
Exploiting an event-based infrastructure 
to develop complex distributed systems 

G. Cugola, E. Di Nitto, A. Fuggetta 
CEFRlEL - Politecnico di Milan0 

Via Fucini, 2 
20133 Milan0 Italy 

+392239541 
e-mail: {cugola, dinitto, fuggetta}@elet.polimi.it 

ABSTRACT 

The development of complex distributed systems demands 
for the creation of suitable architectural styles (or paradigms) 
and related run-time infrastructures. An emerging style that 
is receiving increasing attention is based on the notion of 
event. In an event-based architecture, distributed software 
components interact by generating and consuming events. 
The occurrence of an event in a component (called source) is 
asynchronously notified to any other component (called re- 
cipient) that has declared some interest in it. This paradigm 
holds the promise of supporting a flexible and effective in- 
teraction among highly reconfigurable distributed software 
components. 

We have developed an object-oriented infrastructure, called 
JEDI (Java Event-based Distributed Infrastructure), to sup- 
port the development and operation of event-based systems. 
During the past year, JEDI has been used to implement a 
significant example of distributed system, namely, the OPSS 
worktlow management system. 

The paper illustrates JEDI main features and how we have 
used it to implement the OPSS worktlow management sys- 
tem. Moreover. it provides an initial evaluation of our expe- 
riences in using an event-based architectural style. 

Keywords 

Event-based systems. distributed systems, worktlow, busi- 
ness processes. object-orientation. 

1 INTRODUCTION 
Convergence between telecommunication, broadcasting, and 
computing is opening new opportunities and challenges for a 
potentially large market of innovative network-wide services. 

The class of users interested by this revolution is signifi- 
cantly large: families, professionals, large organizations, 
government agencies, and administrations. The services 
range from home banking and electronic commerce, to coor- 
dination and workflow support for large dispersed teams, 
within the same company or even across multiple companies. 

Many research and industrial activities are currently being 
carried out to identify feasible strategies to develop and op- 
erate these services in an effective and economically viable 
way. The technical problems that have to be addressed are 
complex and critical. Services must be able to operate on a 
wide area network with acceptable performance. The soft- 
ware technology used to implement these services must be 
“light”, i.e., it should be scalable with respect to the capabili- 
ties of the platform on which services are running. Moreover, 
the technology must enable a “plug and play” approach to 
support dynamic reconfiguration and introduction of new 
service components. Finally, it is essential to support open- 
ness, since services have to be easily extended and integrated 
with other services being offered on the network. 

A very important research topic to be addressed to foster the 
diffusion of network-wide applications is the identification of 
proper architectural styles able to cope with the above re- 
quirements and challenges. Most architectural styles exploit 
Remote Procedure Call (RPC) to support communication 
among distributed components. Middleware infrastructures 
such as CORBA [IO] and Java + RMI [ 151 are based on this 
kind of communication model. RPC is based on a tight cou- 
pling between the object that requests a service (i.e., the cli- 
ent) and the object that satisfies such request (i.e., the server). 
Before invoking a service, the client has to know the exis- 
tence of a server capable of satisfying its request and has to 
obtain a reference to such server. In many situations, how- 
ever, a decoupled communication model between objects 
would be preferable. As an example. let us consider a net- 
work management system. In this system, whenever a net- 
work node signals a failure, a procedure has to be started to 
fix the failure. Each node does not necessarily need to know 
the existence of such recovery procedure. It has simply to 
notify the “external world” of the detected failure. This kind 

O-8186-8368-6/98 $10.00 0 1998 IEEE 
261 



of scenarios is not easy to develop using the communication 
model implemented by CORBA and Java+RMI. 

An appropriate paradigm to address the above issue is pro- 
posed by e~jent-bcrsed architectures. The components of an 
event-based architecture cooperate by sending and receiving 
CVC~I~S, a particular form of messages. The sender delivers an 
event to an el’ent dispatcher. The event dispatcher is in 
charge of distributing the event to all the components that 
have declared their interest in receiving it. Thus, the event 
dispatcher allows decouplin, 0 between the sources and the 
recipients of an event. 

The relevance and potential impact of the event-based para- 
digm has been acknowledged by OMG that has recently de- 
fined an event service on top of the CORBA framework (see 
Section Related work). Nonetheless, there are several open 
issues that need to be addressed to define effective and work- 
able event-based infrastructures. As a contribution to this 
research work. we have developed an event-based, object- 
oriented infrastructure called JEDI (Java Event-based Dis- 
tributed Infrastructure). JEDI has been used to implement a 
network-wide Process Support System (PSS) called OPSS 
(ORCHESTRA Process Support System).’ A PSS [2] is an 
environment for developing and executing process-based (or 
also worktlow-based) applications. A process-based applica- 
tion is a software system supporting a coordinafed set ofac- 
tivities involving both humans and computerized tools. Typi- 
cal examples, are business services such as customer care or 
interoffice procedures. 

The contributions of the paper can be summarized as fol- 
lows: 
. It introduces JEDI. a new event-based infrastructure 

suitable to develop a wide range of distributed systems. 
. It illustrates how we have exploited JEDI to develop 

OPSS. and discusses the advantages derived from the 
adoption of an event-based approach. 

. It presents our experiences in using the event-based 
paradigm. 

Consistently, the paper has the following structure: “Section 
A quick tour of JEDI” presents JEDI basic concepts and im- 
plementation: Section “OPSS: ORCHESTRA ” provides an 
overview of the architecture of OPSS; Section “Evaluation” 
provides an evaluation of our experience; Section “Related 
work” presents the related works; finally, Section 
“Conclusion” draws the conclusions. 

