
A Survey of Rollback-Recovery Protocols in
Message-Passing Systems

E. N. (MOOTAZ) ELNOZAHY

IBM Research

LORENZO ALVISI

The University of Texas at Austin

YI-MIN WANG

Microsoft Research

AND

DAVID B. JOHNSON

Rice University

This survey covers rollback-recovery techniques that do not require special language
constructs. In the first part of the survey we classify rollback-recovery protocols into
checkpoint-based and log-based. Checkpoint-based protocols rely solely on checkpointing
for system state restoration. Checkpointing can be coordinated, uncoordinated, or
communication-induced. Log-based protocols combine checkpointing with logging of
nondeterministic events, encoded in tuples called determinants. Depending on how
determinants are logged, log-based protocols can be pessimistic, optimistic, or causal.
Throughout the survey, we highlight the research issues that are at the core of
rollback-recovery and present the solutions that currently address them. We also
compare the performance of different rollback-recovery protocols with respect to a
series of desirable properties and discuss the issues that arise in the practical
implementations of these protocols.

Categories and Subject Descriptors: D.4.5 [Operating Systems]: Reliability—
Checkpoint/restart; fault-tolerance; D.4.7 [Operating Systems]: Organization and
Design—Distributed systems; D.2.8 [Software]: Metrics—Performance measures;

General Terms: Design, Reliability, Performance

Additional Key Words and Phrases: message logging, rollback-recovery

Mootaz Elnozahy started this work while at Carnegie Mellon University, where he was supported in part by
the National Science Foundation through a Research Initiation Award under contract CCR 9410116 and a
CAREER Award under contract CCR 9502933. Lorenzo Alvisi was supported in part by an NSF CAREER
award (CCR-9734185), an Alfred P. Sloan Fellowship, an IBM Faculty Partnership award, DARPA/SPAWAR
grant N66001-98-8911, and a grant of the Texas Advanced Research Program.
Authors’ addresses: E. N. (Mootaz) Elnozahy, IBM Austin Research Lab., M/S 904-6C-020, 11501 Burnet Rd.,
Austin, TX 78578; email: mootaz@us.ibm.com; Lorenzo Alvisi, Department of Computer Sciences, Taylor Hall
2.124 The University of Texas at Austin, Austin, TX 78712-1188; email: lorenzo@cs.utexas.edu; Yi-Min Wang,
Microsoft Corporation, One Microsoft Way, Redmond, WA 98052; email: ymwang@microsoft.com; David B.
Johnson, Rice University, Department of Computer Science, 6100 Main St., MS 132, Houston, TX 77005-
1892; email: dbj@cs.rice.edu.
Permission to make digital/hard copy of part or all of this work for personal or classroom use is granted
without fee provided that the copies are not made or distributed for profit or commercial advantage, the
copyright notice, the title of the publication, and its date appear, and notice is given that copying is by
permission of the ACM, Inc. To copy otherwise, to republish, to post on servers, or to redistribute to lists,
requires prior specific permission and/or a fee.
c©2002 ACM 0360-0300/02/0900-0375 $5.00

ACM Computing Surveys, Vol. 34, No. 3, September 2002, pp. 375–408.

376 Elnozahy et al.

1. INTRODUCTION

Distributed systems today are ubiqui-
tous and enable many applications, in-
cluding client-server systems, transaction
processing, World Wide Web, and scien-
tific computing, among many others. The
vast computing potential of these systems
is often hampered by their susceptibility
to failures. Therefore, many techniques
have been developed to add reliability
and high availability to distributed sys-
tems. These techniques include transac-
tions, group communication, and rollback-
recovery, and have different tradeoffs and
focuses. For example, transactions focus
on data-oriented applications, while group
communication offers an abstraction of
an ideal communication system that sim-
plifies the development of reliable appli-
cations. This survey covers transparent
rollback-recovery, which focuses on long-
running applications such as scientific
computing and telecommunication appli-
cations [Huang and Kintala 1993; Plank
1993].

Rollback-recovery treats a distributed
system as a collection of application pro-
cesses that communicate through a net-
work. The processes have access to a stable
storage device that survives all tolerated
failures. Processes achieve fault tolerance
by using this device to save recovery in-
formation periodically during failure-free
execution. Upon a failure, a failed pro-
cess uses the saved information to restart
the computation from an intermediate
state, thereby reducing the amount of
lost computation. The recovery informa-
tion includes, at a minimum, the states
of the participating processes, called
checkpoints. Other recovery protocols may
require additional information, such as
logs of the interactions with input and out-
put devices, events that occur to each pro-
cess, and messages exchanged among the
processes.

Rollback-recovery has many flavors. For
example, a system may rely on the ap-
plication to decide when and what to
save on stable storage. Or, it may provide
the application programmer with linguis-
tic constructs to structure the application

[Randell 1975]. We focus in this survey on
transparent techniques, which do not re-
quire any intervention on the part of the
application or the programmer. The sys-
tem automatically takes checkpoints ac-
cording to some specified policy, and re-
covers automatically from failures if they
occur. This approach has the advantages
of relieving the application programmers
from the complex and error-prone chores
of implementing fault tolerance and of of-
fering fault tolerance to existing applica-
tions written without consideration to re-
liability concerns.

Rollback-recovery has been studied
in various forms and in connection with
many fields of research. Thus, it is per-
haps impossible to provide an extensive
coverage of all the issues related to
rollback-recovery within the scope of
one article. This survey concentrates
on the definitions, fundamental con-
cepts, and implementation issues of
rollback-recovery protocols in distributed
systems. The coverage excludes the use of
rollback-recovery in many related fields
such as hardware-level instruction retry,
distributed shared memory [Morin and
Puaut 1997], real-time systems, and de-
bugging [Mellor-Crummey and LeBlanc
1989]. The coverage also excludes the
issues of using rollback-recovery when
failures could include Byzantine modes or
are not restricted to the fail-stop model
[Schlichting and Schneider 1983]. Also
excluded are rollback-recovery techniques
that rely on special language constructs
such as recovery blocks [Randell 1975] and
transactions. Finally, the section on imple-
mentation exposes many relevant issues
related to implementing checkpointing on
uniprocessors, although the coverage is
by no means an exhaustive one because
of the large number of issues involved.

Message-passing systems complicate
rollback-recovery because messages in-
duce inter-process dependencies during
failure-free operation. Upon a failure
of one or more processes in a system,
these dependencies may force some of
the processes that did not fail to roll
back, creating what is commonly called
rollback propagation. To see why rollback

ACM Computing Surveys, Vol. 34, No. 3, September 2002.

Rollback-Recovery Protocols in Message-Passing Systems 377

propagation occurs, consider the situation
where a sender of a message m rolls back
to a state that precedes the sending of m.
The receiver of m must also roll back to a
state that precedes m’s receipt; otherwise,
the states of the two processes would be
inconsistent because they would show
that message m was received without
being sent, which is impossible in any
correct failure-free execution. Under
some scenarios, rollback propagation may
extend back to the initial state of the com-
putation, losing all the work performed
before a failure. This situation is known
as the domino effect [Randell 1975].

The domino effect may occur if
each process takes its checkpoints
independently—an approach known as
independent or uncoordinated checkpoint-
ing. It is obviously desirable to avoid
the domino effect and therefore several
techniques have been developed to pre-
vent it. One such technique is to perform
coordinated checkpointing in which pro-
cesses coordinate their checkpoints in
order to save a system-wide consistent
state [Chandy and Lamport 1985]. This
consistent set of checkpoints can then be
used to bound rollback propagation. Alter-
natively, communication-induced check-
pointing forces each process to take
checkpoints based on information pig-
gybacked on the application messages
received from other processes [Russell
1980]. Checkpoints are taken such that
a system-wide consistent state always
exists on stable storage, thereby avoiding
the domino effect.

The approaches discussed so far imple-
ment checkpoint-based rollback-recovery,
which relies only on checkpoints to
achieve fault-tolerance. In contrast, log-
based rollback-recovery combines check-
pointing with logging of nondeterministic
events.1 Log-based rollback-recovery re-
lies on the piecewise deterministic (PWD)

1 Earlier papers in this area have assumed a model
in which the occurrence of a nondeterministic event
is modeled as a message receipt. In this model, non-
deterministic event logging reduces to message log-
ging. In this paper, we use the terms event logging
and message logging interchangeably.

assumption [Strom and Yemini 1985],
which postulates that all nondeterminis-
tic events that a process executes can be
identified and that the information neces-
sary to replay each event during recovery
can be logged in the event’s determinant
[Alvisi 1996; Alvisi and Marzullo 1998]. By
logging and replaying the nondeterminis-
tic events in their exact original order, a
process can deterministically recreate its
pre-failure state even if this state has not
been checkpointed. Log-based rollback-
recovery in general enables a system to
recover beyond the most recent set of con-
sistent checkpoints. It is therefore partic-
ularly attractive for applications that fre-
quently interact with the outside world,
which consists of all input and output
devices that cannot roll back. Log-based
rollback-recovery has three flavors, de-
pending on how the determinants are
logged to stable storage. In pessimistic log-
ging, the application has to block waiting
for the determinant of each nondetermin-
istic event to be stored on stable storage
before the effects of that event can be
seen by other processes or the outside
world. Pessimistic logging simplifies re-
covery but hurts failure-free performance.
In optimistic logging, the application does
not block, and determinants are spooled to
stable storage asynchronously. Optimistic
logging reduces the failure-free over-
head, but complicates recovery. Finally, in
causal logging, low failure-free overhead
and simpler recovery are combined by
striking a balance between optimistic and
pessimistic logging. The three flavors also
differ in their requirements for garbage
collection and their interactions with the
outside world, as will be explained later.

The outline of the rest of the survey is
as follows:

r Section 2: System model, terminology
and generic issues in rollback-recovery.r Section 3: Checkpoint-based rollback-
recovery protocols.r Section 4: Log-based rollback-recovery
protocols.r Section 5: Implementation issues.r Section 6: Conclusions.

ACM Computing Surveys, Vol. 34, No. 3, September 2002.

378 Elnozahy et al.

Fig. 1 . An example of a message-passing system
with three processes.

2. BACKGROUND AND DEFINITIONS

2.1. System Model

A message-passing system consists of a
fixed number of processes that communi-
cate only through messages. Throughout
this survey, we use N to denote the to-
tal number of processes in a system. Pro-
cesses cooperate to execute a distributed
application program and interact with the
outside world by receiving and sending
input and output messages, respectively.
Figure 1 shows a sample system consist-
ing of three processes, where horizontal
lines extending toward the right-hand side
represent the execution of each process,
and arrows between processes represent
messages.

Rollback-recovery protocols generally
assume that the communication network
is immune to partitioning but differ in
the assumptions they make about net-
work reliability. Some protocols assume
that the communication subsystem de-
livers messages reliably, in first-in-first-
out (FIFO) order [Chandy and Lamport
1985], while other protocols assume that
the communication subsystem can lose,
duplicate, or reorder messages [Johnson
1989]. The choice between these two as-
sumptions usually affects the complexity
of recovery and its implementation in dif-
ferent ways. Generally, assuming a reli-
able network simplifies the design of the
recovery protocol but introduces imple-
mentation complexities that will be de-
scribed in Sections 2.3, 2.4 and 5.4.2.

A process execution is a sequence of
state intervals, each started by a nonde-
terministic event. Execution during each
state interval is deterministic, such that if
a process starts from the same state and

is subjected to the same nondeterministic
events at the same locations within the ex-
ecution, it will always yield the same out-
put. A concept related to the state interval
is the piecewise deterministic assumption
(PWD). This assumption states that the
system can detect and capture sufficient
information about the nondeterministic
events that initiate the state intervals.

A process may fail, in which case it loses
its volatile state and stops execution ac-
cording to the fail-stop model [Schlichting
and Schneider 1983]. Processes have ac-
cess to a stable storage device that sur-
vives failures, such that state information
saved on this device during failure-free ex-
ecution can be used for recovery. The num-
ber of tolerated process failures may vary
from 1 to N , and the recovery protocol
needs to be designed accordingly. Further-
more, some protocols may not tolerate fail-
ures that occur during recovery.

A generic correctness condition for
rollback-recovery can be defined as fol-
lows: “A system recovers correctly if
its internal state is consistent with the
observable behavior of the system before
the failure” [Strom and Yemini 1985].
Rollback-recovery protocols therefore
must maintain information about the in-
ternal interactions among processes and
also the external interactions with the out-
side world. A description of the notion of
consistency and the interactions with the
outside world follows.

2.2. Consistent System States

A global state of a message-passing system
is a collection of the individual states of all
participating processes and of the states of
the communication channels. Intuitively,
a consistent global state is one that may
occur during a failure-free, correct execu-
tion of a distributed computation. More
precisely, a consistent system state is one
in which, if the state of a process reflects
a message receipt, then the state of the
corresponding sender reflects sending
that message [Chandy and Lamport
1985]. For example, Figure 2 shows two
examples of global states—a consistent
state in Figure 2(a), and an inconsistent

ACM Computing Surveys, Vol. 34, No. 3, September 2002.

Rollback-Recovery Protocols in Message-Passing Systems 379

Fig. 2 . An example of a consistent and inconsistent
state.

state in Figure 2(b). Note that the consis-
tent state in Figure 2(a) shows message
m1 to have been sent but not yet received.
This state is consistent, because it repre-
sents a situation in which the message has
left the sender and is still traveling across
the network. On the other hand, the state
in Figure 2(b) is inconsistent because
process P2 is shown to have received m2
but the state of process P1 does not reflect
sending it. Such a state is impossible in
any failure-free, correct computation. In-
consistent states occur because of failures.
For example, the situation shown in part
(b) of Figure 2 may occur if process P1 fails
after sending message m2 to P2 and then
restarts at the state shown in the figure.

A fundamental goal of any rollback-
recovery protocol is to bring the system
into a consistent state when inconsisten-
cies occur because of a failure. The recon-
structed consistent state is not necessarily
one that has occurred before the failure. It
is sufficient that the reconstructed state
be one that could have occurred before the
failure in a failure-free, correct execution,
provided that it be consistent with the in-
teractions that the system had with the
outside world. We describe these interac-
tions next.

2.3. Interactions with the Outside World

A message-passing system often interacts
with the outside world to receive input
data or show the outcome of a computa-
tion. If a failure occurs, the outside world
cannot be relied on to roll back [Pausch
1988]. For example, a printer cannot roll
back the effects of printing a character,
and an automatic teller machine cannot
recover the money that it dispensed to a
customer. To simplify the presentation of

how rollback-recovery protocols interact
with the outside world, we model the latter
as a special process that interacts with the
rest of the system through message pass-
ing. This special process cannot fail, and it
cannot maintain state or participate in the
recovery protocol. Furthermore, since this
special process models irreversible effects
in the outside world, it cannot roll back.
We call this special process the “outside
world process” (OWP).

It is necessary that the outside world
perceive a consistent behavior of the sys-
tem despite failures. Thus, before send-
ing a message (output) to OWP, the sys-
tem must ensure that the state from which
the message is sent will be recovered de-
spite any future failure. This is commonly
called the output commit problem [Strom
and Yemini 1985]. Similarly, input mes-
sages that a system receives from the out-
side world may not be reproducible during
recovery, because it may not be possible
for OWP to regenerate them. Thus, recov-
ery protocols must arrange to save these
input messages so that they can be re-
trieved when needed for execution replay
after a failure. A common approach is to
save each input message on stable storage
before allowing the application program to
process it.

Rollback-recovery protocols, therefore,
must provide special treatment for inter-
actions with the outside world. There are
two metrics that express the impact of this
special treatment, namely the latency of
input/output and the resulting slowdown
of system’s execution during input/output.
The first metric represents the time it
takes for an output message to be released
to OWP after it has been issued by the sys-
tem, or the time it takes a process to con-
sume an input message after it has been
sent from OWP. The second metric repre-
sents the overhead that the system incurs
to ensure that its state will remain con-
sistent with the messages exchanged with
the OWP despite future failures.

2.4. In-Transit Messages

In Figure 2(a), the global state shows
that message m1 has been sent but not

ACM Computing Surveys, Vol. 34, No. 3, September 2002.

380 Elnozahy et al.

Fig. 3 . Implementation of rollback-recovery (a) on
top of a reliable communication protocol; (b) directly
on top of unreliable communication channels.

yet received. We call such a message an
in-transit message. When in-transit mes-
sages are part of a global system state,
they do not cause any inconsistency. How-
ever, depending on whether the system
model assumes reliable communication
channels, rollback-recovery protocols may
have to guarantee the delivery of in-
transit messages when failures occur. For
example, the rollback-recovery protocol in
Figure 3(a) assumes reliable communi-
cations, and therefore it must be imple-
mented on top of a reliable communication
protocol layer. In contrast, the rollback-
recovery protocol in Figure 3(b) does not
assume reliable communications.

Reliable communication protocols en-
sure the reliability of message delivery
during failure-free executions. They
cannot, however, ensure by themselves,
the reliability of message delivery in the
presence of process failures. For instance,
if an in-transit message is lost because the
intended receiver has failed, conventional
communication protocols will generate
a timeout and inform the sender that
the message cannot be delivered. In a
rollback-recovery system, however, the re-
ceiver will eventually recover. Therefore,
the system must mask the timeout from
the application program at the sender pro-
cess and must make in-transit messages
available to the intended receiver process
after it recovers, in order to ensure a
consistent view of the reliable system. On
the other hand, if a system model assumes
unreliable communication channels, as
in Figure 3(b), then the recovery protocol
need not handle in-transit messages

in any special way. Indeed, in-transit
messages lost because of process failures
cannot be distinguished from those lost be-
cause of communication failures in an un-
reliable communication channel. There-
fore, the loss of in-transit messages due to
either communication or process failure is
an event that can occur in any failure-free,
correct execution of the system.

2.5. Logging Protocols

Log-based rollback-recovery uses check-
pointing and logging to enable processes
to replay their execution after a failure be-
yond the most recent checkpoint. This is
useful when interactions with the outside
world are frequent, since it enables a pro-
cess to repeat its execution and be consis-
tent with messages sent to OWP without
having to take expensive checkpoints be-
fore sending such messages. Additionally,
log-based recovery generally is not suscep-
tible to the domino effect, thereby allow-
ing processes to use uncoordinated check-
pointing if desired.

Log-based recovery relies on the piece-
wise deterministic (PWD) assumption
[Strom and Yemini 1985]. Under this
assumption, the rollback-recovery proto-
col can identify all the nondeterminis-
tic events executed by each process, and
for each such event, logs a determinant
that contains all information necessary to
replay the event should it be necessary
during recovery. If the PWD assumption
holds, log-based rollback-recovery proto-
cols can recover a failed process and re-
play its execution as it occurred before the
failure.

Examples of nondeterministic events in-
clude receiving messages, receiving in-
put from the outside world, or undergoing
an internal state transfer within a pro-
cess based on some nondeterministic ac-
tion such as the receipt of an interrupt.
Rollback-recovery implementations differ
in the range of actual nondeterministic
events that are covered under this model.
For instance, a particular implementa-
tion may only cover message receipts from
other processes under the PWD assump-
tion. Such an implementation cannot

ACM Computing Surveys, Vol. 34, No. 3, September 2002.

Rollback-Recovery Protocols in Message-Passing Systems 381

Fig. 4 . Message logging for deterministic replay.

replay an execution that is subjected to
other forms of nondeterministic events
such as asynchronous interrupts. The
range of events covered under the PWD as-
sumption is an implementation issue and
is covered in Section 5.7.

A state interval is recoverable if there
is sufficient information to replay the ex-
ecution up to that state interval despite
any future failures in the system. Also, a
state interval is stable if the determinant
of the nondeterministic event that started
it is logged on stable storage [Johnson and
Zwaenepoel 1990]. A recoverable state in-
terval is always stable, but the opposite is
not always true [Johnson 1989].

Figure 4 shows an execution in which
the only nondeterministic events are mes-
sage deliveries. Suppose that processes P1
and P2 fail before logging the determi-
nants corresponding to the deliveries of
m6 and m5, respectively, while all other
determinants survive the failure. Message
m7 becomes an orphan message because
process P2 cannot guarantee the regen-
eration of the same m6 during recovery,
and P1 cannot guarantee the regeneration
of the same m7 without the original m6.
As a result, the surviving process P0 be-
comes an orphan process and is forced to
roll back as well. States X , Y and Z form
the maximum recoverable state [Johnson
1989], that is, the most recent recover-
able consistent system state. Processes P0
and P2 roll back to checkpoints A and C,
respectively, and replay the deliveries of
messages m4 and m2, respectively, to reach
states X and Z . Process P1 rolls back to
checkpoint B and replays the deliveries of
m1 and m3 in their original order to reach
state Y .

During recovery, log-based rollback-
recovery protocols force the execution of
the system to be identical to the one that
occurred before the failure, up to the maxi-
mum recoverable state. Therefore, the sys-
tem always recovers to a state that is
consistent with the input and output inter-
actions that occurred up to the maximum
recoverable state.

