
Authentication in Distributed Systems:
Theory and Practice

BUTLER LAMPSON, MARTiN ABADI, MICHAEL BURROWS,

and EDWARD WOBBER

Digital Equipment Corporation

We describe a theory of authentication and a system that implements it. Our theory is based on

the notion of principal and a ‘speaks for’ relation between principals. A simple principal either

has a name or is a communication channel; a compound principal can express an adopted role or

delegated authority. The theory shows how to reason about a principal’s authority by deducing

the other principals that it can speak for; authenticating a channel is one important application.

We use the theory to explain many existing and proposed security mechanisms. In particular, we

describe the system we have built. It passes principals efficiently as arguments or results of re-

mote procedure calls, and it handles public and shared key encryption, name lookup in a large

name space, groups of principals, program loading, delegation, access control, and revocation.

Categories and Subject Descriptors: C.2.4 [Computer-Communication Networks]: General—

Security and Protection, Distributed Systems; D.4.6 [Operating Systems]: Security and Protec-

tion—access controls, authentication, cryptographic controls; K.6.5 ~anagement of Comput-

ing and Information Systems]: Security and Protection—authen tics tzon; E.3 [Data]: Data

Encryption

General Terms: Security, Theory, Verification

Additional Key Words and Phrases: Certification authority, delegation, group, interprocess com-

munication, key distribution, loading programs, path name, principal, role, secure channel,

speaks for, trusted computing base

1. INTRODUCTION

Most computer security uses the access control model [161, which provides a

basis for secrecy and integrity security policies. Figure 1 shows the elements

of this model:

—Principals: sources for requests.

—Requests to perform operations on objects.

A preliminary version of this paper appeared in the Proceedings of the Thirteenth ACM Sympos-

ium on Operating Systems Principles.

Authors’ address: Digital Equipment Corp., Systems Research Center, 130 Lytton Ave, Palo Alto,

CA 94301. Internet address: lampson@src.dec. corn.

Permission to copy without fee all of part of this material is granted provided that the copies are

not made or distributed for direct commercial advantage, the ACM copyright notice and the title

of the publication and its date appear, and notice is given that copying is by permission of the

Association for Computing Machinery. To copy otherwise, or to republish, requires a fee and/or

specific permission.

01992 ACM 0734-2071/92/1100-0265 $01.50

ACM Transactions on Computer Systems, Vol. 10, No. 4, November 1992, Pages 265-310.



266 . B. Lampson, M. Abadi, M. Burrows, and E Wobber

I I

Resource

Fig. 1. The access control model

—A reference monitor: a guard for each object that examines each request

for the object and decides whether to grant it.

—Objects: resources such as files, devices, or processes.

The reference monitor bases its decision on the principal making the request,

the operation in the request, and an access rule that controls which principals

may perform that operation on the object.1

To do its work the monitor needs a trustworthy way to know both the source

of the request and the access rule. Obtaining the source of the request is

called ‘authentication’; interpreting the access rule is called ‘authorization’.

Thus authentication answers the question “Who said this?”, and authoriza-

tion answers the question “Who is trusted to access this?”. Usually the access

rule is attached to the object; such a rule is called an access control list or

ACL. For each operation the ACL specifies a set of authorized principals, and

the monitor grants a request if its principal is trusted at least as much as

some principal that is authorized to do the operation in the request.

A request arrives on some channel, such as a wire from a terminal, a net-

work connection, a pipe, a kernel call from a user process, or the successful

decryption of an encrypted message. The monitor must deduce the principal

responsible for the request from the channel it arrives on, that is, it must

authenticate the channel. This is easy in a centralized system because the op-

erating system implements all the channels and knows the principal respon-

sible for each process. In a distributed system several things make it harder:

Autonomy: The path to the object from the principal ultimately responsi-

ble for the request may be long and may involve several machines that are

not equally trusted. We might want the authentication to take account of

this, say by reporting the principal as “Abadi working through a remote

machine” rather than simply “Abadi”.

Size: The system may be much larger than a centralized one, and there
may be multiple sources of authority for such tasks as registering users.

Heterogeneity: The system may have different kinds of channels that are

secured in different ways. Some examples are encrypted messages, physi-

1 The access control model is less useful for availability, which is not considered in this paper.

Information flow [8] is an alternative model which is also not considered, so we have nothing to

say about mandatory security policies that can enforce nondisclosure of secrets.

ACM TransactIons on Computer Systems, Vol. 10, No 4, November 1992.



Authentication in Distributed Systems: Theory and Practice . 267

Accounting ~ NFS Server

?,

application
request

Operating Operating
system system

Workstation ~+ Server

keyb:oa;ll$play network
channel

Fig. 2. A request from a complex source.

tally secure wires, and interprocess communication

system.

done by the operating

Fault-tolerance: Some parts of the system maybe broken, off line, or oth-

erwise inaccessible, but the system is still expected to provide as much

service as possible. This is more complicated than a system which is either

working or completely broken.

This paper describes both a theory of authentication in distributed systems
and a practical system based on the theory. It also uses the theory to explain

several other security mechanisms, both existing and proposed. What is the

theory good for? In any security system there are assumptions about author-

ity and trust. The theory tells you how to state them precisely and what the
rules are for working out their consequences. Once YOU have done this, You

can look at the assumptions, rules, and consequences and decide whether you

like them. If so, you have a clear record of how you got to where you are. If

not, you can figure out what went wrong and change it.

We use the theory to analyze the security of everything in our system except

the channels based on encryption and the hardware and local operating

system cm each node; we assume these are trusted. of course we made many

design choices for reasons of performance or scaling that are outside the scope

of the theory; its j ob is to help us work out ‘&e implications for security.

We motivate our design throughout the paper with a practical example of a

request that has a complex source involving several different system compo-

nents. Figure 2 shows the example, in which a user logs in to a workstation

and runs a -protected subsystem that makes a request to an object imple-

rnen~ed by a server on a different machine. The server must decide whether to

grant the request. We can distinguish the user, two machines, two operating’

systems, two subsystems, and two channels, one between the user and the

workstation and one between the workstation and the server machine. We

shall see how to take account of all these components in granting access.

The next section introduces the major concepts that underlie this work and

gives a number of informal examples. In Section 3 we explain the theory that
is the basis of our system. Each of the later sections takes up one of the prob-

lems of distributed system security, presenting a general approach to the

ACM Transactions on Computer Systems, Vol. 10, No. 4, November 1992



268 . B, Lampson, M, Abadi, M Burrows, and E. Wobber

problem, a theoretical analysis, a description of how our system solves the

problem, and comments on the major alternatives known to us. Sections 4 and

5 describe two essential building blocks: secure channels and names for

principals. Section 6 deals with roles and program loading, and Section 7 with

delegation. Section 8 treats the mechanics of efficient secure interprocess

communication, and Section 9 sketches how access control uses authentica-

tion. A conclusion summarizes the new methods introduced in the paper, the

new explanations of old methods, and the state of our implementation.

2, CONCEPTS

Both the theory and the system get their power by abstracting from many

special cases to a few basic concepts: principal, statement, and channel;

trusted computing base; and caching. This section introduces these concepts

informally and gives a number of examples to bring out the generality of the

ideas. Later sections define the concepts precisely and treat them in detail.

If .s is a stu temen t (request, assertion, etc.) authentication answers the

question “Who said s?” with a principal. Thus principals make statements;

this is what they are for. Likewise, if o is an object authorization answers the

question “Who is trusted to access o? with a principal. We describe some dif-

ferent kinds of principals and then explain how they make statements.

Principals are either simple or compound. The simple ones in turn are

named principals or channels. The most basic named principals have no

structure that we care to analyze:

People Lamp Son, Abadi

Machines \7axSN12648, 4thFloorPrlnter

Roles Manager , Secletaryr lJFS– Server

Other principals with names stand for sets of principals:

Services SFK-NFS, X–server

Groups SRC , DEC-Employees.

Channels are principals that can say things directly:

Wires or I/O ports Terminal 14

Encrypted channels DES encryption with key #57 1897

Network addresses IP address 16.4.0.32.

A channel is the only kind of principal that can directly make statements to a

computer. There is no direct path, for example, from a person to a program;

communication must be over some channel, involving keystrokes, wires, ter-
minal ports, networks, etc. Of course some of these channels, such as the 1P

address, are not very secure.

There are also compound principals, built up out of other principals by op-

erators with suggestive names (whose exact meaning we explain later):

Principals in roles Abadl as Manager.

Delegations BurrowsWS for Burrows.

Conjunctions Lamp SOnA Wobber.

ACM TransactIons on Computer Systems, Vol 10, No. 4, November 1992



Authentication in Distributed Systems: Theory and Practice . 269

How do we know that a principal has made a statement? Our theory cannot

answer this question for a channel; we simply take such facts as assumptions,

though we discuss the basis for accepting them in Section 4. However, from

statements made by channels and facts about the ‘speaks for’ relation de-

scribed below, we can use our theory to deduce that a person, a machine, a

clelegation, or some other kind of principal made a statement.

Different kinds of channels make statements in different ways. A channel’s

statement may arrive on a wire from a terminal to serial port 14 of a com-

puter. It maybe obtained by successfully decrypting with DES key #57a897, or

@ verifying a digital signature on a file stored two weeks ago. It may be de-

livered by a network with a certain source address, or as the result of a kernel

call to the local operating system. Most of these channels are real-time, but

some are not.

Often several channels are produced by multiplexing a single one. For in-

stance, a network channel to the node with 1P address 16.4.0.32 may carry

IJDP channels to ports z, 7 b, and Aqs, or a channel implemented by a kernel

call trap from a user process may carry interprocess communication channels

to several other processes. Different kinds of multiplexing have much in

common, and we handle them all uniformly. The subchannels are no more

trustworthy than the main channel. Multiplexing can be repeated indefi-

nitely; for example, an interprocess channel may carry many subchannels to

various remote procedures.

Hierarchical names are closely connected to multiplexed channels: a single

name like /tom/dec/ src can give rise to many others (/com/dec/ src/burrows,

/tom/dec/src/abadi , . ..). Section 5.2 explores this connection.

There is a fundamental relation between principals that we call the ‘speaks

for’ relation: A speaks for B if the fact that principal A says something means

we can believe that principal B says the same thing. Thus the channel from a

terminal speaks for the user at that terminal, and we may want to say that

each member of a group speaks for the group. 2 Since only a channel can make

a statement directly, a principal can make a statement only by making it on

some channel that speaks for that principal.

We use ‘speaks for’ to formalize indirection; since any problem in computing

can be solved by adding another level of indirection,s there are many uses of
‘speaks for’ in our system. Often one principal has several others that speak

for it: a person or machine and its encryption keys or names (which can

change), a single long-term key and many short-term ones, the authority of a

job position and the various people that may hold it at different times, an or-

ganization or other group of people and its changing membership. The same

idea lets a short name stand for a long one; this pays if it’s used often.

z Of course the notion of speaking for a group can have many other meanings. For instance,

speaking for the U.S. Congress requires the agreement of a majority of both houses obtained ac-

cording to well-defined procedures. We use only the simplest meaning in this paper every mem-

ber speaks for the group.

~ Roger Needham attributes this observation to David Wheeler of Cambridge University.

ACM Transactions on Computer Systems, Vol. 10, No. 4, November 1992.



270 . B, Lampson, M. Abadl, M. Burrows, and E, Wobber

Another important concept is the ‘trusted computing base’ or TCB [9], a

small amount of software and hardware that security depends on and that we

distinguish from a much larger amount that can misbehave without affecting

security. Gathering information to justify an access control decision may re-

quire searching databases and communicating with far-flung servers. Once

the information is gathered, however, a very simple algorithm can check that

it does justify granting access. With the right organization only the checking

algorithm and the relevant encryption mechanism and keys are included in

the TCB. Similarly, we can fetch a digitally signed message from an untrusted

place without any loss of confidence that the signer actually sent it originally;

thus the storage for the message and the channel on which it is transmitted

are not part of the TCB. These are examples of an end-to-end argument [24],

which is closely related to the idea of a TCB.

It’s not quite true that components outside the TCB can fail without affect-

ing security. Rather, the system should be ‘fail-secure’: if an untrusted com-

ponent fails, the system may deny access it should have granted, but it won’t

grant access it should have denied. Our system uses this idea when it invali-

dates caches, stores digitally signed certificates in untrusted places, or inter-

prets an ACL that denies access to specific principals.

Finally, we use caching to make frequent operations fast. A cache usually

needs a way of removing entries that become invalid. For example, when

caching the fact that key # 5~d897 speaks for Burrows we must know what to do

if the key is compromised. We might remember every cache that may hold

this information and notify them all when we discover the compromise. This

means extra work whenever a cache entry is made, and it fails if we can’t talk

to the cache.

The alternative, which we adopt, is to limit the lifetime of the cache entry

and refresh it from the source when it’s used after it has expired, or perhaps

when it’s about to expire. This approach requires a tradeoff between the fre-

quency (and therefore the cost) of refreshing and the time it takes for cached

information to expire.

Like any revocation method, refreshing requires the source to be available.

Unfortunately, it’s very hard to make a source of information that is both

highly secure and highly available. This conflict can be resolved by using two

sources in conjunction. One is highly secure and uses a long lifetime, the other

is highly available and uses a short lifetime; both must agree to make the

information valid. H’ the available source is compromised, the worst effect is to

delay revocation.

A cache can discard an entry at any time because a miss can always be
handled by reloading the cache from the original source. This means that we

don’t have to worry about deadlocks caused by a shortage of cache entries or

about tying up too much memory with entries that are not in active use.

3. THEORY

Our theory deals with principals and statements; all principals can do is to

say things, and statements are the things they say. Here we present the es-

ACM Transactions on Computer Systems, VO1. 10, No. 4. November 1992



Authentication In Distributed Systems: Theory and Prachce . 271

sentials of the theory, leaving a fuller description to another paper [2]. A

reader who knows the authentication logic of Burrows, Abadi, and Needham

[41will find some similarities here, but its scope is narrower and its treatment
of the matters within that scope correspondingly more detailed. For instance,

secrecy and timeliness are fundamental there; neither appears in our theory.

To help readers who dislike formulas, we highlight the main results by box-

ing them. These readers do need to learn the meanings of two symbols:

A + B (A speaks for B) and A IB (A quoting B); both are explained below.