2 A QUICK TOUR OFJEBI 

2.1 The architecture of JEDI 
Figure I describes the architecture of JEDI. The infrastruc- 

’ OPSS has been developed as part of the ORCHESTRA 
project 9. funded by Telecom Italia. 

ture is based on the notion of ucrive object2 (AO), An A0 is 
an autonomous entity that performs an application-specific 
task. An A0 interacts with other AOs by producing and con- 
suming events. Events are a particular type of message. Con- 
ventional messages are sent from a source to one or more 
recipients, as specified by the source itself. Conversely, 
events do not include any information about their recipients. 
An event is generated by an A0 and rlotijied to other AOs 
(event recipients) that are dynamically selected by a specific 
component of the infrastructure called event dispatcher (ED), 
ED waits for the occurrence of an event, and delivers it to 
those AOs that have explicitly declared their interest in re- 
ceiving it. An A0 declares the classes of events it is inter- 
ested in by invoking an event subscription operation. It can 
also stop accepting events of a given class by invoking the 
unsubscribe operation. Event subscription and un- 
subscription can be invoked at any time during the active 
object lifetime. The notification of events is accomplished 
asynchronously with respect to their generation. 

1= event 
Figure 1: A logical view of JEDI architecture. 

In JEDI, an event is an ordered set of strings. The first string 
is the event name. The remaining strings are event parame- 
ters. In the paper, an event will be represented using a nota- 
tion similar to function calls in traditional programming lan- 
guages (e.g., open(foo.c,read). where open is the 
name of the event, and f oo . c and read are its parame- 
ters). We have chosen this simple event structure for the sake 
of flexibility and interoperability. By exploiting the dynamic 
binding and type checking features offered by Java we could 
have defined events as Java objects, thus signiticantly en- 
riching their semantics. However, this choice would have 
introduced several constraints on the network-wide avail- 
ability of the system. 

AOs can either subscribe to a specific event or to an event 
pattern. An event pattern is an ordered set of strings repre- 
senting a very simple form of regular expression. The first 
string of the pattern (i.e., the pattern name) may end with an 
asterisk, while the other strings are either standard strings or 
strings composed of the single character ‘_‘. Given a pattern 
p, an event e matches the pattern iff the following conditions 

’ We have not used the term “component” since it is heavily 
overloaded and could have induced some confusion. 

262 



hold: 
. The name of e is equal to the name of p, if the latter 

does not contain the asterisk; or the name of e starts 
with the same characters of p name, excluding the as- 
terisk. 

. e and p have the same number of parameters. 

. Each parameter of pattern p that is not equal to ‘-‘, is 
equal to the corresponding parameter of event e . 

According to our experience. active objects often operate 
according to a quite standard sequence of operations. Upon 
activation, the A0 subscribes to a set of events and then 
starts waiting for their occurrence. When an event is notified, 
the A0 performs some operation (possibly generating new 
events) and then starts waiting again. It therefore executes a 
standard loop: wait for any event among those it has sub- 
scribed to, and then process it. For this reason, we have in- 
troduced a particular type of active objects called reactive 
objects. A reactive object exhibits an abstract method (called 
processMessage) that has to be specified by the pro- 
grammer and that is automatically invoked each time the 
reactive object receives an event it has subscribed to. JEDI 
provides classes to implement both generic active objects and 
reactive objects (see next section). 

Reactive objects offer also a mechanism to support mobility. 
A reactive object can autonomously decide to move to a dif- 
ferent site by invoking the move operation, which causes the 
following actions to occur: 
I. The state of the reactive object is serialized and saved 

using standard Java facilities. 

2. The reactive object moves to the new location and in- 
forms the ED that it is ready to receive events. 

3. The ED keeps the events that should be received by the 
migrating reactive object until it is ready to receive 
them. 

There are two versions of the ED that exploit different im- 
plementation strategies: centralized and hierarchical. In the 
centralized approach, the ED is constituted by a single proc- 
ess. The hierarchical approach has been introduced to address 
the issue of scalability at a network-wide level. In many 
critical applications (e.g., network management), the number 
of AOs is very high and they are typically dispersed on a 
large number of hosts. Moreover, the number of events to be 
dispatched becomes extremely large. In this context it is vital 
to identify means to reduce the event traffic and optimize the 
performance of the distribution mechanism. To address this 
issue, the hierarchical ED has been structured as a collection 
of processes (usually, one for each machine running JEDI) 
interconnected to form a tree. Each A0 connects to anyone 
of these processes. Events are propagated across the ED pro- 
cess tree on the basis of the subscriptions posted by each AO. 
Notice that AOs behavior is not influenced by the imple- 

mentation strategy chosen for the ED. The decision of ex- 
ploiting the centralized or the hierarchical version only af- 
fects the overall performance of the system. We do not pro- 
vide here further details on this issue since it is not the main 
focus of the paper. 

In summary, the event-based communication style used in 
JEDI is characterized by the following properties: 
. it is asynchronous; 
. it is based on multicast; 
. the source of a communication cannot specify the desti- 

nation of the communication; 
. the destination of a communication does not necessarily 

know the identity of the source; 
. events are guaranteed to be received in the same se- 

quence in which they are produced; 
. a reactive object can move without loosing the occur- 

rences of the events it has subscribed to. 