2.6. Stable Storage

Rollback-recovery uses stable storage to
save checkpoints, event logs, and other
recovery-related information. Stable stor-
age in rollback-recovery is only an abstrac-
tion, although it is often confused with the
disk storage used to implement it. Sta-
ble storage must ensure that the recovery
data persist through the tolerated failures
and their corresponding recoveries. This
requirement can lead to different imple-
mentation styles of stable storage:

r In a system that tolerates only a single
failure, stable storage may consist of the
volatile memory of another process [Borg
et al. 1989; Johnson and Zwaenepoel
1987].r In a system that wishes to tolerate an ar-
bitrary number of transient failures, sta-
ble storage may consist of a local disk in
each host.r In a system that tolerates non-transient
failures, stable storage must consist of a
persistent medium outside the host on
which a process is running. A replicated
file system is a possible implementation
in such systems [Lampson and Sturgis
1979].

2.7. Garbage Collection

Checkpoints and event logs consume stor-
age resources. As the application pro-
gresses and more recovery information
is collected, a subset of the stored in-
formation may become useless for recov-
ery. Garbage collection is the deletion of
such useless recovery information. A com-
mon approach to garbage collection is to
identify the most recent consistent set of
checkpoints, which is called the recovery

ACM Computing Surveys, Vol. 34, No. 3, September 2002.

382 Elnozahy et al.

line [Randell 1975], and discard all infor-
mation relating to events that occurred
before that line. For example, processes
that coordinate their checkpoints to form
consistent states will always restart from
the most recent checkpoint of each pro-
cess, and so all previous checkpoints can
be discarded. While it has received lit-
tle attention in the literature, garbage
collection is an important pragmatic is-
sue in rollback-recovery protocols, because
running a special algorithm to discard
useless information incurs overhead. Fur-
thermore, recovery-protocols differ in the
amount and nature of the recovery infor-
mation they need to store on stable stor-
age, and therefore differ in the complexity
and invocation frequency of their garbage
collection algorithms.

3. CHECKPOINT-BASED ROLLBACK
RECOVERY

Upon a failure, checkpoint-based rollback-
recovery restores the system state to the
most recent consistent set of checkpoints,
that is the recovery line [Randell 1975].
It does not rely on the PWD assump-
tion, and so does not need to detect,
log, or replay nondeterministic events.
Checkpoint-based protocols are therefore
less restrictive and simpler to imple-
ment than log-based rollback-recovery.
But checkpoint-based rollback-recovery
does not guarantee that pre-failure execu-
tion can be deterministically regenerated
after a rollback. Therefore, checkpoint-
based rollback-recovery is ill suited for ap-
plications that require frequent interac-
tions with the outside world, since such
interactions require that the observable
behavior of the system through failures
and recoveries be the same as during a
failure-free execution. Checkpoint-based
rollback-recovery techniques can be clas-
sified into three categories: uncoordinated
checkpointing, coordinated checkpointing,
and communication-induced checkpoint-
ing. We examine each category in detail.

3.1. Uncoordinated Checkpointing

3.1.1. Overview. Uncoordinated check-
pointing allows each process the maxi-

Fig. 5 . Checkpoint index and checkpoint interval.

mum autonomy in deciding when to take
checkpoints. The main advantage of this
autonomy is that each process may take
a checkpoint when it is most convenient.
For example, a process may reduce the
overhead by taking checkpoints when the
amount of state information to be saved is
small [Wang 1993]. But there are several
disadvantages. First, there is the possibil-
ity of the domino effect, which may cause
the loss of a large amount of useful work,
possibly all the way back to the beginning
of the computation. Second, a process may
take a useless checkpoint that will never
be part of a global consistent state. Use-
less checkpoints are undesirable because
they incur overhead and do not contribute
to advancing the recovery line. Third, un-
coordinated checkpointing forces each pro-
cess to maintain multiple checkpoints, and
to periodically invoke a garbage collection
algorithm to reclaim the checkpoints that
are no longer useful. Fourth, it is not suit-
able for applications with frequent out-
put commits because these require global
coordination to compute the recovery
line, negating much of the advantage of
autonomy.

In order to determine a consistent
global checkpoint during recovery, the pro-
cesses record the dependencies among
their checkpoints during failure-free op-
eration using the following technique
[Bhargava and Lian 1988]. Let ci,xbe the x
the checkpoint of process Pi. We call x the
checkpoint index. Let Ii,xdenote the check-
point interval or simply interval between
checkpoints ci,x−1 and ci,x . As illustrated in
Figure 5, if process Pi at interval Ii,xsends
a message m to Pj , it will piggyback the
pair (i, x) on m. When Pj receives m dur-
ing interval I j , y , it records the dependency
from Ii,xto I j , y , which is later saved onto

ACM Computing Surveys, Vol. 34, No. 3, September 2002.

Rollback-Recovery Protocols in Message-Passing Systems 383

Fig. 6 . (a) Example execution; (b) rollback-dependency graph; (c) check-
point graph.

stable storage when Pj takes checkpoint
c j , y .

If a failure occurs, the recovering pro-
cess initiates rollback by broadcasting a
dependency request message to collect all
the dependency information maintained
by each process. When a process receives
this message, it stops its execution and
replies with the dependency information
saved on stable storage as well as with the
dependency information, if any, that is as-
sociated with its current state. The initia-
tor then calculates the recovery line based
on the global dependency information and
broadcasts a rollback request message con-
taining the recovery line. Upon receiv-
ing this message, a process whose current
state belongs to the recovery line simply
resumes execution; otherwise it rolls back
to an earlier checkpoint as indicated by the
recovery line.

3.1.2. Dependency Graphs and Recovery
Line Calculation. There are two approaches
proposed in the literature to determine
the recovery line in checkpoint-based re-
covery. The first approach is based on a
rollback-dependency graph [Bhargava and
Lian 1988] in which each node represents
a checkpoint and a directed edge is drawn
from ci,x to c j , y if either:

(1) i 6= j , and a message m is sent from Ii,x
and received in I j , y , or

(2) i= j and y = x+ 1.

The name “rollback-dependency graph”
comes from the observation that if there
is an edge from ci,x to c j , y and a failure
forces Ii,x to be rolled back, then I j , y must
also be rolled back.

Figure 6(b) shows the rollback de-
pendency graph for the execution in
Figure 6(a). The algorithm used to com-
pute the recovery line first marks the
graph nodes corresponding to the states
of processes P0 and P1 at the failure point
(shown in figure in dark ellipses). It then
uses reachability analysis [Bhargava and
Lian 1988] to mark all reachable nodes
from any of the initially marked nodes.
The union of the last unmarked nodes
over the entire system forms the recovery
line, as shown in Figure 6(b).

The second approach is based on the
checkpoint graph [Wang 1993]. Check-
point graphs are similar to rollback-
dependency graphs except that, when a
message is sent from Ii,xand received in
I j , y , a directed edge is drawn from ci,x−1
to c j , y (instead of ci,x to c j , y), as shown in
Figure 6(c). The recovery line can be cal-
culated by first removing both the nodes

ACM Computing Surveys, Vol. 34, No. 3, September 2002.

384 Elnozahy et al.

Fig. 7 . Rollback propagation, recovery line and the
domino effect.

corresponding to the states of the failed
processes at the point of failures and the
edges incident on them, and then applying
the rollback propagation algorithm [Wang
1993] on the checkpoint graph. Both the
rollback-dependency graph and the check-
point graph approaches are equivalent, in
that they always produce the same recov-
ery line (as indeed they do in the exam-
ple). These methods form the basis for per-
forming garbage collection in independent
checkpointing, by determining the most
advanced recovery line and removing the
checkpoints that precede it [Wang 1993].
Additionally, some checkpoints taken in-
dependently by a process may never be
part of a consistent state and therefore will
be useless for recovery purposes. These
checkpoints also can be removed using the
algorithm described by Wang [1993]. Fi-
nally, it can be shown under independent
checkpointing that the maximum number
of useful checkpoints that must be kept on
stable storage cannot exceed (N (N+1)/2)
[Wang et al. 1995a].

3.1.3. The Domino Effect. While sim-
ple to implement, uncoordinated check-
pointing can lead to the domino effect
[Randell 1975]. For example, Figure 7
shows an execution in which processes
take their checkpoints—represented by
black bars—without coordinating with
each other. Each process starts its execu-
tion with an initial checkpoint. Suppose
process P2 fails and rolls back to check-
point C. The rollback “invalidates” the
sending of message m6, and so P1 must roll
back to checkpoint B to “invalidate” the
receipt of that message. Thus, the invali-
dation of message m6 propagates the roll-

back of process P2 to process P1, which in
turn “invalidates” message m7 and forces
P0 to roll back as well.

This cascaded rollback may continue
and eventually may lead to the domino ef-
fect, which causes the system to roll back
to the beginning of the computation, in
spite of all the saved checkpoints. In the
example shown in Figure 7, cascading roll-
backs due to the single failure of process
P2 forces the system to restart from the
initial set of checkpoints, effectively caus-
ing the loss of all the work done by all
processes.

3.2. Coordinated Checkpointing

3.2.1. Overview. Coordinated check-
pointing requires processes to orchestrate
their checkpoints in order to form a
consistent global state. Coordinated
checkpointing simplifies recovery and is
not susceptible to the domino effect, since
every process always restarts from its
most recent checkpoint. Also, coordinated
checkpointing requires each process to
maintain only one permanent check-
point on stable storage, reducing storage
overhead and eliminating the need for
garbage collection. Its main disadvantage,
however, is the large latency involved
in committing output, since a global
checkpoint is needed before messages can
be sent to OWP.

A straightforward approach to coordi-
nated checkpointing is to block communi-
cations while the checkpointing protocol
executes [Tamir and Sequin 1984]. A coor-
dinator takes a checkpoint and broadcasts
a request message to all processes, asking
them to take a checkpoint. When a process
receives this message, it stops its execu-
tion, flushes all the communication chan-
nels, takes a tentative checkpoint, and
sends an acknowledgment message back
to the coordinator. After the coordinator
receives acknowledgments from all pro-
cesses, it broadcasts a commit message
that completes the two-phase checkpoint-
ing protocol. After receiving the commit
message, each process removes the old per-
manent checkpoint and atomically makes
the tentative checkpoint permanent. The

ACM Computing Surveys, Vol. 34, No. 3, September 2002.

Rollback-Recovery Protocols in Message-Passing Systems 385

Fig. 8 . Non-blocking coordinated checkpointing: (a) checkpoint inconsis-
tency; (b) with FIFO channels; (c) non-FIFO channels (short dashed line rep-
resents piggybacked checkpoint request).

process is then free to resume execu-
tion and exchange messages with other
processes. This straightforward approach,
however, can result in large overhead,
and therefore non-blocking checkpointing
schemes are preferable [Elnozahy et al.
1992].

3.2.2. Non-blocking Checkpoint Coordination.
A fundamental problem in coordinated
checkpointing is to prevent a process from
receiving application messages that could
make the checkpoint inconsistent. Con-
sider the example in Figure 8(a), in which
message m is sent by P0 after receiv-
ing a checkpoint request from the check-
point coordinator. Now, assume that m
reaches P1 before the checkpoint request.
This situation results in an inconsistent
checkpoint since checkpoint c1,x shows the
receipt of message m from P0, while check-
point c0,x does not show it being sent from
P0. If channels are FIFO, this problem
can be avoided by preceding the first post-
checkpoint message on each channel by
a checkpoint request, and forcing each
process to take a checkpoint upon receiv-
ing the first checkpoint-request message,
as illustrated in Figure 8(b). An exam-
ple of a non-blocking checkpoint coordi-
nation protocol using this idea is the dis-
tributed snapshot [Chandy and Lamport
1985], in which markers play the role of
the checkpoint-request messages. In this
protocol, the initiator takes a checkpoint
and broadcasts a marker (a checkpoint
request) to all processes. Each process
takes a checkpoint upon receiving the first
marker and rebroadcasts the marker to all

processes before sending any application
message. The protocol works assuming the
channels are reliable and FIFO. If the
channels are non-FIFO, the marker can
be piggybacked on every post-checkpoint
message as in Figure 8(c) [Lai and Yang
1987]. Alternatively, checkpoint indices
can serve the same role as markers, where
a checkpoint is triggered when the re-
ceiver’s local checkpoint index is lower
than the piggybacked checkpoint index
[Elnozahy, et al. 1992; Silva 1997].

3.2.3. Checkpointing with Synchronized
Clocks. Loosely synchronized clocks
can facilitate checkpoint coordination
[Cristian and Jahanian 1991; Tong et
al. 1992]. More specifically, loosely syn-
chronized clocks can trigger the local
checkpointing actions of all participating
processes at approximately the same time
without a checkpoint initiator [Cristian
and Jahanian 1991]. A process takes a
checkpoint and waits for a period that
equals the sum of the maximum deviation
between clocks and the maximum time
to detect a failure in another process in
the system. The process can be assured
that all checkpoints belonging to the
same coordination session have been
taken without the need of exchanging any
messages. If a failure occurs, it is detected
within the specified time and the protocol
is aborted.

3.2.4. Checkpointing and Communication
Reliability. Depending on the assumption
of reliability of the communication chan-
nel (Section 2.4), the protocol may require

ACM Computing Surveys, Vol. 34, No. 3, September 2002.

386 Elnozahy et al.

some messages to be saved as part of
the checkpoint. Consider the case where
reliable channels are assumed. Suppose
process p sends a message m before
taking a checkpoint, and that message
m arrives at the intended destination at
process q after q has taken its checkpoint.
In this case, the recorded state of p would
show message m to have been sent, while
q′s state would show that the message
has not been received. If a failure were to
force p and q to roll back to these
checkpoints, it would be impossible to
guarantee the reliable delivery of m after
recovery. To avoid this problem, the pro-
tocol requires that all in-transit messages
be saved by their intended destinations
as part of their recorded state. However,
if reliable channels are not assumed, then
in-transit messages need not be saved, as
the recorded state in this case would still
be consistent with the assumption of the
communication channels (in this case, the
loss of message m if the system fails and
restarts would be equivalent to its loss
due to a communication failure in a legal
execution).

3.2.5. Minimal Checkpoint Coordination.
Coordinated checkpointing requires
all processes to participate in every
checkpoint. This requirement generates
valid concerns about its scalability. It
is desirable to reduce the number of
processes involved in a coordinated
checkpointing session. This can be done
since the processes that need to take
new checkpoints are only those that
have communicated with the checkpoint
initiator either directly or indirectly since
the last checkpoint [Koo and Toueg 1987].

The following two-phase protocol
achieves minimal checkpoint coordi-
nation [Koo and Toueg 1987]. During
the first phase, the checkpoint initiator
identifies all processes with which it has
communicated since the last checkpoint
and sends them a request. Upon receiving
the request, each process in turn iden-
tifies all processes it has communicated
with since the last checkpoints and sends
them a request, and so on, until no more

Fig. 9 . Z-paths Z cycles.

processes can be identified. During the
second phase, all processes identified in
the first phase take a checkpoint. The
result is a consistent checkpoint that
involves only the participating processes.
In this protocol, after a process takes a
checkpoint, it cannot send any message
until the second phase terminates suc-
cessfully, although receiving a message
after the checkpoint has been taken is
allowed.

3.3. Communication-induced Checkpointing

3.3.1. Overview. Communication-
induced checkpointing (CIC) protocols
avoid the domino effect without requiring
all checkpoints to be coordinated. In
these protocols, processes take two kinds
of checkpoints, local and forced. Local
checkpoints can be taken independently,
while forced checkpoint must be taken to
guarantee the eventual progress of the
recovery line. In particular, CIC protocols
take forced checkpoints to prevent the
creation of useless checkpoints, that is
checkpoints (such as c2,2 in Figure 9) that
will never be part of a consistent global
state. Useless checkpoints are not desir-
able because they do not contribute to
the recovery of the system from failures,
but they consume resources and cause
performance overhead.

As opposed to coordinated checkpoint-
ing, CIC protocols do not exchange any
special coordination messages to deter-
mine when forced checkpoints should be
taken: instead, they piggyback protocol-
specific information on each application
message; the receiver then uses this in-
formation to decide if it should take a
forced checkpoint. Informally, this deci-
sion is based on the receiver determin-
ing if past communication and checkpoint

ACM Computing Surveys, Vol. 34, No. 3, September 2002.

Rollback-Recovery Protocols in Message-Passing Systems 387

patterns can lead to the creation of useless
checkpoints: a forced checkpoint is then
taken to break these patterns. This intu-
ition has been formalized in an elegant
theory based on the notions of Z-path and
Z-cycle.

A Z-path (zigzag path) is a special se-
quence of messages that connects two
checkpoints [Netzer and Xu 1995]. Let 7→
denote Lamport’s happen-before relation
[Lamport 1978]. Let ci,x denote the xth

checkpoint of process Pi. Also, define the
execution portion between two consecu-
tive checkpoints on the same process to be
the checkpoint interval starting with the
earlier checkpoint. Given two checkpoints
ci,x and c j , y , a Z-path exists between ci,x
and c j , y if and only if one of the following
two conditions holds:

1. x< y and i= j ; or
2. There exists a sequence of messages

[m0, m1, . . . , mn], nµ 0, such that:r ci,x 7→ sendi(m0);r ∀l <n, either deliverk(ml) and
sendk(ml+1) are in the same check-
point interval, or deliverk(ml) 7→
sendk(ml+1); andr deliver j (mn) 7→ c j , y

where sendi and deliveri are communi-
cation events executed by process Pi. In
Figure 9, [m1, m2] and [m3, m4] are exam-
ples of Z-paths between checkpoints c0,1
and c2,2.

A Z-cycle is a Z-path that begins
and ends with the same checkpoint. In
Figure 9, the Z-path [m5, m3, m4] is a
Z-cycle that starts and ends at checkpoint
c2,2. Z-cycles are interesting in the context
of CIC protocols because it can be proved
that a checkpoint is useless if and only if it
is part of a Z-cycle [Netzer and Xu 1995].
Hence, one way to avoid useless check-
points is to make sure that no Z-path ever
becomes a Z-cycle.

Traditionally, CIC protocols have been
classified in one of two types. Model-based
checkpointing protocols maintain check-
point and communication structures that
prevent useless checkpoints or achieve
some even stronger properties [Wang
1997]. Index-based coordination protocols

assign timestamps to local and forced
checkpoints such that checkpoints with
the same timestamp at all processes form
a consistent state. Recently, it has been
proved that the two types are fundamen-
tally equivalent [Hélary et al. 1997a],
although in practice, there may be some
evidence that index-based coordination re-
sults in fewer forced checkpoints [Alvisi
et al. 1999].

3.3.2. Model-based Protocols. Model-
based checkpointing relies on preventing
patterns of communications and check-
points that could result in Z-cycles and
useless checkpoints. A model is set up to
detect the possibility that such patterns
could be forming within the system, ac-
cording to some heuristic. A checkpoint is
usually forced to prevent the undesirable
patterns from occurring. The decision to
force a checkpoint is done locally using the
information piggybacked on application
messages. Therefore, under this style of
checkpointing it is possible that multiple
processes detect the potential for inconsis-
tent checkpoints and independently force
local checkpoints to prevent the formation
of undesirable patterns that may never
actually materialize or that could be
prevented by a single forced checkpoint.
Thus, model-based checkpointing always
errs on the conservative side by taking
more forced checkpoints than is proba-
bly necessary, because without explicit
coordination, no process has complete
information about the global system state.

The literature contains several domino-
effect-free checkpoint and communica-
tion models. The MRS model [Russell
1980] avoids the domino effect by ensur-
ing that within every checkpoint inter-
val all message-receiving events precede
all message-sending events. This model
can be maintained by taking an addi-
tional checkpoint before every message-
receiving event that is not separated from
its previous message-sending event by
a checkpoint [Wang 1997]. Another way
to prevent the domino effect is to avoid
rollback propagation completely by tak-
ing a checkpoint immediately before every

ACM Computing Surveys, Vol. 34, No. 3, September 2002.

388 Elnozahy et al.

message-sending event [Bartlett 1981].
Recent work has focused on ensuring that
every checkpoint can belong to a consis-
tent global checkpoint and therefore is not
useless [Baldoni et al. 1998; Hélary et al.
1997a; Hélary et al. 1997b; Netzer and Xu
1995].

3.3.3. Index-based Protocols. Index-
based CIC protocols guarantee, through
forced checkpoints if necessary, that (1)
if there are two checkpoints ci,m and
c j ,n such that ci,m 7→ c j ,n, then ts(c j ,n)≥
ts(ci,m), where ts(c) is the timestamp
associated with checkpoint c; and (2)
consecutive local checkpoints of a pro-
cess have increasing timestamps. The
timestamps are piggybacked on applica-
tion messages to help receivers decide
when they should force a checkpoint. For
instance, the protocol by Briatico et al.
forces a process to take a checkpoint upon
receiving a message with a piggybacked
index greater than the local index, and
guarantees that the checkpoints having
the same index at different processes,
form a consistent state [Briatico et al.
1984]. Hélary et al. instead rely on the
observation that if checkpoints’ times-
tamps always increase along a Z-path
(as opposed to simply non-decreasing, as
required by rule (1) above), then no Z-
cycle can ever form [Hélary et al. 1997b].
More sophisticated protocols piggyback
more information on top of application
messages to minimize the number of
forced checkpoints [Hélary et al. 1997b].

