Efficient Exploration of Service-Oriented Architectures
using Aspects

Ingolf H. Krliger, Reena Mathew
Department of Computer Science
University of California, San Diego

La Jolla, CA 92093-0114, USA

{ikrueger,rmathew}@cs.ucsd.edu

ABSTRACT

An important step in the development of large-scale dis-
tributed, reactive systems is the design of architectures that
effectively support the systems’ purposes. Early prototypes
help to decide upon the most effective architecture for a
given situation. Questions to answer include the bound-
aries of components, communication topologies and of repli-
cation. It is desirable to evaluate and compare architectures
for functionality and quality attributes before implement-
ing or changing the whole system. Often, the effort re-
quired is prohibitive. In this paper we present an approach
to efficiently create prototypes for service-oriented architec-
tures using aspect-oriented programming techniques. We
explain a procedure for transforming interaction based soft-
ware specifications into AspectJ programs. We show how to
map the same set of interaction scenarios to different can-
didate architectures. This significantly reduces the effort
required to explore architectural alternatives. We explain
and evaluate our approach using the Center TRACON Au-
tomation System as a running example.

Categories and Subject Descriptors

D.2.1 [Software Engineering|: Requirements/Specifica-
tions; D.2.2 [Software Engineering]: Design Tools and
Techniques; D.2.11 [Software Engineering]: Software Ar-
chitectures

General Terms

Algorithms, Design, Measurement, Performance

Keywords

Services, Service-Oriented Development, Distributed Reac-
tive Systems, Roles, Components, Software Architecture Ex-
ploration, Architecture Comparison, Aspect-Oriented Pro-
gramming, Aspects, AspectJ

Permission to make digital or hard copies of all or part of thkafor
personal or classroom use is granted without fee providatdbpies are
not made or distributed for profit or commercial advantage aatidbpies
bear this notice and the full citation on the first page. Toyootherwise, to
republish, to post on servers or to redistribute to listgunees prior specific
permission and/or a fee.

ICSE’' 06, May 20-28, 2006, Shanghai, China.

Copyright 2006 ACM 1-59593-085-X/06/000555.00.

62

Michael Meisinger
Institut fir Informatik
Technische Universitat Minchen
Boltzmannstr. 3, 85748 Garching, Germany

meisinge@in.tum.de

1. INTRODUCTION

Designing complex distributed systems is a difficult task.
Selecting effective architectures is crucial for the success of
these systems. The exploration of different architectural al-
ternatives, however, often falls victim to time pressure and
lack of resources: it typically involves writing large parts of
the code for each alternative upfront to support the evalua-
tion — this binds people, time and financial resources.

1.1 Problem Definition

Important questions that need to be addressed when de-
signing architectures include, for instance, how to design
the objects/components and their interfaces, how to con-
nect and distribute them i.e. how to design the communi-
cation topology, and how to replicate components for most
efficient operation on a given middleware. Answering these
questions requires consideration and exploration of differ-
ent alternative architecture candidates. Building prototypes
and running simulations complements and provides input
for architecture evaluation techniques based on reviews and
estimation [2]. However, building multiple prototypes to
systematically explore different architectural alternatives is
costly.

One way to address this problem is to separate an overall
software architecture into logical models (sometimes called
domain models [4]) and implementation models; approaches
advocating this separation are architecture-centric software
development [31] and model-driven architecture [22].

A clear separation into logical and implementation models
is often difficult to achieve — especially in situations where
requirements suggest a tight coupling between the two types
of models. This is often the case when requirements include
specific performance and other Quality-of-Service proper-
ties. In such cases, exploring multiple architectural alterna-
tives is often not an option, because writing “throw-away”
prototypes is too costly: large parts of the deployment in-
frastructure have to be written and re-written for each pro-
totype. Furthermore, the mapping between logical and im-
plementation model is generally non-trivial and there are
likely different mappings that need to be considered for dif-
ferent alternatives. Supporting multiple such explorative
hand-crafted mappings can quickly become costly, too.

A core source of complexity is that the scenarios sup-
ported by the system typically involve a multitude of col-
laborating entities partaking in complex interactions. These
interactions are part of both the logical and implementation
models. A well-defined mapping needs to exist between the
interactions in both models. In case there are different im-

plementation alternatives, this leads to re-implementing the
same interplay over and over again.

Our goal is to provide a solution where a collaboration
specification can be reused unchanged across all implemen-
tation models (or target-architectures) to be evaluated. The
major step toward achieving this goal is to decouple the “fea-
tures” or “services” a system provides from the architecture
on which it is deployed.

1.2 Service-Oriented Specifications

In this paper, we propose an approach to architecture eval-
uation and exploration that establishes a clean separation
between the services provided by the system under consid-
eration, and the architecture — comprised of components and
their relationships — implementing the services.

We use the notion of service to decouple abstract behavior
from implementation architectures supporting it. The term
“service” is used in multiple different meanings and on mul-
tiple different levels of abstraction throughout the Software
Engineering community [30]. Web Services [29] currently
receive a lot of attention from both academia and industry.
Figure 1 shows a typical “layout” of applications composed
of a set of (web) services. Often such systems consist of at
least two distinct layers: one domain layer, which houses
all domain objects and their associated logic; and one ser-
vice layer, which acts as a facade to the underlying domain
objects — in effect offering an interface that shields the do-
main objects from client software. For a web-service-based
application the service layer consists of the functions this ap-
plication exposes over the Internet following standards such
as WSDL (for describing location, function name, parame-
ter names and types), SOAP (for message encoding), and
HTTP (for message transport). The domain layer consists
of “plain old objects” representing the data and logic of the
underlying application. Typically, services in this sense co-
ordinate workflows among the domain objects; they may
also call, and thus depend on, other services. Some of the
services, say Service 1 and Service 2 in our example, may
reside on the same physical machine, whereas others, such
as Service n may be accessible remotely via the Internet.