2.2 The implementation of JEDI 
JEDI has been implemented as a set of Java classes and sup- 
ports the development of pure event-based applications (i.e., 
applications that communicate only by exchanging events). 
JEDI includes the event dispatcher and the components 
needed to develop active and reactive objects. These compo- 
nents have to be properly tailored according to the specific 
requirements of the system to be implemented. JEDI includes 
two Java packages. Package pol imi . j edi contains all the 
classes needed to implement active objects. Package 
polimi. jedi.dispatcher, includes the classes that 
implement the event dispatcher. Figure 2 and Figure 3 de- 
scribe the UML logical design of the two packages. 

Each active object communicates with the event dispatcher 
through the methods offered by the interface Connection- 
TOED shown in Figure 2. This interface includes all the op- 
eration& needed to produce events, receive event notifica- 
tions, subscribe to and unsubscribe from events. The infra- 
structure provides two implementations for this interface, 
throughclasses RMIConnectionToED and SocketCon- 
nectionToED. The former uses RMI to connect to the 
event dispatcher (i.e., to implement the relationship con- 
nectedTo), while the latter uses standard TCP/IP sockets. 

JEDI provides an abstract class ReactiveOb j ect to im- 
plement reactive objects. Users may easily implement new 
reactive objects by creating subclasses of ReactiveOb- 
ject. These subclasses have to provide a suitable imple- 
mentation for the abstract method processMessage. 

Figure 3 illustrates the Java classes used to implement the 
event dispatcher (package polimi.jedi.dispat- 
cher) . The event dispatcher supports connections based 
both on RMI and on standard TCP/IP sockets. TCP/IP con- 
nections allow non-Java active objects to exploit the features 

263 



of the JEDI event dispatcher. Classes EventQueue and 
Register store the queue of events that have been received 
and not yet dispatched, and the received event subscriptions 
respectively. 

<<interface>> 
EventDispatcher 

Figure 2: Packagem polimi.jedi. 

) SocketBaredED/ i 

Figure 3: Dispatcher (package poiimi.jedi.dispatcher). 

3 OPSS: ORCHESTRA PSS 
ORCHESTRA is a multimedia, distributed infrastructure 
offering a range of advanced telecommunication features [9]. 
In particular, it allows users to transparently access services 
from several types of terminals. It also supports nomadism: 
users can access the ORCHESTRA environment without 
being constrained by their physical location. Moreover, 
services can be distributed/replicated across the network, 
depending on load balancing needs. OPSS has been con- 
ceived to support the design and operation of business serv- 
ices on top of the ORCHESTRA infrastructure. To address 
these requirements we decided to exploit the JEDI event- 
based approach. In this section we present the main charac- 
teristics of OPSS and how it has been implemented on top of 
JEDI. 

3.1 The Architecture of OPSS 
OPSS main components are a set of czgerzrs and a Srare 

Server (see Figure 4). 

3.1.1 Agents 
Agents are autonomous entities able to receive an acrivirj 
descriprion (i.e., a process model fragment) and execute it. 
Activities are specified in any language that can be under- 
stood by the agents that execute them. Agents can be dy- 
namically instantiated during the execution of the process. 
We use event distribution as the key mechanism to support 
agent interoperation. Events can be used to notify a variety of 
situations, e.g., the start up and the termination of an activity 
or the creation of a new artifact. The exploitation of the event 
mechanism makes it possible to achieve two important re- 
sults. First, agents can be dynamically and seamlessly 
plugged in and out of OPSS. In particular, the creation or 
removal of agents does not affect (at least directly) other 
agents. Second, event notification defines a standard interop- 
eration mechanism that is independent of the language inter- 
preted by the agents. 

I I 

Event DisDatcher 

Figure 4: The ORCHESTRA Process Support System. 

OPSS offers three kinds of agents: external tools, software 
agents, and human agents. External tools are (possibly off- 
the-shelf) components that execute business-specific activi- 
ties (e.g., a configuration management tool). The activity 
description for an external tool is just the set of information 
needed to launch the tool (e.g., the initial parameters). Exter- 
nal tools can be either OPSS-dedicated or off-the-shelf tools. 
The latter have to be interfaced with OPSS through a gate- 
way. JEDI class ConnectionToED supports the program- 
mer in the implementation of tools and gateways. Sofhvare 
agents are general-purpose interpreters of automated activi- 
ties. In the current implementation of OPSS, activity de- 
scriptions for software agents are coded in Java. They are 
defined as sub-classes of React iveOb j ec t. Human 
agents are people executing creative, human-specific activi- 
ties (e.g., a customer service operator). Human agents are 
supported by an Agenda that show their assignments and 
responsibilities in the process. Agenda has been explicitly 
developed for OPSS and uses RMIConnectionToED 
services to send and receive event notifications. 

3.1.2 Stare Server 
The State Server is in charge of coordinating agents by of- 
fering a logically centralized view of the state ofrhe process. 
The state of the process is defined by the entities shown in 
Figure 5. Each entity has associated a set of possible states 
that define its behavior: 

264 



AgentInfo. This class is used to store information on 
process agents. The modeled agents’ states are Avail- 
able and NotAvailable. In the first state the agent 
can be requested to execute an activity. 

ActivityInfo. This class is used to maintain infor- 
mation on the activities of the process. An activity can 
be in one of the following states: Defined, As- 
signed. OnGoing, Suspended. Terminated, 
Aborted. These states will be presented more in detail 
later on. 

Artifact Inf o. This class defines the information 
concerning the outcomes of the process. The possible 
states are Created, OnEdit, Edited, and De- 
stroyed. 

ResourceInfo. This class contains data on the tools 
that can be invoked or used by OPSS (e.g., the executa- 
ble code of the Java interpreter or of an external tool, 
devices such as a printer or an audio device). The possi- 
blestatesare Available and NotAvailable. 

