88] and SR

[Andrews 88]. It is a natural outcome of the desire to

provide a distributed mechanism analogous to the

conventional procedure call. The notion is that

programmers need not be aware of the distribution but can

use familiar mechanisms whether or not the invoked

procedure is local. An object (or instance of a form of

abstract data type) has encapsulated data and offers a

number of access “procedures” to manipulate the data (cf.

object methods in 00P), for example:

object x;
<<local data>>
proc servicel (in pvl, pv2, ...out prl, pr2, ...).

begin ... end

proc service2 (i n pv 1, pv2, ...out prl, pr2, ...).

begin ... end

. . . .
end.

A process instance of a procedure is created for each

occurrence of invocation. Thus there can be concurrent
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access to the data and some form of internal

synchronisation may be usually required. As an

alternative to process creation on receipt of a remote call,

a component may instead remfezuous with the caller. The

component again offers a number of entries or ports at its

interface, different entries for different types of messages

and/or different types of service.

The aim of the rpc is to provide uniform call semantics

in that the behaviour should be the same for remote as for

local procedures. This is termed exactly once sematics.

However, this transparency cannot be achieved in the case

of server crashes. One possible semantics is at least once

in which case the system keeps retrying the call until the

server recovers or an alternative service is available;

however this may result in multiple invocations. Another

alternative is at most once in which case the system does

not retry but reports the failure. Neither of these is ideal,

and it is usually necessary for programmers using an rpc

to be aware of the possibility of failure and take measures

to deal with it.

Many other communications primitives and language

facilities have been proposed and are in use, providing

support such as atomic transactions and persistent objects

as in Argus [Liskov 88]. A comprehensive survey of

work in the language area is provided in [Bal 89].

4. Specification and Analysis: the need
for models

As mentioned, distributed systems introduce concerns

which are akin to concurrent systems: non-determinism,

synchronisation and properties such as safety and

Iiveness. These are complex issues and we are still

groping to find the right formalisms to provide us with

the ability to reason about the behaviour of such systems.

Distribution introduces further concerns due to the

separation and autonomy of its components and the

latency and failure of the interactions. Properties such as

timeliness and robustness (dependability) are introduced.

Two further concerns which are prevalent and

important in distributed systems are scale and dynamics.

Although individual subsystems or parts thereof may

have been separately designed and constructed, and may

not themselves be large, the attraction and utility of

distributed computing arises from the ability to compose

them and support interaction. Therefore, scalability of

associated techniques of specification, design and analysis

cannot be ignored. Furthermore, many of these

interactions arise dynamically, according to need andJor
failure and recovery.

Thus our view of distributed systems is of a complex

community of components where use of appropriate

models is crucial for sound design and analysis. Models

are used both to provide an abstract specification of the

system behaviour and also to support some form of

analysis to increase our confidence in the adequacy of the

specification. We do not discount the need for prototyping

and testing. These are essential complementary

techniques. Without empirical results we could not have

any confidence in the accuracy of our models.

Nevertheless in this section we concentrate on modelling.

Note that we believe that compositionality is the key

property, both because it is appropriate for this

componentl~nteraction view of distributed systems and

also as the m-cans for handling scale. It is akin to a

constructive approach for distributed system design and

construction, based on the composition of components.

Levels and Aspects

We must be prepared to model our system at many

levels of description (figure 2). Abstract high-level

descriptions may hide many of the concurrency and

distribution issues and concentrate on properties such as

consistency. On the other hand, design level descriptions

must be prepared to explicitly model the component-based

structure and interactions, and deal with properties of

safety, liveness, timeliness and so on. Implementation

level descriptions may include further distribution

decisions thereby allowing more detailed analysis of

properties such as failure, response or performance.

w,,?abatract / high Ieval specification

t I

design level apacification
I

I 4
I transform? ]correctness?

t I
implementation level (exactable)

specification

Ma provide description
Jof esired propeties but

hide concurrency and
distribution issues?

May Include COIWJOIWtIt
strkture, concurrency
and interaction but not
distribution?

includes component
structure, concurrency,
interaction and distribution?