Service Layer /
Facades

Figure 1: Service-Oriented Architectures

The layout shown in Fig. 1 is prototypical not only of the
situation we find for applications structured in terms of web
services, but also for other domains where complex, often
distributed applications are expected to offer externally ac-
cessible interfaces. Indeed, service-oriented approaches to
system development, leading to similar application struc-
tures, are prominent in the telecommunications domain [34]
and are emerging in the automotive domain [1]. Abstract-
ing from the domain-specific details we observe that services
often encapsulate the coordination of sets of domain objects
to implement “use cases”.

63

We view services as specializations of use cases to specify
interaction scenarios; services “orchestrate” the interaction
among certain entities of the system under consideration to
achieve a certain goal [4]. In contrast to use cases, which de-
scribe functionality typically in prose and on a coarse level of
detail, we define a service via the interaction pattern among
a set of collaborators required to deliver the functionality.
Services are partial interaction specifications.

Roles Services

Use Case Graph
t I
Architecture

C2R2
C1R1
CS:RZ

Figure 2: Service-Oriented Development Process

Role Domain Model
msc servicel

=

Component Configuration

Service
Elicitation

Mapping

C4R3

Architecture
Definition

‘We employ a two-phase, iterative development process as
shown in Fig. 2. Phase (1), Service Elicitation, consists of
defining the set of services of interest — we call this set the
service repository. Phase (2), Architecture Definition, con-
sists of mapping the services to component configurations
to define deployments of the architecture.

In phase (1) we identify the relevant use cases and their
relationships in the form of a use case graph. This gives us
a relatively large scale scenario-based view on the system.
From the use cases, we derive sets of roles and services as in-
teraction patterns among roles. Using roles decouples from
interaction details, because roles abstract from components
or objects. Roles describe the contribution of an entity to a
particular service independently of what concrete implemen-
tation component will deliver this contribution. An object
or component of the implementation typically will play mul-
tiple roles at the same time. The relationships between the
roles, including aggregations and multiplicities, develop into
the role domain model.

In phase (2) the role domain model is refined into a compo-
nent configuration, onto which the set of services is mapped
to yield an architectural configuration. These architectural
configurations can be readily implemented and evaluated as
target architectures for the system under consideration.

The process is iterative both within the two phases, and
across: Role and service elicitation feeds back into the defi-
nition of the use case graph; architectures can be refined and
refactored to yield new architectural configurations, which
may lead to further refinement of the use cases.

1.3 Architecture Exploration and Aspects

Our service notion is based on interaction patterns that
span across several entities implementing them; services em-
erge as independent system-wide aspects of both logical and
concrete models. This observation motivates our use of
aspect-oriented programming to capture services as aspects
and to use weaving techniques [11] to establish the mapping
between one abstract model and multiple concrete mod-
els. Aspect-orientation propagates the separation of cross-
cutting concerns into aspects, which can be efficiently wo-
ven together to form the executable software. Note, that we
use the term “cross-cutting” primarily in the sense of func-

tionality that involves the coordinated interplay of multiple
components.

Exploiting this ability to efficiently generate multiple ex-
ecutable candidate architectures is critical to render archi-
tecture evaluation practical. AspectJ [10] provides the in-
frastructure we need to translate services into aspects. In
Sect. 3 we explain this mapping in detail and show how the
combination of services and aspects helps us to solve the
problems explained above.

1.4 Contributions and Outline

As main contribution, this work presents a systematic
approach to rapidly implementing software architecture ex-
ploration prototypes using an aspect-oriented programming
language. We give a translation procedure from service mod-
els — scenario-based interaction specifications — to AspectJ
implementations. We show how this translation can easily
be automated and how the prototypes can be used to explore
different architecture alternatives. A major significance of
our approach is that it disentangles the specification of func-
tionality (the services) from the infrastructure on which they
are implemented; we can rapidly build and evaluate proto-
types for different target architectures without having to
rewrite large portions of the code. This results in reduced
effort and time for performing an architecture evaluation.

In Sect. 2, we introduce the Center Tracon Automation
System (CTAS) as our running example and show how it
is modeled in terms of services. In Sect. 3, we explain how
to translate the architecture definition to aspects for imple-
menting the system. We also show how we make use of
tools to support our approach. In Sect. 4, we report on
experiences with evaluating various architectures for CTAS
applying our approach; we also provide a brief evaluation.
In Sect. 5 we show related work; we discuss our approach in
Sect. 6. Sect. 7 contains conclusions and an outlook.

2. SERVICE-ORIENTED MODEL OF CTAS

To demonstrate our approach, we use the Center TRA-
CON Automation System (CTAS), a case study from the
air-traffic control domain, as an example of a large-scale
distributed system [25]. CTAS is a set of tools and pro-
cesses designed to help air traffic controllers manage the
increasingly complex air traffic flows at large airports. An
important part of this system is the distribution of weather
updates to interested clients; this is the part we concentrate
on in our case study.