These entities are subclasses of ProcessElement (see 
Figure 5). In turn, ProcessElement is a subclass of Re- 
activeobj ect. As a consequence, each instance of these 
subclasses has an autonomous thread of execution that reacts 
to JEDI events. 

Figure 5: StateServer structure. 

Each entity reacts to events according to a finite state ma- 
chine, defined at the class level, called life cycle. It defines 
the set of admissible transitions between states. A transition 
is defined by a triple: triggering event, condition, and action. 
With this respect, transitions are similar to ECA rules in ac- 
tive databases [6]. When an entity receives an event notifica- 
tion Et in state Sl, all the transitions having Sl as initial state 
and Ei as triggering event are evaluated for firing. One of the 
transitions whose condition evaluates to true is non- 
deterministically fired. The firing of the transition causes the 

execution of the action part and moves the instance to the 
final state. The execution of the action part of a state transi- 
tion can produce new events that may intluence the execu- 
tion of activity descriptions and the state of other objects in 
the State Server. 

( Terminated ) L( Aborted ) 

Figure 6: The Activity life cycle. 

As an example, Figure 6 shows the life cycle associated with 
class ActivityInf o. When an object of this class is cre- 
ated, it is in state Defined. In this state the object is char- 
acterized by a unique identifier and by an activity descrip- 
tion. From state Defined the object can move to state As- 
signed when the corresponding activity description has 
been assigned to an agent for execution (i.e., event Assig- 
nAgent(activityID, agentID) is received). The 
transition can only be executed if the instance of class 
AgentInfo that corresponds to the selected agent (agen- 
tID) is in state Available. Upon transition execution, the 
ActivityInf o instance moves into state Assigned, the 
AgentInfo instance moves into state NotAvailable, 
and the event AgentAssigned(activityID, agen- 
tID) is produced. Agendas usually subscribe to these types 
of events to provide human agents with information about 
their assignments. When the ActivityInf o instance re- 
ceives event StartActivity(activityID), it moves 
from state Assigned to state OnGoing, provided that all 
the activities preceding activity activityID have been 
terminated. When executing the action part of this transition, 
the Activi tyInf o instance produces the event Activ- 
ityStarted(activityID, AD-URL). This event is 
subscribed by the agent assigned to activity activityID 
or, if she is a human agent, by her Agenda, and triggers the 
execution of the activity. Parameter AD-URL contains the 
location of the activity description to be executed. 

The State Server main class is StateServerRMI-Impl. 
It defines the inherited method processMessage to react 

265 



to events like: login of users and creation of new activities, 
artifacts. or resources. The dynamic behavior of the State 
Server is very simple: it subscribes to and waits for the above 
events. When one of such events occurs (e.g., a new activity 
needs to be started), the State Server creates an object able to 
describe the state of the corresponding entity in the process 
(i.e., the new activity) and to keep track of its evolution. 
Therefore, at any time. the information stored in the State 
Server mirror the state of the process being executed. 

Beside this event-based interface, the State Server exports a 
set of services through which any Java component can query 
the state of the running process (i.e., of the instances of these 
subclasses). These services constitute a synchronous interac- 
tion mechanism that is not directly supported by JEDI. The 
motivation of this choice is discussed later on in Section 
“Evaluation”. 

4 EVALUATION 
The development of OPSS has demonstrated that the main 
advantage of the event-based paradigm supported by JEDI is 
the easy re-contigurability of the system. For instance, we 
have recently integrated a process monitor in OPSS without 
affecting the behavior of the other parts of the system. The 
process monitor simply subscribes to the events that repre- 
sent a change of the process state and visualizes it accord- 
ingly. However, our experience has also identified some 
problems and open issues, as we will briefly discuss hereaf- 
ter. 

4.1 Synchronous vs. asynchronous communication 
In JEDI, active objects communicate using a pure event- 
based style. Namely, the only mean for an active object to 
send (receive) an information is to generate (receive) an 
event. Events are sent and received in an asynchronous way. 
We have noticed that in many situations an active object, 
after generating an event, needs some response from the re- 
cipient(s) of the event in order to perform the next operation. 
For instance, consider the case in which an agent needs to 
notify the State Server that a new activity has to be created 
and that this activity has to be assigned to a certain agent. 
The agent executes the following code fragment: 

sendEvent("DefineActivity(ActID,ActTyPe)"); 
sendEvent("AssignAgent(ActID,AgentID) "); 

The execution of this code might be erroneous because of 
possible race conditions. For instance, the State Server, that 
reacts to event Def ineActivi ty, might be unable to cre- 
ate the corresponding ActivityInf o object before the 
event ~ssign~gent has been produced. As a result, this 
last event would be lost since the ActivityInfo object 
would be late in subscribing to it. In this case the State 
Server would not be able to properly keep track of the agent 
assignment. 

To avoid this situation, it is convenient that the agent re- 
ceives the confirmation of the creation of the Activity- 

Info object before generating the next event. In JEDI, this 
behavior can be obtained by programming the event recipient 
to produce an event that acts as a “response” to the initial 
event. This way, the source of the initial event can explicitly 

subscribe to this event and wait for the event occurrence be- 
fore producing the AssignAgent event. This solution is 
quite cumbersome and expensive. since it requires the ex- 
change of a high number of messages between the event 
source, the recipient(s). and the event dispatcher. 