3.1 Statements

Statements are defined inductively as follows:

—There are some primitive statements (for example, “read file foo”)?

—Ifs and s‘ are statements, then s A s‘ (s and s‘ ), s o s‘ (s implies s‘ ), and

s = s‘ (s is equivalent tos’ ) are statements.

—IfA is a principal ands is a statement, then A says s is a statement.

—If A and B are principals, then A ~ B (A speaks for B) is a statement.

Throughout the paper we write statements in a form intended to make their

meaning clear. When processed by a program or transmitted on a channel

they are encoded to save space or make it easier to manipulate them. It has

been customary to write them in a style closer to the encoded form than the

meaningful one. For example, a Needham-Schroeder authentication ticket

[19] is usually written {K.b, A}@. we write Kb~ says K.b * A instead, viewing
this as the abstract syntax of the statement and the various encodings as dif-

ferent concrete syntaxes. The choice of encoding does not affect the meaning

as long as it can be parsed unambiguously.

We write t-s to mean thats is an axiom of the theory or is provable from the

axioms (we mark an axiom by underlining its number) . Here are the axioms

for statements:

Ifs is an instance of a theorem of propositional logic then }s. u)

For instance, } s A s’ ns.

If&sand }sns’then}s’. (S2)

This is modus ponens, the basic rule for reasoning from premises to con-

clusions.

}(Asays sAAsays(sgs’))2 Asayss’. (!!33)
This is modus ponens for says instead of }.

If& s then t- A sayss for every principal. w)

It follows from (S1)–(S4) that says distributes over A:

}Asays(s As’) =(Asays s) A(Asays s’) (s5)

—-
J We want all statements to have truth values, and we give a truth value to an imperative

statement like “read file f 00” by interpreting it as “it would be a good thing to read file f 00”.

ACM Transactions on Computer Systems, Vol. 10, No. 4, November 1992.



272 . B. Lampson, M. Abadl, M Burrows, and E. Wobber

The intuitive meaning of+ A says s is not quite that A has uttered the

statement s, since in fact A may not be present and may never have seen s.

Rather it means that we can proceed as though A has uttereds.

Informally, we write that A makes the statement B says s when we mean

that A does something to make it possible for another principal to infer B

sayss. For example, A can make A says s by sendings on a channel known to

speak for A.

3.2 Principals

In our theory there is a set of principals; we gave many examples in Section 2.

The symbols A and B denote arbitrary principals, and usually C denotes a

channel. There are two basic operators on principals, A (and) and I (quoting).

The set of principals is closed under these operators. We can grasp their

meaning from the axioms that relate them to statements:

F (A AB) sayss=(A sayss) A (B sayss) (~)

(A A l?) says something if both A and B say it.

E (A ] 1?) sayss -A says B sayss) (P2)

A I B says something if A quotes B as saying it. This does not mean B ac-

tually said it: A could be mistaken or lying.

We also have equality between principals, with the usual axioms such as re-

flexivity. Naturally, equal principals say the same things:

}A=B>(A says s= Bsayss) (P3)

The A and [ operators satisfy certain equations:

} A is associative, commutative, and idempotent. (P4)

} I is associative. (M)

F / distributes over A in both arguments. (M)

Now we can define a, the ‘speaks for’ relation between principals, in terms of

A and =:

}(A+B)=(A=AAB) (P7)

and we get some desirable properties as theorems:

R(A~B)> ((Asayss)~(Bsayss) ) (P8)

This is the informal definition of ‘speaks for’ in Section 2.

}(A=B)= ((A> B) A(B=A)) (P9)

Equation (P7) is a strong definition of ‘speaks for’. It’s possible to have a

weaker, qualified version in which (P8) holds only for certain statements s.

For instance, we could have “speaks for reads” which applies only to state-

ments that request reading from a file, or “speaks for file foo” which applies

only to statements about file foo. Neuman discusses various applications of

ACM Transactions on Computer Systems, Vol. 10, No. 4. November 1992



Authentication in Distributed Systems: Theory and Practice . 273

this idea [201. Or we can use roles (see Section 6) to compensate for the

strength of+, for instance by sayingA ~ (B as reader) instead of A ~ B.

The operators A and + satisfy the usual laws of the propositional calculus.

In particular, A is monotonic with respect to ~. This means that if A + B

then A A C - B A C. It is also easy to show that I is monotonic in both argu-

ments and that - is transitive. These properties are critical because C a A is

what authenticates that a channel C speaks for a principal A or that C is a

member of the group A. If we have requests &b~d~ says “read from f oo” and

.KbUrrOw~ says “read from foo”, and file foo has the ACL SRC A Manager, we must

get from Kabadl * Abadi + SRC and &u,,O~~ * Burrows * Mana9er to Kabadl A

.& Ur,ow~ ~ SRC A Manager. Only then can we reason from the two requests to

SRC A ManagerSayS “read from f oo”, a request that the ACL obviously grants.

For the same reason, the as and for operators defined in Sections 6 and 7

are also monotonic.

3.3 Handoff and Credentials

The following handoff axiom makes it possible for a principal to introduce

new facts about _:

R(Asays (B* A))> (B aA) E!D)

In other words, A has the right to allow any other principal 1? to speak for it.5

There is a simple rule for applying (P1O): when you see A sayss you can con-

clude s if it has the form B + A. The same A must do the saying and appear

on the right of the +, but B can be any principal.

What is the intuitive justification for (P1O)? Since A can make A says (B -

A) whenever it likes, (P1O) gives A the power to make us conclude that A says

s whenever B says s. But B could just ask A to say s directly, which has the

same effect provided A is competent and accessible.

From (P1O) we can derive a theorem asserting that it is enough for the prin-

cipal doing the saying to speak for the one on the right of the +, rather than

being the same:

\ ( (A’= A) AA’says(B -A))=(B *A) (Pll)

Proo& the premise implies A says B = A by (pS), and this implies the Concis-

ion by (P1O). This theorem, called the handoff rule, is the basis of our meth-

ods for authentication. When we use it we say that A‘ hands offA to B.

A final theorem deals with the exercise of joint authority:

}((A’AB -A) A(B+A’))~(B~A)) (P12)

From this and (P1O) we can deduce B - A given A says (A’ A B + A) and A‘

says B + A‘. Thus A can let A‘ and B speak for it jointly, and A‘ can let B ex-

5 In this paper we take (P1O) as an axiom for simplicity. However, it is preferable to assume onlY

some instances of (PIO)—the general axiom is too powerful, for example when A represents a

group. If the conclusion uses a qualified form of a it maybe more acceptable.

ACM Transactions on Computer Systems, Vol. 10, No. 4, November 1992.



274 . B. Lampson, M. Abadi, M. Burrows, and E. Wobber

ercise this authority alone. One situation in which we might want both A and

A‘ is when A is usually off line and therefore makes its statement with a

much longer lifetime than A‘ does. We can think of the statement made by A‘

as a countersignature for A’s statement. (P12) is the basis for revoking au-

thentication certificates (Section 5) and ending a login session (Section 7).

The last two theorems illustrate how we can prove B - A from our axioms

together with some premises of the form A‘ says (B’ = A‘ ). Such a proof to-

gether with the premises is called B’s credentials for A. Each premise has a

lifetime, and the lifetime of the conclusion, and therefore of the credentials, is

the lifetime of the shortest-lived premise. We could add lifetimes to our for-

malism by introducing a statement form s until t and modifying (S2)–(S3) to

apply the smallest t in the premises to the conclusion, but here we content

ourselves with an informal treatment.

The appendix collects all the axioms of the theory so that the reader can

easily survey the assumptions we are making.

4. CHANNELS AND ENCRYPTION

As we have seen, the essential property of a channel is that its statements can

be taken as assumptions: formulas like C says s are the raw material from

which everything else must be derived. On the other hand, the channel by

itself doesn’t usually mean much—seeing a message from terminal port Id or

key #~7~~97 isn’t very interesting unless we can deduce something about who

must have sent it. If we know the possible senders on C, we say that C has

integrity, Similarly, if we know the possible receivers we say that C has

secrecy, though we have little to say about secrecy in this paper.

Knowing the possible senders on C means finding a meaningful A such that

C = A; we call this authenticating the channel. Why should we believe that C

+ A? Only because A, or someone who speaks for A, tells us so, Then the

handoff rule (Pl 1) lets us conclude C - A. In the next section we study the

most common way of authenticating C. Here we investigate why A might

trust C enough to make A says C =+ A, or in other words, why A should be-

lieve that only A can send messages on C.

Our treatment is informal. We give some methods of using encryption and

some reasons to believe that these methods justify statements of the form “a

channel implemented by DES encryption and decryption using key #83409Q 3

speaks for 1amps on”. We do not, however, try to state precise assumptions

about secrecy of keys and properties of algorithms, or to derive such facts

about ‘speaks for’ from them. These are topics for another paper.
The first thing to notice is that for A to assert C ~ A itmust be able to

name C. A circumlocution like “the channel that carries this message speaks

for A“ won’t do, because it can be subverted by copying the message to another

channel. As we consider various channels, we discuss how to name them.

A sender on a channel C can always make C says X says s, where X is any

identifier. We take this as the definition of multiplexing; different values of X

establish different subchannels. By (P2), C says X says s is the same thing as

C IX says s. Thus if C names the channel, C [X names the subchannel. We

ACM TransactIons on Computer Systems, Vol 10, No, 4, November 1992.



Authentication In Distributed Systems: Theory and Practice . 275

s b

Encrypt
- Ksays s

with K-l

s

K says s--
Decrypt
with K

OK

Fig. 3. Using encryption and checksums for integrity.

will see many examples of this.

In what follows we concentrate on the flow of statements over secure chan-

nels and on the state that each principal must maintain. Except in Section 8,

we gloss over many details that may be important for performance but are not

directly relevant to security, such as the insecure messages that are sent to

initiate some activity and the exact path traversed by the bits of an encrypted

message.

4.1 Encryption

We are mainly interested in channels that depend on encryption for their se-

curity; as we shall see, they add less to the TCB than any others. We begin by

summarizing the essential facts about such channels. An encryption channel

consists of two functions Encrypt and Decrypt and two keys K and K-l. By

convention, we normally use K to receive (decrypt) and K-l to send (encrypt).

Another common notation for Erzcrypt(K-l, x) is {x] K-l

An encryption algorithm that is useful for computers provides a channel: for

any message x, Decrypt(K, Encrypt(K–l, x)) = x. The algorithm keeps the keys

secret: if you know only x and Encrypt(K-l, x) you can’t compute K or K-l, and

likewise for Decrypt. Of course “can’t compute” really means that the compu-

tation is too hard to be feasible.

In addition, the algorithm should provide one or both of

Secrecy: If you know Encrypt(K-l, x) but not K, you can’t compute x.

Integrity: If you choose x but don’t know K-l, you can’t compute a y such

that Decrypt(K, y) =x.

The usual way to get both properties at once is to add a suitable checksum to

the cleartext and check it in Decrypt, as shown in Figure 3. The checksum

should provide enough redundancy to make it very unlikely that decrypting

with K will succeed on a message not produced by encrypting with K-l.

Achieving this property requires some care [10, 28].

For integrity it is enough to encrypt a digest of the message. The digest is
the result of applying a function Digest to the message. The Digest function

produces a result of some fixed moderate size (typically 64 or 128 bits) no

ACM Transactions on Computer Systems, Vol. 10, No. 4, November 1992.



276 . B. Lampson, M. Abadl, M Burrows, and E. Wobber

matter how large the message is. Furthermore, it is a one-way function; this

means that you can’t invert the function and compute a message with a given

digest. Two practical digest functions are MD4 [22] and MD5[23].

An algorithm that provides integrity without secrecy is said to implement

digital signatures.

The secrecy or integrity of an encryption channel does not depend on how

the encrypted messages are handled, since by assumption an adversary can’t

compromise secrecy by reading the contents of an encrypted message, and

can’t compromise integrity by changing it. Thus the handling of an encrypted

message is not part of the TCB, since security does not depend on it. Of course

the availability of an encryption channel does depend on how the network

handles messages; we have nothing to say about the vulnerability of the net-

work to disruption.

There are two kinds of encryption, shared key and public key.

In shared key encryption K = K-l. Since anyone who can receive can also

send under K, this is only useful for pairwise communication between groups

of principals that trust each other completely, at least as far as messages on K

are concerned. The most popular shared key encryption scheme is the Data

Encryption Standard or DES [18]. We denote an encryption channel with the

DES key K by DES(K), or simply by K when the meaning is clear; the channel

speaks for the set of principals that know K.

In public key encryption K # K-l, and in fact you can’t compute one from the

other. Usually K is made public and K-l kept private, so that the holder of K-l

can broadcast messages with integrity; of course they won’t be secret. G

Together, K and K-l are called a key pair. The most popular public key en-

cryption scheme is Rivest-Shamir-Adleman or RSA [21]. In this scheme (K-l )-l

= K, so anyone can send a secret message to the holder of K-l by encrypting it

with K.7 We denote an encryption channel with the RSA public key K by

RSA(K), or simply by K when the meaning is clear; the channel speaks for the

principal that knows K-l.

Table I shows that encryption need not slow down a system unduly. It also

shows that shared key encryption is about 1000-5000 times faster than public
key encryption when both are carefully implemented. Hence the latter is usu-

ally used only to encrypt small messages or to set up a shared key.

4.2 Encryption Channels

With this background we can discuss how to make a practical channel from an

encryption algorithm. From the existence of the bits Encrypt(K-l, s) anyone

who knows K can infer K says s, so we tend to identify the bits and the

G Sometimes K-l is used to denote the decryption key, but we prefer to associate encryption with

sending and to use the simpler expression K for the public key.

7 To send a message with both integrity and secrecy, encrypt it both with K–l~ender so that the re-

ceiver can decrypt with K5ende, to verify the integrity, and with K,e,ti,ve, so that the receiver (and

only the receiver) will be able to decrypt with K-l, ,C,[UC, to read the message. But public key en-

cryption is not normally used in this way.

ACM TransactIons on Computer Systems, Vol. 10, No 4, November 1992.