In essence, this example implements a distributed version
of the Observer pattern (cf. [6]) and its underlying infras-
tructure. It can be seen as a representative for a class of
similar interaction intensive systems, including (a) business
information systems with distributed components commu-
nicating via web services, and (b) database systems imple-
menting distributed transactions by two-phase commit pro-
tocols. The time required to execute a service, or to commit
a transaction to the database is one of the critical prop-
erties in the system. It is significantly determined by the
communication infrastructure and component architecture
of the system. This makes this parameter a natural target
for architecture exploration.

As given in the requirements [25], the main component
of the CTAS weather update system is the communica-
tions manager CM; other processes, including route anal-
ysis (RA), and the plan-view GUI (PGUI), are clients to

CM. Clients are distinguished as aware or unaware depend-
ing on whether they participate in the weather update pro-
cess. The CTAS requirements [25] explain how the clients
initialize with CM, and how CM subsequently relays the lat-
est weather information to all aware clients. For this paper,
we design and implement various architectures and commu-
nication setups for the weather update functionality of the
CTAS system as a refinement of the structure given above.
CM continuously checks if a new weather report is avail-
able. If so, the CM sends a message to all aware clients.
Each client responds, indicating whether it can process the
weather update successfully. If all clients indicate success,
the CM asks all the clients to use the latest weather infor-
mation. If at least one of the clients indicates failure, the
CM informs all clients to use the old weather information.
This is important to ensure the consistency of this critical
information in all parts of the system. The time it takes for
an update cycle to complete is an important performance
property of CTAS.

In the following we show how to define, implement and
evaluate architectures for supporting this process using ser-
vices and aspects.

2.1 Interaction Specifications with Services

Analyzing the requirements leads to a number of use cases
and roles. The roles relevant for our example are Aware-
Client (weather-aware clients), Manager (drives the update
process), Broadcaster (broadcasts messages to a group of
clients) and Arbiter (collects responses from clients).

We specify the services of the CTAS weather update sys-
tem using a notation based on Message Sequence Charts
(MSC) [8, 13, 31]. An MSC defines the relevant sequences
of messages (represented by labeled arrows) among the in-
teracting roles. Roles are represented as vertical axes in our
MSC notation. Figures 3(a) to 3(d) show the specification of
several services as interaction patterns and Fig. 3(e) shows
the roles and their connections. The MSC syntax we use
should be fairly self-explanatory, especially to readers famil-
iar with UML2 [31]. In particular, we support labeled boxes
in our MSCs indicating alternatives and conditional repeti-
tions (bounded and unbounded loops). Labeled boxes on an
axis indicate actions, such as local computations. High-level
MSCs (HMSCs) indicate sequences of, alternatives between
and repetitions of services in two-dimensional graphs — the
nodes of the graph are references to MSCs, to be substituted
by their respective interaction specifications. HMSCs can be
translated into basic MSCs without loss of information [13].

A number of extensions to the standard MSCs warrant
explanation [15, 17]. First, we take each axis to represent a
role rather than a class, object, or component. The mapping
from roles to components is a design step in our approach
and will be described in detail in Sect. 2.2. Second, axes
labeled with an asterisk refer to all entities “playing” this
particular role at runtime — this allows us to model broad-
casting succinctly with MSCs; the MSC in Fig. 3(d) shows
an example: the Broadcaster role sends the Msg message to
all entities that at runtime play the AwareClient role. Third,
we use an operator called join [13, 15], which we use exten-
sively to compose overlapping service specifications. We call
two services overlapping if their interaction scenarios share
at least two roles and at least one message between shared
roles. The join operator will synchronize the services on
their shared messages, and otherwise result in an arbitrary

msc CTAS_Update msc client get new weather
msc CTAS_System Manager AwareClient Manager AwareClient
:| [] CTAS GET NEW_WTHRQ msc broadcast
— Ll M: Broadcast AwareClient
Join ‘ Get New Weather ‘ ‘ ‘ ‘ ‘ * ‘
updateCM() alt Success broadcast
—————————— -——- CTAS_WTHR_RECEIVED 1sg Param’
check for weather update()) client got new weather() (GET_SUCCEEDED) (Msg,P) >
) ettt [B e - Msg(Param)
_ CTAS_WTHR_RECEIVED(GET_FAILED) >
CTAS Updat0 y I S -
N P —

(a)

(c)

role domain model CTAS Roles Role-to-Component Mapping component configuration CTAS2
Arch CTASMgr CTASBroadcast| CTASArbiter| CTASClient
1 | Manager, Arbiter, Broadcaster| AwareClient 1
2 | Manager, Broadcaster Arbiter AwareClient CM : 1
3 | Manager, Arbiter Broadcaster AwareClient CTASMegr 0.*
4 Manager Broadcaster Arbiter AwareClient 1
5 | Manager, Forwarder Broadcaster | Arbiter AwareClient CTASClient
(f) (8)

Figure 3: CTAS Services, Roles, Role Domain Model, and Architecture 2

interleaving of the non-shared messages of its operands. Join
is a powerful operator for separating an overall service into
interacting sub-services. The availability of such an oper-
ator also distinguishes our approach from many others in
literature.

For reasons of brevity, we omit the specification and de-
scription of the full set of services for the CTAS weather
update cycle in this paper. For the full set, see [21].

2.2 Architecture Definition

The next step after eliciting the services is to define a
suitable component architecture that can provide these ser-
vices. We must make sure that the architecture observes the
dependencies of the roles and further constraints given by
the requirements. Our goal is to explore multiple alterna-
tives of such architectures for their adequacy in supporting
the elicited services. Interesting questions to ask in evalu-
ating and deciding on a target architecture include (among
many others) (a) to what degree are the components of the
architecture coupled, and (b) what are the implications of
tight and loose coupling on latencies for calls between com-
ponents? For this paper, we will focus on these questions
for the architecture exploration we conduct; however, the
method we propose supports exploration of a wide variety
of architectural properties.