Figure 2 - Levels of Specification

Further, in order to deal with this complexity, we must

recognise that no single formalism or model will suffke

for every aspect. Even at a single level, it is unlikely that

a single model will be adequate. Rather, it is essential that

each is selected to accurately reflect the particulrw system

property which requires examination, and to abstract away

from others. Typically each model will capture and
support analysis of a particular property (functional

behaviour, performance, failure, ...) but find it difficult to
reflect others.
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For instance, if we consider a particular design level, a

system could be described as a particular composition of

components, each of which would provide a specification

of its intended behaviour (functional, performance or

failure characteristics) as illustrated in figure 3 Earner

90, 93]. Aui.ssociated analysis technique should then be

provided for each. Correctness can be considered as the

use of the analysis to show satisfaction of the properties

of the higher level specifications.

Requirements

-B

Figure 3 - Corresponding Specification
and Analysis for each Model

Model ling: Which model should we choose?

The assumptions under which the model is valid zue

obviously important. In his excellent pape~ [Schneider

93] provides examples of alternative models which

illustrate this for distributed systems.

_ Synchronous or asynchronous?

An asynchronous system makes no assumptions about

process speed or communication delays. Although this

leads to robust designs, this generality has an associated

cost in that the designs tend to be more complex or

expensive. All synchronisation must be explicitly

provides by protocols between the participants. On the

other hand, a synchronous system assumes processes

whose relative speeds are bounded, and communication

with bounded delay. This permits time to be used as

another source of information in a design. For instance,

the non-appearance of a message can be used to provide

information only if the system is synchronous. The

validity of the assumption may depend on the particular

platform to be used for implementation or on the desire to

suppress certain concerns for that model.

● Which failure model?

In distributed systems faults are attributed to
processing components or communication channels.
Fault tolerance relies on the ability to replicate those

components which are likely to fail. The assumed
behaviour of a faulty component is crucial in determining

how the system will behave. The simplest and least

disruptive is failstop [Schneider 84] where component

failure is equivalent to halting, and that failure is

detectable by other components. This means that other

components can perform actions in the knowledge that

the failed component will not. Note that, as Schneider

points out, if components in an asynchronous system

could not detect the failure, they could also not

distinguish between failure and a component which is

continuing but merely slow. The most complex and

disruptive failure model is that of Byzantine failure

[Lamport 82] where component failure can produce any

arbitrary behaviour. In order to tolerate t failures, we need

only have t+ 1 replication in the failstop model yet nx@re

2t+l for the Byzantine case.

What characteristics should we look for in our choice of

models? [Cheung 94a]

● Logical (descriptive) or behavioral (operational)

approach [Ghezzi 91]?

Those taking a logical approach describe behaviour as a

set of axioms. System behaviour is given by the

maximal set of event sequences that satisfy these axioms.

This approach supports logical reasoning in that a system

is said to possess a certain property P if P is derivable

from the axioms. Specifications can be combined using

logical connective such as conjunction [Zave 93]. This

property-oriented approach is appropriate for specifying

rules and constraints, and is more appropriate for high-

level abstract specifications such as requirements.

However, it does not reflect the component/interaction

view relevant for design level specifications of distributed

systems.

The alternative is a behavioral (or constructive)

approach where the system is modelled by an abstract

program. System behaviour is given as the set of all

event sequences that can be generated by the program.

Behaviour can be examined by analysis of those traces or

by simulation (execution). Abstract programs can be

formulated as the parallel composition of subprograms.

This component-based approach can closely reflect the

componentlinteraction view and is thus considered more

appropriate for design specifications.
Consequently, the sensible approach would appear to

be to adopt the logical approach for requirements and the

behavioral for design, and to verify designs by their

ability to satisfy the required logical properties.

● Static or dynamic analysis?

Analysis is the means by which we gain greater

confidence in the adequacy of our designs. Dynamic
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analysis can be used to show the presence of errors

through model execution, but not their absence. Static

analysis is performed without execution and aims to show

the absence of errors by satisfying prescribed safety and

liveness properties. However, complete coverage of all

properties is generally difficult. Therefore, static and

dynamic analysis should be considered as complementwy,

and an ideal model should be able to support both.

● Compositional or global analysis?