An alternative solution would be to explicitly define in JEDI 
the concept of “return value”, from the event recipient(s) 
back to the agent that has generated the event. and to provide 
the programmers with mechanisms to easily manage these 
values. In particular, we are introducing an additional syn- 
chronous operation for event generation that requires a “re- 
turn value” from the recipient(s) of the event. The execution 
of this operation allows an active object to send an event to 
the dispatcher and wait until some information is returned 
from the event recipient(s) or, if no object is interested in the 
event, from the event dispatcher. When the event has multi- 
ple recipients, several policies can be envisaged to manage 
the return values. For instance, the source can wait for the 
first return value, or it can wait until all the recipients have 
provided a response. In this latter case the event dispatcher 
should inform the source of the number of return values that 
it should receive. 

Notice that this additional synchronous mechanism still pre- 
serves the anonymity of the recipient(s) of the event, since 
the exchange of return value can be still managed by the 
event dispatcher. More in general, it preserves the basic se- 
mantics of events (multicast dispatching, and anonymity of 
both source and recipients), still introducing a significant 
amount of flexibility and optimization in the management of 
complex agent interaction patterns. 

4.2 Event granularity 
We have experienced a significant problem in identifying the 
events to be exchanged among agents. If the granularity of 
events is very low, many events have to be generated, since 
each of them has a poor or limited meaning. This choice 
might significantly complicate the programming activity, 
reduce the performance of the system, and make it difficult 
to test and monitor the system. On the other side, a too 
course-grained definition of events might hide inside agents 
significant operations that must be made visible to the rest of 
the system. For instance, consider the example presented in 
the previous section. In that case, the events CreateAc- 
tivity and AssignAgent (that gave us several synchro- 
nization troubles) could have been replaced by a unique 
event carrying the information about both the creation of the 
activity and its assignment to the specified agent. This design 
choice reduces the number of exchanged events but modifies 
the semantics of activities: any activity can be created Only if 
a proper executing agent has been already selected. 

266 



There is no universal solution to this problem. It is the de- 
signer’s responsibility to evaluate the trade-off and select the 
most suitable solution, based on the constraints and require- 
ments of the problem being addressed. 

4.3 Client server vs. event-based design paradigms 

The main problem a programmer encounters using a pure 
event-based approach is that the programming philosophy 
differs from the traditional client-server approach that she is 
used to. In a client-server approach interaction between com- 
ponents occurs when one component is not able to perform 
some operation and asks the other one to do it on its behalf. 
In an event-based approach, components are autonomous 
entities that inform the “external world” of the main changes 
occurred in their internal state or in the state of the compo- 
nents and devices they can observe. The notification of an 
event is seen by a component as an external stimulus that can 
determine a change in its internal state. Thus, collaboration 
among components is indirect. 

Based on this consideration, a main step in understanding 
both architectural paradigms should be the identification of 
the classes of systems that better suit each approach. Since 
they address different requirements, we might discover that 
event-based and client-server approaches are not alternative. 
Instead, they can be profitably integrated even in the same 
system. In OPSS we have tried to use the event-based ap- 
proach to guarantee autonomy of process agents and re- 
configuration of the system. Moreover, we exploited the cli- 
ent-server approach to query the global state of the process 
maintained by the State Server. We are aware, however, that 
a more systematic study is needed. 

4.4 Open issues: network-wide ,event distribution and 
mobility 

The development of OPSS has emphasized the need for 
powerful and efficient mechanisms to support the notifica- 
tion and distribution of events on a network-wide scale (e.g., 
on the Internet). The event-based infrastructure must guar- 
antee that the services implemented on top of it are made 
available to users dispersed over the Internet. The hierarchi- 
cal ED we implemented may represent an initial solution to 
the problem. However, there are still a number of issues to be 
addressed. In particular, a distributed ED provides an overall 
performance improvement only if the number of messages 
exchanged for each delivered event across the ED compo- 
nents is “reasonable”. According to our current experience, 
several aspects have an impact on this issue, such as the to- 
pology of the connections of ED components, and the ex- 
pressive power provided by the subscription mechanism. 
Colleagues at the University of Colorado at Boulder and UC 
Irvine are addressing this issue by defining and assessing 
new architectures for distributed EDS. 

We argue that mobility of reactive objects as it is supported 
by JEDI represents a powerful mechanism for implementing 
sophisticated applications. However, it may introduce several 

problems when combined with ED distribution. The ED has 
to provide specific mechanisms to guarantee that moving 
objects do not receive duplicated events and that the original 
ordering of events is respected. We provided a specific solu- 
tion for our hierarchical ED, but the impact of this issue on 
alternative ED architectures is still to be understood. Finally, 
we still lack an extensive experimentation of this mechanism 
since it was not exploited in the OPSS implementation. 

5 RELATED WORK 
This section surveys event-based infrastructures and com- 
pares them with JEDI. Also, it shows the impact that the 
adoption of an event-based approach had on OPSS, by com- 
paring our system with similar state-of-the-art PSSs. 

5.1 Event-based infrastructures and frameworks 
In the past years there has been a growing interest in distrib- 
uted software architectures capable of easily supporting dy- 
namic system reconfiguration. The event-based paradigm 
provides a very promising solution to the problem. It breaks 
the tight connection between clients and servers, eliminating 
the need for clients to know the identity of servers. Several 
examples of event-based systems may be found in literature. 
They differ in the structure of the events that can be dis- 
patched, the way events are observed, the mechanisms for 
event subscription, and their overall run-time architecture 
(see [ 131 for a detailed characterization of these aspects). In 
general, the products and approaches we mention in this sec- 
tion do not support the mobility of the software components 
exchanging events. 