For our example, we initially define four architectures that
differ in the component configurations and the roles played
by the components; see Fig. 3(f). A fifth architecture, shown
in row 5 of this table, will be discussed in Sect. 4.

A component can play multiple roles. Intuitively, “play-
ing a role” in an architecture means implementing all in-
teractions in which this role partakes. The more roles it
plays, the more functionality it implements. Interactions
between different components usually mean expensive dis-
tributed communications, while interactions between roles
within one component can be implemented very efficiently
as subroutine or method calls. This decision, as well as the
number of actual component instances deployed, makes the
difference when comparing architecture alternatives.

The table in Fig. 3(f) shows the roles played by the compo-
nents in the various architectures. A blank cell means that

65

the corresponding component does not exist for that archi-
tecture. CTASClient plays the role of an AwareClient in
all architectures. CTASMgr also exists in all architectures,
but the roles it plays differ. The components CTASArbiter
and CTASBroadcaster exist depending on whether CTAS-
Mgr will play the role of Arbiter or Broadcaster, respectively.
In Architecture 2 of Fig. 3(g), for instance, CTASMgr plays
two roles: Manager and Broadcaster.

We have introduced a dedicated Architecture Definition
Language — the Service-ADL [17, 20] — that captures ser-
vices, roles and components for the precise specification of
component architectures. We make use of Service-ADL spec-
ifications in subsequent steps.

3. TRANSLATING ARCHITECTURES TO
ASPECTS

We show now how to map the previously identified ser-
vices (i.e. their interaction patterns) to different deployment
architectures. We define how to translate a service-based
system specification into aspect-oriented programs [11]. The
basic idea is to translate the interaction patterns defining
the services into aspects so that they can be woven into any
given component configuration using AspectJ’s weaving ca-
pability. We thus use AspectJ to separate structure from
behavior and later combine both using the AspectJ com-
piler (weaver).

3.1 Aspect-Oriented Programming: AspectJ

AspectJ [10, 33] is a general-purpose aspect-oriented ex-
tension to the Java programming language; its language con-
structs facilitate clean modularization of separate concerns.
AspectJ provides a compiler that weaves aspect code into
Java classes.

We translate our service model into aspects using As-
pectJ’s join points, pointcuts, advice, aspects, and intertype
declarations [33]. Examples of join points are method calls,
method executions, object instantiations, constructor execu-
tions, field references and handler executions. Pointcuts are
used for selecting these join points; an example of a point-
cut is “all invocations of method xyz”. Advice defines code
that executes before, after or around a pointcut. An aspect

can be the combination of a pointcut and the corresponding
advice. In other words, using pointcuts, an aspect can spec-
ify at what points in the execution — or under what circum-
stances — a particular piece of code, represented as an advice,
should be called. An intertype declaration, can be used to
specify a set of members (attributes, methods) that should
be present in multiple classes. We use pointcuts and advice
to translate patterns of interactions defining a service as an
aspect; we use aspects describing intertype declarations to
implement associations between roles and components.

3.2 Translation Process and Artifacts

The translation process has two phases (cf. Fig. 4, within
the dashed boundaries): (1) implementing a common ser-
vice repository based on a set of identified roles, and (2)
implementing multiple architectures for the common service
repository. In (1) we use a build file to weave together the
following artifacts: classes for roles, aspects implementing
the associations in the role domain model, aspects introduc-
ing the methods and local operations that each role needs
to support, and aspects that implement the interaction pat-
tern of each service. In (2) we weave together the output of
(1) with classes for the components and aspects implement-
ing the associations of the component configuration. These
steps are explained, in detail, below.

Services

Roles Role Domain Model
msc servicel
Service rerl rrel reque: [RT}
Repository (%]
Elements /
Classes Aspects Aspect
{ Component Configuratign
Architecture
Elements

Classes

A

‘ ‘Weave Aspects Into Classes

Architecture Implementation

— [C2RZ]

C4R3

Figure 4: Implementation Process Artifacts

3.3 Translating Roles

Define classes for roles: For each role appearing in
a service definition we create a class. All role classes are
derived from a base “role” class, which has attributes rep-
resenting the role’s state and parent component name. The
parent component will capture the name of the component
for which the role instance is playing the role.

Define aspects for the role domain model: We cap-
ture the associations between roles as specified in the role do-
main model in form of attributes of the created role classes.
Fig. 3(e), for instance, indicates that the Manager role needs
to have a reference to a Broadcaster role. Thus, a new
attribute of type Broadcaster and corresponding accessor
methods are introduced to the Manager role class with the
help of an intertype declaration. All these relationships are
captured in one aspect representing the configuration for the
roles, cf. Fig. 5.

66

public aspect CTASRoleConfiguration {
private Broadcaster Manager.broadcaster;

public Broadcaster Manager.getBroadcaster() {
return broadcaster;

H

public void Manager. setBroadcaster(Broadcaster b) {
broadcaster = b;
}

Figure 5: Role Domain Model Aspect

3.4 Service Repository

For each service to be supported by the architecture, we
follow the steps described below.

Define aspects for role interactions and local op-
erations: For each possible received message of a role we
introduce a method into the role class using an intertype
declaration. For the service shown in Fig. 3(c), we introduce
the method CTAS_.GET_NEW_WTHR for the role Aware-
Client. We do this for all messages of the service and also
for all local operations of a role.