CIC protocols can potentially have sev-
eral performance advantages over other
styles of checkpointing. Because CIC al-
lows considerable autonomy in deciding
when to take checkpoints, processes can
take local checkpoints when their state is
small and saving it incurs a small over-
head [Li and Fuchs 1990; Plank et al.
1995b]. CIC protocols may also, in theory,
scale up well in systems with a large num-
ber of processes, since they do not require
processes to participate in a globally coor-
dinated checkpoint. We discuss the degree
to which these advantages materialize in
practice in Section 5.

4. LOG-BASED ROLLBACK-RECOVERY

As opposed to checkpoint-based rollback-
recovery, log-based rollback-recovery
makes explicit use of the fact that a
process execution can be modeled as a
sequence of deterministic state inter-
vals, each starting with the execution
of a nondeterministic event [Strom and
Yemini 1985]. Such an event can be the
receipt of a message from another pro-
cess or an event internal to the process.
Sending a message, however, is not a
nondeterministic event. For example, in
Figure 7, the execution of process P0 is a
sequence of four deterministic intervals.
The first one starts with the creation of
the process, while the remaining three
start with the receipt of messages m0, m3,
and m7, respectively. Sending message m2
is uniquely determined by the initial state
of P0 and by the receipt of message m0,
and is therefore not a nondeterministic
event.

Log-based rollback-recovery assumes
that all nondeterministic events can be
identified and their corresponding deter-
minants can be logged to stable storage.
During failure-free operation, each pro-
cess logs the determinants of all the non-
deterministic events that it observes onto
stable storage. Additionally, each process
also takes checkpoints to reduce the ex-
tent of rollback during recovery. After
a failure occurs, the failed processes re-
cover by using the checkpoints and logged
determinants to replay the correspond-
ing nondeterministic events precisely as
they occurred during the pre-failure exe-
cution. Because execution within each de-
terministic interval depends only on the
sequence of nondeterministic events that
preceded the interval’s beginning, the pre-
failure execution of a failed process can
be reconstructed during recovery up to the
first nondeterministic event whose deter-
minant is not logged.

Log-based rollback-recovery protocols
have been traditionally called “message
logging protocols.” The association of non-
deterministic events with messages is
rooted in the earliest systems that pro-
posed and implemented this style of

ACM Computing Surveys, Vol. 34, No. 3, September 2002.

Rollback-Recovery Protocols in Message-Passing Systems 389

recovery [Bartlett 1981; Borg, et al. 1989;
Strom and Yemini 1985]. These systems
translated nondeterministic events into
deterministic message-receipt events.

Log-based rollback-recovery protocols
guarantee that upon recovery of all failed
processes, the system does not contain any
orphan process, that is, a process whose
state depends on a nondeterministic event
that cannot be reproduced during recov-
ery. The way in which a specific protocol
implements this condition affects the pro-
tocol’s failure-free performance overhead,
latency of output commit, and simplicity
of recovery and garbage collection, as well
as its potential for rolling back correct pro-
cesses. There are three flavors of these
protocols:r Pessimistic log-based rollback-recovery

protocols guarantee that orphans are
never created due to a failure. These pro-
tocols simplify recovery, garbage collec-
tion and output commit, at the expense
of higher failure-free performance over-
head.r Optimistic log-based rollback-recovery
protocols reduce the failure-free perfor-
mance overhead, but allow orphans to be
created due to failures. The possibility
of having orphans complicates recovery,
garbage collection and output commit.r Causal log-based rollback-recovery pro-
tocols attempt to combine the advan-
tages of low performance overhead and
fast output commit, but they may re-
quire complex recovery and garbage
collection.

We present log-based rollback-recovery
protocols by first specifying a property
that guarantees that no orphans are cre-
ated during an execution, and then by dis-
cussing how the three major classes of
log-based rollback-recovery protocols im-
plement this consistency condition.

4.1. The No-Orphans Consistency Condition

Let e be a nondeterministic event that oc-
curs at process p, we define:r Depend(e), the set of processes that are

affected by a nondeterministic event e.

This set consists of p, and any process
whose state depends on the event e ac-
cording to Lamport’s happened before re-
lation [Lamport 1978].r Log(e), the set of processes that have
logged a copy of e’s determinant in their
volatile memory.r Stable(e), a predicate that is true if e’s
determinant is logged on stable storage.

A process p becomes an orphan when p it-
self does not fail and p’s state depends on
the execution of a nondeterministic event
e whose determinant cannot be recovered
from stable storage or from the volatile
memory of a surviving process. Formally
[Alvisi 1996]:

∀e : ¬Stable(e)⇒ Depend(e) ⊆ Log(e)

We call this property the always-no-
orphans condition. It stipulates that if any
surviving process depends on an event e,
then either the event is logged on stable
storage, or the process has a copy of the
determinant of event e. If neither condi-
tion is true, then the process is an orphan
because it depends on an event e that can-
not be generated during recovery since its
determinant has been lost.

4.2. Pessimistic Logging

4.2.1. Overview. Pessimistic logging
protocols are designed under the assump-
tion that a failure can occur after any
nondeterministic event in the computa-
tion. This assumption is “pessimistic”
since in reality, failures are rare. In their
most straightforward form, pessimistic
protocols log to stable storage, the deter-
minant of each nondeterministic event
before the event is allowed to affect the
computation. These pessimistic proto-
cols implement the following property,
often referred to as synchronous log-
ging, which is a strengthening of the
always-no-orphans condition:

∀e : ¬Stable(e)⇒ |Depend(e)| = 0

This property stipulates that if an event
has not been logged on stable storage, then
no process can depend on it.

ACM Computing Surveys, Vol. 34, No. 3, September 2002.

390 Elnozahy et al.

In addition to logging determinants,
processes also take periodic checkpoints
to limit the amount of work that has to
be repeated in execution replay during re-
covery. Should a failure occur, the appli-
cation program is restarted from the most
recent checkpoint and the logged determi-
nants are used during recovery to recreate
the pre-failure execution.

Consider the example in Figure 10.
During failure-free operation the logs
of processes P0, P1 and P2 contain the
determinants needed to replay messages
[m0, m4, m7], [m1, m3, m6] and [m2, m5],
respectively. Suppose processes P1 and P2
fail as shown, restart from checkpoints
B and C, and roll forward using their de-
terminant logs to again deliver the same
sequence of messages as in the pre-failure
execution. This guarantees that P1 and
P2 will exactly repeat their pre-failure
execution and re-send the same messages.
Hence, once recovery is complete, both
processes will be consistent with the state
of P0 that includes the receipt of message
m7 from P1.

In a pessimistic logging system, the ob-
servable state of each process is always re-
coverable. This property has four advan-
tages:

1. Processes can send messages to the out-
side world without running a special
protocol.

2. Processes restart from their most re-
cent checkpoint upon a failure, there-
fore limiting the extent of execution
that has to be replayed. Thus, the
frequency of checkpoints can be de-
termined by trading off the desired
runtime performance with the desired
protection of the ongoing execution.

3. Recovery is simplified because the ef-
fects of a failure are confined only to
the processes that fail. Functioning pro-
cesses continue to operate and never be-
come orphans because a process always
recovers to the state that included its
most recent interaction with any other
process including OWP. This is highly
desirable in practical systems [Huang
and Wang 1995].

4. Garbage collection is simple. Older
checkpoints and determinants of non-
deterministic events that occurred
before the most recent checkpoint can
be reclaimed because they will never be
needed for recovery.

The price to be paid for these advantages
is a performance penalty incurred by syn-
chronous logging. Implementations of pes-
simistic logging must therefore resort to
special techniques to reduce the effects
of synchronous logging on performance.
Some protocols rely on special hardware
to facilitate logging [Borg, et al. 1989],
while others may limit the number of tol-
erated failures to improve performance
[Johnson and Zwaenepoel 1987; Juang
and Venkatesan 1991].

4.2.2. Techniques for Reducing Performance
Overhead. Synchronous logging can po-
tentially result in a high performance
overhead. This overhead can be low-
ered using special hardware. For example,
fast non-volatile semiconductor memory
can be used to implement stable storage
[Banâtre et al. 1988]. Synchronous log-
ging in such an implementation is orders
of magnitude cheaper than with a tradi-
tional implementation of stable storage
that uses magnetic disk devices. Another
form of hardware support uses a special
bus to guarantee atomic logging of all
messages exchanged in the system [Borg,
et al. 1989]. Such hardware support en-
sures that the log of one machine is auto-
matically stored on a designated backup
without blocking the execution of the ap-
plication program. This scheme, however,
requires that all nondeterministic events
be converted into external messages
[Bartlett 1981; Borg, et al. 1989].

Some pessimistic logging systems re-
duce the overhead of synchronous log-
ging without relying on hardware. For
example, the Sender-Based Message Log-
ging (SBML) protocol keeps the determi-
nants corresponding to the delivery of each
message m in the volatile memory of its
sender [Johnson and Zwaenepoel 1987].
The determinant of m, which consists of
its content and the order in which it was

ACM Computing Surveys, Vol. 34, No. 3, September 2002.

Rollback-Recovery Protocols in Message-Passing Systems 391

Fig. 10 . Pessimistic logging.

delivered, is logged in two steps. First, be-
fore sending m, the sender logs its content
in volatile memory. Then, when the re-
ceiver of m responds with an acknowledg-
ment that includes the order in which the
message was delivered, the sender adds
the ordering information to the determi-
nant. SBML avoids the overhead of access-
ing stable storage but tolerates only one
failure and cannot handle nondeterminis-
tic events internal to a process. Extensions
to this technique can tolerate more than
one failure in special network topologies
[Juang and Venkatesan 1991].

4.2.3. Relaxing Logging Atomicity. The
performance overhead of pessimistic
logging can be reduced by delivering a
message or an event and deferring its
logging until the receiver communicates
with any other process, including OWP
[Johnson and Zwaenepoel 1987]. In the
example of Figure 10, process P0 may
defer the logging of messages m4 and
m7 until it communicates with another
process or the outside world. Process
P0 implements the following weaker
property, which still guarantees the
always-no-orphans condition:

∀e : ¬Stable(e)⇒ |Depend(e)| ≤ 1

This property relaxes the condition of pes-
simistic logging by allowing a single pro-
cess to be affected by an event that has
yet to be logged, provided that the pro-

cess does not externalize the effect of this
dependency to other processes including
OWP. Thus, messages m4and m7 are al-
lowed to affect process P0, but this effect
is local—no other process, or the outside
world can see it until the messages are
logged.

The observed behavior of each process is
the same as with an implementation that
logs events before delivering them to ap-
plications. Event logging and delivery are
not performed in one atomic operation in
this variation of pessimistic logging. This
scheme reduces overhead because several
events can be logged in one operation, re-
ducing the frequency of synchronous ac-
cess to stable storage. Latency of interpro-
cess communication and output commit,
are not reduced since a logging opera-
tion may often be needed before sending a
message.

Systems that separate logging of an
event from its delivery may lose the
last messages delivered before a failure.
This may be a problem for applications
that assume that processes communicate
through reliable channels. Consider one
of these applications going through the
execution shown in Figure 10, and as-
sume that process P0 fails after deliver-
ing messages m4 and m7 but before the
corresponding determinants—containing
the content and order of receipt of the
messages—are logged. Protocols in which
the receiver logs the message content can-
not guarantee that the recovered P0 will
ever deliver m4 and m7, violating the

ACM Computing Surveys, Vol. 34, No. 3, September 2002.

392 Elnozahy et al.

Fig. 11 . Optimistic logging.

assumption about reliable channels. This
problem does not arise in protocols that
log messages at the sender or do not
assume reliable communication channels
[Elnozahy 1993; Johnson 1989; Johnson
and Zwaenepoel 1987].

4.3. Optimistic Logging

4.3.1. Overview. In optimistic logging
protocols, processes log determinants
asynchronously to stable storage [Strom
and Yemini 1985]. These protocols make
the optimistic assumption that logging
will complete before a failure occurs. De-
terminants are kept in a volatile log, which
is periodically flushed to stable storage.
Thus, optimistic logging does not require
the application to block waiting for the
determinants to be actually written to
stable storage, and therefore incurs lit-
tle overhead during failure-free execution.
However, this advantage comes at the ex-
pense of more complicated recovery and
garbage collection, and slower output com-
mit, than in pessimistic logging. If a pro-
cess fails, the determinants in its volatile
log will be lost, and the state intervals
that were started by the nondeterminis-
tic events corresponding to these determi-
nants cannot be recovered. Furthermore,
if the failed process sent a message dur-
ing any of the state intervals that cannot
be recovered, the receiver of the message
becomes an orphan process and must roll
back to undo the effects of receiving the

message. Optimistic protocols do not im-
plement the always-no-orphans condition,
and therefore permit the temporary cre-
ation of orphan processes. However, they
require that the property holds by the time
recovery is complete. This is achieved dur-
ing recovery by rolling back orphan pro-
cesses until their states do not depend on
any message whose determinant has been
lost. For example, suppose process P2 in
Figure 11 fails before the determinant for
m5 is logged to stable storage. Process P1
then becomes an orphan process and must
roll back to undo the effects of receiving
the orphan message m6. The rollback of
P1 further forces P0 to roll back to undo
the effects of receiving message m7.

To perform these rollbacks correctly, op-
timistic logging protocols track causal de-
pendencies during failure-free execution.
Upon a failure, the dependency informa-
tion is used to calculate and recover the
latest global state of the pre-failure execu-
tion in which no process is in an orphan.

The above example also illustrates why
optimistic logging protocols require a
nontrivial garbage collection algorithm.
While pessimistic protocols need only
keep the most recent checkpoint of each
process, optimistic protocols may need to
keep multiple checkpoints. In the exam-
ple, the failure of P2 forces P1 to restart
from checkpoint B instead of its most
recent checkpoint D.

Finally, since determinants are logged
asynchronously, output commit in opti-
mistic logging protocols generally requires

ACM Computing Surveys, Vol. 34, No. 3, September 2002.

Rollback-Recovery Protocols in Message-Passing Systems 393

multi-host coordination to ensure that no
failure scenario can revoke the output. For
example, if process P0 needs to commit
output at state X , it must log messages
m4 and m7 to stable storage and ask P2 to
log m2 and m5.

4.3.2. Synchronous vs. Asynchronous Re-
covery. Recovery in optimistic logging
protocols can be either synchronous or
asynchronous. In synchronous recovery
[Johnson 1989; Sistla and Welch 1989],
all processes run a recovery protocol to
compute the maximum recoverable sys-
tem state based on dependency and logged
information, and then perform the actual
rollbacks. During failure-free execution,
each process increments a state interval
index at the beginning of each state in-
terval. Dependency tracking can be either
direct or transitive.

In direct dependency tracking [John-
son 1989; Sistla and Welch 1989], the
state interval index of the sender is piggy-
backed on each outgoing message to allow
the receiver to record the dependency di-
rectly caused by the message. These direct
dependencies can then be assembled at
recovery time to obtain complete depen-
dency information. Alternatively, tran-
sitive dependency tracking [Sistla and
Welch 1989; Strom and Yemini 1985] can
be used: each process Pi maintains a size-
N vector TDi, where TDi[i] is Pi ’s current
state interval index, and TDi[j], j 6= i,
records the highest index of any state in-
terval of Pj on which Pi depends. Transi-
tive dependency tracking generally incurs
a higher failure-free overhead for piggy-
backing and maintaining the dependency
vectors, but allows faster output commit
and recovery.

In asynchronous recovery, a failed pro-
cess restarts by sending a rollback an-
nouncement broadcast or a recovery mes-
sage broadcast to start a new incarnation
[Strom and Yemini 1985]. Upon receiv-
ing a rollback announcement, a process
rolls back if it detects that it has become
an orphan with respect to that announce-
ment, and then broadcasts its own roll-
back announcement. Since rollback an-

Fig. 12 . Exponential rollbacks.

nouncements from multiple incarnations
of the same process may coexist in the
system, each process in general needs to
track the dependency of its state on ev-
ery incarnation of all processes to correctly
detect orphaned states. A way to limit
dependency tracking to only one incarna-
tion of each process is to force a process
to delay its delivery of certain messages.
That is, before a process Pi can deliver any
message carrying a dependency on an un-
known incarnation of process Pj , Pi must
first receive rollback announcements from
Pj to verify that Pi ’s current state does not
depend on any invalid state of Pj ’s pre-
vious incarnations. Piggybacking all roll-
back announcements known to a process
on every outgoing message can eliminate
blocking, and the amount of piggybacked
information can be further reduced to a
provable minimum [Smith and Johnson
1996].

Another issue in asynchronous recovery
protocols is the possibility of exponential
rollbacks. This phenomenon occurs if a sin-
gle failure causes a process to roll back an
exponential number of times [Sistla and
Welch 1989]. Figure 12 gives an example,
where each integer pair (i, x) represents
the xth state interval of the ith incarna-
tion of a process. Suppose P0 fails and
loses its interval (1,2). When P0’s rollback
announcement r0 reaches P1, the latter
rolls back to interval (2,3) and broadcasts
another rollback announcement r1. If r1
reaches P2 before r0 does, P2 will first roll
back to (4,5) in response to r1, and later
roll back again to (4,4) upon receiving r0.
By generalizing this example, we can con-
struct scenarios in which process Pi, i >
0, rolls back 2i−1 times in response to P0’s
failure.

ACM Computing Surveys, Vol. 34, No. 3, September 2002.

394 Elnozahy et al.

Several approaches have been proposed
to ensure that any process will roll back at
most once in response to a single failure.
Exponential rollbacks can be eliminated
by distinguishing failure announcements
from rollback announcements and by
broadcasting only the former [Sistla and
Welch 1989]. Another possibility is to
piggyback the original rollback announce-
ment from the failed process on every
subsequent rollback announcement that
it triggers. For example, in Figure 12, pro-
cess P1 piggybacks r0 on r1. Exponential
rollbacks can be avoided by piggybacking
all rollback announcements on every
application message [Smith and Johnson
1996].

4.4. Causal Logging

4.4.1. Overview. Causal logging has the
failure-free performance advantages of
optimistic logging while retaining most
of the advantages of pessimistic logging
[Alvisi 1996; Elnozahy 1993]. Like opti-
mistic logging, it avoids synchronous ac-
cess to stable storage except during out-
put commit. Like pessimistic logging, it
allows each process to commit output in-
dependently and never creates orphans,
thereby isolating each process from the ef-
fects of failures that occur in other pro-
cesses. Furthermore, causal logging lim-
its the rollback of any failed process to the
most recent checkpoint on stable storage.
This reduces the storage overhead and the
amount of work at risk. These advantages
come at the expense of a more complex re-
covery protocol.

Causal logging protocols ensure the
always-no-orphans property by ensuring
that the determinant of each nondeter-
ministic event that causally precedes the
state of a process is either stable or it is
available locally to that process. Consider
the example in Figure 13(a). While mes-
sages m5 and m6 may be lost upon the fail-
ure, process P0 at state X will have logged
the determinants of the nondeterministic
events that causally precede its state ac-
cording to Lamport’s happened-before re-
lation [Lamport 1978]. These events con-
sist of the delivery of messages m0, m1,

m2, m3 and m4. The determinant of each
of these nondeterministic events is either
logged on stable storage or is available in
the volatile log of process P0. The determi-
nant of each of these events contains the
order in which its original receiver deliv-
ered the corresponding message. The mes-
sage sender, as in sender-based message
logging, logs the message content. Thus,
process P0 will be able to “guide” the re-
covery of P1 and P2 since it knows the or-
der in which P1 should replay messages m1
and m3 to reach the state from which P1
sends message m4. Similarly, P0 has the
order in which P2 should replay message
m2 to be consistent with both P0 and P1.
The content of these messages is obtained
from the sender log of P0 or regenerated
deterministically during the recovery of P1
and P2. Notice that information about m5
and m6 is not available anywhere. These
messages may be replayed after recovery
in a different order, if at all. However, since
they had no effect on a surviving process
or the outside world, the resulting state
is consistent. The determinant log kept
by each process acts as an insurance to
protect it from the failures that occur in
other processes. It also allows the process
to make its state recoverable by simply
logging the information available locally.
Thus, a process does not need to run a
multi-host protocol to commit output.

4.4.2. Tracking Causality. Causal logging
protocols implement the always-no-
orphans condition by having processes
piggyback the non-stable determinants
in their volatile log on the messages they
send to other processes. On receiving
a message, a process first adds any
piggybacked determinant to its volatile
determinant log and then delivers the
message to the application.

The Manetho system propagates the
causal information in an antecedence
graph [Elnozahy 1993]. The antecedence
graph provides every process in the sys-
tem with a complete history of the nonde-
terministic events that have causal effects
on its state. The graph has a node repre-
senting each nondeterministic event that

ACM Computing Surveys, Vol. 34, No. 3, September 2002.

Rollback-Recovery Protocols in Message-Passing Systems 395

Fig. 13 . Causal logging (a) Maximum recoverable
states, and (b) antecedence graph of P0 at state X .

precedes the state of a process, and the
edges correspond to the happened-before
relation [Lamport 1978]. Figure 13(b)
shows the antecedence graph of process P0
of Figure 13(a) at state X . During failure-
free operation, each process piggybacks
on each application message, the determi-
nants that contain the receipt orders of its
direct and transitive antecedents, — its lo-
cal antecedence graph. The receiver of the
message records these receipt orders in its
volatile log.