Authentication in Distributed Systems: Theory and Practice o 277

Table I. Speeds of Cryptographic Operations

Hardware, Software, Not;s

bitslsec bits/sec/iViIPS

RSA encrypt 220 K [25] .5 K [61 500 bit modulus

RSA decrypt — 32 K [6] Exponent=3

MD4 — 1300 K [22]

DES 1.2 G [11] 400 K [6] Software uses a 64

KB table per key

statement; of course for the purposes of reasoning we use only the latter. We

often call such a statement a certificate, because it is simply a sequence of bits

that can be stored away and brought out when needed like a paper certificate.

We say that K signs the certificate.

How can we name an encryption channel? One possibility is to use the key

as a name, but we often want a name that need not be kept secret. This is

straightforward for a public-key channel, since the key is not secret. For a

shared key channel we can use a digest of the key. It’s possible that the re-

ceiver doesn’t actually know the key, but instead uses a sealed and tamper-

proof encryption box to encrypt or decrypt messages. In this case the box can

generate the digest on demand, or it can be computed by encrypting a known

text (such as O) with the key.

The receiver needs to know what key K it should use to decrypt a message

(of course it also needs to know what principal K speaks for, but that is a topic
for later sections). If K is a public key we can send it along with the encrypted

message; all the receiver has to do is check that K does decrypt the message

correctly. If K is a shared key we can’t include it with the message because K

must remain secret. But we can include a key identifier that allows the receiv-

er to know what the key is but doesn’t disclose anything about it to others.

To describe our methods precisely we need some notation for keys and key

identifiers. Subscripts and primes on K denote different keys; the choice of

subscript may be suggestive, but it has no formal meaning. A superscripted

key does have a meaning: it denotes a key identifier for that key, and the su-

perscripts indicate who can extract the key from the identifier. Thus K’ de-

notes Rs key identifier for K, and if K“ and I@ are key identifiers for the two

parties to the shared key K, then K“b denotes the pair (Ka, I@). The formula K’

says s denotes a pair: the statement K says s together with a hint K’ to R

about the key that R should use to check the signature. Concretely, Kr says s

is the pair (Encrypt(K–l, s), Kr). Thus the r doesn’t affect the meaning of the

statement at all; it simply helps the receiver to decrypt it. This help is some-

times essential to the functioning of a practical protocol.

s Many variables affect performance; consult the references for details, or believe these numbers

only within a factor of two. The software numbers come from data in the references and assumed

speeds of.5 MIPS for an 8 Mhz Intel 286 and 9 MIPS for a 20 MHz Spare.

ACM Transactions on Computer Systems, Vol. 10, No 4, November 1992.



278 . B. Lampson, M. Abadi, M, Burrows, and E. Wobber

A key identifier K’ for a receiver R might be any one OE

—an index into a table of keys that R maintains,

—Encrypt(Kr~, K), where K,m is a master key that only R knows,

—a pair (K’r, Encrypt(K’, K)), where K“ is a key identifier for the key K’.

In the second case R can extract the key from the identifier without any state

except its master key K,~, and in the third case without any state except what

it needs for K’r. An encrypted key may be weaker cryptographically than a

table index, but we believe that it is safe to use it as a key identifier, since it

is established practice to distribute session keys encrypted by master keys

[19, 26, 28].

4.3 Broadcast Encryption Channels

We conclude the general treatment of encryption channels by explaining the

special role of public keys, and showing how to get the same effect using

shared keys. A public key channel is a broadcast channel: you can send a

message without knowing who will receive it. As a result:

—You can generate a message before anyone knows who will receive it. In

particular, an authority can make a single certificate asserting, for in-

stance, that RSA(Ka) a A. This can be stored in any convenient place

(secure or not), and anyone can receive it later, even if the authority is
then off line.

—If you receive a message and forward it to someone else, he has the same

assurance of its source that you have.

By contrast, a shared key message must be directed to its receiver when it

is generated. This tends to mean that it must be sent and received in real

time, because it’s too hard to predict in advance who the receiver will be. An

important exception is a message sent to yourself, such as the key identifier

encrypted with a master key that we described just above.

For these reasons our system uses public key encryption for authentication,

so that certification authorities can be offline. It can still work, however, even

if all public key algorithms turn out to be insecure or too slow, because shared

key can simulate public key using a relay. This is a trusted agent R that can

translate any message m encrypted with a key that R knows. If you have a

channel to R, you can ask R to translate m, and it will decrypt m and return

the result to you. Relays use the key identifiers introduced above, and the ex-

planation here depends on the notation defined there.
Since R simulates public key encryption, we assume that any principal A

can get a channel to R. This channel is a key shared by R and A along with

key identifiers for both parties. To set it up, A goes to a trusted agent,g which

may be off line, and talks to it on some physically secure channel such as a

g Even with public key encryption A generally needs a trusted agent to get a certificate for its

pubhc key, although A’s interaction with the agent need not keep any secrets; see Section 5.1.

ACM Transactions on Computer Systems, Vol. 10, No. 4, November 1992



Authentication in Distributed Systems: Theory and Practice . 279

Table II. Simulating Public Key with Shared Key Encryption Using a Relay

Public key Shared key with relay

To send .s, principal A encrypts with K.-l encrypts with Kaar

To receive s, principa

to make K. sayss. to make Kar sayss.

B gets K. sayss and gets K.’ sayss,

decrypts it with K.. sends it and Kbb’ to R ,

gets back Kbb IK.’ sayss ,

and decrypts it with Kbb.

A certificate authenti- K,a says K. q A. KC.’ says Kbb IK.’ ~ A.

eating A to B is

To relay a certificate is not needed. invents a key K and makes

Kbb 1KC.’ says K“b + AKC,’ says K.”’ ~ A

to Kbb’ , R where K“b . (Ka, K?’) and

K“ = (K.a, Encrypt(Ka, K)),

@ = (Kbb, Encrypt(Kb, K)).

hard-wired keyboard and display or a dedicated RS-232 line. The agent makes

up a key K and tells A both K and K’, R’s key identifier for E, to make K’ the

agent must know R’s master key. Finally, A constructs K~, its own key

identifier for K. Now A has K“r, its two-way channel to R.

Given both K.’ sayss (a message encrypted by a shared key K. together

with R’s key identifier for KJ and Kbbr (the pair (Kbb, Kbr), which constitutes a

two-way shared-key channel between R and some B with the shared key Kb),

the relay R will make Kbb IK~r says s on demand. The relay thus multiplexes

all the channels it has onto its channel to B, indicating the source of each

message by the key identifier. The relay is not vouching for the source A ofs,

but only for the key K. that was used to encrypts. In other words, it is simply

identifying the source by labellings with Kc’ and telling anyone who is inter-

ested the content ofs. Thus it makes the channel K~’ into a broadcast chan-

nel, and this is just what public key encryption can do. Like public key en-

cryption, the relay provides no secrecy; of course it could be made fancier, but

we don’t need that for authentication. B’s name for the channel from A is

Kbb IK.’.

There is an added complication for authenticating a channel. With public

keys, a certificate like KC. says K. ~ A authenticates the key K.. In the simu-

lation this becomes KC.’ says K~’ = A for some X, and relaying this to B is not

useful because B cannot extract K. from K~x unless X happens to be B. But

given KC.’ says K~a’ ~ A and Kbb’ as before, R can invent a new key K and

splice the channels K.a’ and Kbb’ to make a two-way channel K“b = (K”, I@) be-

tween A and B. Here Ka and @ are defined in the lower right corner of Table

H; they are the third kind of key identifier mentioned earlier. Observe that A
can decrypt KU to get hold of K, and likewise for B and @. Now R can trans-

late the original message into Kbb IF&r says K“b ~ A, just what B needs for

ACM Transactions on Computer Systems, Vol. 10, No. 4, November 1992.



280 . B. Lampson, M, Abadi, M. Burrows, and E. Wobber

network

Encrypted Network Decrypted
packet interface packet

f \
header

——. —_ -—.

+ +

Encrypt( ~ body) ‘

host

Fig. 4. Fast decryption.

authenticated communication with A. For two-way authentication, R needs

KC.’ says Kbb’ * B instead of just Kbb’; from this it can make the symmetric

certificate K~u IKCQrsays Kab ~ B.

Table II summarizes the construction, which uses an essentially stateless

relay to give shared key encryption the properties of public key encryption.

The only state the relay needs is its master key; the client supplies the chan-

nels K~r and &&b’. Because of its minimal state, it is practical to make such a

relay highly available as well as highly secure.

Even with this simulation, shared key encryption is not as secure as public

key: if the relay is compromised then existing shared keys are compromised

too. With public key encryption a certificate like Kc. says K. ~ A which au-

thenticates the key K. can be both issued and used without disclosing K.-l to

anyone. Public key also has a potential performance advantage: there is no

common on-line agent that must provide service in order for authenticated

communication to be established between A and B. The simulation requires

the relay to be working and not overloaded, and all other schemes that use

shared keys share this property as well.

Davis and Swick give a more detailed account of the scheme from a some-

what different point of view [7].

4.4 Node-to-Node Secure Channels

A node is a machine running an operating system, connected to other ma-

chines by wires that are not physically secure. Our system uses shared key

encryption to implement secure channels between the nodes of the distributed

system and then multiplexes these channels to obtain all the other channels it
needs. Since the operating system in each node must be trusted anyway, us-

ing encryption at a finer grain than this (for instance, between processes)

can’t reduce the size of the TCB. Here we explain how our system establishes

the node-to-node shared keys; of course, many other methods could be used.

We have a network interface that can parse an incoming packet to find the

key identifier for the channel, map the identifier to a DES key, and decrypt

the packet on the fly as it moves from the wire into memory [14]. This makes

it practical to secure all the communication in a distributed system, since en-

ACM TransactIons on Computer Systems, Vol. 10, No. 4, November 1992.



Authentication in Distributed Systems: Theory and Practice . 281

Table III. A’s View of Node-to-Node Channel Setup; B’s is Symmetric

A knows before Bto A A knows after

phase 1 K., KU-l, K.., Kb Kb

Phase 2 J. Encrypt(K., Jb) Jb

Phase 3 K= HasFz(JU, Jb) , I@ @b

K“ = Encrypt(Ka~, K)

cryption does not reduce the bandwidth or much increase the latency. Our key

identifier is the channel key encrypted by a master key that only the receiving

node knows. Figure 4 shows how it works.

We need to be able to change the master key, because this is the only way a

node can lose the ability to decrypt old messages; after the node sends or

receives a message we want to limit the time during which an adversary that

compromises the node can read the message. We also need a way to efficiently

change the individual node-to-node channel keys, for two reasons. One is

cryptographic: a key should encrypt only a limited amount of traffic. The

other is to protect higher-level protocols that reuse sequence numbers and

connection identifiers. Many existing protocols do this, relying on assump-

tions about maximum packet lifetimes. If an adversary can replay messages

these assumptions fail, but changing the key allows us to enforce them. The

integrity checksum acts as an extension of the sequence number.

However, changes in the master or channel keys should not force us to

reauthenticate a node-to-node channel or anything multiplexed on it, because

this can be quite expensive (see Section 8). Furthermore, we separate setting

up the channel from authenticating it, since these operations are done at very

different levels in the communication protocol stack: setup is done between

the network and transport layers, authentication in the session layer or

above. In this respect our system differs from the Needham-Schroeder proto-

col and its descendants [15, 19, 26], which combine key exchange with au-

thentication, but is similar to the Diffie-Hellman key exchange protocol [10].

We set up a node-to-node channel between nodes A and B in three phases;

see Table III. In the first phase each node sends its public RSA key to the

other node. It knows the corresponding private key, having made its key pair

when it was booted (see Section 6). In phase two each node chooses a random

DES key, encrypts it with the other node’s public key, and sends the result to

the other node, which decrypts with its own private key. For example, B

chooses Jb and sends Encrypt (K~, Jb) to A, which decrypts with K~–l to recover

Jb. In the third phase each node computes K = Has/z(J., Jb),10 makes a key

identifier for K, and sends it to the other node. Now each node has K“b (the

key identifiers of A and B for the shared key K); this is just what they need to

10 Hash is a commutative one-way function. We use it to prevent a chosen-plaintext attack on a

master key and to keep K secret even if one of the J’s is disclosed. It takes the compromise of

both J. and Jb (presumably as a result of the compromise of both K.-l and IC-l) for an adversary

to be able to compute K, even if it sees the key establishment messages.

ACM TransactIons on Computer Systems, Vol. 10, No. 4, November 1992



282 . B. Lampson, M. Abadl, M. Burrows, and E. Wobber

comrnunicate.11 Each node can make its own key identifier however it likes;

for concreteness, Table HI shows it being done by encrypting K with the

node’s master key.

A believes that only someone who can decrypt Encrypt(Kbj J.) could share

its knowledge of K. In other words, A believes that K =$ Kb. lZ This means that

A takes K - Kb as an assumption of the theory; we can’t prove it because it

depends both on the secrecy of RSA encryption and on prudent behavior by A

and B, who must keep the J’s and K secret. We have used the secrecy of an

RSA channel to avoid the need for the certificate Kb says “The key with digest

D * Kb”, where D = Digest(K).

Now whenever A sees K sayss, itcan immediately conclude Kb sayss. Thus

when A receives a message on channel K, which changes whenever there is

rekeying, it also receives the message on channel Kh, which does not change

as long as B is not rebooted. Of course B is in a symmetric state. Finally, if

either node forgets K, running the protocol again makes a new DES channel

that speaks for the same public key on each node. Thus the DES channel

behaves like a cache entry; it can be discarded at any time and later re-

established transparently.

The only property of the key pair (K., K.-l) that channel setup cares about

is that K.-l is A’s secret. Indeed, channel setup can make up the key pair. But

K. is not useful without credentials. The node A has a node key K. and its

credentials K~ - A‘ for some more meaningful principal A‘, for instance

‘JaxShJ5~s 7 as VMS5. ~ (see Section 6). If K. comes out of the blue, the node has

to sign another certificate, K. says K. * K., to complete K.’s credentials, and

everyone authenticating the node has to check this added certificate. That is

why in our system the node tells channel setup to use (Kn, K.–l) as its key

pair, rather than allowing it to choose a key pair.13

5. PRINCIPALS WITH NAMES

When users refer to principals they must do so by names that make sense to

people, since users can’t understand alternatives like unique identifiers or

keys. Thus an ACL must grant access to named principals. 14 But a request

arrives on a channel, and it is granted only if the channel speaks for one of

11 The third phase can compute lots of keys, for instance K, K+l, . .. . and exchange lots of key

Identifiers. Switching from one of these keys to another may be useless cryptographically, but it

IS quite adequate for allowing connection identifiers to be reused.
12 &t~ally K speaks for A or K~, since A also knows and uses h’. To deal with this we mukiplex

the encryption channel to make K[A and KI B (a single bit can encode A or B in this case), and A

never makes K I B says s. Then A knows that K I B = Ii-h. To reduce clutter we ignore this compli-

cation. There are protocols in use that encode this multiplexing in strange and wonderful ways
1~ Alternatively, the node could dmectly authenticate the shared key K by making K. says K ~

Kn. This prevents channel setup from changing K on its own, which is a significant loss of func-

tionality, Authentication can’t be done without a name for the channel, so the interface to chan-

nel setup must either accept or return some key that can serve as the name.
lJ Anonymous principals on ACLS are sometimes useful. For instance, a numbered bank account

or highway toll account might grant its owner access by having on its ACL a public key negotiated

when the account is established. But usually human review of the ACL must be possible.