In general, global analysis is computationally too

expensive for any but the simplest of system. Analysis

using logical reasoning is undecidable for the first cm%

calculus and state-based models generally suffer from state

explosion. We therefore require that our models support

compositional and incremental analysis. This bounds the

scope of the analysis at any one time and helps to contain

problems such as state explosion. Furthermore,

distributed systems are generally designed and constructed

by decomposition into a hierarchy of simpler components

andlor by composition from elementary components.

Hence incremental analysis mirrors the development

process and can be employed by the designer at each stage

in the design process. Hierarchical and compositional

approaches provide the soundest means for coping with

scale, and offer the potential for dealing with dynamic

structures through composition.

It therefore seems that logical, property-based

specifications do not scale well, and that it is easier to

build and analyse the abstract machine specifications

advocated by the behavioral approach.

● Automation?

The complexity of analysis techniques suggests that

manual use is not practical in general. Models must at

least offer the hope (if not the fact) of automated support.

In addition, one should support different forms of analysis

according to need. Approximate analysis can be used to

compromise accuracy for tractability. In this way, an

efficient approximate analysis technique could be readily

used to detect some errors at the early design stages when

designs are tentative and error prone. Exhaustive

compositional analysis can be left to the later stages of

development when the designs are more stable and the

need for design confidence is greater.

“ Other aspects?

Obviously, in order to make the model accessible to

software engineers, we would like it to be simple and

familiar. This can be further enhanced if the model also

provides a graphical notation.

Do current approaches support our nquired

characteristics?

Temporal logic [Pnueli 86] is a powerful formalism for

describing and reasoning about sequences of events ordered

in time. Distributed system properties are specified by

constraining those events which must occur in a

particular otder. Safety and liveness properties can be

readily expressed using the temporal operators ‘always’

and ‘eventually’ respectively. Although there is recent

work towards dynamic analysis through executable

specifications [Gabbay 89], analysis generally relies on

theorem proving. In most cases, this requires a great deal

of ingenuity and is not easily supported by automation

[Clarke 86]. In addition, temporal logic does not support

the compositionality we require.

Petri nets are one of the most popular graphical

techniques for specifying concurrency and interaction.

Invariants and reachability are used for analysing safety

and liveness properties. Analysis can be dynamic or

static, supported by automation. However, standard Petri

nets are not compositional [van Eijk 88] and thus fail to

scale.

Process algebras, such as CSP [Hoare 85], CCS

[Milner 89], ACP [Bergstra 85] and the n-Calculus

[Milner 91] support most of the characteristics that we

require for modelling distributed systems. They support

the desired behavioural component/interaction view using

notions of communicating processes. Processes ate

modelled as algebraic expressions representing sequences

or a non-deterministic choice of actions. Communication

is modelled via synchronous interaction at an action.

Parallel composition of processes is supported as is

compositional analysis. A possible disadvantage of

process algebras is their use of interleaving semantics

rather than “true” concurrency; however this is generally

not a problem as we rarely need to distinguish the two.

A recommendation?

We favour Labelled Transition Systems (LTS) which

provide the underlying semantic model for the process

algebras. In particular, LTSS also satisfy our automation

requirements, and are based on the familiar and graphical

notation of state machines. One can introduce explicit

buffering processes to model a particular degree of

asynchrony. More details and evidence of the utility of

this approach are given in [Cheung 94] in these

proceedings. Furthermore, as advocated by Weihl [93],

one can introduce non-determinism to model the

possibility of failures or communication delays.
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5. Design: the use of Distributed
Paradigms

The aim of distributed systems design is to identify the

distributable components and their interactions which

together satisfy the system requirements. How is this

achieved? This obviously involves a process of

decomposition with composition as the means for

showing requirement satisfaction and of actual system

construction. Are there formal methods which are useful,

or must one rely on informal methods?
Formal approaches using refinement have been

successfully applied to small problems and to derive

distributed algorithms (often post hoc). For instance,

UNITY and its associated refinement techniques m

clearly described in [Chandy 88 ]. However, there is seems

to be no evidence of their use in large, realistic cases. One

approach which has proved helpful in guiding initial

design is the use of invariants to express certain safety

properties. This is then distributed across the system as a

set of local constraints [Carvalho 82].