In practice, carrying the entire graph on
each application message may lead to an
unacceptable overhead. Fortunately, each
message carries a graph that is a super-
set of the one piggybacked on the pre-
vious message sent from the same host.
This fact can be used in practical imple-
mentations to reduce the amount of infor-
mation carried on application messages.
Thus, any message between processes p
and q carries only the difference between
the graphs piggybacked on that message
and the previous message exchanged be-
tween these two hosts. Furthermore, if p
has recently received a message from q,
it can exclude the graph portions that
have been piggybacked on that message.
Process q already has the information in
these excluded portions, therefore trans-
mitting them serves no purpose. Other op-
timizations are also possible but depend
on the semantics of the communication

protocol. An implementation of this tech-
nique shows that it has very low overhead
in practice [Elnozahy 1993].

Further reduction of the overhead is
possible if the system is willing to toler-
ate a number of failures that is less than
the total number of processes in the sys-
tem. This observation is the basis of Fam-
ily Based Logging protocols (FBL) that
are parameterized by the number of tol-
erated failures [Alvisi 1996]. The basis of
these protocols is that, to tolerate f pro-
cess failures, it is sufficient to log each non-
deterministic event in the volatile store
of f + 1 different hosts. Hence, the predi-
cate Stable(e) holds as soon as |Log(e)|> f .
Sender-based logging is used to support
message replay during recovery and de-
terminants are piggybacked on applica-
tion messages. However, unlike Manetho,
propagation of information about an event
stops when it has been recorded in
f + 1 processes. For f <N , FBL proto-
cols do not access stable storage except
for checkpointing. Reducing access to sta-
ble storage in turn reduces performance
overhead and implementation complexity.
Applications pay only the overhead that
corresponds to the number of failures they
are willing to tolerate. An implementation
for the protocol with f = 1 confirms that
the performance overhead is very small
[Alvisi 1996]. The Manetho protocol is an
FBL protocol corresponding to the case of
f =N .

4.5. Comparison

Different rollback-recovery protocols
offer different tradeoffs with respect to
performance overhead, latency of output
commit, storage overhead, ease of garbage
collection, simplicity of recovery, freedom
from domino effect, freedom from orphan
processes, and the extent of rollback.
Table I summarizes a comparison among
the different variations of rollback-
recovery protocols.

Since garbage collection and recovery
both involve calculating a recovery line,
they can be performed by simple pro-
cedures under coordinated checkpointing
and pessimistic logging, both of which

ACM Computing Surveys, Vol. 34, No. 3, September 2002.

396 Elnozahy et al.

Table I. A Comparison Between Various Flavors of Rollback-Recovery Protocols

Uncoordinated
Checkpointing

Coordinated
Checkpointing

Comm. Induced
Checkpointing

Pessimistic
Logging

Optimistic
Logging

Causal
Logging

PWD
assumed? No No No Yes Yes Yes

Checkpoint/
process Several 1 Several 1 Several 1

Domino
effect Possible No No No No No

Orphan
processes Possible No Possible No Possible No

Rollback
extent

Unbounded Last global
checkpoint

Possibly
several

checkpoints

Last
checkpoint

Possibly
several

checkpoints

Last
checkpoint

Recovery
data

Distributed Distributed Distributed Distributed or
local

Distributed
or local Distributed

Recovery
protocol Distributed Distributed Distributed Local Distributed Distributed

Output
commit Not possible

Global
coordination

required

Global
coordination

required
Local decision

Global
coordination

required

Local
decision

have a predetermined recovery line during
failure-free execution. The extent of any
potential rollback determines the max-
imum number of checkpoints each pro-
cess needs to retain. Uncoordinated check-
pointing can have unbounded rollbacks,
and a process may need to retain up to N
checkpoints if the optimal garbage collec-
tion algorithm is used [Wang et al. 1995b].
Also, several checkpoints may need to be
kept, under optimistic logging, depending
on the specifics of the logging scheme. Note
that we do not include failure-free over-
head as a factor in the comparison. Several
studies have shown that these protocols
perform reasonably well in practice, and
that several factors such as checkpointing
frequency, machine speed, and stable stor-
age bandwidth play more important roles
than the fundamental aspects of a partic-
ular protocol [Alvisi 1996; Elnozahy 1993;
Elnozahy, et al. 1992; Huang and Kintala
1993; Johnson 1989; Muller et al. 1994;
Plank 1993; Plank, et al. 1995b; Ruffin
1992; Silva 1997].

5. IMPLEMENTATION ISSUES

5.1. Overview

While there is a rich body of research
on the algorithmic aspects of rollback-
recovery protocols, reports on experimen-
tal prototypes or commercial implemen-
tations are relatively scarce. The few
experimental studies available have
shown that building rollback-recovery
protocols with low failure-free overhead
is feasible. These studies also provide
ample evidence that the main difficulty
in implementing these protocols lies
in the complexity of handling recovery
[Elnozahy 1993]. It is interesting to note
that all commercial implementations of
message logging use pessimistic logging
because it simplifies recovery [Borg, et al.
1989; Huang and Wang 1995].

Several recent studies have also chal-
lenged some premises on which many
rollback-recovery protocols rely. Many of
these protocols were introduced in the
1980’s, as processor speed and network

ACM Computing Surveys, Vol. 34, No. 3, September 2002.

Rollback-Recovery Protocols in Message-Passing Systems 397

bandwidth were such that communica-
tion overhead was deemed too high, es-
pecially as compared to the cost of sta-
ble storage access [Bhargava et al. 1990].
In such platforms, multi-host coordina-
tion incurs a large overhead because of
the necessary control messages. A pro-
tocol that does not require a large com-
munication overhead at the expense of
more stable storage accesses performs bet-
ter in such platforms. Recently, processor
speed and network bandwidth have in-
creased dramatically, while the speed of
stable storage access has remained rela-
tively the same.2 This change in the equa-
tion suggests a fresh look at the premises
of many rollback-recovery protocols. Re-
cent results [Alvisi 1996; Elnozahy 1993;
Johnson 1989; Muller, et al. 1994; Plank
1993; Silva 1997; Slye and Elnozahy 1998]
have shown that:r Stable storage access is now the ma-

jor source of overhead in checkpoint-
ing or message logging systems. Com-
munication overhead is much lower in
comparison. Such changes favor coordi-
nated checkpointing schemes over mes-
sage logging or uncoordinated check-
pointing systems, as they require less
access to stable storage and are simpler
to implement.r The case for message logging has
become the ability to interact with
the outside world, instead of reduc-
ing the overhead of multi-process co-
ordination [Elnozahy and Zwaenepoel
1994]. Message logging systems can
implement efficient protocols for com-
mitting output and logging input that
are not possible in checkpoint-only
systems.r Recent advances have shown that arbi-
trary forms of nondeterminism can be
supported at a very low overhead in
logging systems. Nondeterminism was

2 While semiconductor-based stable storage is becom-
ing more widely available, the size-cost ratio is too
low compared to disk-based stable storage. It appears
that for some time to come, disk-based systems will
continue to be the medium of choice for storing the
large files that are needed in checkpointing and log-
ging systems.

deemed one of the complexities inherent
in message logging systems.

In the remainder of this section, we ad-
dress these and other issues in some
detail.

5.2. Checkpointing Implementation

All available studies have shown that
writing the state of a process to stable stor-
age is the largest contributor to the per-
formance overhead [Plank 1993]. The sim-
plest way to save the state of a process is to
suspend execution, save the process’s ad-
dress space on stable storage, and then re-
sume execution [Tamir and Sequin 1984].
This scheme can be costly for programs
with large address spaces if stable storage
is implemented using magnetic disks, as
it is the custom. Several techniques exist
to reduce this overhead.

5.2.1. Concurrent Checkpointing. All
available studies show that concurrent
checkpointing greatly reduces the over-
head of saving the state of a process
[Goldberg et al. 1990; Plank 1993].
Concurrent checkpointing relies on the
memory protection hardware available
in modern computer architectures to
continue the execution of the process
while its checkpoint is being saved on
stable storage. The address space is
protected from further modification at
the start of a checkpoint and the memory
pages are saved to disk concurrently with
the program execution. If the program
attempts to modify a page, it incurs a
protection violation. The checkpointing
system copies the page into a separate
buffer from which it is saved on stable
storage. The original page is unprotected
and the application program is allowed
to resume. Implementations that do not
incorporate concurrent checkpointing
may pay a heavy performance overhead
unless the checkpointing interval is set
to a large value, which in turn would
increase the time for rollback.

5.2.2. Incremental Checkpointing. Adding
incremental checkpointing [Feldman and

ACM Computing Surveys, Vol. 34, No. 3, September 2002.

398 Elnozahy et al.

Brown 1989] to concurrent checkpoint-
ing can further reduce the overhead
[Elnozahy, et al. 1992]. Incremental check-
pointing avoids rewriting portions of the
process states that do not change between
consecutive checkpoints. It can be imple-
mented by using the dirty-bit of the mem-
ory protection hardware or by emulating
a dirty-bit in software [Babaoglu and Joy
1981]. A public domain package imple-
menting this technique along with con-
current checkpointing is available [Plank,
et al. 1995b].

Incremental checkpointing can also be
extended over several processes. In this
technique, the system saves the computed
parity or some function of the memory
pages that are modified across several pro-
cesses [Plank and Li 1994]. This technique
is very similar to parity computation in
RAID disk systems. The parity pages can
be saved in volatile memory of some other
processes thereby avoiding the need to ac-
cess stable storage. The storage overhead
of this method is very low, and it can be
adjusted depending on how many failures
the system is willing to tolerate.

Another technique for implementing
incremental checkpointing is to directly
compare the program’s state with the pre-
vious checkpoint in software, and writing
the difference in a new checkpoint [Plank
et al. 1995a]. The required storage and
computation overhead to perform such a
comparison may waste the benefit of in-
cremental checkpointing. Another varia-
tion on this technique is to use proba-
bilistic checkpointing [Nam et al. 1997].
The unit of checkpointing in this scheme
is a memory block that is typically much
smaller than a memory page. Changes to
a memory block are detected by comput-
ing a signature and comparing it to the
corresponding signature in the previous
checkpoint. Probabilistic checkpointing is
portable, and has lower storage and com-
putation requirements than required by
comparing the checkpoints directly. On the
downside, computing a signature to detect
changes opens the door for aliasing. This
problem occurs when the computed signa-
ture does not differ from the correspond-
ing one in the previous checkpoint, even

though the associated memory block has
changed. In such a situation, the mem-
ory block is excluded from the new check-
point, which therefore becomes erroneous.
A probabilistic analysis has shown that
the likelihood of aliasing in practice is
negligible, but an experimental evaluation
has shown that probabilistic checkpoint-
ing could be unsafe in practice [Elnozahy
1998].

5.2.3. System-level versus User-level Imple-
mentations. Support for checkpointing can
be implemented in the kernel [Bartlett
1981; Borg, et al. 1989; Elnozahy 1993;
Johnson 1989], or it can be implemented
by a library linked with the user pro-
gram [Alvisi 1996; Goldberg, et al. 1990;
Huang and Kintala 1993; Plank, et al.
1995b]. Kernel-level implementations are
more powerful because they can also cap-
ture kernel data structures that support
the user process. However, these imple-
mentations are necessarily not portable.

Checkpointing can also be implemented
in user level. System calls that manip-
ulate memory protection such as mpro-
tect of UNIX can emulate concurrent and
incremental checkpointing. The fork sys-
tem call of UNIX can implement concur-
rent checkpointing if the operating system
implements fork using copy-on-write pro-
tection [Goldberg, et al. 1990]. User-level
implementations, however, cannot access
kernel’s data structures that belong to the
process, such as open file descriptors and
message buffers, but these data structures
can be emulated at user level [Huang and
Kintala 1993].

5.2.4. Compiler Support. A compiler can
be instrumented to generate code that
supports checkpointing [Li and Fuchs
1990]. The compiled program contains
code that decides when and what to check-
point. The advantage of this technique
is that the compiler can decide on the
variables that must be saved, therefore
avoiding unnecessary data. For example,
dead variables within a program are not
saved in a checkpoint though they have
been modified. Furthermore, the compiler

ACM Computing Surveys, Vol. 34, No. 3, September 2002.

Rollback-Recovery Protocols in Message-Passing Systems 399

may decide the points during program
execution where the amount of state to be
saved is small.

Despite these promising advantages,
there are difficulties with this approach.
It is generally undecidable to find the
point in program execution most suitable
to take a checkpoint. There are, however,
several heuristics that can be used. The
programmer can provide hints to the com-
piler about where checkpoints should be
inserted or what data variables should
be stored [Beguelin et al. 1997; Plank,
et al. 1995b]. The compiler may also be
trained by running the application in an
iterative manner and by observing its be-
havior [Li and Fuchs 1990]. The observed
behavior could help decide the execution
points where it would be appropriate to in-
sert checkpoints. Compiler support could
also be simplified in languages that sup-
port automatic garbage collection [Appel
1989]. The execution point after each ma-
jor garbage collection provides a conve-
nient place to take a checkpoint at a min-
imum cost.

5.2.5. Checkpoint Placement. A large
amount of work has been devoted to
analyzing and deriving the optimal
checkpointing frequency and placement
[Chandy and Ramamoorthy 1972]. The
problem is usually formulated as an opti-
mization problem subject to constraints.
For instance, a system may attempt to
reduce the number of taken checkpoints
subject to a certain limit on the amount of
expected rollback. Generally, it has been
observed in practice that the overhead
of checkpointing is usually negligible
unless the checkpointing interval is rel-
atively small, therefore the optimality of
checkpoint placement is rarely an issue
in practical systems [Elnozahy, et al.
1992].

5.3. Checkpointing Protocols in Comparison

Many checkpointing protocols were intro-
duced at a time when the communica-
tion overhead far exceeded the overhead
of accessing stable storage. Furthermore,

the memory available to run processes
tended to be small. These tradeoffs nat-
urally favored uncoordinated checkpoint-
ing schemes over coordinated ones. Cur-
rent technological trends however have
reversed this tradeoff.

In modern systems, the overhead of co-
ordinating checkpoints is negligible com-
pared to the overhead of saving the states
[Alvisi 1996; Elnozahy 1993; Johnson
1989; Muller, et al. 1994; Plank 1993; Silva
1997]. Using concurrent and incremental
checkpointing, the overhead of either co-
ordinated or uncoordinated checkpointing
is essentially the same. Therefore, uncoor-
dinated checkpointing is not likely to be
an attractive technique in practice given
the negligible performance gains. These
gains do not justify the complexities of
finding a consistent recovery line after the
failure, the susceptibility to the domino
effect, the high storage overhead of sav-
ing multiple checkpoints of each process,
and the overhead of garbage collection.
It follows that coordinated checkpointing
is superior to uncoordinated checkpoint-
ing when all aspects are considered on
balance.

A recent study has also shed some
light on the behavior of communication-
induced checkpointing [Alvisi, et al. 1999].
It presents an analysis of these proto-
cols based on a prototype implementa-
tion and validated simulations, showing
that communication-induced checkpoint-
ing does not scale well as the number
of processes increases. The occurrence
of forced checkpoints at random points
within the execution due to communi-
cation messages makes it very difficult
to predict the required amount of sta-
ble storage for a particular application
run. Also, this unpredictability affects the
policy for placing local checkpoints and
makes communication-induced protocols
cumbersome to use in practice. Further-
more, the study shows that the benefit of
autonomy in allowing processes to take lo-
cal checkpoints at their convenience does
not seem to hold. In all experiments,
a process takes at least twice as many
forced checkpoints as local, autonomous
ones.

ACM Computing Surveys, Vol. 34, No. 3, September 2002.

400 Elnozahy et al.

5.4. Communication Protocols

Rollback-recovery complicates the imple-
mentation of protocols used for inter-
process communications. Some protocols
offer the abstraction of reliable communi-
cation channels such as connection-based
protocols (e.g. TCP, RPC). Alternatively,
other protocols offer the abstraction of an
unreliable datagram service (e.g. UDP).
Each type of abstraction requires addi-
tional support to operate properly across
failures and recoveries.

5.4.1. Location-Independent Identities and
Redirection. For all communication pro-
tocols, a rollback-recovery system must
mask the actual identity and location of
processes or remote ports from the ap-
plication program. This masking is nec-
essary to prevent any application pro-
gram from acquiring a dependency on the
location of a certain process, making it im-
possible to restart the process on a differ-
ent machine after a failure. A solution to
this problem is to assign a logical, location-
independent identifier to each process in
the system. This scheme also allows the
system to appropriately redirect commu-
nication to a restarting process after a
failure [Elnozahy 1993].

5.4.2. Reliable Channel Protocols. After a
failure, identity masking and commu-
nication redirection are sufficient for
communication protocols that offer the
abstraction of an unreliable channel. Pro-
tocols that offer the abstraction of reli-
able channels require additional support.
These protocols usually generate a time-
out upcall to the application program if the
process at the other end of the channel has
failed. These timeouts should be masked
since the failed program will soon restart
and resume computation. If such upcalls
are allowed to affect the application, then
the abstraction of a reliable system is no
longer upheld. The application will have
to encode the necessary support to com-
municate with the failed process after it
recovers.

Masking timeouts should also be cou-
pled with the ability of the protocol im-

plementation to reestablish the connec-
tion with the restarting process (possibly
restarting on a different machine). This
support includes the ability to clean up
the old connection in an orderly manner,
and to establish a new connection with the
restarting host. Furthermore, messages
retransmitted as part of the execution re-
play of the remote host must be identi-
fied and, if necessary, suppressed. This
requires the protocol implementation to
include a form of sequence number that
is only used for this purpose.

Recovering in-transit messages that are
lost because of a failure is another prob-
lem for reliable communication protocols.
In TCP/IP communication style, for in-
stance, a message is considered delivered
once an acknowledgment is received from
the remote host. The message itself may
linger in the kernel’s buffer for a while be-
fore the receiving process consumes it. If
this process fails, the in-transit messages
must be resent to preserve the seman-
tics of the reliable communication chan-
nel. Messages must be saved at the sender
side for possible retransmission during re-
covery. This step can be combined in a
system that performs sender-based mes-
sage logging as part of the log mainte-
nance. In other systems that do not log
messages or log messages at the receiver,
the copying of each message at the sender
side introduces overhead and complexity.
The complexity is due to the need for exe-
cuting some garbage collection algorithm
with other sites to reclaim the volatile
storage.

5.5. Log-based Recovery

5.5.1. Message Logging Overhead. Mes-
sage logging introduces three sources of
overhead. First, each message must in
general be copied to the local memory of
the process. Second, the volatile log is reg-
ularly flushed to stable storage to free
up space. Third, message logging nearly
doubles the communication bandwidth re-
quired to run the application for sys-
tems that implement stable storage via
a highly available file system accessible
through the network. The first source of

ACM Computing Surveys, Vol. 34, No. 3, September 2002.

Rollback-Recovery Protocols in Message-Passing Systems 401

overhead may directly affect communica-
tion throughput and latency. This is es-
pecially true if the copying occurs in the
critical path of the inter-process commu-
nication protocol. In this respect, sender-
based logging is considered more efficient
than receiver-based logging because the
copying can take place after sending the
message over the network. Additionally,
the system may combine the logging of
messages with the implementation of the
communication protocol and share the
message log with the transmission buffers.
This scheme avoids the extra copying of
the message. Logging at the receiver is
more expensive because it is in the criti-
cal path of the communication protocol.

Another optimization for sender-based
logging systems is to use copy-on-write
to avoid making extra-copying [Elnozahy
and Zwaenepoel 1994]. This scheme works
well in systems where broadcast messages
are implemented using several point-to-
point messages. In this case, copy-on-write
will allow the system to have one copy
for identical messages and thus reduce
the storage and performance overhead
of logging. No similar optimization can
be performed in receiver-based systems
[Elnozahy and Zwaenepoel 1994].

5.5.2. Combining Log-Based Recovery with
Coordinated Checkpointing. Log-based re-
covery has been traditionally presented
as a mechanism to allow the use of unco-
ordinated checkpointing with no domino
effect. But a system may also combine
event logging with coordinated check-
pointing, yielding several benefits with
respect to performance and simplicity
[Elnozahy and Zwaenepoel 1994]. These
benefits include those of coordinated
checkpointing—such as the simplicity
of recovery and garbage collection—and
those of log-based recovery—such as fast
output commit. Most prominently, this
combination obviates the need for flushing
the volatile message logs to stable storage
in a sender-based logging implementa-
tion. Thus, there is no need for main-
taining large logs on stable storage, re-
sulting in lower performance overhead

and simpler implementations. The combi-
nation of coordinated checkpointing and
message logging has been shown to out-
perform one with uncoordinated check-
pointing and message logging [Elnozahy
and Zwaenepoel 1994]. Therefore, the pur-
pose of logging should no longer be to al-
low uncoordinated checkpointing. Rather,
it should be the desire for enabling fast
output commit for those applications that
need this feature.

5.6. Stable Storage

Magnetic disks have been the medium
of choice for implementing stable storage
[Lampson and Sturgis 1979]. Although
they are slow, their storage capacity and
low cost combination cannot be matched
by other alternatives. An implementation
of a stable storage abstraction on top of
a conventional file system may not be
the best choice, however. Such an imple-
mentation will not generally give the per-
formance or reliability needed to imple-
ment stable storage [Banâtre, et al. 1988;
Elnozahy 1993; Ruffin 1992]. Modern file
systems tend to be optimized for the pat-
tern of access expected in workstation or
personal computing environments. Fur-
thermore, these file systems are often ac-
cessed through a network via a protocol
that is optimized for small file accesses
and not for the large file accesses that
are more common in checkpointing and
logging.