ACM Transactions on Computer Systems. Vol 10, No 4, November 1992.



Authentication in Distributed Systems: Theory and Practice . 283

the principals on the ACL. In this section we study how to find a channel C
that speaks for the named principal A.

There are two general methods, push and pull. Both produce the same cre-

dentials for A, a set of certificates and a proof that they establish C + A, but

the two methods collect the certificates differently.

Push: The sender on the channel collects A’s credentials and presents

them when it needs to authenticate the channel to the receiver.

Pull: The receiver looks up A in some database to get credentials for A

when it needs to authenticate the sender; we call this name lookup.

Our system uses the pull method, like DSSA [12] and unlike most other au-

thentication protocols. But the credentials don’t depend on the method. We

describe them for the case we actually implement, where C is a public key.

5.1 A Single Certification Authority

The basic idea is that there is a certification authority that speaks for A and

so is trusted when it says that C speaks for A, because of the handoff rule

(PI 1). In the simplest system

—there is only one such authority CA,

—everyone trusts CA to speak for every named principal, and

—everyone knows CA’s public key KC., that is, KC. ~ CA.

So everyone can deduce KC. d A for every named A. At first this may seem too

strong, but trusting CA to authenticate channels from A means that CA can

speak for A, because it can authenticate as coming from A some channel that

CA controls.

For each A that it speaks for, CA issues a certificate of the form Kc. says K.
+ A in which A is a name. The certificates are stored in a database and in-

dexed by A. This database is usually called a name service; it is not part of the

TCB because the certificates are digitally signed by KC.. To get A’s credentials

you go to the database, look up A, get the certificate KC. says K. + A, verify

that it is signed by the KC. that you believe speaks for CA, and use the handoff

rule to conclude K. - A, just what you wanted to know. The right side of

Figure 5 shows what B does, and the symmetric left side shows what A does

to establish two-way authentication.

The figure shows only the logical flow of secure messages. An actual imple-

mentation has extra insecure messages, and the bits of the secure ones may

travel by circuitous paths. To push, the sender A calls the database to get KC.
says K. - A and sends it along with a message signed by Ka. To pull, the re-

ceiver B calls the database to get the same certificate when B gets a message

that claims to be from A or finds A on an ACL. The Needham-Schroeder proto-

col [191 combines push and pull: when A wants to talk to B it gets two certifi-

cates from CA, the familiar KCasays K. b A which it pushes along to B, and

KC. says Kb 5 B for A’s channel from B.
As we have seen, with public key certificates it’s not necessary to talk to CA

directly; it suffices to talk to a database that stores CA’s certificates. Thus CA

ACM Transactions on Computer Systems, Vol. 10, No. 4, November 1992.



284 . B Lampson, M. Abadl, M. Burrows, and E, Wobber

CA‘newsKc;, K.*A, Kbd B

Certificates

&

(!GEEEl “ (===)

A B

p, yzq
A knows CA ~ Anybody B knows CA* Anybody

Aleams_Blearns~

Fig, 5. Authenticating channels with a single certification authority,

itself can be normally off line, and hence much easier to make highly secure.

Certificates from an offline CA, however, must have fairly long lifetimes. For

rapid revocation we add an on line agent O and use the joint authority rule

(P12 ). CA makes a weaker certificate K& says (0 IK. ~ KJ ~ A, and O coun-

tersigns this by making O IKc says K. s O IK.. From these two, KC. + A, and

(P12) we again get K. + A, but now the lifetime is the minimum of those on
CA’S certificate and O’s certificate. Since O is on line, its certificate can time

out quickly and be refreshed often. Note that CA makes a separate certificate

for each K. it authenticates, and each such certificate makes it possible for O

to convince a third party that K. = A only for specific values of K. and A.
Thus the TCB for granting access is just CA, because O acting on its own can’t

do anything, but CA speaks for A; the TCB for revocation is CA and O, since

either one can prevent access from being revoked.

Our system uses the pull method throughout; we discuss the implications in

Sections 8 and 9. Hence we can use a cheap version of the joint authority

scheme for revocation; in this version a certificate from CA is believed only if

it comes from the server O that stores the database of certificates. To authen-

ticate A we first authenticate a channel CO from O. Then we interpret the

presence of the certificate KC. says (0 IK. A K.) + A on the channel CO as an

encoding of the statement CO lKa says Ka = O IK.. Because CO = O, this

implies O IKa says Ka - 0 IKa, which is the same statement as before, so we

get the same conclusion. Note that O doesn’t sign a public-key certificate for

A, but we must authenticate the channel from O, presumably using the basic

method. Or replace O by KO everywhere. Either way, we can’t revoke O’s au-

thority quickly; it’s not turtles all the way down.

A straightforward alternative to an on line agent that asserts O lKa says Ka

s O IKa is a ‘black-list’ agent or recent certificate that asserts “all of CA’S cer-

tificates are valid except the ones for the following keys: K1, K2, . . .“ [5]. For
obvious reasons this must be said in a single mouthful. Such revocation lists

ACM TransactIons on Computer Systems, Vol. 10, No 4, November 1992.



Authentication In D@ributed Systems: Theory and Practice . 285

are used with Internet privacy-enhanced mail.

Changing a principal’s key is easy. The principal chooses a new key pair

and tells the certification authority its public key. The authority issues a new

certificate and installs it in the database. If the key is being rolled over rou-

tinely rather than changed because of a suspected compromise, it may be de-

sirable to leave the old certificate in the database for some time. Changing the

authorit y’s key is more difficult. First the authority chooses a new key pair.

Then it writes a new certificate, signed by the new key, for each existing cer-

tificate, and installs the new certificates in the database. Next the new public

key is distributed to all the clients; when a client gets the new key it stops

trusting the old one. Finally, the old certificates can be removed from the

database. During the entire period that the new key is being distributed, cer-

tificates signed by both keys must be in the database.

The formalization of Figure 5 also describes the Kerberos protocol [15, 26].

Kerberos uses shared rather than public key encryption. Although its design-

ers didn’t know about the relay simulation described in Section 4.3, the proto-

col can be explained as an application of that idea to public key certificates.

Here are the steps; they correspond to the union of Figure 5 and Table II.

First A gets from CA a certificate X&r says Kaar =+ A. 15Kerberos calls CA the

‘authentication server’, the certificate a ‘ticket granting ticket’, and the relay

R the ‘ticket granting server’. The relay also has a channel to every principal

that A might talk to; in particular R knows Kbbr ~ B. 16 To authenticate a

channel from A to B, A sends the certificate to R, which splices Kaar and Kbbr

to turn it into Kbb says K“b + A. This is called a ‘ticket’,17 and A sends it on to

B, which believes Kb ~ Anybody because Kh is B’s channel to CA. As a bonus,

R also sends A a certificate for B: Kaa says K“b d B.
In practice, application programs normally use Kerberos to authenticate

network connections, which the applications then rather unrealistically treat

as secure channels. To do this, A makes I@ says Cia + A, where ci. is A’s net-

work address and connection identifier; this is called an ‘authenticator’. A
sends both the ticket and the authenticator to B, which can then deduce ci~s

A in the usual way. The ticket has a fairly long lifetime so that A doesn’t have

to talk to R very often; the authenticator has a very short lifetime in case the

connection is closed and ci. then reused for another connection not controlled

by A. Kerberos has other features that we lack space to analyze.

M Ka is a login session key. CA invents Ka and tells A about it (that is, generates K.”) by en-

crypting it with A’s permanent key, which today is usually derived from A’s password.
16 The Kerberos relay is asymmetric between A and B, since it knows Kbbr = B but gets its

channel to A out of A’s certificate from CA. This is motivated by the application for which Kerber-

os was originally designed, in which A is a workstation with plenty of cycles while B is a busy
server. It is justified by the notion that there are only a few servers and they are friendly with R,

but it’s unfortunate because asymmetry is bad and because R has to have some state for each B.
There is an option (called ENC-TKT-IN-SKEY in [15] ) for A to get KCa says &br 5 B from B and

give it to R, which can now be symmetric and stateless.
17The ticket lacks the “KCar says” that a true relay would include because in Kerberos R handles

only statements from CA and therefore doesn’t need to identify the source of the statement.

ACM Transactions on Computer Systems, Vol. 10, No. 4, November 1992.



286 . B. Lampson, M. Abadl, M. Burrows, and E. Wobber

Our channel authentication protocol is a communication protocol and must

address all the issues that such protocols must address. In particular, it must

deal with duplicate messages; in security jargon, it must prevent replays or

establish timeliness. Because the statements in the authentication protocol

are not imperative, it is not necessary to guarantee at-most-once delivery for

the messages of the protocol, but it is important to ensure that statements

were made recently enough. Furthermore, when the protocol is used to au-

thenticate a channel that does carry imperative statements, it is necessary to

guarantee at-most-once delivery on that channel.

The same techniques are used (or misused) for both security and communi-

cation, sometimes under different names: timestamps, unique identifiers or

nonces, and sequence numbers. Our system uses timestamps to limit the life-

times of certificates and hence relies on loosely synchronized clocks. It also

uses the fact that the shared key channel between two nodes depends on two

random numbers, one from each node; therefore each node knows that any

message on the channel was sent since the node chose its random number.

The details are not new [4], and we omit them here.

5.2 Path Names and Multiple Authorities

In a large system there can’t be just one certification authority—it’s adminis-

tratively impractical, and there may not be anyone who is trusted by every-

body in the system. The authority to speak for names must be decentralized.

There are many ways to do this, varying in how hard they are to manage and

in which authorities a principal must trust to authenticate different parts of

the name space.

If the name space is a tree, so that names are path names, it is natural to

arrange the certification authorities in a corresponding tree. The lack of

global trust means that a parent cannot unconditionally speak for its chil-

dren; if it did, the root would speak for everyone. Instead when you want to

authenticate a channel from A = /A1 /A2 /.. ./An you start from an authority that

you believe has the name B = IB1 IB2 1...IB,. and traverse the authority tree

along the shortest path from B to A, which runs up to the least common an-

cestor of B and A and back down to A. Figure 6 shows the path from

/dec /burrows to /mi t / c lark; the numbers stand for public keys. The basic idea

is described in Birrell et al. [3]; it is also implemented in SPX [27].

We can formalize this idea with a new kind of compound principal, written

P except N, and some axioms that define its meaning. Here M or N is any

simple name and P is any path name, that is, any sequence of simple names.

We follow the usual convention and separate the simple names by ‘/ ‘ sym-

bols.]g Informally, P except N is a principal that speaks for any path name

that is an extension of P as long as the first name after P isn’t N, and for any

prefix of P as long as N isn’t ‘..’. The purpose of except is to force a traversal of

the authority tree to keep going outward, away from its starting point. If in-

18 We follow Unix conventions and write / for the root rather than the empty string that our ax-

ioms produce.

ACM Transactions on Computer Systems, Vol. 10, No. 4, November 1992



Authentication m Distributed Systems: Theory and Practice . 287

Fig. 6. Authentication with a tree of authorities

stead the traversal could retrace its steps, then a more distant authority

would be authenticating a nearer one, contrary to our idea that trust should

be as local as possible. The axioms for except are:

k P except M + P (NJ
So P except M is stronger than P; other axioms say how.

t M +N I (P except M) I N + PIN except ‘..’ (N2)

P except M can speak for any path name PIN just by quoting N, as long

as N isn’t M. This lets us go down the tree (but not back UP by (N3), be

cause of the except ‘..’) .19

R M # ‘..’ ~ (PIN except M) I ‘..’+ P e=ept JJ (N3)

P/N except M can speak for the shorter path name P just by quoting ‘..’,

as long as M isn’t ‘..’. This lets us go up the tree (but not back down the

same path by (N2), because of the except ~.

The quoting principals on the left side of - prevent something asserted by P
except M from automatically being asserted by all the longer path names.

Note that usually both (N2) and (N3 ) apply. For instance, /dec except burrows

speaks for / dec / abadi except ‘..’ by (N2) and for/ except dec by (N3).

Now we can describe the credentials that establish C = A in our system.

Suppose A is /rnit / clark. TO use the (N) rules we must start with a channel

from some principal B that can authenticate path names; that is, we need to

believe cb + B except N. This could be anyone, but it’s simplest to let B be

the authenticating party. In Figure 6 this is /tiec /burrows, so initially we be-

lieve cbu,,OW~ * /dec /burrows except ni 1, and this channel is trusted to au-

thenticate both up and down. In other words, Burrows knows his name and

his public key and trusts himself.zo Then each principal on the path from B to

A must provide a certificate for the next one. Thus we need

19 BY putting .Several names after the except rather than one, we could further constrain the

path names that a principal can authenticate.
20 you maY find it more natural to assume that Burrows knows the name and public key of his

local certification authority. This corresponds to initially believing Cdec + / dec except n~ 1.

ACM Transactions on Computer Systems, Vol. 10, No. 4, November 1992.



288 . B. Lampson, M. Abadl, M. Burrows, and E Wobbet

Cburrows I ..
<> says Cdec * /dec except burrows

C& I ‘..’ says Croo~ 3 / exceptdec

cToot ] rnit says Cmlt + /mit except’..’

c mzt [ clark SiiySCC~a,~ * /mit/clark except’..’

The certificates quoting ‘..’ can be thought of as ‘parent’ certificates pointing

upward in the tree, those quoting mi t and c lark as ‘child’ certificates pointing

downward. They are similar to the certificates specified by CCITT X.509 [5].