Multicast RPC [3, 18, 191 (also known as group RPC) allows 
a client to invoke a service on a group of servers which ex- 
ports the same interface. Servers “register” to a class of mes- 
sages (service requests) by joining a group and by exporting 
the common interface defined for the group. This is quite 
different from the approach taken by JEDI. In JEDI event 
consumers use a more powerful declarative approach to 
“register” to a class of messages and they do not need to ex- 
port any common interface. Moreover, multicast RPC is a 
synchronous communication mechanism in which an answer 
is required, while JEDI implements an asynchronous com- 
munication mechanism without answer. From this viewpoint, 
multicast RPC is complementary to the JEDI approach, and 
could be similar to the synchronous mechanism we advo- 
cated in Section Evaluation. 

Linda [5] is the precursor of a generation of languages aim- 
ing at describing and supporting cooperative computations. 
The basic idea is that different autonomous computations can 
cooperate by reading and writing information through a 
shared repository (or space) of information tuples. Each 
Linda program can read a tuple from the repository on the 
basis of its contents, using a pattern matching mechanism. A 
read operation does not remove the tuple from the repository. 
Linda offers also a cotwutne operation that reads the tuple 
and remove it from repository. There are several differencies 



between Linda and JEDI (and. in general. the event-based 
paradigm). First. JEDI makes it possible to “declare”, 
through the .suLwcrihe operation, the class of events which an 
application is interested in. As a consequence, the application 
will receive ail the events that conform with the .&scribe 
declaration. It does not need to explicitly request them fur- 
ther. Events are distributed by the ED to the application as 
they are produced and asynchronously with respect to the 
main control tlow of the application. Conversely, in Linda 
each reml/cotwme operation is independent of each other 
and is synchronously executed by the Linda program. Sec- 
ond. JEDI (as any other true event-based approach) guaran- 
tees that all the parties that have declared their interest in an 
event will eventually receive it. This is enforced by the JEDI 
run-time support based on subscription requests. In Linda the 
only way to achieve a similar effect is to work at the applica- 
tion level. For instance, before removing the tuple, a Linda 
program might check for some global information to be sure 
that all the other interested parties have already read it. An- 
other possibility is that each event producer writes multiple 
copies of a tuple, one for each interested party. This means 
that the producer must know the number of interested parties. 
In both cases, the correctness of the event distribution se- 
mantics is left to the programmer’s responsibility. 

Event-based systems can be considered as an evolution of a 
well-established class of products often called MOMS (Mes- 
sage-oriented Middleware) [I I]. In MOMS, explicit message 
queues are used to distribute messages. They guarantee de- 
livery of messages and location transparency. In several 
MOMS, there can be multiple consumers for the same mes- 
sage queue. A queue is therefore similar to a Linda tuple 
space. We argue that MOMS exhibit the same problem of 
Linda. In fact, even if a MOM made’it possible to just “read” 
a message from the queue without removing it, this would be 
a decision left to the consumer. It can’t be guaranteed that the 
event is delivered to all the interested parties. 

Tooltalk 1141 is a product derived from FIELD [ 121 that was 
originally conceived to support tool integration in software 
engineering environment through a message exchange facil- 
ity. Tools can subscribe to events, send events, and receive 
the events they have subscribed to. Events in Tooltalk can 
either be asynchronous or synchronous (they are called noti- 
fications and requests respectively). In the latter case, the 
recipients are supposed to provide the source with a return 
value. This approach is similar to the one we are developing 
for JEDI (see Section Synchronous vs. asynchronous com- 
munication). The publish/subscribe semantics implemented 
by ToolTalk is typically oriented to support tool integration 
in a CASE environment and is insufficient in other applica- 
tion domain. In particular, Tooltalk offers two event visibility 
levels: session and file. A session is defined as the set of all 
tools served by the same Tooltalk server. Usually, each user 
launches one or more Tooltalk servers, each of them control- 
ling a separate group of tools. A program can subscribe to all 
the messages belonging to a session and/or related to a file. 

This mechanism makes it impossible a wide application of 
the approach. For instance, it is not possible to develop a 
monitor tool that subscribes to the events related to all files. 

The CORBA event service [IO] defines two roles for system 
components: event supplier and event cot~sumer. They are 
described by two different IDL interfaces that provide meth- 
ods to exchange events between event suppliers and consum- 
ers. The structure of a CORBA event is hidden to the event 
service. Events are distributed from suppliers to consumers 
through event channels. An event channel allows multiple 
suppliers to communicate with multiple consumers asyn- 
chronously. An event-based system may include several 
event channels. A component of the system (either supplier 
or consumer) may be connected to several event channels. 

The CORBA event service differs from JEDI significantly. 
A CORBA event is distributed on the basis of just one (im- 
plicit) attribute: the name of the event channel where the 
event was originally posted. The event will be dispatched to 
all the consumers attached to that channel. The contents of 
the event is “not visible” to the event channel, and is not used 
to manage the distribution of the event. Conversely, a JEDI 
event is composed of a set of attributes. Producers do not see 
different channels. They simple post these structured events 
to the ED. Consumers can flexibly subscribe with a single 
“declarative” operation to a class of events that is dynami- 
cally defined using event patterns. Consequently, the expres- 
sive power of JEDI is higher than CORBA. CORBA event 
channels can be easily simulated using JEDI event names, 
while it is quite cumbersome and inefficient to simulate JEDI 
patterns in CORBA. It is indeed necessary to write a specific 
code that in general will need to poll different CORBA event 
channels. In general, if the JEDI pattern includes a selection 
criterion that involves event attributes other than the event 
name, the equivalent CORBA consumer must be “pro- 
grammed” to perform the selection of desired events based 
on the analysis of the event contents. This means that while 
the JEDI ED can avoid dispatching events that do not match 
the selection criterion, the equivalent CORBA consumer re- 
ceives and discards a number of undesired events, with an 
increase of the event traffic. 