Define aspects for services: So far we have defined
classes for all roles and connected them as specified in the
role domain model. We have provided methods within each
role class for all possible incoming messages and local ac-
tions. We now define each service as an aspect; we use
pointcuts and advice to connect messages and local actions
according to the service specification within the MSC. Ser-
vice specifications can make use of the full expressive power
we provide in our extended MSC dialect. This includes se-
quential and parallel composition, alternatives, loops and
join composition, as explained in [15, 13]. In the following,
we explain the translation of each of these operators into
aspects.

We define the service in terms of an aspect with the help
of pointcuts and advice. The next operation or message sent
within an interaction pattern is implemented as an advice
for the pointcut defined for the current interaction. A series
of these definitions enables us to coordinate the interactions
in the implementation. In essence, this corresponds to cap-
turing a global state machine for each service in terms of
an aspect definition — this is the basis for automating the
translation from MSCs to aspects as we will discuss in more
detail in Sect. 3.7.

Sequential Composition: In Fig. 6, we show how an MSC
with simple sequential ordering of messages is translated to
an aspect. We identify pointcuts for the occurrences of the
method (received message) and define advice for this point-
cut. Here, we define a pointcut called Interaction.m1(B b)
which captures the method call m1(String) for the targets
of type role B. We define an after advice for this pointcut
which executes after the method call. The advice defines the
call of the method m2() of role A. Thus, the coordination
of the interactions for this MSC is achieved with the help of
the aspects defined using pointcuts and advice. If we need
to change the order of the interactions, all we do is update
this one aspect without modifying any other piece of code.

Consider, for instance, the service shown in Fig. 3(c). We
define a pointcut for the CTAS_GET_NEW_WTHR message
receipt by an AwareClient role. The next step of the inter-
action, executing the local operation of Get New Weather,

msc BasicService public aspect BasicService {
A B
‘ ‘ ‘ ‘ pointcut Interaction_m1(B b):
target(b) && (call(void m1(String)));
ml(String param)
m2() after (B b) : Interaction_mI(b) {
< A a= getARole();
am2();
[|
}

Figure 6: Translation of Basic MSC

is implemented as an advice for the pointcut just defined.
The aspect defined for this service is shown in Fig. 7.

public aspect ServiceClientGetNew Weather {

pointcut Interactionl (AwareClient ac):
target(ac) && (call(void CTAS_GET _NEW_WTHR()));

after (AwareClient ac) : Interactionl(ac) {
ac.GetNew Weather();

H

pointcut LocalOperationl (AwareClient ac):
target(ac) && (call(boolean GetNewWeather()));

after (AwareClient ac) returning (boolean flag) : LocalOperationl(ac) {
ac.getManager().CTAS_WTHR_RECEIVED (ac.flag);

Figure 7: Service represented as an Aspect

Alt: The alt operator within an MSC specifies alterna-
tive interactions as given by the two operands. The first
alternative is chosen if the specified condition yields true;
otherwise the second alternative is chosen. The translation
for an MSC that uses the alt operator to define a service
is shown in Fig. 8. Note that for an automated transla-
tion, the condition must be specified in a format that can
be translated to a Java boolean expression.

msc AlternativeService
A B
\ \ \ \

mlQ)

public aspect AlternativeService{

pointcut Interaction_m1(B b):
target(b) && (call(void m1()));

alt <Cundiﬁ0ny after (B b) : Interaction_mI(b) {
m2() A a = getARole();
< if (cond)
R -4 a.m2();
§ m3() else
am3();
}

Figure 8: Translation of MSC with alt

Loop: The loop operator within an MSC requires the oc-
currence of the given interactions as long as the specified
condition yields true. For an MSC with the loop operator,
the advice for the pointcut implements the loop. The MSC
and its translation is shown in Fig. 9.

A variant of the loop operator exists for loops with a de-
fined number of repetitions. In this case, the number of repe-
titions is indicated by an integer value instead of a condition.
Translation into an advice is straightforward. Instead of a
while-loop, a for-loop with the specified repetition counter
value is used.

Join: The join operator is an extremely powerful means
to combine and synchronize overlapping services — it is cen-

67

msc LoopService
A

B public aspect LoopService{
‘ ‘ ml() ‘ ‘ pointcut Interaction_m1(B b):
}—5 target(b) && (call(void m1()));
loop <conditjcny after (B b) : Interaction_m1(b) {
A a = getARole();
m2
0 » while(condition)
am2();
}

¥
. .

Figure 9: Translation of MSC with loop

tral in our approach. Recall that we call services overlapping
if they share at least two roles and at least one message be-
tween shared roles. join synchronizes its operands on shared
messages, while imposing no ordering on all others; in other
words, a join is the parallel composition of its operands,
with the restriction that the operands synchronize on shared
messages (cf. middle part of Fig. 11). Interactions that are
shared in both services will occur only once in the resulting
service. This means, that all interactions causally before a
shared interaction within both services must have occurred
before the shared interaction can itself happen. Note, that
the join operator does not change the order of interactions
in any of the operands. It only restricts the occurrence of
shared messages. For a formal definition of the join seman-
tics, see [13, 15].