From this and the assumption C~UTrOUS=+ /dec /burrows except ni 1, we de-

duce in turn the body of each certificate, because for each A‘ says C‘ + B‘ we
have A‘ + B ‘ by reasoning from the initial belief and the (N2-3) rules, and

thus we can apply (Pll) to get C’ * B’ . Then (Nl) yields CCl~,~ + /mlt /clark,

which authenticates the channel 6’Cl~Th from /mi t / c lark. In the most secure

implementation each line represents a certificate signed by the public key of

an off line certifier21 plus a message on some channel from an on line revo-

cation agent; see Section 5.1. But any kind of channel will do.

If we start with a different assumption, we may not accept the bodies of all

these certificates. Thus if /mi t / c 1 ark is authenticating /tiec /abadi, we start

with CC1~r~+ / mi t / c lark except ni I and believe the bodies of the certificates

Cclark [ ‘..’ says CmEt + /mlt except clark

cml t says Croot S / except mi t

croot I ;:c sayscde~ & Idec except’..’

Cdec I abadi says C.b.dL & /dec/abadi except’..’

Since this path is the reverse of the one we traversed before except for the last

step, each principal that supplies a parent certificate on one path supplies a

child certificate on the other. Note that c la~- k would not accept the bodies of

any of the certificates on the path from burrows. Also, the intermediate results

of this authentication differ from those we saw before. For example, when B
was /dec /burrows we got Cdec * /dec except burrows, but if B is /mit ,Iclark we

get C&C * ldec except ‘..’. From either we can deduce C&C + / clec, but C&’s

authority to authenticate other path names is different. This is because bu~--

rows and c I ark have different ideas about how much to trust dec.

It’s neither necessary nor desirable to include the entire path name of the

principal in each child certificate. It’s unnecessary because everything except

the last component is the same as the name of the certifying authority, and

it’s undesirable because we don’t want the certificates to change when names

change higher in the tree. So the actual form of a child certificate is

Cm,, [ clark says
“For any path name P, if Cn,t - P then CCl~,h -P, Ic lal-k except’..’.”

In other words, the rni t certification authority is willing to authenticate CCl~rk

21 A smgIe certifier with a single key K can act for several principals by multiplexing its channel.

that Is, by assigning a distinct identifier idp to each such principal P and using K I idp as CP. Thus

one certification authority can certify names in several directories.

ACM TransactIons on Computer Systems, VO1 10, No, 4, November 1992



Authentication in Distributed Systems: Theory and Practice . 289

as speaking for c I ark relative to C~j~ or to any name that C~,~ might speak

for; the authority takes responsibility only for names relative to itself. The

corresponding assertion in a parent certificate, on the other hand, is a mis-

take. It would be

(& I ‘..’ says

“For any path name PIN, if Cn,~ + PIN then CrOO~+ P except N.”

Since mit’s parent can change as a result of renaming higher in the tree, this

certificate, which does not distinguish one parent from another, is too strong.

Our method for authenticating path names using the (N) axioms requires B

to trust each certification authority on the path from B up to the least com-

mon ancestor and back down to A. If the least common ancestor is lower in

the tree then B needs to trust fewer authorities. We can make it lower by

adding a ‘cross-link’ named mi t from node 56 to node 37: C&C says Cmit +

/dec/mit except ‘..’. Now /dec /mi t / clark names A, and node 21 is no longer

involved in the authentication. The price is more system management: the

cross-link has to be installed, and it also has to be changed when mi t’s key

changes. Note that although the tree of authorities has become a directed

acyclic graph, the least-common-ancestor rule still applies, so it’s still easy to

explain who is being trusted.

The implementation obtains all these certificates by talking in turn to the

databases that store certificates from the various authorities. This takes one

RPC to each database in both pull and push models; the only difference is

whether receiver or sender does the calls. If certificates from several authori-

ties are stored in the same database, a single call can retrieve several of them.

Either end can cache retrieved certificates; this is especially important for

those from the higher reaches of the name space. The cache hit rate may

differ between push and pull, depending on traffic patterns.

A principal doing a lookup might have channels from several other princi-

pals instead of the single channel C* from itself that we described. Then it

could start with the channel from the principal that is closest to the target A
and thus reduce the number of intermediaries that must be trusted. This is

essential if the entire name space is not connected, for instance if it is a forest

with more than one root, since with only one starting point it is only possible

to reach the names in one connected component of the name space. Each

starting point means another built-in key, however, and maintaining these

keys obviously makes it more complicated to manage the system. This is why

our system doesn’t use such sets of initially trusted principals.

When we use path names the names of principals are more likely to change,

because they change when the directory tree is reorganized. This is a familiar

phenomenon in file systems, where it is dealt with by adding either extra

links or symbolic links to the renamed objects (usually directories) that allow

old names to keep working. Our system works the same way; a link is a cer-

tificate asserting that some channel C + P, and a symbolic link is a certificate
asserting P‘ + P. This makes pulling more attractive, because pushing re-

quires the sender to guess which name the receiver is using for the principal

ACM Transactions on Computer Systems, Vol. 10, No. 4, November 1992.



290 . B. Lampson, M. Abadi, M. Burrows, and E, Wobber

so that the sender can provide the right certificates.

We can push without guessing if we add a level of’ indirection by giving each

principal a unique identifier that remains the same in spite of name changes.

Instead of C * P we have C * id and id* P. The sender pushes C * id and

the receiver pulls id + P. In general the receiver can’t just use id, on an ACL

for example, because it has to have a name so that people can understand the

ACL. Of course it can cache id -P; this corresponds to storing both the name

and the identifier on the ACL. There is one tricky point about this method: id
can’t simply be an integer, because there would be no way of knowing who can

speak for it and therefore no way to establish C + id. Instead, it must have

the form A/integer for some other principal A, and we need a rule A *
A/integer so that A can speak for id. Now the problem has been lifted from

arbitrary names like P to authorities like A, and maybe it is easier to handle.

Our system avoids these complications by using the pull model throughout.

5.3 Groups

A group is a principal that has no public key or other channel of its own.

Instead, other principals speak for the group; they are its members. Looking

up a group name G yields one or more group membership certificates KC. says

PI * G, KC. says P2 + G, .... where K& x G, just as the result of looking up

an ordinary principal name P is a certificate for its channel KC. says C ~ P,
where KC. * P. A symbolic link can be viewed as a special case of a group.

This representation makes it impossible to prove that P is not a member of

G. If there were just one membership certificate for the whole group, it would

be possible to prove nonmembership, but that approach has severe draw-

backs: the certificate for a large group is large, and it must be replaced com-

pletely every time the group loses or gains a member.

A quite different way to express group membership when the channels are

public keys is to give G a key Kg and a corresponding certificate KC. says Kg ~
G, and to store Encrypt(KP, K~-l) for each member P in G’s database entry.

This means that each member will be able to get K~-l and therefore to speak

for the group, while no other principals can do so.

The advantage is that to speak for G, P simply makes Kg says s, and to ver-

ify this a third party only needs Kg + G. In the other scheme, P makes &

says s, and a third party needs both KP * P and P * G. So one certificate and

one level of indirection are saved. One drawback is that to remove anyone

from the group requires choosing a new Kg and encrypting it with each re-

maining member’s KP. Another is that P must explicitly assert its member-

ship in every group G needed to satisfy the ACL, either by signings with every

~g or by handing off from every ~g to the channel that carries s. A third is

that the method doesn’t work for principals that don’t have permanent secret

keys, such as roles or programs, Our system doesn’t use this method.

6. ROLES AND PROGRAMS

A principal often wants to limit its authority, in order to express the fact that

it is acting according to a certain set of rules. For instance, a user may want

ACM TransactIons on Computer Systems, Vol. 10, No, 4, November 1992,



Authentlcahon in Distributed Systems: Theory and Practice . 291

to distinguish among playing an untrusted game program, doing normal

work, and acting as system administrator. A node authorized to run several

programs may want to distinguish running NFS from running an X server. To

express such intentions we introduce the notion of roles.
If A is a principal and R is a role, we write A as R for A acting in role R.

What do we want this to mean? Since a role is a way for a principal to limit its

authority, A as R should be a weaker principal than A in some sense, because

a principal should always be free to limit its own authority. One way for A to

express the fact that it is acting in role R when it says s is for A to make A
says R sayss. This idea motivates us to treat a role as a kind of principal and

to define A as R to be A IR, so that A as R says s is the same as A says R
says s. Because I is monotonic, as is also.

We capture the fact that A as R is weaker than A by assuming that A
speaks for A as R. Because adopting a role implies behaving appropriately for

that role, A must be careful that what it says on its own is appropriate for any

role it may adopt. Note that we are not assuming A + A IB in general, but

only when B is a role. Formally, we introduce a subset Roles of the simple

principals and the axioms:zz

kAas R =A 1R forall R ~Roles m)

t- A+Aas R for all R e Roles (R2)

Acting in a certain way is much the same as executing a certain program.

This suggests that we can equate a role with a program. Here by a program

we mean something that obeys a specification-several different program

texts may obey the same specification and hence be the same program in this

sense. How can a principal know it is obeying a program?

If the principal is a person, it can just decide to do so; in this case we can’t

give any formal rule for when the principal should be willing to assume the

role. Consider the example of a user acting as system manager for her work-

station. Traditionally (in Unix) she does this by issuing a su command, which

expresses her intention to issue further commands that are appropriate for

the manager. In our system she assumes the role “user as manager”. There is

much more to be said about roles for users, enough to fill another paper.

If a machine is going to run the program, however, we can be more precise.

One possibility that is instructive, though not at all practical, is to use the

program text or image 1 as the role. So the node N can make IV as 1 sayss for

a statements made by a process running the program image 1. But of course 1

is too big. A more practical method compresses 1 to a digest D small enough

that it can be used directly as the role (see Section 4). Such a digest distin-

guishes one program from another as well as the entire program text does, so

IV can make IV as D sayss instead of N as 1 sayss.

zz A third axiom allows us write clearer and more conci~.~ ACLS, and it has no apparent bad ef-

fects:

k as is commutative and idempotent on roles (B&)

Section 9 describes how the access checking algorithm uses this axiom.

ACM Transactions on Computer Systems, Vol. 10, No. 4, November 1992.



292 . B. Lampson, M. Abadi, M. Burrows, and E. Wobber

Digests are to roles in general much as encryption keys are to principals in

general: they are unintelligible to people, and the same program specification

may apply to several program texts (perhaps successive versions) and hence

to several digests. In general we want the role to have a name, and we say

that the digest speaks for the role. Now we can express the fact that digest D

speaks for the program named P by writing D * P.23 There are two ways to

use this fact. The receiver of A as D says s can use D + P to conclude that A
as P sayss because as is monotonic. Alternatively, A can use D - P to justify

making A as P says s whenever program D asserts s.

So far we have been discussing how a principal can decide what role to as-

sume. The principal must also be able to convince others. Since we are encod-

ing A as P as A IP, however, this is easy. To make A as P says s, A just makes

A says P says s as we saw earlier, and to hand offA as P to some other chan-

nel C it makes A as P says (C ~ A as P).

6.1 Loading Programs

With these ideas we can explain exactly how to load a program securely.

Suppose A is doing the loading. Usually A will be a node, that is, a machine

running an operating system. Some principal B tells A to load program P; no

special authority is needed for this except the authority to consume some of

A’s resources. In response, A makes a separate process pr to run the program,

looks up P in the file system, copies the resulting program image into pr, and

starts it up.

If A trusts the file system to speak for P, it hands off to pr the right to speak

for A as P, using the mechanisms described in Section 8 or in the treatment of

booting below; this is much like running a Unix set.id program. Now pr is a

protected subsystem; it has an independent existence and authority consis-

tent with the program it is running. Because pr can speak for A as P, it can

issue requests to an object with A as P on its ACL, and the requests will be

granted. Such an ACL entry should exist only if the owner of the object trusts

A to run P. In some cases B might hand off to pr some of the principals it can

speak for. For instance, if B is a shell it might hand off its right to speak for

the user that is logged in to that shell.

If A doesn’t trust the file system, it computes the digest D of the program

text and looks up the name P to get credentials for D a P. Having checked

these credentials it proceeds as before. There’s no need for A to record the

credentials, since no one else needs to see them; if you trust A to run P, you

have to trust A not to lie to you when it says it is running P.
It is often useful to form a group of programs, for instance, /tom/dec/ src-

/ trust edsw. A principal speaking for this name, for example, the key KC. of its
certification authority, can issue a certificate KC~ says P ~ I com/dec I SI-C

i t rust edsw for a trusted program P. If A as /tom/dec/s~-c/trustedSW appears
on an ACL, any program P with such a certificate will get access when it runs

Z3 con-noi~seur~ of pro=am specification will find this formula familiar—it looks like the impli-

cation relatlon between an implementation and its specification. This is certainly not an accident.

ACM TransactIons on Computer Systems, Vol 10, No 4, November 1992



Authentication in Distributed Systems: Theory and Practice . 293

on A because as is monotonic. Note that it’s explicit in the name that

/tom/ dec / src is certifying this particular set of trusted software.

Virus control is one obvious application. To certify a program as virus-free

we compute its digest D and issue a membership certificate Kca says D +
trustedSW (from now on we elide /tom/dec/src /). There are two ways to use

these certificates:

—When A loads a program with digest D, it assigns the identity A as trust-

edSW to the loaded program if D + trusteclsw. Every object that should be

protected from an untrusted program gets an ACL of the form (SomeNodes

as trustedSW) A (...). Here SomeNodes is a group containing all the nodes

that are trusted to access the object, and the elided term gives the indi-

viduals that are trusted. Alternatively, ifA sees no certificate for D itas-

signs the identity A as unknown to the loaded program; then the program

will be able to access only objects whose ACLS explicitly grant access to

SomeNodes as unknown.

—The node A has an AGL that controls the operation of loading a program

into A, and trustedSW is on this ACL. Then no proWam will be loaded un-

less its digest speaks for trust edSW. This method is appropriate when A
cannot protect itself from a running program, for example, when A is a PC
running MS-DOS.

There can also be groups of nodes. An ACL might contain DBServers as

Ingres; then ifA =) DBServers (A is a member of the group Observers), A as

Ingres gets access because as is monotonic. If we extend these ideas,

DBSYs t ems can be a principal that stands for a group of systems, with member-

ship certificates such as DBSel-vers as Ingres 5 DBSystems, Mainframes as DB2

=$ DBSystems, and so on.