An implementation of stable storage
should bypass the file system layer and
access the disk directly. One such imple-
mentation is the KitLog package, which
offers a log abstraction that can sup-
port checkpointing and message logging
[Ruffin 1992]. The package runs in con-
ventional UNIX systems and bypasses the
file system by accessing the disk in raw
mode. There have also been several at-
tempts at implementing stable storage us-
ing non-volatile semiconductor memory
[Banâtre, et al. 1988]. Such implementa-
tions do not have the performance prob-
lems associated with disks, but the price
and the small storage capacity remain two
problems that limit their wide acceptance.

ACM Computing Surveys, Vol. 34, No. 3, September 2002.

402 Elnozahy et al.

5.7. Support for Nondeterminism

Nondeterminism occurs when the applica-
tion program interacts with the operating
system through system calls and upcalls
(asynchronous events). In log-based recov-
ery, these nondeterministic events must
be logged on stable storage so that they can
be replayed during recovery. Log-based re-
covery systems differ in the range of actual
events that can be covered.

5.7.1. System Calls. System calls in
general can be classified into three
types [Borg, et al. 1989; Elnozahy 1993;
Goldberg, et al. 1990]. Idempotent system
calls are those that return deterministic
values whenever executed. Examples in-
clude calls that return the user identifier
of the process owner. These calls do not
need to be logged. A second class of calls
consists of those that must be logged dur-
ing failure-free operation but should not
be re-executed during execution replay.
The results from these calls should simply
be replayed to the application program.
These calls include those that inquire
about the environment, such as getting
the current time of day. Re-executing
these calls during recovery might return
a different value that is inconsistent
with the pre-failure execution. The last
type of system calls includes those that
must be logged during failure-free oper-
ation and re-executed during execution
replay. These calls generally modify the
environment and therefore they must be
re-executed to re-establish the environ-
ment changes. Examples include calls
that allocate memory or create processes.
Ensuring that these calls return the
same values and generate the same effect
during re-execution can be very complex.

5.7.2. Asynchronous Signals. Nonde-
terminism results from asynchronous
signals available in the form of soft-
ware interrupts under various operating
systems. Such signals must be applied
at the same execution points during
replay to reproduce the same result.
Log-based rollback-recovery can cover
this form of nondeterminism by taking a

checkpoint after the occurrence of each
signal, but this can be very expensive
[Bartlett 1981]. Alternatively, the system
may convert these asynchronous signals
to synchronous messages such as in
Targon/32 [Borg, et al. 1989], or it may
queue the signals until the application
polls for them. Both alternatives convert
asynchronous event notifications into syn-
chronous ones, which may not be suitable
or efficient for many applications. Such
solutions also may require substantial
modifications to the operating system or
the application program.

Another example of nondeterminism
that is difficult to track is shared memory
manipulation in multithreaded applica-
tions. Reconstructing the same execution
during replay requires the same interleav-
ing of shared memory accesses by the vari-
ous threads as in the pre-failure execution.
Systems that support this form of nonde-
terminism supply their own sets of locking
primitives, and require applications to use
them for protecting access to shared mem-
ory [Goldberg, et al. 1990]. The primitives
are instrumented to insert an entry in the
log identifying the calling thread and the
nature of the synchronization operation.
However, this technique has several prob-
lems. It makes shared memory access ex-
pensive, and may generate a large volume
of data in the log. Furthermore, if the ap-
plication does not adhere to the synchro-
nization model (because of a programmer’s
error, for instance), execution replay may
not be possible.

A technique for tracking nondetermin-
ism due to asynchronous signals and
interleaved memory access on single pro-
cessor systems is to use instruction coun-
ters [Bressoud and Schneider 1995]. An
instruction counter is a register that
decrements by one upon the execution of
each instruction, leading the hardware to
generate an exception when the register
contents become 0. An instruction counter
can thus be used in two modes. In one
mode, the register is loaded with the num-
ber of instructions to be executed before
a breakpoint occurs. After the CPU exe-
cutes the specified number of instructions,
the counter reaches 0 and the hardware

ACM Computing Surveys, Vol. 34, No. 3, September 2002.

Rollback-Recovery Protocols in Message-Passing Systems 403

generates an exception. The operating sys-
tem fields the exception and executes a
pre-specified handler. This mode is use-
ful in setting breakpoints efficiently, such
as during debugging. In the second mode,
the instruction counter is loaded with the
maximum value it can hold. Execution
proceeds until an event of interest oc-
curs, at which time the content of the
counter is sampled, and the number of
instructions executed since the time the
counter was set is computed and logged.
The use of instruction counters has been
suggested for debugging shared memory
parallel programs [Mellor-Crummey and
LeBlanc 1989].

Instruction counters can be used in
rollback-recovery to track the number
of instructions that occur between asyn-
chronous interrupts [Slye and Elnozahy
1998]. These instruction counts are logged
as part of the log that describes the non-
deterministic events. During recovery, the
system recovers the instruction counts
from the log and uses them to regener-
ate the software interrupts at the same
execution points within the application as
before the failure. The application there-
fore goes through the same set of asyn-
chronous events precisely as it did before
the failure, and therefore it can recon-
struct its execution.

An instruction counter can be imple-
mented in hardware, as in the PA-RISC
precision architecture where it has been
used to augment the hypervisor of a
virtual-machine manager and coordinate
a primary virtual machine with its backup
[Bressoud and Schneider 1995]. It also can
be emulated in software [Mellor-Crummey
and LeBlanc 1989]. An implementation
study shows that the overhead of program
instrumentation and tracking nondeter-
minism is less than 6% for a variety of user
programs and synthetic benchmarks [Slye
and Elnozahy 1998].

5.8. Dependency Tracking

Rollback-recovery protocols vary in the
ways they track inter-process dependen-
cies. Some protocols require tagging only
an index or a sequence number on ev-

ery application message [Briatico, et al.
1984], while some require the propaga-
tion of a vector of timestamps [Strom and
Yemini 1985]. At an extreme, some pro-
tocols require the propagation of a graph
describing the history of the computation
[Elnozahy 1993], or matrices containing
bit or timestamp vectors [Baldoni, et al.
1998].

Tagging a message with an index or a
sequence number on an application mes-
sage is simple and does not cause any
measurable overhead. When dependency
tracking, however, requires more complex
structures, there are techniques for reduc-
ing the amount of actual data that need
to be transferred on top of each message.
All these techniques revolve around two
themes. First, only incremental changes
need to be sent. If some elements of a
vector or a graph haven’t changed since
process p last sent a message to process
q, then p need only include those ele-
ments that have changed. Implementa-
tion of this optimization is straightforward
in systems that assume FIFO communi-
cation channels. When lossy channels are
assumed, this optimization is still possi-
ble, but at the expense of more processing
overhead [Elnozahy 1993].

The other technique for reducing the
overhead of dependency tracking exploits
the semantics of the applications and the
communication patterns [Elnozahy 1993].
For instance, if it can be inferred from
the dependency information available to
process p that process q already knows
parts of the information that is to be pig-
gybacked on a message outgoing to q, then
process p can exclude this information.
Surprisingly, implementing this optimiza-
tion is simple and yields good performance
[Elnozahy 1993]. Regardless of the partic-
ular method used to track inter-process de-
pendencies, various prototype implemen-
tations have shown that the overhead
resulting from dependency tracking is
negligible compared to the overhead of
checkpointing or logging [Alvisi 1996;
Alvisi, et al. 1999; Bhargava and Lian
1988; Borg, et al. 1989; Elnozahy 1993;
Goldberg, et al. 1990; Johnson 1989; Silva
1997].

ACM Computing Surveys, Vol. 34, No. 3, September 2002.

404 Elnozahy et al.

5.9. Recovery

Handling execution restart and replay is a
difficult part of implementing a rollback-
recovery system [Borg, et al. 1989]. The
major challenge is reintegrating the re-
covered process in a computation environ-
ment that may or may not be the same as
the one in which the process was executing
before failure.

5.9.1. Reinstating a Process in its Environ-
ment. Implanting a process in a different
environment during recovery can create
difficulties if its state depends on the pre-
failure environment. For example, the pro-
cess may need to access files that exist on
the local disk of the machine. The simplest
solution to this problem is to attempt to
restart the program on the same host. If
this is not feasible, then the system must
insulate the process from environment-
specific variables [Elnozahy 1993]. This
can be done for instance by intercept-
ing system calls that return environment-
specific results and replacing them with
abstract values under the control of the
recovery system. Also, file access could
be made highly available by placing
all files in network-wide highly avail-
able file servers or by using dual-ported
disks.

Another problem in implementing re-
covery is the need to reconstruct the auxil-
iary state within the operating system ker-
nel that supports the recovering process
[Elnozahy 1993; Huang and Kintala 1993;
Johnson 1989; Plank 1993]. This state is
usually outside of the recovery protocol’s
control during failure-free operation, un-
less the protocol is implemented inside
the operating system. For protocols im-
plemented outside the operating system,
the rollback-recovery system must emu-
late these data structures and log suffi-
cient information to be able to recreate
them during recovery. For example, the re-
covery system may create a data structure
to shadow the open file table of a particu-
lar process by intercepting all file manip-
ulation calls from the process itself. Then,
the recovery system records some informa-
tion that would enable it to issue requests

to the operating system during recovery
in order to force the operating system to
recreate these data structures indirectly.
Obviously, not all states within the oper-
ating system kernel can be emulated this
way, and therefore, out-of-kernel imple-
mentations should have stricter coverage
of the system’s state that must be emu-
lated. Since most of the applications that
benefit from rollback-recovery seem to be
in the realm of scientific computing where
no sophisticated state is maintained by
the kernel on behalf of the processes, this
problem does not seem to be severe in that
particular context [Plank, et al. 1995b].

5.9.2. Behavior During Recovery. Previous
studies have outlined several character-
istics of rollback-recovery systems during
recovery [Elnozahy 1993; Rao et al. 1998].
For example, it has been observed that for
log-based recovery systems, the messages
and determinants available in the logs are
replayed at a considerably higher speed
during recovery than during normal exe-
cution. This is because during normal exe-
cution, a process may have to block waiting
for messages or synchronization events,
while during recovery these messages or
events can be immediately replayed.

Also, it has been observed that sender-
based logging protocols typically slow
down recovery if there are multiple fail-
ures, because of the need to re-execute
some of the processes under control to re-
generate the messages. Moreover, some of
these protocols may require sympathetic
rollbacks [Strom and Yemini 1985], which
increase the overhead of synchronizing
the processes during recovery. This ex-
perimental evidence seems to confirm the
tradeoff between protocols that perform
well during failure-free executions, such
as causal and optimistic logging, and pro-
tocols that perform well during recovery,
such as pessimistic logging [Rao, et al.
1998]. It is possible to address this tradeoff
by performing logging both at the sender
and receivers [Strom and Yemini 1985],
such that the sender log is volatile and
is kept only until the receiver flushes its
volatile logs to stable storage.

ACM Computing Surveys, Vol. 34, No. 3, September 2002.

Rollback-Recovery Protocols in Message-Passing Systems 405

5.10. Checkpointing and Mobility

Several studies have examined the issues
of checkpointing, logging, and rollback-
recovery in mobile computing [Prakash
and Singhal 1996]. The fundamental con-
cepts of distributed checkpointing, consis-
tency, and rollback are identical to those in
traditional distributed systems, but spe-
cial considerations must be made for is-
sues inherent to mobile computing, such
as energy constraints, intermittent com-
munications, and low-performance pro-
cessors. These issues favor checkpointing
protocols that allow maximum autonomy
to participating processes, require low
overhead in resources, and can function
with the minimum possible number of
message exchanges. Therefore, indepen-
dent checkpointing and communication-
induced checkpointing tend to be more
appropriate for these environments than
coordinated checkpointing. Also, log-based
recovery protocols that allow a high de-
gree of autonomy during recovery such
as receiver-based optimistic or pessimistic
logging tend to be more appropriate for
these environments than those protocols
that require global communication dur-
ing recovery. Nevertheless, checkpoint-
ing and rollback-recovery have yet to
prove useful for mobile hosts. The ap-
plications in the mobile domain tend
to be structured as client-server inter-
actions for which transaction processing
on the server is most appropriate. Also,
it is often the case for these applica-
tions that high availability is more im-
portant than fault tolerance or recover-
ability, favoring some form of replicated
server that can continue to function de-
spite a failure of some of its replicas.
Finally, there is an emerging generation of
handheld devices that are meant to serve
as enhanced input-output devices for
remote computations, with little process-
ing or storage capacity to support check-
pointing or recovery. Whether this situ-
ation changes, will depend on whether
rollback-recovery proves to be useful out-
side the scientific and engineering com-
puting domain in which it has proved very
successful.

5.11. Rollback-Recovery in Practice

Despite the wealth of research in the area
of rollback-recovery in distributed sys-
tems, very few commercial systems actu-
ally have adopted it. Difficulties in imple-
menting recovery perhaps are the main
reason why these protocols have not been
widely adopted. Additionally, the range
of applications that benefit from these
protocols tend to be in the realm of long-
running, scientific programs, which are
relatively few. Many of these, in fact,
are written to run on supercomputers
where some facility exists for checkpoint-
ing the entire system’s state. For the few
that run in a distributed system, public do-
main libraries that implement checkpoint-
ing have proved adequate [Plank, et al.
1995b].

Log-based recovery seemed to have less
success than checkpoint-only systems. A
commercial implementation of pessimistic
logging did not fare well, although the rea-
sons are not clear [Borg, et al. 1989]. One
could conjecture that the complex modifi-
cations made to the operating system and
the special-purpose hardware that was
used to mitigate performance overhead
made the machine expensive. Some other
usage of log-based recovery has been re-
ported in telecommunication applications
[Huang and Kintala 1993], although there
are no reports on how they fared. Interest-
ingly, both commercial implementations
used pessimistic logging, and were used
for applications where the performance
overhead of this form of logging could be
tolerated. We are unaware, however, of
any use of optimistic or causal logging
rollback-recovery protocols in commercial
systems.

6. CONCLUDING REMARKS

We have reviewed and compared differ-
ent approaches to rollback-recovery with
respect to a set of properties including
the assumption of piecewise determinism,
performance overhead, storage overhead,
ease of output commit, ease of garbage
collection, ease of recovery, freedom from
domino effect, freedom from orphan

ACM Computing Surveys, Vol. 34, No. 3, September 2002.

406 Elnozahy et al.

processes, and the extent of rollback.
These approaches fall into two broad cat-
egories: checkpointing protocols and log-
based recovery protocols.

Checkpointing protocols require the
processes to take periodic checkpoints
with varying degrees of coordination.
At one end of the spectrum, coordi-
nated checkpointing requires the pro-
cesses to coordinate their checkpoints to
form global consistent system states. Co-
ordinated checkpointing generally simpli-
fies recovery and garbage collection, and
yields good performance in practice. At
the other end of the spectrum, uncoordi-
nated checkpointing does not require the
processes to coordinate their checkpoints,
but it suffers from potential domino effect,
complicates recovery, and still requires
coordination to perform output commit
or garbage collection. Between these two
ends are communication-induced check-
pointing schemes that depend on the com-
munication patterns of the applications
to trigger checkpoints. These schemes do
not suffer from the domino effect and do
not require coordination. Recent studies,
however, have shown that the nondeter-
ministic nature of these protocols compli-
cates garbage collection and degrades per-
formance.

Log-based rollback-recovery is often a
natural choice for applications that fre-
quently interact with the outside world.
It allows efficient output commit, and
has three flavors, pessimistic, optimistic,
and causal. The simplicity of pessimistic
logging makes it attractive for practical
applications where a high failure-free
overhead is tolerable. This form of logging
simplifies recovery, output commit, and
protects surviving processes from having
to roll back. These advantages have made
pessimistic logging attractive in commer-
cial environments where simplicity and
robustness are necessary. Causal logging
reduces the overhead while still preserv-
ing the properties of fast output commit
and orphan-free recovery. Alternatively,
optimistic logging reduces the overhead
further at the expense of complicating re-
covery and increasing the extent of roll-
back upon a failure.

ACKNOWLEDGMENTS

The authors wish to express their sincere thanks to
Pi-Yu Chung, Om Damani, W. Kent Fuchs, Yennun
Huang, Chandra Kintala, Andy Lowry, Keith
Marzullo, James Plank, Fred Schneider and Paulo
Verissimo for valuable discussions, encouragement
and comments.

REFERENCES

ALVISI, L. 1996. Understanding the Message Log-
ging Paradigm for Masking Process Crashes.
Ph.D. Thesis, Cornell University, Department of
Computer Science.

ALVISI, L. AND MARZULLO, K. 1998. Message log-
ging: pessimistic, optimistic, causal and optimal.
IEEE Trans. Softw. Eng. 24, 2, 149–159.

ALVISI, L., ELNOZAHY, E. N., RAO, S., HUSAIN,
S. A., and MEL, A. D. 1999. An analysis of
communication-induced checkpointing. In Di-
gest of Papers, FTCS-29, The Twenty Nineth
Annual International Symposium on Fault-
Tolerant Computing (Madison, Wisconsin), 242–
249.

APPEL, A. W. 1989. A runtime system. Technical
Report CS-TR220-89, Department of Computer
Science, Princeton University.

BABAOGLU, O. AND JOY, W. 1981. Converting a swap-
based system to do paging in an architecture
lacking page-reference bits. In Proceedings of the
Eighth ACM Symposium on Operating Systems
Principles, 78–86.

BALDONI, R., QUAGLIA, F., AND CICIANI, B. 1998. A
VP-accordant checkpointing protocol prevent-
ing useless checkpoints. In Proceedings, Sev-
enteenth Symposium on Reliable Distributed
Systems, 61–67.

BANÂTRE, J. P., BANÂTRE, M., AND MULLER, G. 1988.
Ensuring data security and integrity with a fast
stable storage. In Proceedings of The Fourth Con-
ference on Data Engineering, 285–293.

BARTLETT, J. F. 1981. A Non Stop Kernel. In Pro-
ceedings of the Eighth ACM Symposium on Op-
erating Systems Principles, 22–29.

BEGUELIN, A., SELIGMAN, E., AND STEPHAN, P. 1997.
Application-level fault tolerance in heteroge-
neous networks of workstations. J. Parallel and
Distributed Comput. 43, 2, 147–155.

BHARGAVA, B. AND LIAN, S. R. 1988. Indepen-
dent checkpointing and concurrent rollback
for recovery—An optimistic approach. In Pro-
ceedings, Seventh Symposium on Reliable Dis-
tributed Systems, 3–12.

BHARGAVA, B., LIAN, S. R., AND LEU, P. J. 1990. Ex-
perimental evaluation of concurrent checkpoint-
ing and rollback-recovery algorithms. In Pro-
ceedings of the Sixth International Conference on
Data Engineering, 182–189.

BORG, A., BLAU, W., GRAETSCH, W., HERMANN,
F., AND OBERLE, W. 1989. Fault tolerance

ACM Computing Surveys, Vol. 34, No. 3, September 2002.

Rollback-Recovery Protocols in Message-Passing Systems 407

under UNIX. ACM Trans. Comput. Syst. 7, 1,
1–24.

BRESSOUD, T. C. AND SCHNEIDER, F. B. 1995.
Hypervisor-based fault tolerance. In Proceedings
of the Fifteenth ACM Symposium on Operating
Systems Principles, 1–11.

BRIATICO, D., CIUFFOLETTI, A., AND SIMONCINI, L. 1984.
A distributed domino-effect free recovery algo-
rithm. In IEEE International Symposium on Re-
liability, Distributed Software, and Databases,
207–215.

CHANDY, M. AND RAMAMOORTHY, C. V. 1972. Rollback
and recovery strategies for computer programs.
IEEE Trans. Comput. 21, 6, 546–556.

CHANDY, M. AND LAMPORT, L. 1985. Distributed
snapshots: Determining global states of dis-
tributed systems. ACM Trans. Comput. Syst. 31,
1, 63–75.

CRISTIAN, F. AND JAHANIAN, F. 1991. A timestamp-
based checkpointing protocol for long-lived dis-
tributed computations. In Proceedings, Tenth
Symposium on Reliable Distributed Systems,
12–20.

ELNOZAHY, E. N. 1993. Manetho: Fault Tolerance
in Distributed Systems using Rollback-Recovery
and Process Replication. Ph.D. Thesis, Rice Uni-
versity, Department of Computer Science.

ELNOZAHY, E. N. 1998. How safe is probabilistic
checkpointing? In Digest of Papers, FTCS-28, the
Twenty Eight Annual International Symposium
on Fault-Tolerant Computing, 358–363.

ELNOZAHY, E. N. AND ZWAENEPOEL, W. 1994. On the
use and implementing of message logging. In
Digest of Papers, FTCS-24, The Twenty Fourth
International Symposium on Fault-Tolerant
Computing, 298–307.

ELNOZAHY, E. N., JOHNSON, D. B., AND ZWAENEPOEL, W.
1992. The performance of consistent check-
pointing. In Proceedings, Eleventh Symposium
on Reliable Distributed Systems, 39–47.