The translation of services joined using the join operator
requires a high degree of coordination. For the join, we need
to synchronize the interactions around common messages.
We also have to ensure that the overlapping interactions
only happen once. To achieve this, we define conditional
variables that help us track the interactions.

public aspect Servicel{

pointcut Interaction_m1(B b):
B target(b) && (call(void m1()));
after (B b) : Interaction_m1(b) {

msc Servicel
A

mlQ m();
d }
mQ pointcut Interaction m(B b):
m3(0 g target(b) && (call(void m()));
-« after (B b) : Interaction_m(b) {
A a = getARole();
[[am30;

3

public aspect Service2{

B pointcut Interaction_m4(B b):
target(b) && (call(void m4()));

‘ after (B b) : Interaction_m4(b) {

msc Service2
A

40 m();
m() }
» pointcut Interaction m(B b):
m5() target(b) && (call(void m()));
< after (B b) : Interaction_m(b) {
- . A panoss
a.m5();

3

Figure 10: Translation of Operand MSCs for the
join Operator in Fig. 11

In Fig. 10, we define two services Servicel and Service2
where the message m() is common to both of them. We have
to ensure that when these two services are joined as speci-
fied in Fig. 11 there is only one occurrence of this message.
We also have to ensure that both messages m1() in Servicel
and m4() in Service2 occur before m() can occur. The ac-
tual series of interactions that happen when the two services
are joined is shown in the center of Fig. 11. The two con-

ditional variables m! and m/ in the translation keep track
of the occurrence of the respective messages. The purpose
of using join is to provide the developer with the means
to independently define two services and subsequently be
able to compose them as shown in Fig. 11. This decouples
the service definitions and enables us to powerfully compose
complex system behavior by joining separate, easy to un-
derstand services.

Thus, the join of the two services holds back the message
m() until both messages m1() and m4() have been received.
This is done by specifying the advice “around” a pointcut.
The “around” advice is executed instead of the pointcut,
and the pointcut is executed with the help of the proceed
call only if the join conditions are satisfied. The aspect
for ServiceJoin updates the flags when m1() and m/() are
received, and triggers m() when both flags are set, see right
part of Fig. 11.

public aspect ServiceJoin {
boolean m1, m4;

msc ServiceJoin

msc ServiceJoin
A

pointcut Interaction_ml(B b):
target(b) && (call(void m1()));
after (B b) : Interaction_m1(b) {
ml = true;
if (m1 && m4) m();

H
pointcut Interaction_m4(B b):
target(b) && (call(void m4()));
after (B b) : Interaction_m4(b) {
m4 = true;
if (m1 && m4) m();

¥
pointcut Interaction_m(B b):
target(b) && (call(void m())):
around (B b) : Interaction_m(b) {
if (ml && m4){
ml = false;.m4 = false;
P! (b);

333

Figure 11: Translation of MSC with join

The shared messages of both services need to be identi-
fied by the aspect implementer. As we will show in Sect. 3.7,
however, this step can be automated within a tool. Note also
that the join operator permits more than two operands. In
this case, the translation procedure as given above general-
izes straightforwardly.

MSC references and HMSCs: MSC references represent
“calls” to services from within an MSC specification. Fig. 11
shows an example. The join operator contains references to
the two joined services in the operands. MSC references
allow us to avoid redundancy and to provide a simple struc-
turing mechanism for MSCs. Because the referenced MSCs
can be fully expanded into the referencing MSC, the trans-
lation to aspects is covered by the explanations above. High
Level MSCs (HMSCs) (cf. Fig. 3(a)) simplify graphical spec-
ification of sequencing, alternatives and loops. In [13], we
have given a transformation algorithm for HMCSs into basic
MSCs. This transformation is straightforward albeit tedious
for more complex HMSCs. The translation of the resulting
basic MSCs again follows the procedure as defined above.

Define build file for service repository: Based on the
roles and services we created, we now define a build file that
lists all classes and aspects in order to provide a complete
role implementation.

3.5 Translating Components

We can now define multiple component configurations for
the system in development. We create different component

68

types according to the roles they play in specific architec-
tures.

Define classes for component types: We define one
class for each component type in a specific configuration.
These classes are the same and can be reused for other con-
figurations that make use of the same component types.

Define aspects for each component configuration:
We establish a specific mapping of roles to a component type
by introducing attributes into the component type classes.
We do this again with the help of intertype declarations.
We define one aspect for each component configuration to
reflect the roles the components play in that configuration.
After the weaving process the component classes will contain
fields with references to the roles they play — together with
accessor methods — and thus provide access to the roles’
implementation.

3.6 Defining the Architecture

To finally establish a specific architecture, we create a
build file that selects the build file for the service reposi-
tory and the classes and aspects for a specific component
configuration. As a consequence, we can create multiple
configurations by defining multiple architecture build files
which differ only in the classes and aspects selected for a
component configuration. The code for the services remains
unchanged.

3.7 Towards an Automation of the Translation
Procedure

In the previous sections we have defined a precise and
unambiguous procedure to translate a service model into
executable prototypes. While we have geared the presen-
tation to supporting a manual translation, the procedure is
suitable to be automated by a tool — provided, of course,
that the service model is present in a machine-readable for-
mat. Such a tool removes most of the manual effort from the
implementers and enables rapid, cost-effective generation of
architecture exploration prototypes. Multiple architecture
alternatives can be evaluated with very little effort within
a short time. In the following we will describe a tool we
are developing that fulfills these requirements and allows us
to generate customized AspectJ implementations of service
specifications.