6.2 Booting

1300ting a machine is very much like loading a program. The result is a node

that can speak for Jf as P, if Ill is the machine and P the name or digest of the

program image that is booted. There are two interesting differences.

One is that the machine is the base case for authenticating a system, and it

authenticates its messages by knowing a private key Km–l which is stored in

nonvolatile memory. Making and authenticating this key is part of the pro-

cess of installing Al, that is, putting it into service when it arrives. In this

process AZ constructs a public key pair (K,., Kn-l) and outputs the public key

Kn. Then someone who can speak for the name RI, presumably an adminis-

trator, makes a certificate KC. says Km = M. Alternatively, a certification au-

thority constructs (Kn, Km-l), makes the certificate KC. says Km - M, and de-

livers K~-l to M in some suitably secure way. It is an interesting problem to

devise a practical installation procedure.

The other difference is that when M_ (the boot code that gets control after

the machine is reset) gives control to the program P that it boots (normally
the operating system), ill is handing over all the hardware resources of the

machine, for instance any directly connected disks. This has three effects:

ACM TransactIons on Computer Systems, Vol. 10, No. 4, November 1992.



294 . B. Lampson, M, Abadi, M. Burrows, and E Wobber

—Since Ll is no longer around, it can’t multiplex messages from the node on

its own channels. Instead, M invents a new public key pair (K., K,,-l) at

boot time, gives K.-l to P, and makes a certificate Km says K. ~ M as P.
The key K. is the node key described in Section 4.

—M needs to know that P can be trusted with M’s hardware resources. It’s

enough for M to know the digests of trustworthy programs, or the public

key that is trusted to sign certificates for these digests. As with the second

method of virus control, this amounts to an ACL for running on M.

—If we want to distinguish M itself from any of the programs it is willing to

boot, then M needs a way to protect Km-l from these programs. This re-

quires hardware that makes Km-l readable when the machine is reset, but

can be told to hide it until the next reset. Otherwise one operating system

that M loads could impersonate any other such system, and if any of them

is compromised then M is compromised too.

The machine M also needs to know the name and public key of some princi-

pal that it can use to start the path name authentication described in Section

5; this principal can be M itself or its local certification authority. This infor-

mation can be stored in M during installation, or it can be recorded in a cer-

tificate signed by Km and supplied to M during booting along with P.
You might think that all this is too much to put into a boot R O M.

Fortunately, it’s enough if the boot ROM can compute the digest function and

knows one digest (set at installation time] that it trusts completely. Then it

can just load the program PbOO~with that digest, and PbOO~can act as part of M.
In this case, of course, M gives Km-l to PbOOtto express its complete trust.

7. DELEGATION

We have seen how a principal can hand off all of its authority to another, and

how a principal can limit its authority using roles. We now consider a combi-

nation of these two methods that allows one principal to delegate some of its

authority to another one. For example, a user on a workstation may wish to

delegate to a compute server, much as she might .1 ogi. to it in vanilla Unix.

The server can then access files on her behalf as long as their ACLS allow this

access. Or a user may delegate to a database system, which combines its au-

thority with the delegation to access the files that store the database.

The intuitive idea of delegation is imprecise, but our formal treatment gives

it a precise meaning; we discuss other possible meanings elsewhere [2]. We

express delegation with one more operator on principals, B for A. Intuitively

this principal is 1? acting on behalf of A, who has delegated to B the right to do

so. The basic axioms of for are:zl

2’~We introduce for as an independent operator and axiomatize it by (D1–2) and some other ax-

ioms that make It easier to write ACLs (see Section 9):

E A for (B for C) = (A for B) for C (half of associativity); (m)

E (A forll) as R =A for (B as R). (u)

However, for can be defined in terms of A and \ and a principal D whose purpose is to quote A

ACM TransactIons on Computer Systems, Vol 10, No 4, November 1992



Authentication in Distributed Systems: Theory and Prachce . 295

kAABIA~B for A. (m)

} for is monotonic and distributes over A. m)

To establish a delegation, A first delegates to B by making

A says BIA tiB for A. (1)

We use B 1A so that B won’t speak for B for A by mistake. Then B accepts the

delegation by making

BIA says BIA ~B for A. (2)

To put it another way, for equals delegation (1) plus quoting (2). We need this

explicit action by B because when B for A says something, the intended

meaning is that both A and B contribute, and hence both must consent. Now

we can deduce

L4ABlA) says BIA~B forA using (PI), (l), (2);

BIA~B for A using (Dl) and (Pll).

In other words, given (1) and (2), B can speak for B for A by quoting A.zs
We use timeouts to revoke delegations. A gives (1) a fairly short lifetime,

say 30 minutes, and B must ask A to refresh it whenever it’s about to expire.

7.1 Login

A minor variation of the basic scheme handles delegation from the user U to

the workstation Won which she logs in. The one difference arises from the as-

sumption that the user’s key KU is available only while she is logging in. This

seems reasonable, since getting access to the user’s key will require her to

type her password or insert her smart card and type a PIN the details of login

protocols are discussed elsewhere [1, 26, 27]. Hence the user’s delegation to

the workstation at login must have a rather long lifetime, so that it doesn’t

need to be refreshed very often. We therefore use the joint authority rule

(1’12) to make this delegation require a countersignature by a temporary
public key K1. This key is made at login time and called the login session key.

When the user logs out, the workstation forgets K1-l so that it can no longer

refresh any credentials that depend on the login delegation, and hence can no

longer act for the user after the 30-minute lifetime of the delegation has ex-

pired. This protects the user in case the workstation is compromised after she

whenever B does so. You can think of D as a ‘delegation server’; A tells D that A is delegating to

B, and then whenever B 1A sayss, D 1A sayss also. Now B for A is just short for B 1A A D 1A. We

don’t want to implement D; if we did, it might be compromised. So A has to be able to do D’s job;

in other words, A b D IA. Formally, we add the axioms:

F13forA. BIA. DIA (D5)

kA+D\A (D6)
Now (D1)–(D4) become theorems. So do some other statements of more debatable merit. Our

other paper goes into more detail [2].
25 Uain= D A can delegate to B by making A says B 1A a D 1A. when B wants to weak for B ‘or

A itcan quote A and appeal to the joint authority rule (P12). This is simpler but less explicit.

ACM Transactions on Computer Systems, Vol. 10, No. 4, November 1992.



296 . B Lampson, M. Abadi, M. Burrows, and E. Wobber

logs out. If the workstation might be compromised within 30 minutes after a

logout, then it should also discard its master key and node key at Iogout.

The credentials for login start with a long-term delegation from the user to

KW A Kt (here KU, is the workstation’s node key), using KU for A and KU, for the

second B in (1):

K,, says (KW A KJ IKU * KU, for KU.

KW accepts the delegation in the usual way, so we know that

(KW A Kl) IKU = KW for KU,

and because I distributes over A we get

Next K1 signs a short-term certificate

Kl says KW + K[.

This lets us conclude that KW IKU ~ K1 IKU by the handoff rule and the mono-

tonicity of I . Now we can apply (P12) and reach the usual conclusion for dele-

gation, but with a short lifetime:

7.2 Long-Running Computations

What about delegation to a process that needs to keep running after the user

has logged out, such as a batch job? We would still like some control over the

duration of the delegated authority, and some way to revoke it on demand.

The basic idea is to introduce a level of indirection by having a single highly

available agent for the user that replaces the login workstation and refreshes

the credentials for long-running jobs. The user can explicitly tell this agent

which credentials should be refreshed. We have not worked out the details of

this scheme; it is a tricky exercise in balancing the demands of convenience,

availability, and security. Disconnected operation raises similar issues.

8. AUTHENTICATING INTERPROCESS COMMUNICATION

We have established the foundation for our authentication system: the theory

of principals, encrypted secure channels, name lookup to find the channels or

other principals that speak for a named principal, and compound principals

for roles and delegation. This section explains the mechanics of authenticat-
ing messages from one process to another. In other words, we study how one

process can make another accept a statement A sayss. A single process must

be able to speak for several A’s; thus, a database server may need to speak for

its client during normal operation and for itself during recovery.

Figure 7 is an expanded version of the example in Figure 1. For each com-

ponent it indicates the principals that the component speaks for and the

channel it can send on (usually an encryption key). Thus the Taos node speaks

for ws as Taos and has the key K.-l so itcan send on channel K.. The account-

ACM TransactIons on Computer Systems, Vol. 10, No. 4, November 1992



Authentication in Distributed Systems: Theory and Practice . 297

SRC-node as Accounting for bwl O.

WS as Taos 3 SRC-node
) 00==4

Accounting
pr Clpr

~ WEas Taos asx Accounting fOrbwl

Taos node K;’ c

\

Idsas Taos
WS as Taos fOrbwl

Workstation

~wl Kbw;’ hardware ws
KwF1

network

Kbwl * bW~ Kws =+ WS channel

QNFS Server

=0

1bsd 4.3

Server
hardware

Fig. 7. Principals and keys for the workstation-server example

ing application speaks for ws as Taos as Accounting for bwl; it runs as process

pr, which means that the node will let it send on K. I pr or C I pr. Consider a

request from the accounting application to read file foo. It has the form C I pr
says “read foo”; in other words, C I p r is the channel carrying the request.

This channel speaks for KW~ as Taos as Accounting for K6W1.The credentials of

C I pr are:

KW~says K. =$ KW~as Taos From booting WS (Section 6).

KbWl says (K. A Kl) 1KbWl 3 K. fOr KbWl From bwl’s login (Section i’).

K1 says K. * K1 Also from login.

K. lKbWzsays C I pr + ((KW, as Taos) Sent on C I Kbl.l.

as Account ingyor &,Ol

The server gets certificates for the first three premises in the credentials. The

last premise does not have a certificate. Instead, it follows directly from a

message on the shared key channel C between the Taos node and the server,

because this channel speaks for K. as described in Section 4.

To turn these into credentials of C I pr for ws as Taos as Account lng for bwl,

the server must obtain the certificates that authenticate channels for the

names bwl and ws from the certification database as described in Section 5.

Finally, to complete the access check, the server must obtain the group mem-

bership certificate ws as Taos > SRC -node. A system using the push model

would substitute names for one or both of the keys KW. and Kbwl. It would also

get the name certificates for ws and bwl from the database and add them to

the credentials.

The rest of this section explains in some detail how this scheme works in

practice and extends it so that a single process can conveniently speak for a

number of principals.

ACM Transactions on Computer Systems, Vol. 10, No. 4, November 1992



298 . B. Lampson, M Abadi, M. Burrows, and E, Wobber

send am ~ receive aid
Cs Iprs Iaid

prs +
Csr /prs–prr .

prr

Operating
CsOl’&s

Operating

(;:S:T ) (:y:q )

Ksr *
Csr or CS

K&

k?EN4”ne,wor~Server

Sender channel Receiver

Fig. 8. Multiplexing a node-to-node channel.

8.1 Interprocess Communication Channels

We describe the details of our authenticated interprocess communication

mechanism in terms of messages from a sender to a receiver. The mechanism

allows a message to be interpreted as one or more statements A says .s. Our

system implements remote procedure call, so it has call and return messages.

For a call, statements are made by the caller (the client) and interpreted by

the called procedure (the server); for a return, the reverse is true.

Most messages use a channel between a sending process cm the sending

node and a receiving process on the receiving node. As we saw in the example,

this channel is made by multiplexing a channel C., between the two nodes,

using the two process identifiers pr~ and prr as the multiplexing address, so it

is C~~ Iprs–pr,; see Figure 8. A shared key K~~ defines the node-to-node channel

C~r = DES(KJ.

Henceforth we concentrate on the integrity of the channeIs,ZG so we care

only that the message comes from the sender, not that it goes to the receiver.

Section 4 explains how to establish DES(K&.) ~ RSA(K~), where K. is the send-

ing node’s public key. So we can say that the message goes over C’S lpr~ from

the sending process, where Cs = RSA(&). Some messages don’t use DES(K~,)

but instead are certificates encrypted with K. because they must be passed on

to a third party that doesn’t know K,,; we indicate this informally by writing

K. sayss instead of C. says s.

The sender wants to communicate one or more statements A says s to the

receiver, where A is some principal that the sender can speak for. A single

process may speak for several principals, and we express this by multiplexing

the channel from the process. Our strategy is to encode A as a number called

an authentication identifier or aid, and to pass the aid as an ordinary integer.

26 It is obvious that we also get secrecy, as a byproduct of using shared keys. We could show this

by the dual of the arguments we make for integrity, paying attention to the receiver rather than

the sender,

ACM Transactions on Computer Systems, Vol. 10, No, 4. November 1992



Authentication in Distributed Systems: Theory and Prachce . 299

By convention, the receiver interprets a call like Read ( aid, file, . ..) as one
or more statements Ca,d sayss, where C.,d = C. lpr. I aid; this is the channel

C, Ipr~ from the process multiplexed with aid as the subchannel address. The

receiving node supplies C. lpr~ to the receiver on demand. Recall that C~ is ob-

tained directly from the key used to decrypt the message and pr~ is supplied

by the sending node. The aid is supplied by the sending process. An aid is
chosen from a large enough space that it is never reused during the lifetime of

the sending node (until the node is rebooted and its C. changes); this ensures

that a channel C.,d is never reused.

This design is good because the sending process doesn’t need to tell the op-

erating system about aid in order to send C.,d sayss to the receiver, since aid
is just an integer. The only role of the operating system is to implement the

channel C~ Ipr~ securely by labelling each message with the process prs that

sends it. Thus a principal is passed as cheaply as an integer, except for a one-

time cost that we now consider.

The receiver doesn’t actually care much about C.,d ; it wants to interpret the

message as A says s for some more meaningful principal A such as a user’s

name or public key. To do this, it needs to know c~td =+ A; we call A the mean-
ing of 6’a~d.There are two parts to this: finding out what A is, and getting a

proof that C.ld + A (that is, credentials for A). The receiver gets A and the

credentials from the sender. Recall that the credentials consist of some

premises C says A‘ * B‘ plus the reasoning that derives C.,d = A from the

premises and the axioms. The channel C on which the sender transmits a

premise to the receiver could be either a public key channel or a shared key

channel with the receiver as one party, as in the Needham-Schroeder protocol

[191. We treat the former case in detail here. The latter case can arise in two

ways. One is that shared key encryption is being used to simulate public key

encryption, as described in Section 4. The other is as an optimization when

there is already a shared-key channel that speaks for the public key, such as

the channel DES(KJ described just above. This optimization works only for

premises that the receiver does not need to forward to a third party.