FELDMAN, S. I. AND BROWN, C. B. 1989. Igor: A sys-
tem for program debugging via reversible execu-
tion. ACM SIGPLAN Notices, Workshop on Par-
allel and Distributed Debugging 24, 1, 112–123.

GOLDBERG, A., GOPAL, A., LI, K., STROM, R., AND BACON,
D. 1990. Transparent recovery of Mach appli-
cations. In Usenix Mach Workshop Proceedings,
169–184.

HÉLARY, J. M., MOSTEFAOUI, A., AND RAYNAL, M. 1997a.
Virtual precedence in asynchronous systems:
concepts and applications. In Proceedings of
the 11th Workshop on Distributed Algorithms,
WDAG’97.

HÉLARY, J. M., MOSTEFAOUI, A., NETZER, R. H., AND

RAYNAL, M. 1997b. Preventing useless check-
points in distributed computations. In Proceed-
ings, Sixteenth Symposium on Reliable Dis-
tributed Systems, 183–190.

HUANG, Y. AND KINTALA, C. 1993. Software imple-
mented fault tolerance: Technologies and ex-
perience. In Digest of Papers, FTCS-23, the

Twenty Third Annual International Symposium
on Fault-Tolerant Computing, 2–9.

HUANG, Y. AND WANG, Y.-M. 1995. Why optimistic
message logging has not been used in telecom-
munication systems. In Digest of Papers, FTCS-
25, the Twenty Fifth Annual International
Symposium on Fault-Tolerant Computing, 459–
463.

JOHNSON, D. B. 1989. Distributed System Fault
Tolerance Using Message Logging and Check-
pointing. Ph.D. Thesis, Rice University, Depart-
ment of Computer Science.

JOHNSON, D. B. AND ZWAENEPOEL, W. 1987. Sender-
based message logging. In Digest of Papers,
FTCS-17, The Seventeenth Annual International
Symposium on Fault-Tolerant Computing, 14–
19.

JOHNSON, D. B. AND ZWAENEPOEL, W. 1990. Recovery
in distributed systems using optimistic message
logging and checkpointing. J. Algorithms 11, 3,
462–491.

JUANG, T. T.-Y. AND VENKATESAN, S. 1991. Crash re-
covery with little overhead. In Proceedings, The
11th International Conference on Distributed
Computing Systems, 454–461.

KOO, R. AND TOUEG, S. 1987. Checkpointing and
rollback-recovery for distributed systems. IEEE
Trans. Softw. Engin. 13, 1, 23–31.

LAI, T. H. AND YANG, T. H. 1987. On distributed
snapshots. Information Processing Letters 25,
153–158.

LAMPORT, L. 1978. Time, clocks, and the ordering of
events in a distributed system. Commun. ACM
21, 7, 588–565.

LAMPSON, B. W. AND STURGIS, H. E. 1979. Crash re-
covery in a distributed data storage system. Tech-
nical Report, Xerox Palo Alto Research Center.

LI, C. C. AND FUCHS, W. K. 1990. CATCH: Compiler-
assisted techniques for checkpointing. In Di-
gest of Papers, FTCS-20, The Twentieth Annual
International Symposium on Fault-Tolerant
Computing, 74–81.

MELLOR-CRUMMEY, J. AND LEBLANC, T. 1989. A soft-
ware instruction counter. In Proceedings of the
Third International Conference on Architectural
Support for Programming Languages and Oper-
ating Systems, 78–86.

MORIN, C. AND PUAUT, T. 1997. A survey of recover-
able distributed shared memory systems. IEEE
Trans. Parallel and Distributed Syst. 8, 9, 959–
969.

MULLER, G., HUE, M., AND PEYROUZ, N. 1994. Per-
formance of consistent checkpointing in a mod-
ular operating system: Results of the FTM ex-
periment. In Lecture Notes in Computer Science:
Dependable Computing, EDDC-1, 491–508.

NAM, H.-C., KIM, J., HONG, S. J., AND LEE, S. 1997.
Probabilistic checkpointing. In Digest of Papers,
FTCS-27, The Twenty Seventh Annual Interna-
tional Symposium on Fault-Tolerant Computing,
48–57.

ACM Computing Surveys, Vol. 34, No. 3, September 2002.

408 Elnozahy et al.

NETZER, R. H. AND XU, J. 1995. Necessary and suffi-
cient conditions for consistent global snapshots.
IEEE Trans. Parallel and Distributed Syst. 6, 2,
165–169.

PAUSCH, R. 1988. Adding Input and Output to the
Transactional Model. Ph.D. Thesis, Carnegie
Mellon University, Department of Computer
Science.

PLANK, J. S. 1993. Efficient Checkpointing on
MIMD Architectures. Ph.D. Thesis, Princeton
University, Department of Computer Science.

PLANK, J. S. AND LI, K. 1994. Faster checkpointing
with N + 1 parity. In Digest of Papers, FTCS-
24, The Twenty Fourth Annual International
Symposium on Fault-Tolerant Computing, 288–
297.

PLANK, J. S., XU, J., AND NETZER, R. H. 1995a. Com-
pressed differences: An algorithm for fast incre-
mental checkpointing. Technical Report CS-95-
302, University of Tennessee at Knoxville.

PLANK, J. S., BECK, M., KINGSLEY, G., AND LI,
K. 1995b. Libckpt: Transparent checkpoint-
ing under UNIX. In Proceedings of the USENIX
Winter 1995 Technical Conference, 213–223.

PRAKASH, R. AND SINGHAL, M. 1996. Low-cost check-
pointing and failure recovery in mobile com-
puting systems. IEEE Trans. Parallel and Dis-
tributed Syst. 7, 10, 1035–1048.

RANDELL, B. 1975. System structure for software
fault tolerance. IEEE Trans. Softw. Engin. 1, 2,
220–232.

RAO, S., ALVISI, L., AND VIN, H. M. 1998. The cost of
recovery in message logging protocols. In Pro-
ceedings, Seventeenth Symposium on Reliable
Distributed Systems, 10–18.

RUFFIN, M. 1992. KITLOG: A generic logging ser-
vice. In Proceedings, Eleventh Symposium on
Reliable Distributed Systems, 139–148.

RUSSELL, D. L. 1980. State restoration in systems
of communicating processes. IEEE Trans. Softw.
Engin. 6, 2, 183–194.

SCHLICHTING, R. D. AND SCHNEIDER, F. B. 1983.
Fail-stop processors: An approach to designing
fault-tolerant computing systems. ACM Trans.
Comput. Syst. 1, 3, 222–238.

SILVA, L. M. 1997. Checkpointing Mechanisms for
Scientific Parallel Applications. Ph.D. Thesis,
University of Coimbra, Department of Computer
Science.

SISTLA, A. AND WELCH, J. 1989. Efficient dis-
tributed recovery using message logging. In Pro-
ceedings of the 8th Annual ACM Symposium
on Principles of Distributed Computing (PODC),
223–238.

SLYE, J. H. AND ELNOZAHY, E. N. 1998. Support
for software interrupts in log-based rollback-
recovery. IEEE Trans. Comput. 47, 10, 1113–
1123.

SMITH, S. W. AND JOHNSON, D. B. 1996. Minimizing
timestamp size for completely asynchronous op-
timistic recovery with minimal rollback. In Pro-
ceedings, the Fifteenth Symposium on Reliable
Distributed Systems, 66–75.

STROM, R. AND YEMINI, S. 1985. Optimistic recov-
ery in distributed systems. ACM Trans. Comput.
Syst. 3, 3, 204–226.

TAMIR, Y. AND SEQUIN, C. H. 1984. Error recovery
in multicomputers using global checkpoints. In
Proceedings of the International Conference on
Parallel Processing, 32–41.

TONG, Z., KAIN, R. Y., AND TSAI, W. T. 1992.
Rollback-recovery in distributed systems using
loosely synchronized clocks. IEEE Trans. Paral-
lel and Distributed Syst. 3, 2, 246–251.

WANG, Y.-M. 1993. Space Reclamation for Un-
coordinated Checkpointing in Message-Passing
Systems. Ph.D. Thesis, University of Illinois,
Department of Computer Science.

WANG, Y.-M. 1997. Consistent global checkpoints
that contain a set of local checkpoints. IEEE
Trans. Comput. 46, 4, 456–468.

WANG, Y.-M., CHUNG, P. Y., AND FUCHS, W. K. 1995a.
Tight upper bound on useful distributed sys-
tem checkpoints. Technical Report, University of
Illinois.

WANG, Y.-M., CHUNG, P. Y., LIN, I. J., AND FUCHS, W. K.
1995b. Checkpoint space reclamation for un-
coordinated checkpointing in message-passing
systems. IEEE Trans. Parallel and Distributed
Syst. 6, 5, 546–554.

Received October 1996; revised June 1997, June 1999, February 2001; accepted April 2002

ACM Computing Surveys, Vol. 34, No. 3, September 2002.

Rollback-Recovery Protocols in Message-Passing Systems

BIBLIOGRAPHY

ACHARYA, A. AND BADRINATH, B. R. 1992. Recording
distributed snapshots based on causal order of
message delivery. Information Processing Letters
44, 6.

ACHARYA, A. AND BADRINATH, B. R. 1994. Check-
pointing distributed applications on mobile com-
puters. In Proceedings of the Third International
Conference on Parallel and Distributed Informa-
tion Systems.

AHAMAD, M. AND LIN, L. 1989. Using checkpoints
to localize the effects of faults in distributed
systems. In Proceedings, Eighth Symposium on
Reliable Distributed Systems, 2–11.

AHUJA, M. 1989. Repeated global snapshots in
asynchronous distributed systems. Technical Re-
port OSU-CISRC-8/89 TR40, The Ohio State
University.

ALGUDADY, M. S. AND DAS, C. R. 1991. A cache-
based checkpointing scheme for MIN-based
multiprocessors. In Proceedings of the Inter-
national Conference on Parallel Processing,
497–500.

ALVISI, L. AND MARZULLO, K. 1995. Message log-
ging: Pessimistic, optimistic and causal. In Pro-
ceedings of the IEEE International Conference
on Distributed Computing Systems (Vancouver,
Canada).

ALVISI, L. AND MARZULLO, K. 1995. Deriving op-
timal checkpointing protocols for distributed
shared memory architectures. In Proceedings
of the 1995 ACM SIGACT-SIGOPS Symposium
on Principles of Distributed Computing (PODC)
(Ottawa, Canada).

ALVISI, L. AND MARZULLO, K. 1996. Tradeoffs in im-
plementing causal message logging protocols. In
Proceedings of the 1996 ACM SIGACT-SIGOPS
Symposium on Principles of Distributed Com-
puting (PODC), 58–67.

ALVISI, L., HOPPE, B., AND MARZULLO, K. 1993. Non-
blocking and orphan-free message logging pro-
tocols. In Digest of Papers, FTCS-23, The Twenty
Third Annual International Symposium on
Fault-Tolerant Computing (Toulouse, France),
145–154.

ALVISI, L., RAO, S., AND VIN, H. M. 1998. Low-
overhead protocols for fault-tolerant file sharing.
In Proceedings of the IEEE 18th International
Conference on Distributed Computing Systems,
452–461.

ALVISI, L., BHATIA, K., AND MARZULLO, K. 2000.
Tracking causality in causal message logging
protocols. Technical Report, The University of
Texas at Austin.

ALVISI, L., BRESSOUD, T. C., EL-KHASHAB, A., MARZULLO,
K., AND ZAGORODNOV, D. 2001. Wrapping

server-side TCP to mask connection failures. In
InfoComm.

ANYANWU, J. A. 1985. A reliable stable storage sys-
tem for UNIX. Software–Practice and Experience
15, 10, 973–900.

ARTSY, Y. AND FINKEL, R. 1989. Designing a pro-
cess migration facility: The Charlotte experi-
ence. IEEE Computer, 47–56.

ATTIG, N. AND SANDER, V. 1993. Automatic check-
pointing of NQS batch jobs on CRAY UNICOS.
In Proceedings of the Cray User Group Meeting.

BABAOGLU, O. 1990. Fault-tolerant computing
based on Mach. In Proceedings of the USENIX
Mach Symposium, 186–199.

BABAOGLU, O. AND MARZULLO, K. 1993. Consistent
global states of distributed systems: Fundamen-
tal concepts and mechanisms. In Mullender, S.
ed. Distributed Systems, Addison-Wesley,
55–96.

BACON, D. 1991. Transparent recovery in dis-
tributed systems. Operating Systems Review,
91–94.

BACON, D. 1991. File system measurements and
their application to the design of efficient oper-
ation logging algorithms. In Proceedings, Tenth
Symposium on Reliable Distributed Systems,
21–30.

BALDONI, R., QUAGLIA, F., AND FORNARA, P. 1997.
An index-based checkpointing algorithm for au-
tonomous distributed systems. In Proceedings,
Sixteenth Symposium on Reliable Distributed
Systems, 27–34.

BALDONI, R., HÉLARY, J.-M., MOSTEFAOUI, A., AND

RAYNAL, M. 1997. A communication-induced
checkpointing protocol that ensures rollback-
dependency trackability. In Digest of Papers,
(FTCS-27), The Twenty Seventh Annual Interna-
tional Symposium on Fault-Tolerant Computing
(Seattle), 68–77.

BALDONI, R., HÉLARY, J.-M., MOSTEFAOUI, A., AND RAY-
NAL, M. 1997. Adaptive checkpointing in mes-
sage passing distributed systems. International
Journal of Systems Science 28, 11, 1145–1161.

BALDONI, R., HÉLARY, J.-M., MOSTEFAOUI, A., AND

RAYNAL, M. 1997. Adaptive checkpointing in
message passing distributed systems. Interna-
tional Journal of Systems Science 28, 11, 1145–
1161.

BANÂTRE, J. P., BANÂTRE, M., AND MULLER, G. 1989.
Architecture of fault-tolerant multiprocessor
workstations. In Proceedings of the Workshop on
Workstation Operating Systems, 20–24.

BANÂTRE, M., HENG, P., MULLER, G., AND ROCHARD,
B. 1991. How to design reliable servers us-
ing fault-tolerant micro-kernel mechanisms.

ACM Computing Surveys, Vol. 34, No. 3, September 2002, pp. 1–10.

2 Elnozahy et al.

In Proceedings of the USENIX Mach Sympo-
sium, 223–231.

BANÂTRE, M., GEFFLAUT, A., JOUBERT, P., LEE, P.,
AND MORIN, C. 1993. An architecture for tol-
erating processor failures in shared-memory
multiprocessors. Technical Report No. 707–93,
IRISA.

BARIGAZZI, G. AND STRIGINI, L. 1983. Application-
transparent setting of recovery points. In Di-
gest of Papers, FTCS-13, The Thirteenth Annual
International Symposium on Fault-Tolerant
Computing, 48–55.

BECK, M., PLANK, J. S., AND KINGSLEY, G. 1994.
Compiler-assisted checkpointing. Technical
Report CS-94-269, University of Tennessee at
Knoxville, Department of Computer Science.

BEEDUBAIL, G., KARMARKAR, A., GURIJALA, A., MARTI,
W., AND POOCH, U. 1995. An algorithm for
supporting fault-tolerant objects in distributed
object oriented operating systems. In Proceed-
ings of the Fourth International Workshop
on Object-Orientation in Operating Systems
(IWOOOS’95), 142–148.

BHATIA, K., MARZULLO, K., AND ALVISI, L. 1998. The
relative overhead of piggybacking in causal
message logging protocols. In Proceedings, Sev-
enteenth Symposium on Reliable Distributed
Systems, 348–353.

BIEKER, B., DEONINCK, G., MAEHLE, E., AND VOUNCKX,
J. 1994. Reconfiguration and checkpointing
in massively parallel systems. In Proceedings of
the 1st European Dependant Computing Confer-
ence (EDCC-1), 353–370.

BORG, A., BAUMBACH, J., AND GLAZER, S. 1983.
A message system supporting fault tolerance. In
Proceedings of the 9th ACM Symposium on Op-
erating System Principles, 90–99.

BOWEN, N. S., AND PRADHAN, D. K. 1991. Survey
of checkpoint and rollback-recovery techniques.
Technical Report TR-91-CSE-17, Department of
Electrical and Computer Engineering, Univ. of
Mass.

BOWEN, N. S. AND PRADHAN, D. K. 1992. Vir-
tual checkpoints: Architecture and performance.
IEEE Transactions on Computers 41, 5, 516–
525.

BOWEN, N. S. AND PRADHAN, D. K. 1993. Processor-
and memory-based checkpoint and rollback-
recovery. IEEE Computer 26, 2, 22–32.

CABILLIC, G., MULLER, G., AND PUAUT, I. 1995. The
performance of consistent checkpointing in
distributed shared memory systems. In Proceed-
ings, Fourteenth Symposium on Reliable Dis-
tributed Systems.

CAMPOS, A. E. AND CASTILLO, M. A. 1996. Check-
pointing through garbage collection. Technical
Report, Escuela de Ingenierı́a Pontificia Univer-
sidad Católica de Chile, Departamento de Cien-
cia de la Computación.

CAO, J. 1991. On correctness of distributed
rollback-recovery. In Proceedings of the 14th

Australia Computer Science Conference, 39.
31–39.10.

CAO, J. 1992. Efficient synchronous checkpointing
in distributed systems. In Proceedings of the 15th
Australia Computer Science Conference, 165–
179.

CAO, J. AND WANG, K. C. 1991. Efficient syn-
chronous checkpointing in distributed systems.
Technical Report 91/6, James Cook University
of North Queensland, Department of Computer
Science.

CAO, J. AND WANG, K. C. 1992. An abstract model of
rollback-recovery control in distributed systems.
Operating Systems Review, 62–76.

CAO, G. AND SINGHAL, M. 1998. On the impossibil-
ity of min-process non-blocking checkpointing
and an efficient checkpointing algorithm for mo-
bile computing systems. In Proceedings.1998 In-
ternational Conference on Parallel Processing,
37–44.

CAO, G. AND SINGHAL, M. 1998. Low-cost check-
pointing with mutable checkpoints in mobile
computing systems. In Proceedings of the 18th
International Conference on Distributed Com-
puting, 464–471.

CARGILL, T. AND LOCANTHI, B. 1987. Cheap hard-
ware support for software debugging and pro-
filing. In Proceedings of the 2nd Symposium
on Architectural Support for Programming Lan-
guages and Operating Systems, 82–83.

CARTER, J. B., COX, A., DWARKADAS, S., ELNOZAHY,
E. N., JOHNSON, D. B., KELEHER, P., RODRIGUES,
S., YU, W., AND ZWAENEPOEL, W. 1993. Network
multicomputing using recoverable distributed
shared memory. In Proceedings of COMP-
CON’93.

CASAS, J., CLARK, D., GALBIATI, P., AND KONURU, R.
1995. MIST: PVM with transparent migration
and checkpointing. Technical Report, Oregon
Graduate Institute of Science and Technology,
Department of Computer Science.

CHEN, R. AND NG, T. P. 1990. Building a fault-
tolerant system based on Mach. In Proceedings
of the USENIX Mach Workshop, 157–168.

CHEN, R. AND NG, T. P. 1992. Microkernel support
for checkpointing. In Open Forum.

CHIU, G.-M. AND YOUNG, C.-R. 1996. Efficient
rollback-recovery technique in distributed com-
puting systems. IEEE Transactions on Parallel
and Distributed Systems 7, 6.

CHIUEH, T. 1992. Polar: A storage architecture for
fast checkpointing. In Proceedings of the 1992
International Conference on Parallel and Dis-
tributed Systems, 251–258.

CHIUEH, T.-C. AND DENG, P. 1996. Evaluation of
checkpoint mechanisms for massively parallel
machines. In Digest of Papers, FTCS-26, The
Twenty-Sixth Annual International Symposium
on Fault-Tolerant Computing, 370–379.

CHOY, M., LEONG, H., AND WONG, M. H. 1995. On
distributed object checkpointing and recovery.

ACM Computing Surveys, Vol. 34, No. 3, September 2002.

Bibliography 3

In Proceedings of the 1995 ACM SIGACT-
SIGOPS Symposium on Principles of Dis-
tributed Computing (PODC).

CHUNG, K.-S., KIM, K.-B., HWANG, C.-S., SHON, J. G.,
AND YU, H.-C. 1997. Hybrid checkpointing
protocol based on selective sender-based mes-
sage logging. In Proceedings of the 1997 Inter-
national Conference on Parallel and Distributed
Systems, 788–793.

CLEMATIS, A. 1994. Fault-tolerant programming
for network based parallel computing. Micropro-
cessing and Microprogramming 40, 765–768.

CLEMATIS, A., DODERO, G., AND GIANUZZI, V. 1992.
Process checkpointing primitives for fault toler-
ance: Definitions and examples. Microprocessors
and Microsystems 16, 1, 15–23.

CUMMINGS, D. AND ALKALAJ, L. 1994. Check-
point/rollback in a distributed system using
coarse-grained dataflow. In Digest of Pa-
pers, FTCS-24, The Twenty Fourth Annual
International Symposium on Fault-Tolerant
Computing, 424–433.

DAMANI, O. P. AND GARG, V. K. 1996. How to recover
efficiently and asynchronously when optimism
fails. In Proceedings of the 16th International
Conference on Distributed Computing, 108–
115.