TIBCO is an infrastructure for creating and maintaining large 
distributed and event-based applications [ 171. It has been 
used over the past years to integrate financial and banking 
applications (especially, trading services for financial mar- 
kets). It offers several interesting features including reliable 
and scalable distribution of events. It exploits a three-level 
hierarchical event dispatcher. From the available documenta- 
tion it seems that TIBCO offers an event structure that is 
similar to the one offered by CORBA, i.e., a labeling mecha- 
nism to assign names to events. Therefore it seems it lacks 
the ability of defining event patterns as in JEDI. 

C2 is an event-based architectural style that has been de- 
signed to support the development of GUI software [ 161. In 
C2 multiple software components can communicate through 

268 



connectors that manage the routing and broadcasting of 
events. Components and connectors form a DAG (Direct 
Acyclic Graph). In this DAG, each component can commu- 
nicate only with the two connectors “below” or “above” it. 
Events are classified as notifications and requests, depending 
on the fact that they travel down or up in the DAG, respec- 
tively. There are several differences between C2 and JEDI. In 
C2 the component developer does not have any event defini- 
tion and generation primitive. Actually, C2 notifications are 
messages automatically sent out by the C2 run-time support 
to notify the execution of a component method invocation. It 
is not possible for the component developer to define and 
generate events with a different semantics. Moreover, C2 
requests (i.e.. synchronous communications) are not anony- 
mous and are not multicasted. In JEDI, we do propose the 
introduction of a synchronous mechanism (the return re- 
ceipt), but we preserve the anonymity of senders and receiv- 
ers and the possibility of multicasting the event. 

Yeast main component is a centralized server that observes 
event sequences and reacts to their occurrence according to 
some action specification [8]. Users can add new event- 
action specifications while Yeast is running. Events can be 
either operating system events (e.g., file changes) or mes- 
sages produced by the components of the system. Events can 
be combined in a sequence using some logical and temporal 
operators. Actions can include any command that can be 
executed by the computer command interpreter. Yeast and 
JEDI are quite different and complementary. The former 
does not offer any event dispatching functionality, but pro- 
vides sophisticated mechanisms for defining, observing event 
sequences, and reacting to their occurrence. Thus, Yeast 
functionality can be easily implemented on top of JEDI as a 
proper active object. 

5.2 PSSS 
It is worthwhile to compare OPSS with the state-of the-art in 
PSSs. to better appreciate the impact that the adoption of 
JEDI has had on its development and on its range of features 
and functionalities. 

A first relevant system is ProcessWall [?‘I. It is a process 
state server providing storage for process state, and opera- 
tions for defining and manipulating the structure of the state. 
The applications that actually execute the process operate as 
ProcessWall clients. They execute the process activities and 
invoke the ProcessWall operations to modify the state of the 
process in order to reflect the result of their processing. An 
event dispatching system is used to notify the interested cli- 
ents of changes occurred in the state of the process. Proc- 
essWall is similar to the OPSS State Server. The main differ- 
ence is that ProcessWall uses the event-based communica- 
tion model only to notify state changes to its clients. The 
clients communicate with ProcessWall via RPC. Conversely, 
the OPSS State Server supports both RPC and event-based 
interaction. 

Another PSS that presents characteristics similar to OPSS is 
Endevours [4J. It has been developed to support distribution 
of process execution, lightweight installation and re- 
configuration, and easy integration of components executing 
process fragments with tools and hyperwebs of artifacts. Its 
architecture is composed of three main levels: the user level, 
that is in charge of managing the interaction with users, the 
system level that defines the main process abstractions (e.g., 
activities, artifacts, . ..). and the fimzdutiorz level that man- 
ages object persistency and distribution. Both Endevours and 
OPSS provide a decentralized execution of processes, i.e., 
they exploit multiple process engines. The main difference is 
that Endevours does ,not rely on the event-based approach to 
coordinate the interaction of different engines: they interact 
by sharing the artifacts and information stored in a passive 
repository. 

The definition of the information stored in the OPSS State 
Server has been inspired by the work presented in [ 11. In that 
paper a CORBA-based PSS is described. It is connected to 
other tools through the CORBA ORB. The PSS manages 
activities, artifacts, resources, and agents. They are associ- 
ated with a life cycle. A state transition defined in the life 
cycle of an object is executed if the corresponding event oc- 
curs. From the available publications, we have been unable 
to understand the mechanisms used at run-time to manage 
event creation and notification. Therefore, it has been impos- 
sible to carry out a detailed comparison of the architectures 
of the two approaches. 

6 CONCLUSION 
In this paper we have illustrated the main features of JEDI, 
an event-based infrastructure for the development of complex 
distributed systems. JEDI exploits the notion of event and 
standard Internet technology to provide the software devel- 
oper with a programming framework where multiple active 
objects cooperate by generating and consuming events. JEDI 
has been used to implement a significant example of distrib- 
uted system, namely the OPSS Process Support System. 
JEDI offers a simple set of mechanisms to create multiple 
active objects that interoperate by exchanging events. The 
entire architecture is based on very simple and orthogonal 
concepts. Events are asynchronously distributed to subscrib- 
ers. All the operations related to event subscription and event 
notification are managed in a highly dynamic and flexible 
way. OPSS is a significant example of distributed system 
whose development has greatly benefited from the availabil- 
ity of an event-based infrastructure. By exploiting JEDI fea- 
tures, OPSS can offer an extremely tlexible and dynamically 
changeable support for workflow management. 