The meaning A of C.,d is an expression whose operands are names or chan-

nels; in either case the credentials must prove that the sending system C~ can

speak for A. In our system all the operands of A are either roles or the public

keys of nodes or of users; in the example of Figure 7 the keys are KWS and KbWl,

and all the names are roles. Sections 6 and 7 explain how the sending system

gets credentials for these keys as a result of booting or login. Section 5

explains how the receiving system pulls credentials that authenticate these

keys as speaking for named principals.

8.2 The Authentication Agent

Thus the credentials are a collection of certificates and statements from the

sender, together with the connective tissue that assembles them into a proof

of C.,d + A. The receiver gets them from the sender, checks the proof, and

caches the result. In our system a component of the receiver’s operating sys-

tem called the authentication agent does this work for the receiver.

ACM Transactions on Computer Systems, Vol. 10, No. 4, November 1992.



300 . B,

pr5

Lampson, M, Abadi, M. Burrows, and E. Wobber

I=zF’1 ‘rr What CS Iprs / a says

agent

0s
Ksr, pr; says
Read (a, f))

)-—

—I I I

Sender Receiver

Fig. 9. Messages to the agents for authenticating a channel.

The receiving process:

—gets a message containing aid, interpreted as aid says s;

—learns from its operating system that the message came on channel C. Ipr~

(this is exactly like learning the source address of a message), so it

believes C’s lpr~ says aid says s, which is the same as C. lpr~ Iaid says s;

—calls on its local agent to learn the principal A that C’a,d = C~ Iprs I aid

speaks for, so it believes A says s;

—and perhaps caches the fact that Cald = A to avoid calling the agent again

if it @S another message frOrn Cazd.

The process doesn’t need to see the credentials, since it trusts its agent to

check them just as it trusts its operating system for virtual memory and the

other necessities of life. The process does need to know their lifetime, since

the information Catd + A that it may want to cache must be refreshed after

that time. Figure 9 shows communication through the agent.

The agent has three jobs: caching credentials, supplying credentials, and

handing off authorities.

Its first job, acting for the receiver, is to maintain a cache of C~,d = A facts

and lifetimes like the cache maintained by its client processes. The agent an-

swers queries out of the cache if it can. Because this is a cache, the agent can

discard entries whenever it likes. If the information it needs isn’t in the cache,

the receiver’s agent asks the sender’s agent for the meaning and credentials of
C.,d, checks the credentials it gets back, and caches the meaning.

The agent’s second job, acting now for the sender, is to respond to these re-

quests. To do this it keeps track of

—the meaning A of each aid a that it is responsible for (note that a is local

to the node, not to a channel),

—the certificates that it needs to make a’s credentials, that is, to prove

C~la+A, and

ACM TransactIons on Computer Systems, Vol. 10, No 4, November 1992.



Authentication in Distributed Systems: Theory and Practice . 301

prs

agent

0s

-I
iandoff(a, Cb) Claim CS lpr5 says

:e (a) Prr (Ca, b) Take (a)

1 Y I
I Cb=a, Cb says

T

I
Claim(a)

OK :I
I a+A, Ca+A, ~

Ds credentials credentials ,~credentials
I for A , for A

h -- for A, I
I pr5~a prr=a I
r—-————

1
———----!

I I

Sender Receiver

~ig. 10. Messages to the agents for handing off an authority.

—the processes that are allowed to speak for a (that is, the processes pr
such that the agent believes pr Ia + a and hence is willing to authenticate

C~]prla as A).

An authority is an aid that a process speaks for. For a process to have an

authority, its agent must have credentials to prove that some channel con-

trolled by the agent speaks for the authority’s meaning, and the agent must

agree that the process speaks for the authority. Each process pr starts out

with one authority, which it obtains by virtue of a user login or of the program

P running in pr. In the latter case, for example, the node N loading P makes a

new authority a, tells pr what it is, and records a + N as P and pr 1a *a.
The process can get its initial authority by calling se I f ( ). If it has authori-

ties a and b, it can get the authorities a A b by calling And ( a, b) and a as r by

calling AS (a, r ) . It can give up a by calling Discard ( a ) . What the agent knows

about an authority is original information, unlike the cached facts C.id - A.
Hence the agent must keep it until all the processes that speak for the au-

thority discard it or disappear.

The agent’s third job is to hand off authorities from one process to another,

as shown in Figure 10. A sending process can hand off the authority a to an-

other principal b by calling Handoff (a, Cb ) . This is a statement to its local

agent: a says Cb + a, where cb = C, Ipr, I b. The agent believes it because of

(P1O). The process can then pass a to the receiving process by sending it a

message in the usual way, say by calling Take(a) . If pr, has the authority b, it
can obtain the authority a by calling c I a im ( c a, b). This causes the receiving
agent to call the sending agent requesting its credentials for the meaning A
of a (proof that KS Ia > A) plus the certificate KS Ia says K, Ia - A. These are

credentials that allow the receiving agent to speak for A. The certificate lets

K, Ia speak for A rather than a because the receiver needs to be able to prove

its right to speak for the meaningful principal A, not the authentication iden-

tifier a. The certificate is directly signed by K. (the sender’s public key), rather

ACM Transactions on Computer Systems, Vol. 10, No. 4, November 1992.



302 . B Lampson, M. Abadi, M. Burrows, and E, Wobber

than simply sent on DES(K,,) (the shared key channel between sender and

receiver) because the receiver needs something that it can pass on to a third

party.

Claiming an authority has no effect unless you use it by passing it on to an-

other process. This means that the claiming can be automatic. Suppose that

process pr passes on an authority a, the recipient asks for a’s credentials, and

pr hasn’t claimed a. In this case pr’s agent can claim a automatically as long

as pr has the authority for b.
When is it appropriate to hand off an authority a? Doing this allows the re-

cipient to speak for a as freely as you can, so you should do it only if you trust

the recipient with a as much as you trust yourself. If you don’t, you should

hand off only a weaker authority, for instance one that corresponds to a dele-

gation as described in Section 7. The log-in procedure of Section 7.1 is an ex-

ample of this: the user hands off authority for “machine for user” rather than

her entire authority.

Our system has two procedures for dealing with delegation, one for each of

the certificates (1) and (2) in Section 7. A process calls For ( a, Ch) to delegate

the meaning A of a to the meaning B of the principal Cb; this corresponds to

making (1), which in this context is a says cb Ia = B for A. Before it calls Fol-,

the process normally checks C~ against some ACL that expresses the

principals to which it is willing to delegate.

Now the process can pass a to a receiver that has an authority b corre-

sponding to Cb, and the receiver calls Accept (a, b) to obtain an authority re-
sult that speaks for B for A. This call corresponds to claiming B for A, mak-

ing (2), which in this context is cb I a says b Ia s B for A, and making b Ia
says result * B for A. The sending agent supplies a certificate signed by its

public key, K. I a says K, Ia =+ B for A, along with a’s credentials that prove

K. Ia + A, just as in an ordinary handoff. The receiving agent can construct

credentials for B for A based on the credentials it has for B, the claimed cer-

tificate and credentials, and the reasoning in Section 7. So the receiver can

prove to others its right to speak for 1? for A.
You might feel that it’s clumsy to require explicit action at both ends; after

all, the ordinary handoff can be claimed automatically. But the two cases are

not the same. In accepting the for and using the resulting authority, the re-

ceiver adds the weight of authority b to the authority from the sender. It

should not do this accidentally.

What about revocation? The sending agent signs a handoff (or delegation)

certificate that expires fairly soon, typically in about 30 minutes. This means

that the handoff must be refreshed every 30 minutes by asking the sender for

credentials again. If the sender’s credentials in turn depend on a handoff from

some other sender, the refresh will work its way up the chain of senders and

back down. To keep the cost linear in the depth of handoff, we check all the

certificates in a set of credentials whenever any one expires, and refresh those

that are about to expire. This tends to synchronize the lifetimes.
Table IV summarizes the state of the agent. Table V summarizes the inter-

face from a process to its local agent.

ACM TransactIons on Computer Systems, Vol. 10, No. 4, November 1992



Authentication in Distributed Systems: Theory and Practice . 303

Table IV. The State of an Agent

(K., K.-1), the public key pair of this node.

Principal A table mapping a channel C. = C, lpr~ I a to A.

cache An entry means the agent has seen credentials

I proving “c. + 4 the en~v also has a lifetime.

Authorities A table mapping an aid a to

A, the principal that a speaks for.

Credentials to prove this agent can speak for A.

A set of local processes that can speak for a.

A set of cb that can speak for a.

Table V. Programming Interface from a Process to its Local Agent

Procedure

Selfo : A

Discard (a: A)

I
And(a: A, b: A):A

As (a: A, r: Role) : A

Handoff (a: A, b: C)

Claim (a: C, b: A): A

I
For(a: A, b: C)

Accept (a: C, b: A) : A

I

—
Meaning

a A b says result * a A b

a I r says result * a as r

asays b-a

Retrieve a says b + a;

b says result * a

asaysbla+b fora

Retrieve a says b I a + b for a ;

blasaysbla+b fora Aresultti

Does acl grant b the right to do op?

b]a

Types: A for authority, represented as aid.

c for channel principal, which is C~,~ = ~S IPrs I a id”

There are many possible variations on the basic scheme described above.

Here are some interesting ones:

—Each thread can have an authority that is passed automatically in every

message it sends. This gets rid of most authority arguments, but it is less

flexible and less explicit than the basic scheme in which each message

specifies its authorities.

—In the basic scheme, authentication is symmetric between call and return;
this means that each call can return the principal responsible for the re-

sult or hand off an authority. Often, however, the caller wants to authen-

ACM Transactions on Computer Systems, Vol. 10, No. 4, November 1992



304 . B. Lampson, M. Abadi, M. Burrows, and E. Wobber

ticate the channel from the server only once. It can do this when it estab-

lishes the RPC binding if this operation returns an aid for the server’s au-

thority. This is called ‘mutual authentication’.

—Instead of passing certificates for all the premises of the credentials, the

sending agent can pass the name of a place to find the certificates. This is

especially interesting if that place is a trusted on line server which can

authenticate a channel from itself, because that server can then just as-

sert the premise rather than signing a certificate for it. For example, in a

system with centralized management there might be a trusted database

server to store group memberships. Here ‘trusted’ means that it speaks

for these groups. This method can avoid a lot of public key encryption.

—It’s possible to send the credentials with the first use of a; this saves a

round trip. However, recognizing the first use of a may be difficult. The

callback mechanism is still needed for refreshing the credentials.

8.3 Granting Access

Even a seemingly endless chain of remote calls will eventually result in an at-

tempt to actually access an object. For instance, a call Read ( f ile f, authority

a ) will be interpreted by the receiver as C~ says “read file ~”. The receiver ob-

tains the ACL for f and wants to know whether C. speaks for a principal that

can have read access. To find this out the receiver calls CheckAccess ( f rs acl,

Ca , read ) , which returns true or false. Section 9 explains how this works.

8.4 Pragmatic

The performance of our interprocess authentication mechanism depends on

the cache hit rates and the cost of loading the caches. Each time a receiving

node sees C~ for the first time, there is a miss in its cache and a fairly expen-

sive call to the sender for the meaning and credentials. This call takes one

RPC time (2.5 ms on our 2 MIPS processors) plus the time to check any certifi-

cates the receiver hasn’t seen before (15 ms per certificate with 512-bit RSA

keys). Each time a receiving process sees C. for the first time, there is one op-

erating system call time and a fast lookup in the agent’s cache. Later the pro-

cess finds C~ in its own cache, which it can access in a few dozen instructions.

When lifetimes expire, it’s as though the cache was flushed. We typically

use 30-minute lifetimes, so we pay less than 0.001% to refresh one certificate.

If a node has 50 Ca’s in constant use with two different certificates each, this

is 0.170. With the faster processors coming it will soon be much less.

The authentication agent could be local to a receiving process, so that the
operating system wouldn’t be involved and the process identifiers wouldn’t be

needed. We put the agent in the operating system for a number of reasons:

—When acting for a sender, the agent has to respond to asynchronous calls

from receivers. Although the sending process could export the agent inter-

face, this is a lot of machinery to have in every process.

—An agent in the operating system can optimize the common case of au-

thentication between two processes on the same node. This is especially

ACM TransactIons on Computer Systems, Vol. 10, No. 4, November 1992



Authentication in Distributed Systems: Theory and Practice . 305

important for handing off an authority a from a parent to a child process,

which is very common in Unix. All the agent has to do is check that the

parent speaks for a and add the child to the set of processes that speak for

a. This can be implemented almost exactly like the standard Unix mech-

anism for handing off a file descriptor from a parent to a child.

—The agent must deal with encryption keys, and cryptographic religion

says that key handling should be localized as much as possible. Of course

we could have put just this service in the operating system, at some cost

in complexity.

—Process-to-process encryption channels mean many more keys to establish

and keep track of.

—The operating system must be trusted anyway, so we are not missing a

chance to reduce the size of the trusted computing base.

9. ACCESS CONTROL

Finally we have reached our goal: deciding whether to grant a request to ac-

cess an object. We follow the conventional model of controlling access by

means of an access control list or ACL which is attached to the object, as de-

scribed in Section 1.

We take an ACL to be a set of principals, each with some rights to the ACL’S

object.27 The ACL grants a request A says s if A speaks for B and B is a

principal on the ACL that has all the rights the request needs. So the refer-

ence monitor needs an algorithm that will generate a proof of A + B (then it

grants access), or determine that no such proof exists (then it denies access).

This is harder than the task of constructing the credentials for a request, be-

cause there we are building up a principal one step at a time and building the

proof at the same time. And it is much harder than checking credentials, be-

cause theorem proving is much harder than proof checking. So it’s not sur-

prising that we have to restrict the form of ACLS to get an algorithm that is

complete (that is, always finds a proof if there is one) and also runs reason-

ably fast.

There are many ways to do this. Our choice is described by the following

grammar for the principal in an ACL entry or a request:28

principal ::= forList I principal A forList

forList ::= asList I forList for asList

asList ::= properPrincipal I asList as role

role ::= pathName

properPrincipal ::= pathName I channel

The roles and the properPrincipals must be disjoint.