DECONINCK, G. AND LAUWEREINS, R. 1997. User-
triggered checkpointing: system-independent
and scalable application recovery. In Proceed-
ings Second IEEE Symposium on Computer and
Communications, 418–423.

DECONINCK, G., VOUNCKX, J., LAUWEREINS, R., AND

PEPERSTRAETE, J. A. 1993. Survey of backward
error recovery techniques for multicomputers
based on checkpointing and rollback. In IASTED
International Conference on Modeling and Sim-
ulation, 262–265.

DECONINCK, G., VOUNCKX, J., LAUWEREINS, R., AND

PEPERSTRAETE, J. 1998. Survey of backward
error recovery techniques for multicomputers
based on checkpointing and rollback. Interna-
tional Journal of Modeling and Simulation 18,
1, 66–71.

DI, Z. 1987. Eliminating domino effect in back-
ward error recovery in distributed systems. In
Proceedings of the 2nd International Conference
on Computers and Applications, 243–248.

DIETER, W. AND LUMPP JR., J. 1999. A user-level
checkpointing library for POSIX threads pro-
grams. In Digest of Papers, FTCS-29, The
Twenty Ninth Annual International Sym-
posium on Fault-Tolerant Computing, 224–
227.

DUDA, A. 1983. The effects of checkpointing on
program execution time. Information Processing
Letters 16, 221–229.

ECUYER, P. L. AND MALEFANT, J. 1988. Computing
optimal checkpointing strategies for rollback
and recovery systems. IEEE Transactions on
Computers 37, 491–496.

ELLENBERGER, E. L. 1995. Transparent process
rollback-recovery: Some new techniques and
a portable implementation. Technical Report,
Texas A&M University, Department of Com-
puter Science.

ELLIS, B. 1985. A stable storage package. In Pro-
ceedings of the USENIX Summer Technical Con-
ference, 209–212.

ELNOZAHY, E. N. 1990. Efficient fault-tolerance
support for interactive distributed applications.
Technical Report TR90-120, Rice University, De-
partment of Computer Science.

ELNOZAHY, E. N. 1994. Fault tolerance for clusters
of workstations. In Banâtre, M. AND Lee, P. eds.
Hardware and software architectures for fault
tolerance, Springer Verlag.

ELNOZAHY, E. N. 1995. On the relevance of commu-
nication costs of rollback-recovery protocols. In
Proceedings of the 1995 ACM SIGACT-SIGOPS
Symposium on Principles of Distributed Com-
puting (PODC).

ELNOZAHY, E. N. AND ZWAENEPOEL, W. 1992.
Manetho, transparent rollback-recovery with
low overhead, limited rollback and fast output
commit. IEEE Transactions on Computers,
Special Issue on Fault-Tolerant Computing 41,
5, 526–531.

ELNOZAHY, E. N. AND ZWAENEPOEL, W. 1992. Repli-
cated distributed processes in Manetho.
In Digest of Papers, FTCS-22, The Twenty
Second Annual International Sympo-
sium on Fault-Tolerant Computing, 18–
27.

ELNOZAHY, E. N. AND ZWAENEPOEL, W. 1992. An in-
tegrated approach to fault tolerance. In Proceed-
ings of the Second Workshop on Management of
Replicated Data, 82–85.

FIDGE, C. J. 1988. Timestamps in message-passing
systems that preserve the partial ordering. In
Proceedings of the 11th Australian Computer
Science Conference, 55–66.

FISCHER, M. J., GRIFFETH, N. D., AND LYNCH, N. A.
1982. Global states of a distributed system.
IEEE Transactions on Software Engineering SE-
8, 3, 198–202.

FRAZIER, T. M. AND TAMIR, Y. 1989. Application-
transparent error-recovery techniques for mul-
ticomputers. In Proceedings of The Fourth Con-
ferences on Hypercubes, Concurrent computers,
and Applications, 103–108.

GAIT, J. 1990. A checkpointing page store for write-
once optical disk. IEEE Transactions on Com-
puters 39, 1, 2–9.

GARG, S. AND WONG, K. F. 1993. Improving the
speed of a distributed checkpointing algorithm.
In Proceedings of the 6th International Con-
ference on Parallel and Distributed Computing
Systems.

GELENBE, E. 1979. On the optimum checkpoint-
ing interval. Journal of the ACM 2, 259–
270.

ACM Computing Surveys, Vol. 34, No. 3, September 2002.

4 Elnozahy et al.

GELENBE, E. AND DEROCHETTE, D. 1978. Perfor-
mance of rollback-recovery systems under inter-
mittent failures. Communications of the ACM
21, 6, 493–499.

GOLDING III, R. AND SINGHAL, M. 1993. Using log-
ging and asynchronous checkpointing to imple-
ment recoverable distributed shared memory.
In Proceedings, Twelfth Symposium on Reliable
Distributed Systems, 58–67.

GREGORY, S. T. AND KNIGHT, J. C. 1989. On the pro-
vision of backward error recovery in production
programming languages. In Digest of Papers,
FTCS-19, The Nineteenth Annual International
Symposium on Fault-Tolerant Computing, 506–
511.

GROSELJ, B. 1993. Bounded and minimum global
snapshots. IEEE Parallel and Distributed Tech-
nology 1, 4.

HADZILACOS, V. 1982. An algorithm for minimizing
rollback cost. In Proceedings of the ACM SIG-
MOD Symposium on Principles of Database Sys-
tems, 93–97.

HÉLARY, J. M. 1989. Observing global states of
asynchronous distributed applications. Lecture
Notes in Computer Science 392, 124–135.

HÉLARY, J. M., MOSTEFAOUI, A., AND RAYNAL, M.
1998. Communication-induced determination
of consistent snapshots. In Digest of Papers,
FTCS-28, The Twenty Eighth Annual Interna-
tional Symposium on Fault-Tolerant Computing,
208–217.

HÉLARY, J. M., MOSTEFAOUI, A., AND RAYNAL, M. 1999.
Communication-induced determination of con-
sistent snapshots. IEEE Transactions on Paral-
lel and Distributed Systems 10, 9, 865–877.

HEWITT, C. E. 1980. Checkpoint and recovery in
ACTOR systems. Technical Report, MIT, Artifi-
cial Intelligence Laboratory.

HIGAKI, H. AND TAKIZAWA, M. 1998. Checkpoint-
recovery protocol for reliable mobile systems.
In Proceedings, Seventeenth Symposium on Re-
liable Distributed Systems, 93–99.

HIGAKI, H., SHIMA, K., TACHIKAWA, T., AND TAKIZAWA,
M. 1997. Checkpoint and rollback in asyn-
chronous distributed systems. In Proceedings
IEEE INFOCOM ’97. Sixteenth Annual Joint
Conference of the IEEE Computer and Commu-
nications Societies, 998–1005.

ISRAEL, S. AND MORRIS, D. 1989. A non-intrusive
checkpointing protocol. In Proceedings of the
Phoenix Conference on Communications and
Computers, 413–421.

JALOTE, P. 1989. Fault-tolerant processes. Dis-
tributed Computing 3, 187–195.

JANAKIRAMAN, G. AND TAMIR, Y. 1994. Coordinated
checkpointing-rollback error recovery for dis-
tributed shared memory multicomputers. In
Proceedings, Thirteenth Symposium on Reliable
Distributed Systems, 42–51.

JANSSENS, B. AND FUCHS, W. K. 1993. Relaxing
consistency in recoverable distributed shared

memory. In Digest of Papers, FTCS-23, The
Twenty Third Annual International Symposium
on Fault-Tolerant Computing, 155–163.

JANSSENS, B. AND FUCHS, W. K. 1994. Reducing
interprocessor dependence in recoverable dis-
tributed shared memory. In Proceedings, Thir-
teenth Symposium on Reliable Distributed Sys-
tems, 34–41.

JASPER, D. P. 1969. A discussion of checkpoint
restart. Software Age.

JEONG, K. AND SHASHA, D. 1994. Plinda 2.0: A trans-
actional/checkpoint approach to fault-tolerant
Linda. In Proceedings, Thirteenth Symposium on
Reliable Distributed Systems, 96–105.

JOHNSON, D. B. 1993. Efficient transparent opti-
mistic rollback-recovery for distributed applica-
tion programs. In Proceedings, Twelfth Sympo-
sium on Reliable Distributed Systems, 86–95.

JOHNSON, D. B. AND ZWAENEPOEL, W. 1988. Recovery
in distributed systems using optimistic message
logging and checkpointing. In Proceedings of the
Sixth Annual ACM Symposium on Principles of
Distributed Computing (PODC-88), 171–181.

JOHNSON, D. B. AND ZWAENEPOEL, W. 1990. Output-
driven distributed optimistic message logging
and checkpointing. Technical Report TR90-
118, Rice University, Department of Computer
Science.

JOHNSON, D. B., AND ZWAENEPOEL, W. 1991. Trans-
parent optimistic rollback-recovery. Operating
Systems Review, 99–102.

KAASHOEK, M. F., MICHIELS, R., BAL, H. E., AND

TANENBAUM, A. S. 1992. Transparent fault-
tolerance in parallel Orca programs. In Proceed-
ings of the Symposium on Experiences with Dis-
tributed and Multiprocessor Systems III, 297–
312.

KAMBHALTA, S. AND WALPOLE, J. 1990. Recovery
with limited replay: Fault-tolerant processes in
Linda. In Proceedings of the 2nd IEEE Sym-
posium on Parallel and Distributed Processing,
715–718.

KANT, K. 1978. A model for error recovery with
global checkpointing. Information Sciences 30,
58–68.

KANTHADAI, S. AND WELCH, J. L. 1996. Implementa-
tion of recoverable distributed shared memory
by logging writes. In Proceedings of the 16th In-
ternational Conference on Distributed Comput-
ing Systems (ICDCS-16), 27–30.

KERMARREK, A. M., CABILLIC, G., GEFFLAUT, A.,
MORIN, C., AND PUAUT, I. 1995. A recoverable
distributed shared memory integrating coher-
ence and recoverability. In Digest of Papers,
FTCS-25, The Twenty Fifth Annual Interna-
tional Symposium on Fault-Tolerant Computing,
289–298.

KIM, K. H. 1982. Approaches to mechanization
of the conversation scheme based on monitors.
IEEE Transactions on Software Engineering SE-
8, 3, 189–197.

ACM Computing Surveys, Vol. 34, No. 3, September 2002.

Bibliography 5

KIM, K. H. 1988. Programmer-transparent coordi-
nation of recovering concurrent processes: Phi-
losophy and rules for efficient implementation.
IEEE Transactions on Software Engineering SE-
14, 6, 189–197.

KIM, K. H. AND YOU, J. H. 1990. A highly decentral-
ized implementation model for the Programmer-
Transparent Coordination (PTC) scheme for
cooperative recovery. In Digest of Papers, FTCS-
20, The Twentieth Annual International Sympo-
sium on Fault-Tolerant Computing, 282–289.

KIM, J. L. AND PARK, T. 1993. An efficient proto-
col for checkpointing recovery in distributed sys-
tems. IEEE Transactions on Parallel and Dis-
tributed Systems 4, 8, 955–960.

KIM, K. H., YOU, J. H., AND ABOUELNAGA, A. 1986.
A scheme for coordinated execution of inde-
pendently designed recoverable distributed pro-
cesses. In Digest of Papers, FTCS-16, The
Sixteenth Annual International Symposium on
Fault-Tolerant Computing, 130–135.

KIM, Y., PLANK, J. S., AND DONGARRA, J. J. 1996.
Fault-tolerant matrix operations using check-
sum and reverse computation. In Proceedings
of 6th Symposium on the Frontiers of Massively
Parallel Computation.

KIM, Y., PLANK, J. S., AND DONGARRA, J. J. 1997.
Fault-tolerant matrix operations for network of
workstations using multiple checkpointing. In
Proceedings of HPC Asia’97, High Performance
Computing in the Information Superhighway,
460–465.

KINGSBURY, B. A. AND KLINE, J. T. 1989. Job and pro-
cess recovery in a UNIX-based operating sys-
tem. In Usenix Association Winter Conference
Proceedings, 355–364.

KLAIBER, A. C. AND LEVY, H. M. 1993. Crash re-
covery for scientific applications. In Proceedings
of the International Conference on Parallel and
Distributed Systems.

KRISHNA, P., VAIDYA, N. T., AND PRADHAN, D. K. Recovery
in distributed mobile environments. In Proceed-
ings of the IEEE Workshop on Advances in Par-
allel and Distributed Systems (Princeton, New
Jersey), 83–88.

KRISHNA, C. M., KANG, G., AND LEE, Y. 1984. Op-
timization criteria for checkpoint placement.
Communications of the ACM 27, 10, 1008–1012.

KRISHNA, P., VAIDYA, N. T., AND PRADHAN, D. K. 1994.
Recovery in multicomputers with finite error
detection latency. In Proceedings of the 23rd In-
ternational Conference on Parallel Processing.

LAI, T. H. AND YANG, T. H. 1987. On distributed
snapshots. Information Processing Letters 25,
153–158.

LAMPORT, L. 1984. Using time instead of time-
out for fault-tolerant distributed systems. ACM
Transactions on Programming Languages and
Systems 6, 2, 254–280.

LANDAU, C. R. 1992. The checkpoint mechanism in
KeyKOS. In Proceedings of the 2nd International

Workshop on Object Orientation in Operating
Systems.

LEE, B., PARK, T., YEOM, H., AND CHO, Y. 1998.
An efficient algorithm for causal message log-
ging. In Proceedings, Seventeenth Symposium on
Reliable Distributed Systems, 19–25.

LEON, J., FICHER, A. L., AND STEENKISTE, P. 1993.
Fail-safe PVM: A portable package for dis-
tributed programming with transparent
recovery. Technical Report CMU-CS-93-124,
Carnegie Mellon University, School of Computer
Science.

LEONG, H. V. AND AGRAWAL, D. 1994. Using message
semantics to reduce rollback in optimistic mes-
sage logging recovery schemes. In Proceedings of
the 13th IEEE International Conference on Dis-
tributed Computing Systems (ICDCS-13), 227–
234.

LEU, P.-J. AND BHARGAVA, B. 1988. Concurrent ro-
bust checkpointing and recovery in distributed
systems. In Proceedings of the International
Conference on Data Engineering, 154–163.

LI, W.-J. AND TSAY, J.-J. 1997. Checkpointing
message-passing interface (MPI) parallel pro-
grams. In Proceedings of the Pacific Rim Inter-
national Symposium on Fault-Tolerant Systems,
147–152.

LI, K., NAUGHTON, J. F., AND PLANK, J. S. 1990. Real-
time concurrent checkpoint for parallel pro-
grams. In Proceedings of the 1990 Conference on
the Principles and Practice of Parallel Program-
ming, 79–88.

LI, K., NAUGHTON, J. F., AND PLANK, J. S. 1991.
Checkpointing multicomputer applications. In
Proceedings, Tenth Symposium on Reliable Dis-
tributed Systems, 1–10.

LI, K., NAUGHTON, J. F., AND PLANK, J. S. 1992. An
efficient checkpointing method for multicomput-
ers with wormhole routing. International Jour-
nal of Parallel Programming 20, 3, 159–180.

LIN, L. AND AHAMAD, M. 1990. Checkpointing and
rollback-recovery in distributed object based sys-
tems. In Digest of Papers, FTCS-20, The Twenti-
eth Annual International Symposium on Fault-
Tolerant Computing, 97–104.

LIN, T.-H. AND SHIN, K. G. 1998. Damage assess-
ment for optimal rollback-recovery. IEEE Trans-
actions on Computers 47, 5, 603–613.

LITZKOW, M. AND SOLOMON, M. 1992. Supporting
checkpointing and process migration outside the
UNIX kernel. In Usenix Winter 1992 Technical
Conference, 283–290.

LONG, J., FUCHS, W. K., AND ABRAHAM, J. A. 1990.
Forward recovery using checkpointing in par-
allel systems. In Proceedings of the 19th In-
ternational Conference on Parallel Processing,
272–275.

LONG, J., FUCHS, W. K., AND ABRAHAM, J. A. 1991.
Implementing forward recovery using check-
pointing in distributed systems. In Proceedings
of the International Conference on Dependable

ACM Computing Surveys, Vol. 34, No. 3, September 2002.

6 Elnozahy et al.

Computing for Critical Applications (DCCA),
20–27.

LONG, J., FUCHS, W. K., AND ABRAHAM, J. A. 1992.
Compiler-assisted static checkpoint insertion.
In Digest of Papers, FTCS-22, The Twenty Sec-
ond Annual International Symposium on Fault-
Tolerant Computing, 58–65.

LOWRY, A., RUSSELL, J. R., AND GOLDBERG, A. P.
1991. Optimistic failure recovery for very large
networks. In Proceedings, Tenth Symposium on
Reliable Distributed Systems, 66–75.

MANDELBERG, K. I. AND SUNDERAM, V. S. 1988.
Process migration in UNIX networks. In
Proceedings of the Usenix Winter Technical Con-
ference, 357–364.

MANIVANNAN, D. AND SINGHAL, M. 1996. A low-
overhead recovery technique using synchronous
checkpointing. In Proceedings of the 16th Inter-
national Conference on Distributed Computing
Systems (ICDCS-16), 100–107.

MANIVANNAN, D., NETZER, R. H., AND SINGHAL, M.
1997. Finding consistent global checkpoints
in a distributed computation. IEEE Transac-
tions on Parallel & Distributed Systems 8, 6,
623–627.

MATTERN, F. 1988. Virtual time and global states of
distributed systems. In Proceedings of the Work-
shop on Parallel and Distributed Algorithms,
215–226.

MCDERMID, J. A. 1982. Checkpointing and error re-
covery in distributed systems. In Proceedings of
the 2nd International Conference on Distributed
Computing Systems, 271–282.

MERLIN, P. M. AND RANDELL, B. 1978. State restora-
tion in distributed systems. In Digest of Pa-
pers, FTCS-8, The Eighth Annual International
Symposium on Fault-Tolerant Computing, 129–
134.

MITCHELL, J. R. AND GARG, V. K. 1998. A non-
blocking recovery algorithm for causal message
logging. In Proceedings, Seventeenth Symposium
on Reliable Distributed Systems, 3–9.

MOSTEFAOUI, A. AND RAYNAL, M. 1996. Efficient
message logging for uncoordinated checkpoint-
ing protocols. In Dependable Computing-EDCC-
2, the Second European Dependable Computing
Conference Proceedings, 353–364.

MULLER, G., BANÂTRE, M., PEYROUZ, N., AND ROCHAT,
B. 1996. Lessons from FTM: an experiment in
design and implementation of a low-cost fault-
tolerant system. IEEE Transactions on Reliabil-
ity 45, 2, 332–340.

NETT, E., KROGER, R., AND KAISER, J. 1986. Imple-
menting a general error recovery mechanism
in a distributed operating system. In Digest of
Papers, FTCS-16, The Sixteenth Annual Interna-
tional Symposium on Fault-Tolerant Computing,
124–129.

NETZER, R. B. AND MILLER, B. P. 1992. Optimal trac-
ing and replay for debugging message-passing
parallel programs. In Proceedings of Supercom-
puting’92, 502–511.

NETZER, R. B. AND XU, J. 1993. Adaptive mes-
sage logging for incremental program replay.
IEEE Parallel and Distributed Technology 1, 4,
32–39.

NETZER, R. B. AND WEAVER, M. H. 1994. Optimal
tracing and incremental reexecution for Debug-
ging Long-Running Programs. In SIGPLAN ’94:
Conference on Programming Language Design
and Implementation (PLDI), 313–325.

NETZER, R. B. AND XU, J. 1997. Replaying dis-
tributed programs without message log-
ging. In Proceedings of the Sixth IEEE
International Symposium on High Perfor-
mance Distributed Computing (HPDC), 137–
147.

NEVES, N. AND FUCHS, W. K. 1996. Using time to
improve the performance of coordinated check-
pointing. In Proceedings of the IEEE Interna-
tional Computer Performance and Dependability
Symposium, IPDS’96, 282–291.

NEVES, N. AND FUCHS, W. K. 1997. Adaptive recov-
ery for mobile environments. Communications of
ACM 40, 1, 68–74.

NEVES, N. AND FUCHS, W. K. 1998. RENEW: A tool
for fast and efficient implementation of check-
point protocols. In Digest of Papers, FTCS-28,
The Twenty Eighth Annual International Sym-
posium on Fault-Tolerant Computing.

NEVES, N. AND FUCHS, W. K. 1998. Coordinated
checkpointing without direct coordination. In
Proceedings of the IEEE International Com-
puter Performance and Dependability Sympo-
sium (IPDS’98), 23–31.

NEVES, N., CASTRO, M., AND GUEDES, P. 1994.
A checkpoint protocol for an entry consis-
tent shared memory system. In Proceedings
of the 1994 ACM SIGACT-SIGOPS Sympo-
sium on Principles of Distributed Computing
(PODC).

NICOLA, V. 1995. Checkpointing and the modeling
of program execution time. In Lyu, M. ed. Soft-
ware Fault Tolerance.

PARK, T. AND YEOM, H. Y. 2000. An asynchronous
recovery scheme based on optimistic message
logging for mobile computing systems. In Pro-
ceedings of the 20th International Conference
on Distributed Computing Systems (ICDCS-20),
436–443.