The aspect generator makes use of parts of the tool chain
described in [16]. The starting point for this chain is a
modeling tool for interaction specifications, called M2Code.
M2Code uses Microsoft Visio as graphical front-end for edit-
ing MSCs and HMSCs to model service specifications. Be-
hind the scenes, M2Code captures the modeled MSCs from
Visio in form of an integrated interaction-based data model.
M2Code has algorithms for automatically translating MSCs
into state machines [14] — these state machines are saved by
M2Code together with the rest of the interaction model into
an XML file; this XML file is the input for the M2Aspects
generator for AspectJ code. M2Aspects is the component
implementing the procedure as described above. In addition
to the service specifications in form of MSCs, it also requires
the specification of target architecture configurations in form
of Service-ADL files. Currently, the user has to manually
provide these files. We are working on creating a user inter-
face for role to component mappings and several alternative
architecture configurations. Once invoked, M2Aspects cre-
ates all Java classes, aspects and AspectJ build files required

for a compilable and runnable prototype. Fig. 12 shows the
aspect generation tool and an overview over necessary input
and created output artifacts.

Service-ADL

A

AspectJ Code
M2 ASp ects o | public aspect svetanager ¢

_m(Bb).
target) & (callivoid mQ)):

A

after (B b Interaction_m(b) {
mi0)

Figure 12: Aspect Generation Tool Chain

The AspectJ prototype code generator can be invoked sev-
eral times for several different architecture configurations
without having to change the service repository. This sup-
ports a comparative exploration of alternative component
architectures that provide the same set of services to the
environment. We will show in Sect. 4 how the prototypes
can be further enhanced with performance-measuring code
for evaluation — AspectJ is used here as well.

4. EXPERIENCES AND EVALUATION

We have applied our approach extensively by evaluating
and optimizing different architectures for the CTAS case
study, as documented in [20]. Our architecture exploration
included several steps. First, we have evaluated the first
four architecture alternatives shown in Fig. 3(f) by apply-
ing the above described translation procedure to create ex-
ecutable prototypes out of service models. We have defined
new services to perform performance measurements to eval-
uate the prototypes. Our approach made it very easy to
weave these services as aspects into the existing source code
without changing any of the existing services.

The above exploration lead to the assumption that a dif-
ferent role set, incorporating a Forwarder role mediating be-
tween Manager and Broadcaster, is more effective in reduc-
ing the execution time required to perform a weather update
cycle — a critical part of the system. We followed our process
of Fig. 2 and iteratively evolved the architecture, role and
service specifications. This was very simple and fast because
we could apply the changes to our strictly decoupled service
model and the similarly separated AspectJ implementation
artifacts. The new architecture variant turned out to be
most efficient. We finally explored systematically multiple
instantiations of this architecture with different numbers of
Forwarder components. By measuring the performance of
different prototypes we could optimize the component con-
figuration to find the “sweet spot”.

For performance evaluation, we measured absolute elapsed
time as well as logical communication latency using the no-
tion of logical clocks [18]. Evaluating absolute times as well
as relative latency values helped us to abstract from the com-
munication infrastructures used. We could select architec-

69

ture configurations that are optimized in terms of communi-
cations overhead and that perform similarly well in concrete
deployments on specific messaging infrastructures. Details,
statistics and performance charts are documented in [20].

Overall, the translation procedure resulted in the follow-
ing numbers of artifacts: we created six Java classes for
the roles (including the base class), one aspect defining the
role configuration, eight aspects defining the services of the
CTAS weather update system, four classes containing imple-
mentations of the local actions, 16 classes representing the
different messages between the roles and one service reposi-
tory build file. All these files were created once and remained
unchanged in the subsequent steps. For different architec-
ture variants to compare, we created four classes defining the
component types, one aspect defining the component config-
uration (mapping of roles to components) and one build file
listing the full set of files to be woven together to create the
executable prototype. Component configuration and build
files were different for each architecture variant; the compo-
nent type classes could be reused. The performance evalua-
tion code required the introduction of three new role classes
and four new service aspects into the service repository.

The overall code size was 115 KB of Java and AspectJ
code. We organized the different types of source code files
in an intuitive directory and package hierarchy. Creating
and exploring different architecture variants was very easy
and cost effective. An analysis shows that the five differ-
ent architectures could be generated with significantly less
effort as compared to writing each prototype from scratch.
The ease of “weaving-in” analysis code allowed us to per-
form measurements on the architectures that would have
been difficult and cumbersome to achieve for five separately
coded prototypes. Additionally, the created source code re-
mained manageable when service repository changes were
necessary. Modifications could be kept local and contained
which reduced the potential of unintended side-effects or er-
rors. Overall, this together with the improved understand-
ability contributed significantly to an efficient prototyping
and evaluation process.

5. RELATED WORK

Our approach is related to the Model-Driven Architecture
(MDA) [22] and architecture-centric software development
(ACD) [31]; similar to MDA and ACD we also separate the
software architecture into abstract and concrete models. In
contrast to MDA and ACD, however, we consider services
and their defining interaction patterns as first-class modeling
elements of both the abstract and the concrete models. Fur-
thermore, we do not apply a transformation from abstract
to concrete model. Our work is related to the work of Ba-
tory et al [28]; we also identify collaborations as important
elements of system design and reuse. Our approach in par-
ticular makes use of MSCs as notation and is independent
from any programming language constructs.

We consider services as aspects in the sense of AOP [11]
at the modeling level. In Aspect-Oriented Modeling [5],
cross-cutting concerns are captured as design aspects. In we
model interaction patterns that span multiple components,
the services, as aspects. In the tradition of [32] the role
concept is also adopted in [5] to define aspects abstractly.
[12] discusses role models and their properties in object-
orientation. The work in [7] makes use of roles to capture
design patterns using aspects. An early approach to map

collaboration-based designs with roles to AOP can be found

n [24]. All of these approaches, however, lack the “join op-
erator” that we use to compose overlapping services based
on shared messages.