Less formally, there are a number of systematic

techniques which use decomposition coupled with

heuristics. A number of 00 design techniques lllooch 91,

Rumbaugh 91] are helpful in identifying objects (cf.

components) and classes; however they are not

particularly aimed at producing distributable objects. They

tend to ignore issues such as object to process allocation,

communication delay and failure, and independent object

failure, Gomaa [93] has gone some way to providing

guidance as to the design of concurrent and distributed

systems, giving some criteria for forming distributable

components. In addition, most approaches support the use

of some form of interaction diagram to describe

component interaction for particulm scenarios (cf. a tmce

of communication actions in the process algebras).

Design is a creative and intuitive process. As we move

from level to level, new information and concerns m

necessarily introduced (see figure 2). Hence it is not

surprising that correctness preserving transformations and

refinements find it difficult to cope with the task. We

therefore advocate informal design together with rigorous

analysis to provide the feedback required to either identify

sources of error or to provide further evidence as to the
validity of our design. Each successful design analysis

acts to increase our confidence in our design. The more

facets that can be analysed (functional behaviour, timing,

fault analysis, ...) through static and dynamic means, the

greater our confidence. Furthermore we advocate

incremental design. This is the ability to incrementally

extend and evolve designs (and the corresponding systems)

by the addition, replacement and modification of its
components and structure [SEJ 93, Kramer 93].

In addition to the feedback provided by analysis, the

informal decomposition process should be guided by a

sound knowledge of the various distributed programming

paradigms and techniques. These encapsulate the

experience of distributed programming. For instance, a

simple heuristic is that, unless state information is

specifically required to be replicated for reasons of fault

tolerance or local response, such replication should be

avoided. Why? State replication introduces the need to

maintain consistency between the copies which will

entail overhead or, if not handled well, could introduce

possible erroneous behaviour.

What paradigms are commonly used in disti”buted

systems ?

As mentioned, current distributed systems are often

partitioned functionally into a number of services, each of

which may be provided by a number of servers. Clients

(either users or components which require some service)

make requests to servers. Servers may themselves requhe

other services to perform their functions, and so in turn

act as clients to other servers. This client-server

relationship is common in distributed environments,

most often based upon the use of the remote pmcedwe

call (rpc) for client-server interaction. It is often easier to

provide centralised services with replication for fault

tolerance than to try and provide the more general and

robust decentmlised solutions. This is not to say that all

distributed systems must follow this ‘centralised’

structure; just that it has been found to be appropriate in

many applications.

Decentralised paradigms use an associated logical

structure which supports the required interactions. me

simplest of these are the n“ng algorithms for assigning

some privilege. Components are connected together to

form a logical ring so that, for the algorithm, each

component only communicates with its neighbors. A

circulating token is generally used to which some

privilege (such as exclusive access) is associated. The

token circulates round a ring giving every component

some privilege at some time.
Diffusing computations use a hierarchical or tree

structure to reach consensus decisions of global concern
such as deadlock, termination or commit algorithms.

Those components involved in the decision process ate

formed into a tree structure where a component only

communicates with its ancestor or descendants. A control

message is initiated by one component (the root or

environment), and the control “diffuses” through all

components in the tree. Each component can only issue

a message to its descendants if it received one, and can

only reply to its ancestor when it has all the descendent

260



replies.

Consistent event ordering is necessary for consistent

decision making. A partial ordering of events can be

determined by timestamping using local, logical clocks in

each process [Lamport 78]. Local clocks increase their

values according to each event of sending a message or

receiving one, and correct their clocks by the rule that a

send must precede the corresponding receipt. This

timestamping is consistent with causal ordering which

“captures all the essential ordering information needed to

describe the execution” ~irman 93]

What properties should our designs possess ?

In producing distributed designs,there are a number of

properties which act as signposts to a sound design

[Raynal 88].

● Symmetry and resilience to failures

For a particular algorithm or coordination activity, the

more symmetric the participants, the less likely there is

to be a single point of failure. For instance, if one

component has a special role which cannot be taken over

by any other participant, then the participants ate

asymmetric (different code and role) and less robust. If all

participants have the same code then,, even though one

may play a different role at a particular time, some other

component could take over that role if necessary.