The main lessons we have learned from the work described 
in this paper indicate that the event-based approach certainly 
offers significant advantages over traditional RPC and con- 
ventional message-based communication techniques. These 
advantages are also demonstrated by the growing interest in 
this technology that has been demonstrated by both academia 



and industry. Nevertheless, a number of technological issues 
concerning event-based architectures have to be explored. In 
this respect, we argue that the most critical issue to be ad- 
dressed is the identification of appropriate design and im- 
plementation strategies that make it possible to integrate dif- 
ferent (and sometime conflicting) features such as Internet- 
wide scalability. enhanced event model (e.g., object- 
oriented), synchronous and asynchronous event handling 
mechanisms. event filtering. Moreover, we still miss effec- 
tive methodological guidelines to guide and support the de- 
sign of event-based systems. We plan to further investigate 
these issues since they are critical impediments to the effec- 
tive exploitation of the event-based architectural style. 
ACKNOWLEDGEMENTS 

Authors wishes to thank Antonio Carzaniga, Carlo Ghezzi, 
Dennis Heimbigner, David Rosemblum, and Alex Wolf for 
their important contribution to the accomplishment of the 
work described in this paper. They wish also to thank S. 
Beretta, C. Colombo, S. Montaruli, S. Sargenti, and F. 
Vadalh who provided an essential support in the development 
and implementation of JEDI and OPSS. 

OPSS development has been funded by Telecom Italia under 
a contract managed by Armando Limongiello. The views and 
the conclusions contained in this document are those of the 
authors and should not be interpreted as representing the of- 
ficial policies, either expressed or implied, of Telecom Italia. 

REFERENCES 

I. K. Alho. C. Lassenius, and RSulonen, “Process Enact- 
ment Support in a Distributed Environment”, WET ICE 
‘95, IEEE Fourth Workshop on Enabling Technologies: 
Infrastructure for Collaborative Enterprises, Berkeley 
Springs, West Virginia. April 20-22, 1995. 

2. V. Ambriola, R. Conradi. and A. Fuggetta. “Assessing 
Process-Centered Environments”, ACM Transactions on 
Software Engineering and Methodology, vol. 6, no. 3, 
July 1997. 

3. K. P. Birman and T. A. Joseph, “Reliable Communica- 
tion in Presence of Failures”, ACM Transactions on 
Compltrer Systems, 5(l), February 1987. 

4. G.A. Bolter and R.N. Taylor, “Endevours: A Process 
System Integration Infrastructure”, IRUS Conference on 
Software Process Improvement, Practice and Experi- 
ence, January 24, 1997, Irvine, CA. 

5. N. Carrier0 and D. Gelernter, “Linda in Context”, Com- 
munication of ACM, 32,4, April 1989. 

6. P. Fraternali and L. Tanca, “A structured approach for 
the definition of the semantics of the active databases, 
ACM Trcmscxtions on Database Systems, 1995. 

7. D. Heimbigner, “The ProcessWall: A Process Server 
Approach to Process Programming”, Fifth 

ACM/SIGSOFT Conference on Software Development 
Environments, 9- I I December 1992, Washington, D.C. 

8. B. Krishnamurthy and D.S. Rosemblum, “Yeast: A Gen- 
eral Purpose Event-Action System”, IEEE Transactions 
on Software Engineering, vol. 21, no. IO, October 1995. 

9. A. Limongiello, R. Melen, M. Roccuzzo, V. Trecordi, J. 
Wojtowicz, “An Experimental Open Architecture to 
Support Multimedia Services Based on CORBA, Java 
and WWW Technologies”, IS&N ‘97, Cernobbio 
(Como), Italy, 27-29 May 1997. 

10. Object Management Group, “CORBAservices: Common 
Object Services Specification”, July 1997, 
ftr,://ftr,.om,o.org/~ub/docs/formal/97-07-04.pdf 

I I. OVUM, “OVUM Evaluates: Middlewure”, OVUM Ltd, 
1996. 

12. S.P. Reiss, “Connecting Tools Using Message Passing in 
the Field Environment”, IEEE Software, July 1990. 

13. D.S. Rosenblum and A.L. Wolf, “A Design Framework 
for Internet-Scale Event Observation and Notification”, 
6th European Software Engineering Conference (Joint 
with SIGSOFT ‘98, Foundations of Software Engineer- 
ing), Zurich, Switzerland, September 1997, to appear. 

4. Sun Microsystems, “Integrating applications with the 
SPARCworks 3.0. I toolset. 
htt~://www.sun.com/software/Products/Developer- 
products/literature/int tool/meface.html 

5. Sun Microsystems, “Java Remote Method Invocation 
Specification”, February 10, 1997, 
ft&/ftD.iavasoft.com/docs/idk I. l/rmi-soec.pdf 

16. R.N. Taylor, N. Medvidovic, K.M. Anderson, 
E.J.Whitehead Jr., J.E. Robbins, K.A. Nies, P. Oreizy, 
and D.L. Dubrow. A component-based architectural 
style for GUI software, IEEE Transactions on Software 
Engineering, vol. 22, no. 6, June 1996. 

17. TIBCO Enterprise Toolkit White 
http://www.tibco.com/products/etkwhite.hml 

Paper. 

18. K. S. Yap, P. Tripathi, and S. Tripathi, “Fault Tolerant 
Remote Procedure Call”. Proceedings of 8”’ Interna- 
tional Conference on Distributed Computing System, 
June 1988. 

19. X. Wang, H. Zhao, and J. Zhu, “GRPC: A Communica- 
tion Cooperation Mechanism in Distributed Systems”, 
ACM Operating System Review, 27(3), 1993. 

270 