PETERSON, S. L. AND KEARNS, P. 1993. Rollback
based on vector time. In Proceedings, Twelfth
Symposium on Reliable Distributed Systems,
68–77.

PETERSON, L. L., BUCHHOLZ, N. C., AND SCHLICHTING,
R. D. 1989. Preserving and using context in-
formation in interprocess communication. ACM
Transaction on Computing Systems 7, 3, 217–
246.

PLANK, J. S. 1996. Improving the performance of
coordinated checkpointers on networks of work-
stations using RAID techniques. In Proceedings,
Fifteenth Symposium on Reliable Distributed
Systems, 76–85.

ACM Computing Surveys, Vol. 34, No. 3, September 2002.

Bibliography 7

PLANK, J. S. AND ELWASIF, W. R. 1998. Experimen-
tal assessment of workstation failures and their
impact on checkpointing systems. In Digest of
Papers, FTCS-28, The Twenty Eighth Annual In-
ternational Symposium on Fault-Tolerant Com-
puting, 48–57.

PLANK, J. S., BECK, M., AND KINGSLEY, G. 1995.
Compiler-assisted memory exclusion for fast
checkpointing. IEEE Technical Committee on
Operating Systems Newsletter, 62–67.

PLANK, J. S., KIM, Y., AND DONGARRA, J. J. 1995.
Algorithm-based diskless checkpointing for
fault-tolerant matrix computations. In Digest
of Papers, FTCS-25, The Twenty Fifth Annual
International Symposium on Fault-Tolerant
Computing, 351–360.

PLANK, J. S., YOUNGBAE, K., AND DONGARA, J. J. 1997.
Fault-tolerant matrix operations for networks of
workstations using diskless checkpointing. Jour-
nal of Parallel & Distributed Computing 43, 2,
125–138.

PLANK, J. S., LI, K., AND PUENING, M. A. 1998. Disk-
less checkpointing. IEEE Transactions on Paral-
lel & Distributed Systems 9, 10, 972–986.

PLANK, J. S., CHEN, Y., LI, K., BECK, M., AND KINGS-
LEY, G. 1996. Memory exclusion: Optimizing
the performance of checkpointing systems. Tech-
nical Report UT-CS-96-335, University of Ten-
nessee at Knoxville, Department of Computer
Science.

POWELL, M. AND PRESOTTO, D. 1993. Publishing: A
reliable broadcast communication mechanism.
In Proceedings of the 9th ACM Symposium on
Operating System Principles, 100–109.

PRADHAN, D. K. AND VAIDYA, N. 1992. Roll-forward
checkpointing scheme: Concurrent retry with
non-dedicated spares. In Proceedings of the
IEEE Workshop on Fault-Tolerant Parallel and
Distributed Systems, 166–174.

PRADHAN, D. K. AND VAIDYA, N. 1994. Roll-forward
and rollback-recovery: Performance-reliability
trade-off. In Digest of Papers, FTCS-24, The
Twenty Fourth Annual International Sym-
posium on Fault-Tolerant Computing, 186–
195.

RAMAMURTHY, B., UPADHYAYA, S., AND IYER, R. K.
1997. An object-oriented testbed for the eval-
uation of checkpointing and recovery systems.
In Digest of Papers, FTCS-27, The Twenty Sev-
enth Annual International Symposium on Fault-
Tolerant Computing, 194–203.

RAMAMURTHY, B., UPADHYAYA, S., AND BHARGAVA, J.
1998. Design and analysis of a hardware-
assisted checkpointing and recovery scheme for
distributed applications. In Proceedings, Sev-
enteenth Symposium on Reliable Distributed
Systems, 84–90.

RAMANATHAN, P. AND SHIN, K. G. 1988. Checkpoint-
ing and rollback-recovery in a distributed sys-
tem using common time base. In Proceedings,
Seventh Symposium on Reliable Distributed Sys-
tems (SRDS-7), 13–21.

RAMANATHAN, P. AND SHIN, K. G. 1993. Use of com-
mon time base for checkpointing and rollback-
recovery in a distributed system. IEEE Trans-
actions on Software Engineering SE-19, 6,
571–583.

RAMKUMAR, B. AND STRUMPEN, V. 1997. Portable
checkpointing for heterogeneous architectures.
In Digest of Papers, FTCS-22, The Twenty Sec-
ond Annual International Symposium on Fault-
Tolerant Computing, 58–67.

RANGARAJAN, S., GARG, S., AND HUANG, Y. 1998.
Checkpoints-on-demand with active replication.
In Proceedings, Seventeenth Symposium on Re-
liable Distributed Systems, 75–83.

RAO, S., ALVISI, L., AND VIN, H. 1999. Egida: An
extensible toolkit for low-overhead fault tol-
erance. In Digest of Papers, FTCS-29, The
Twenty Ninth Annual International Symposium
on Fault-Tolerant Computing.

RUSSINOVICH, M. AND COGSWELL, B. 1996. Replay
for concurrent non-deterministic shared mem-
ory applications. In Proceedings of the 1996 ACM
SIGPLAN Conference on Programming Lan-
guage Design and Implementation, 258–266.

RUSSINOVICH, M., SEGALL, Z., AND SIEWIOREK, D.
P. 1993. Application transparent fault man-
agement in fault-tolerant Mach. In Digest of
Papers, FTCS-23, The Twenty Third Annual In-
ternational Symposium on Fault-Tolerant Com-
puting, 10–19.

SCHWARZ, R. AND MATTERN, F. 1994. Detecting
causal relationships in distributed computa-
tions: in search of the Holy Grail. Distributed
Computing 7, 149–174.

SELIGMAN, E. AND BEGUELIN, A. 1994. High-level
fault tolerance in distributed programs. Tech-
nical Report CMU-CS-94-223, Carnegie Mellon
University, School of Computer Science.
SHARMA, D. D. AND PRADHAN, D. K. 1994. An
efficient coordinated checkpointing scheme for
multicomputers. In Proceedings of the IEEE
Workshop on Fault-Tolerant Parallel and Dis-
tributed Systems.

SILVA, L. M. AND SILVA, J. G. 1992. Global check-
pointing for distributed programs. In Proceed-
ings, Eleventh Symposium on Reliable Dis-
tributed Systems, 155–162.

SILVA, L. M. AND SILVA, J. G. 1994. Integrating a
checkpointing and rollback-recovery algorithm
with a causal order protocol. In Proceedings of
the 12th Brazilian Symposium on Computer Net-
works, 523–540.

SILVA, L. M. AND SILVA, J. G. 1994. Checkpointing
pipeline applications. In Proceedings of the 1994
World Transputer Congress, 497–512.

SILVA, L. M. AND SILVA, J. G. 1994. On the optimum
recovery of distributed programs. In Proceedings
of the 20th EUROMICRO Conference, 704–711.

SILVA, L. M. AND SILVA, J. G. 1996. A checkpointing
facility for a heterogeneous DSM system. In Pro-
ceedings of the 9th Conference on Parallel and
Distributed Computing Systems, 554–559.

ACM Computing Surveys, Vol. 34, No. 3, September 2002.

8 Elnozahy et al.

SILVA, L. M. AND SILVA, J. G. 1998. Avoiding check-
point contamination in parallel system. In Di-
gest of Papers, FTCS-28, The Twenty Eighth
Annual International Symposium on Fault-
Tolerant Computing, 364–369.

SILVA, L. M. AND SILVA, J. G. 1998. An experimen-
tal study about diskless checkpointing. In Pro-
ceedings of the 24th EUROMICRO Conference,
395–402.

SILVA, L. M. AND SILVA, J. G. 1998. System-level
versus user-defined checkpointing. In Proceed-
ings, Seventeenth Symposium on Reliable Dis-
tributed Systems, 68–74.

SILVA, L. M., VEER, B., AND SILVA, J. G. 1994. Check-
pointing SPMD applications on transputer
networks. In Proceedings of the Scalable High-
Performance Computing Conference, SHPCC94,
694–701.

SILVA, L. M., SILVA, J. G., AND CHAPPLE, S. 1996.
Portable transparent checkpointing for dis-
tributed shared memory. In Proceedings of the
Fifth IEEE International Symposium on High
Performance Distributed Computing, HPDC-5,
422–431.

SILVA, L. M., TAVORA, V. N., AND SILVA, J. G. 1996.
Mechanisms of file-checkpointing for UNIX ap-
plications. In Proceedings of the 14th IASTED
Conference on Applied Informatics, 358–361.

SILVA, L. M., SILVA, J. G., CHAPPLE, S., AND CLARKE,
L. 1995. Portable checkpointing and recovery.
In Proceedings of the 4th International Sympo-
sium on High-Performance Distributed Comput-
ing, HPDC-4, 188–195.

SINHA, A., DAS, P. K., AND CHAUDHURI, A. 1992.
Checkpointing and recovery in a pipeline of
transputers. In Proceedings of Euromicro’92,
141–148.

SLYE, J. H. 1996. Adding support for software in-
terrupts in log-based rollback-recovery proto-
cols. Master Thesis, Carnegie Mellon University,
Department of Computer Science.

SLYE, J. H. AND ELNOZAHY, E. N. 1996. Support-
ing nondeterministic execution in fault-tolerant
systems. In Digest of Papers, FTCS-26, The
Twenty-Sixth Annual International Symposium
on Fault-Tolerant Computing.

SMITH, J. M. AND IOANNIDIS, J. 1989. Implement-
ing remote fork() with checkpoint/restart. IEEE
Technical Committee on Operating Systems
Newsletter, 12–16.

SOLIMAN, H. M. AND ELMAGHRABY, A. S. 1998. An an-
alytical model for hybrid checkpointing in time
warp distributed simulation. IEEE Transactions
on Parallel & Distributed Systems 9, 10, 947–
951.

SPEZIALETTI, M. AND KEARNS, P. 1986. Efficient dis-
tributed snapshots. In Proceedings of the Inter-
national Conference on Distributed Computing
Systems, 382–388.

SSU, K.-F. AND FUCHS, W. K. 1998. PREACHES-
portable recovery and checkpointing in het-

erogeneous systems. In Digest of Papers,
FTCS-28, The Twenty Eighth Annual Interna-
tional Symposium on Fault-Tolerant Computing,
38–47.

STAINOV, R. 1991. An asynchronous checkpoint-
ing service. Microprocessing and Microprogram-
ming 31, 117–120.

STAKNIS, M. 1989. Sheaved memory: Architectural
support for state saving and restoration in paged
systems. In Proceedings of the 3rd Symposium
on Architectural Support for Programming Lan-
guages and Operating Systems, 96–102.

STELLNER, G. 1994. Consistent checkpoints of
PVM applications. In Proceedings of the First
European PVM User Group Meeting.

STELLNER, G. 1996. CoCheck: Checkpointing and
process migration for MPI. In Proceedings
of the 10th International Parallel Processing
Symposium.

STROM, R. E., BACON, D. F., AND YEMINI, S. A. 1988.
Volatile logging in n-fault-tolerant distributed
systems. In Digest of Papers, FTCS-18, The
Eighteenth Annual International Symposium on
Fault-Tolerant Computing, 44–49.

STROM, R. E., YEMINI, S. A., AND BACON, D. F. 1988.
A recoverable object store. In Proceedings of
the Hawaii International Conference on System
Sciences, II-215–II221.

SURI, G., JANSSENS, B., AND FUCHS, W. K. 1995. Re-
duced overhead logging for rollback-recovery in
distributed shared memory. In Digest of Pa-
pers, FTCS-25, The Twenty Fifth Annual Inter-
national Symposium on Fault-Tolerant Comput-
ing, 279–288.

SURI, G., HUANG, Y., WANG, Y. M., FUCHS, W. K., AND

KINTALA, C. 1995. An implementation and
performance measurement of the progressive
retry technique. In Proceedings of the IEEE In-
ternational Computer Performance and Depend-
ability Symposium, 41–48.

TAM, V.-O. AND HSU, M. 1990. Fast recovery in dis-
tributed shared virtual memory systems. In Pro-
ceedings of the 10th International Conference on
Distributed Computing Systems, 38–45.

TAMIR, Y. AND GAFNI, E. 1987. A software-based
hardware fault tolerance scheme for multicom-
puters. In Proceedings of the International Con-
ference on Parallel Processing, 117–120.

TAMIR, Y. AND FRAZIER, T. M. 1989. Application-
transparent process-level error recovery for mul-
ticomputers. In Proceedings of the Hawaii In-
ternational Conferences on System Sciences-22,
296–305.

TAMIR, Y. AND FRAZIER, T. M. 1991. Error-recovery
in multicomputers using asynchronous coordi-
nated checkpointing. Technical Report CSD-
010066, University of California.

TANAKA, K. AND TAKIZAWA, M. 1996. Distributed
checkpointing based on influential messages. In
Proceedings of the 1996 International Conference
on Parallel and Distributed Systems, 440–447.

ACM Computing Surveys, Vol. 34, No. 3, September 2002.

Bibliography 9

TANAKA, K., HIGAKI, H., AND TAKIZAWA, M. 1998.
Object-based checkpoints in distributed sys-
tems. Computer Systems Science & Engineering
13, 3, 179–185.

TAYLOR, D. J. AND WRIGHT, M. L. 1986. Backward
error recovery in a UNIX environment. In Digest
of Papers, FTCS-16, The Sixteenth Annual Inter-
national Symposium on Fault-Tolerant Comput-
ing, 118–123.

THANAWASTIAN, S., PAMULA, R. S., AND VAROL, Y. L.
1986. Evaluation of global checkpoint rollback
strategies for error recovery in concurrent pro-
cessing systems. In Digest of Papers, FTCS-16,
The Sixteenth Annual International Symposium
on Fault-Tolerant Computing, 246–251.

TONG, Z., KAIN, R. Y., AND TSAI, W. T. 1989. A lower
overhead checkpointing and rollback-recovery
scheme for distributed systems. In Proceed-
ings, Eighth Symposium on Reliable Distributed
Systems, 12–20.

TSAI, J., KUO, S. Y., AND WANG, Y.-M. 1998. Theoret-
ical analysis for communication-induced check-
pointing protocols with rollback-dependency
trackability. IEEE Transactions on Parallel &
Distributed Systems 9, 10, 963–971.

TSURUOKA, K., KANEKO, A., AND NISHIHARA, Y. 1981.
Dynamic recovery schemes for distributed pro-
cesses. In Proceedings of the IEEE 2nd Symp.
on Reliability in Distributed Software and
Database Systems, 124–130.

TULLMANN, P., LEPREAU, J., FORD, B., AND HIBLER, M.
1996. User-level checkpointing through ex-
portable kernel state. In Proceedings of the Fifth
International Workshop on Object-Orientation in
Operating Systems, 85–88.

VAIDYA, N. H. 1993. Dynamic cluster-based recov-
ery: Pessimistic and optimistic schemes. Techni-
cal Report 93-027, Texas A&M University, De-
partment of Computer Science.

VAIDYA, N. H. 1995. A case of two-level distributed
recovery schemes. In Proceedings of the Inter-
national Conference on Measurement and Mod-
eling of Computer Systems (SIGMETRICS’95),
64–73.

VAIDYA, N. H. 1996. On staggered checkpointing.
In Proceedings of the Eighth IEEE Symposium
on Parallel and Distributed Processing, 572–580.

VENKATESAN, S. 1989. Message-optimal incremen-
tal snapshots. In Proceedings of the Interna-
tional Conference on Distributed Computing
Systems, 53–60.

VENKATESAN, S. 1997. Optimistic crash recovery
without changing application messages. IEEE
Transactions on Parallel and Distributed Sys-
tems 8, 3, 263–271.

VENKATESH, K., RADAKRISHNAN, T., AND LI, H. L. 1987.
Optimal checkpointing and local recording for
domino-free rollback-recovery. Information Pro-
cessing Letters 25, 295–303.

WANG, Y. M. 1993. Reducing message logging over-
head for log-based recovery. In Proceedings of the

IEEE International Symposium on Circuits and
Systems, 1925–1928.

WANG, Y. M. 1995. The maximum and minimum
consistent global checkpoints and their applica-
tions. In Proceedings, Fourteenth Symposium on
Reliable Distributed Systems.

WANG, Y.-M. AND FUCHS, W. K. 1992. Optimistic
message logging for independent checkpointing
in message passing systems. In Proceedings,
Eleventh Symposium on Reliable Distributed
Systems, 147–154.

WANG, Y. M. AND FUCHS, K. 1992. Scheduling mes-
sage processing for reducing rollback propaga-
tion. In Digest of Papers, FTCS-22, The Twenty
Second Annual International Symposium on
Fault-Tolerant Computing, 204–211.

WANG, Y. M. AND FUCHS, K. 1993. Lazy checkpoint
coordination for bounding rollback propagation.
In Proceedings, Twelfth Symposium on Reliable
Distributed Systems, 78–85.

WANG, Y. M. AND FUCHS, W. K. 1994. Optimal mes-
sage log reclamation for uncoordinated check-
pointing. In Proceedings of the IEEE Work-
shop on Fault-Tolerant Parallel and Distributed
Systems.

WANG, Y. M., HUANG, Y., AND FUCHS, W. K. 1993.
Progressive retry for software error recovery in
distributed systems. In Digest of Papers, FTCS-
23, The Twenty Third Annual International
Symposium on Fault-Tolerant Computing Sys-
tems, 138–144.

WANG, Y. M., LOWRY, A., AND FUCHS, W. K. 1994.
Consistent global checkpoints based on direct
dependency tracking. Information Processing
Letters 50, 4, 223–230.

WANG, Y. M., HUANG, Y., AND KINTALA, C. 1997. Pro-
gressive retry for software failure recovery in
message passing applications. IEEE Transac-
tions on Computers 46, 10, 1137–1141.

WANG, Y. M., DAMANI, O. P., AND GARG, V. K. 1997.
Distributed recovery with K-optimistic logging.
In Proceedings of the 17th International Confer-
ence on Distributed Computing Systems, 60–67.

WANG, Y. M., CHUNG, E., HUANG, Y., AND ELNOZAHY, E. N.
1997. Integrating checkpointing with transac-
tion processing. In Digest of Papers, FTCS-27,
The Twenty Seventh Annual International Sym-
posium on Fault-Tolerant Computing, 304–308.

WANG, Y. M., HUANG, Y., VO, K. P., CHUNG, P. Y., AND

KINTALA, C. 1995. Checkpointing and its ap-
plications. In Digest of Papers, FTCS-25, The
Twenty Fifth Annual International Symposium
on Fault-Tolerant Computing, 22–31.

WEI, X. AND JU, J. 1998. A consistent checkpointing
algorithm with shorter freezing time. Operating
Systems Reviews 32, 4, 70–76.

WOJCIK, Z. AND WOJCIK, B. E. 1990. Fault-tolerant
distributed computing using atomic send receive
checkpoints. In Proceedings of the 2nd IEEE
Symposium on Parallel and Distributed Process-
ing, 215–222.

ACM Computing Surveys, Vol. 34, No. 3, September 2002.

10 Elnozahy et al.

WONG, K. F. AND FRANKLIN, M. 1996. Checkpoint-
ing in distributed computing systems. Jour-
nal of Parallel & Distributed Computing, 67–
75.

WOOD, W. G. 1981. A decentralized recovery con-
trol protocol. In Digest of Papers, FTCS-
11, The Eleventh Annual International Sym-
posium on Fault-Tolerant Computing, 159–
164.

WOOD, W. G. 1995. Recovery control of communi-
cating processes in a distributed system. In Shri-
vastava, S. K. ed. Reliable Computing Systems,
Springer Verlag.

WU, K. L. AND FUCHS, W. K. 1990. Recoverable dis-
tributed shared virtual memory. IEEE Transac-
tions on Computers 39, 4, 460–469.

WYNER, D. S. 1972. A technique for optimizing the
performance of a checkpoint restart system. In
Proceedings of the Canadian Computer Confer-
ence (Montreal), 201–212.

XU, J. AND NETZER, R. H. B. 1993. Adaptive in-
dependent checkpointing for reducing rollback
propagation. In Proceedings of the 5th IEEE

Symposium on Parallel and Distributed Process-
ing, 754–761.

XU, J., NETZER, R. B., AND MACKEY, M. 1995. Sender-
based message logging for reducing rollback
propagation. In Proceedings of the Seventh IEEE
Symposium on Parallel and Distributed Process-
ing, 602–609.

YOUNG, J. W. 1974. A first order approximation to
the optimum checkpoint interval. Communica-
tions of the ACM 17, 9.

ZAMBONELLI, F. 1998. Distributed checkpoint algo-
rithms to avoid rollback propagation. In Proceed-
ings of the 24th EUROMICRO Conference, 403–
410.

ZIV, A. AND BRUCK, J. 1994. Efficient checkpointing
over local area networks. In Proceedings of the
IEEE Workshop on Fault-Tolerant Parallel and
Distributed Systems, 30–35.

ZIV, A. AND BRUCK, J. 1997. An on-line algorithm
for checkpoint placement. IEEE Transactions on
Computers 46, 9, 976–985.

ZWEIACKER, M. 1997. Fault-tolerant CORBA using
checkpointing and recovery. Comtec 75, 8, 20–25.

ACM Computing Surveys, Vol. 34, No. 3, September 2002.