27A capability for an object can be viewed w ~ principalthatisautomaticaHy on the ACL.

28 we can relax this syntax ~Omewhat. since f~~ and as &st,ribUte over A by (D2) and (P6), we

can push any nested A operators outward. Since (A for B) as C =A for (B as C) by (D4), we can

push any as operators inward into the second operands of for.

ACM Transactions on Computer Systems, Vol. 10, No. 4, November 1992.



306 . B, Lampson, M Abadi, M. Burrows, and E. Wobber

In addition to A and a set of Bs we also have as input a set of premises P *
Q, where P and Q are properPrincipals or roles. The premises arise from

group membership certificates or from path name lookup; they are just like

the premises in credentials.

Now there is an efficient algorithm to test A s B:

—Each forList in B must have one in A that speaks for it.

—One forList speaks for another if they have the same length and each

asList in the first forList speaks for the corresponding asList in the second

forList.

—A asR1 as ... as Rn+Bas RI’as... asRm ‘ ifA ~ B and for each R] there

is an Rk’ such that RJ & Rk’.

—One role or properPrincipal A speaks for another B if there is a chain of

premises A = PO= ... ~Pn =B.

Another paper discusses algorithms for access checking in more detail [2].

Our theory of authentication is compatible with other theories of access con-

trol, for example, one in which the order of delegation hops (operands of for)

is less important.

The inputs to the algorithm are the ACL, the requesting principal, and the

premises. We know how to get the ACL (attached to the object) and the prin-

cipal (Section 8). Recall that because we use the pull model, the requesting

principal is an expression in which every operand is either a role or a public

key that is expected to speak for some named principal; Section 8 gives an ex-

ample. What about the premises? As we have seen, they can be either pushed

by the sender or pulled from a database by the receiver. Our system pulls all

the premises needed to authenticate a channel from a name, by looking up the

name as described in Section 5.

If there are many principals on the ACL or many members of a group, it will

take too long to lookup all their names. We deal with this by

—attaching an integer hint called a tag to every named principal on an ACL

or in a group membership certificate,

—sending with the credentials a tag for each principal involved in the re-

quest, and

—looking up a name only if its tag appears in the request or if it is specially

marked to be looked up unconditionally (for instance, the name of a group

that is local to the receiver).

The tags don’t have to be unique, just different enough to make it unlikely

that two distinct named principals have the same tag. For instance, if the

chance of this is less than .001 we will seldom do any extra lookups in a set of

500 names.

Note that a request with missing tags is denied. Hence a request must claim

membership in all groups that aren’t looked up unconditionally, by including

their tags. In particular, it must claim any large groups; they are too

expensive to look up unconditionally. This is a small step toward the push

ACM TransactIons on Computer Systems, Vol. 10, No. 4, November 1992.



Authentication in Distributed Systems: Theory and Practice . 307

model, in which a request must claim all the names that it speaks for and

present the proof of its claims as well.

What about denying access to a specific principal? This is tricky in our sys-

tem for two reasons:

—Principals can have more than one name or key.

—Certificates are stored insecurely, so we can’t securely determine that a

principal is not in a group because we can’t count on finding the member-

ship certificate if it is in the group.

The natural form of denial for us is an ACL modifier which means that the ac-

cess checker should disbelieve a certificate for any principal that satisfies

some property. For example, we can disbelieve certificates for a principal with

a given name, or one with a given key, or one whose name starts with ‘A’, or

one with a given tag (in which case the tags should be unique or we will some-

times deny access improperly). The idea behind this approach is that the sys-

tem should be fail-secure: in case of doubt it should deny access. This means

that it views positive premises like A + 1? skeptically, negative ones like

“deny Jim access” trustingly.

Instead, we can represent the entire membership of a group securely, either

by entrusting it to a secure on line server or by using a single certificate that

lists all the members. But these methods sacrifice availability or performance,

so it is best to use them only when the extra information is really needed.

9.1 Auditing

Our theory yields a formal proof for every access control decision. The

premises in the proof are statements made on channels or assumptions made

by the reference monitor (for instance the premise that starts off a name

lookup). Every step in the proof is justified by one of a small number of rules,

all listed in the appendix. The proof can be written into the audit trail, and it

gives a complete account of what access was granted and why. The theory

thus provides a formal basis for auditing. Furthermore, we can treat inter-

mediate results of the form A ~ B as lemmas to be proved once and then ref-

erenced in other proofs. Thus the audit trail can use storage efficiently.

10. CONCLUSION

We have presented a theory that explains many known methods for authenti-

cation in distributed systems:

—the secure flow of information in the Needham-Schroeder and Kerberos

protocols;

—authentication in a hierarchical name space;

—many variations in the paths along which bits are transmitted: from certi-

fication authority to sender to receiver, from certification authority di-

rectly to receiver, etc.;

—lifetimes and refreshing for revoking grants of authority;

—unique identifiers as partial substitutes for principal names.

ACM Transactions on Computer Systems, Vol. 10, No. 4, November 1992.



308 . B. Lampson, M, Abadl, M, Burrows, and E. Wobber

The theory also explains a number of new methods used in our system for:

—treating certificates and online communication with authorities as logi-

cally equivalent mechanisms;

—revoking secure long-lived certificates rapidly by requiring them to be

countersigned with refreshable short-lived ones;

—loading programs and booting machines securely;

—delegating authority in a way that combines and limits the power of both

parties;

—passing RPC arguments or results that are principals as efficiently as

passing integers (after an initial startup cost), and refreshing their au-

thority automatically;

—taking account of roles and delegations in granting access.

The system is implemented. The basic structure of agents, authentication

identifiers, authorities, and ACLS is in place, Our operating system and dis-

tributed file system are both clients of our authentication and access control.

This means that our ACLS appear on files, processes, and other operating sys-

tem objects, not just on new objects like name service entries. Node-to-node

channel setup, process-to-process authentication, roles, delegation, and secure

loading are all working, and our implementation is the default authentication

system for the 50 researchers at SRC.

Work is in progress on software support of network-controller based DES

encryption. Although our current implementation does not allow either com-

posite or hierarchical principal names in ACLS, we expect to experiment with

these in the future. A forthcoming paper will describe the engineering details

and the performance of the implementation.

APPENDIX

Here is a list of all the axioms in the paper, and therefore of all the assump-

tions made by our theory.

Statements

Ifs is an instance of a theorem of propositional logic then Es.

If}sand Fs>s’then Rs’.

l-( Asayss AAsays(s>s’))~A says s’.

If E s then } A says s for every principal.

Principals

1- (A A~) sayss = (A Sayss) A (~ sayss)

R (A ] B) sayss = A says B sayss

RA=Bn(A says s= Bsayss)

1- I is associative.

R I distributes over A in both arguments.

k(A~B)E(/l=AAB)

ACM Transactions on Computer Systems, Vol. 10, No. 4, November 1992.

(s1)

(s2)

(s3)

(s4)

(Pi)

(P2)

(P3)

(P5)

(P6)

(P7)



Authentication in Distributed Systems: Theory and Practice . 309

}(Asays (B~A))~(13=A)

Path names

t P except M ~ P

t M #N n (P except M) I N =) PIN except ‘..’

kM#’..’ ~ (PIN except M) I ‘..’+ P except N

Roles

FA asR =A \ R forall R F Roles

kA~Aas R for all R E Roles

} as is commutative and idempotent on roles

Delegation

}BforA. BIAAD IA

}AaDIA

(Plo)

(Nl)

(N2)

(N3)

(Rl)

(R2)

(R3)

(D5)

(D6)

ACKNOWLEDGEMENTS

Many of the ideas discussed here were developed as part of the Digital

Distributed System Security Architecture [12, 13, 17] or were greatly influ-

enced by it. Morrie Gasser, Andy Goldstein, and Charlie Kaufman made ma-

jor contributions to that work. We benefited from discussions with Andrew

Birrell and from comments by Morrie Gasser, Maurice Herlihy, Cynthia

Hibbard, John Kohl, Tim Mann, Murray Mazer, Roger Needham, Greg

Nelson, Fred Schneider, and Mike Schroeder.

REFERENCES

1. ABADI, M., BURROWS, M., KAUFMAN, C., AND LAMPSON, B. Authentication and delegation

with smart-cards. In Theoretical Aspects of Computer Software, LNCS 526, Springer, 1991,

pp. 326-345. Also Res. Rep. 67, Systems Research Center, Digital Equipment Corp., Palo
Alto, Calif., Oct. 1990. To appear in Science of Computer .Programming.

2. ABADI, M., BURROWS, M., LAMPSON, B., AND PLOTKIN, G. A calculus for access control in

distributed systems. In Advances in C~ptology— Crypto ’91, LNCS 576, Springer, 1992, pp.

1-23. Also Res. Rep. 70, Systems Research Center, Digital Equipment Corp., Palo Alto,

Calif., March 1991. To appear in ACM Trans. Program. Lang. Syst.

3. BIRRELL, A., LAMPSON, B., NEEDRAM, R., AND SCHROEDER, M. Global authentication

without global trust. In Proceedings of the IEEE Symposium on Security and Privacy

(Oakland, Calif., May 1986), pp. 223-230.
4. BURROWS, M., ABADI, M., AND NEEDHAM, R. A logic of authentication. ACM Trans.

Comput. Syst. 8, 1 (Feb. 1990), 18-36. An expanded version appeared in Proc. Royal Society

A 426, 1871 (Dec. 1989), 233-271 and as Res. Rep. 39, Systems Research Center, Digital

Equipment Corp., Palo Alto, Calif., Feb. 1989.

5. CCNTI’. Information Processing Systems — Open Systems Interconnection — The Directory

Authentication Framework. CCITT 1988 Recommendation X.509. Also ISO/IEC 9594-8:1989.

6. COMBA, P. Exponentiation cryptosystems on the IBM PC. IBM Syst. J. 28,4 (Jul. 1990), 526-

538.

7. DAVIS, D. AND SWICK, R. Network security via private-key ccrtificate~. ACM Oper. S-y.%.

Rev. 24,4 (Oct. 1990), 64-67.

ACM Transactions on Computer Systems, Vol. 10, No. 4, November 1992.



310 - B. Lampson, M. Abadi, M. Burrows, and E. Wobber

8. DENNING, D. A lattice model of secure information flow. Commun. ACM 19, 5 (May 1976),

236-243.

9. DEPARTMENT OF DEFENSE. Trusted Computer System Evaluation Criterza. DOD 5200.28 -

STD, 1985.

10. DIFFIE, W. AND HELLMAN, M. New directions m cryptogz-aphy. IEEE Trans. Znf Z%eor. ZT-

22, 6 (Nov. 1976), 644-654.

11. EBERLE, H. AND THACKER, C. A 1 Gbit/second GaAs DES chip. In Proceedings of the IEEE

1992 Custom Integrated Circuzt Conference (Boston, Mass., May 1992), pp. 19.7.1-19.7.4.

12. GASSER, M., GOLDSTEIN, A., KAUFMAN, C., AND LAMPSON, B. The Digital distributed sys-

tem security architecture. In Proceedings of the 12th National Computer Securzty

Conference (Baltimore, Md., Oct. 1989), pp. 305-319.

13. GASSER, M., AND MCDERMOTT, E. An architecture for practical delegation in a distributed

system. In Proceedings of the IEEE Symposz urn on Seczuv ty and Privacy (Oakland, Calif.,

May 1990), pp. 20-30.

14. HERBISON, B. Low cost outboard cryptographic support for FJLS and SP4. In Proceedings of

the 13th Natzonal Computer Security Conference (Baltimore, Md., Oct. 1990), pp. 286-295.

15. KOHL, J., NEU MAN, C., AND STEINER, J The Kerberos network authentication service.

Version 5, draft 3, Project Athena, MIT, Cambridge, Mass., Oct. 1990.

16. LAMPSON, B. Protection. ACM Oper. Syst. Rev. 8, 1 (Jan, 1974), 18-24.

17. LINN, J. Practical authentication for distributed systems. Proceedings of the IEEE Sympos-

zurn cm Security and Priuacy (Oakland, Calif., May 1990), pp. 31-40.

18. NATIONAL BUREAU OF STANDARDS. Data Encryption Standard. FIPS Pub. 46, Jan. 1977.

19. NEEDHAM, R. AND SCHROEDER, M. Using encryption for authentication in large networks

of computers. Common. ACM 21,12 (Dec. 1978), 993-999.

20 NEUW, C. Proxy-based authorization and accounting for distributed systems. Tech. Rep.

91-02-01, University of Washington, Seattle, Wash., March 1991.

21. RIVEST, R., SHAMIR, A., AND AOLE W, L. A method for obtaining digital signatures and

public-key cryptosystems. Cornrnun. ACM 21, 2 (Feb. 1978), 120-126.

22. RIVEST, R. The M D4 message digest algorithm. In Advances in Cryptology—Crypto ’90,

Springer, 1991, pp. 303-311.

23. RIVEST, R. AND D USSE, S. The MD5 iVlessage-Dzgest Algorzthm. Internet Draft [MD5-A]:

draft-rsadsi-rivest-md5 -Ol.txt, July 1991.

24. SALTZER, J., REED, D., AND CLARK, D. End-to-end arguments in system design. ACM

Trans. Comput. Syst. 2,4 (Nov. 1984), 277-288.

25. SHAND, M., BERTIN, P., AND VUILLEMIN, J. Resource tradeoffs in fast long integer multi-

plication. In %d ACM Symposium on Parallel Algorithms and Architectures (Crete, July

1990),

26. STEINER, J., NEU W, C., AND SCHILLER, J. Kerberos: An authentication serwce for open

network systems. In Proceedings of the Usencx Winter Conference (Berkeley, Calif., Feb

1988), pp. 191-202.

27. TARDO, J. AND ALAGAPPAN, K. SPX Global authentication using public key certificates.

Proceedings of the IEEE Symposium on Security and Pr,uacy (Oakland, Calif., May 1991),

pp. 232-244.

28. VOYDOCK, V. AND KENT, S. Security mechamsms in high-level network protocols. ACM

Compat. SW-U. 25, 2 (Jun. 1983), 135-171.

Received December 1991; revised June 1992; accepted August 1992

ACM TransactIons on Computer Systems, Vol 10, No 4, November 1992.