● Connection properties

Our designs should require the fewest properties of the

connections between components. For instance, as

mentioned in the section on modelling, we would like to

be able to design for asynchronous systems and assuming

any failure mode. This would result in resilient

algorithms which could use unsophisticated networks. In

practice, we often try to support failstop failure and

provide some bounds on the asyncbrony of a connection.

● Local states

As far as possible, individual components should be

designed so as to be able to make decisions based on local

knowledge. This reduces the message traffic and improves

resiliency. In practice this is often a compromise between

reducing response or overhead. Response can be reduced at

the expense of overhead if components are kept uptodate

with the information required before the point of decision
making, while the the reverse is true if a component is

designed to seek out the information when required.

There is still much to be learned in the design of

distributed programs, but much guidance can be obtained

by adopting and adapting proven paradigms [Andrews 91].

This is apparent where there are particular concerns such

as reliability, and the need arises for process (component)

groups with group communication which preserves causal

ordering Birman 93].

6. Conclusions

As described, the advocated approach to distributed

system design and construction is one which reflects the

component/interaction view of distributed systems. It is a

combination of informal but informed design, and

extensive use of models which support specification and

analysis. In particular, the favoured techniques make

extensive use of composition, during design, analysis and

construction. This seems to provide the right balance,

favouring rigour for formality where the latter is not

practical.

Can this approach be used for all systems? Consider art

example of a very successful system which, it appears,

was never rigorously specified, analysed or modelled. It is

a fascinating example of a system which has evolved by

making excellent use of a number of different but mostly

standard and proven technologies to provide “a wideama

hypermedia information retrieval initiative aiming to give

universal access to a large universe of documents”: the

World Wide Web (W3) [Hughes 93]. It was first proposed

in 1989 to allow information sharing within an

international community in High Energy Physics. The

W3 project merges the techniques of networked

information and hypertext, and is currently the most

advanced information system deployed on the Internet. At

the end of 1993 it reportedly had well over 500 Web

servers.

For scalability, W3 was designed without any

centralised facility and no central control. Anyone who

wishes to publish information need only provide a -serven

anyone who wishes to read data need only run a client.

Clients communicate with servers on the Internet. W3

supports and uses the numerous different information

retrieval protocols (FTP, Telnet, NNTP, WAIS, gopher,

...) as well as the data formats of those protocols (ASCII,

GIF, Postscript, DVI, TeXinfo, ...) to access existing

FTP files, WAIS databases, news articles and gopherspace

and new hypertext files. It provides a consistent hypertext

user interface using a new protocol (HTTP- hypertext

transmission protocol) and a new data format (HTML -
hypertext markup language) both geared towad

hypermedia. A Web client can use a hypertext link to

retrieve documents or pictures which are held remotely.
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These can in turn be used to access further information,

hence providing a vast “web” of information. Links m

held as URLS (Uniform Resource Locators) which speeifj

the method of access (file, http, ftp, news, gopher, ...).

the internet address of the server, and any local access

information.

The Web employs the client-server model, copes with

heterogeneity by providing translators, and is dynamic,

scalable, decentralised and very widely distributed. It is an

excellent example of the synthesis of technologies and the

composition of different components to great effect. It

has evolved and increased in size by incremental steps,

comparable to an organic body. However, we should note

that it is not a critical application; if it were, should the
approach be very different? Perhaps not, provided that we

ensure that the base components and technologies am

sound, that the system is developed incrementally and that

the architecture is amenable to evolution. The essential

ingredient for critical applications is the ability to model

and analyse the composite system structure to provide the

necessary feedback and assurances of satisfactory

behaviour.

The other face of DSE ... .. . ?

Finally, as mentioned at the start of this paper, the

other face of distributed software engineering is the

process of distributed development of software. The

concepts and techniques described above have much to

offer in guiding distributed cooperative software

development. Rather than adopting a centralised approach,

its seems to be sensible to mirror the development

process with its multiple participants and partial products.

Partitioning and distribution of the participants’

viewpoints (cf. components) capture different aspects,

formalisms, specifications, and stages in software

development [Finkelstein 90, Kramer 91]. Information

transfer and consistency checking (cf. interactions) can be

conducted directly between the viewpoints [Nuseibeh 93,

Finkelstein 93]. This offers all the advantages of

independent development, scalability, redundancy, and

flexibility which are apparent in distributed computing.
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