Often, the notion of service-oriented architectures is iden-
tified with technical infrastructures for implementing ser-
vices, including the popular web-services infrastructure [29].
Our work, in contrast, supports finding the services that can
later be exposed either as web-services, or implemented as
“internal” services of the system under consideration. Be-
cause our entire approach is interaction-based it is perfectly
general with respect to the types of architectures we can
model — in this paper we have modeled, for instance, a dis-
tributed version of the Observer pattern [6], other architec-
tural styles such as pipes and filter and layered architectures
[27] can be captured in the same way by extracting their
characteristic interaction patterns and use cases.

Our work is further related to the early performance test-
ing approach of [3], which makes use of the early availability
of off-the-shelf components, and tests performance relevant
interactions of critical use cases. Similar to our approach, [3]
concentrates on interactions. Our approach differs in that
it is fully model-based and allows for automatic generation
of testing prototypes. The PPCB framework and modeling
approach [19] aims at performance predication with the help
of benchmarking key architectural elements. The so gained
results improve the performance prediction model for the
distributed application. The authors apply statistical meth-
ods to analyze the prediction results and check accuracy.

An alternative approach for architecture exploration to
the one presented is to generate different prototypes directly
from the model using a code generator. In [16], we presented
a tool chain that allows us to generate executable service-
based systems from service models. While this approach
provides excellent possibilities for conformance testing and
immediate deployment on different target environments, we
found it less effective for comparative architecture explo-
ration. The flexibility of creating source code that sepa-
rates the different system services from the possible target
architecture configurations and from performance measure-
ment code provides the developer with a powerful toolset
for efficient architecture exploration. Furthermore, the full
flexibility that source code provides remains.

6. DISCUSSION

Our translation from partial interaction specifications in
form of MSCs into AspectJ code can be viewed as “aspects
on steroids” in the sense that it translates each service into
an AspectJ aspect. At first sight this indicates a major lim-
itation of this approach: the final code emerges only from
the weaving of all classes containing structural information
and all aspects capturing role configurations, interactions,
and local actions; the complete picture of the behaviors of
each individual component is only contained in the result-
ing Java bytecode. Clearly, this prevents easy refinement
on the component level. Recall, however, that we set out to
develop our approach for efficient and effective architecture
exploration, where a lot depends on the cross-cutting inter-
action rather than on the detailed, fine-grained behavior of
individual components, which can be developed after set-
tling on one component configuration. We see our approach
most effective for exploring different choices on the archi-
tectural level; the services as captured for the architecture

70

exploration can, of course, still inform the implementation
of the final deployment architecture.

In general, there may be interactions between different
aspects; in other words the advice provided by multiple as-
pects might affect the same pointcut. This might lead to
unexpected states or results, for instance when two services
are joined in our implementation. However, such unwanted
interactions can already be detected on the level of interac-
tion patterns in our service model and are thus best handled
on this level, not on the level of aspects. The tool chain we
have referred to in Sect. 3.7 has elements for formal verifi-
cation of service interactions that resolve this problem [16].

The approach we present here improves upon our earlier
work in [17], by using pointcuts and advice to represent in-
teraction patterns. This provides better decoupling between
the roles and the interaction patterns they participate in as
compared to the class-based approaches in [23] and [9].

7. CONCLUSIONS AND OUTLOOK

Thorough exploration of architectural alternatives is par-
ticularly important for complex distributed and reactive sys-
tems. However, tight coupling between the domain logic
and the implementation infrastructure, as well as prohibitive
costs for building prototypes needed to evaluate multiple ar-
chitectures often are stumbling blocks for architecture explo-
ration.

In this paper we have shown how to define software ar-
chitectures, describe measurements and explore architecture
alternatives using the notion of services and their embodi-
ment as aspects in AspectJ. Services are partial interaction
specifications of systems. We have decoupled the services
provided by the system from the many target architectures
that can implement the same set of services. We have in-
troduced a translation process turning service-oriented ar-
chitecture specifications into AspectJ aspects. This process
exploits AspectJ’s weaving capability to map service spec-
ifications to target architectures. We have shown how to
automate this procedure and described our tool chain to
generate AspectJ prototypes from service models specified
using our Service-ADL.

The same translation process can also be used for services
describing measurements used in the evaluation of an ar-
chitecture. AspectJ’s weaving joins the aspects needed for
the evaluation with those for the core functionality. Conse-
quently, the evaluation services are decoupled from the rest
of the architecture; the architecture does not need to change
for the purposes of the evaluation. The examples we pre-
sented also demonstrate how easy it is to iteratively change
a given architecture — only a subset of the service repository
needed to be modified to fundamentally change the broad-
casting architecture for the CTAS case study we used as a
running example. Performing these changes and the sub-
sequent exploration was a matter of minutes in the given
system. The example we used is a representative for many
similar systems from database systems to business informa-
tion systems using web services as communication mecha-
nism between distributed components.

Future work will include enhancing the automated trans-
lation from MSCs to aspects, and investigation of the rela-
tionship between our technique for architecture exploration
with runtime verification techniques, such as [26]. Another
avenue for investigation is how the generated aspect code
can be consolidated into a fewer number of files once a com-

ponent architecture has been chosen. This will allow us to
use the generated AspectJ code even better as an evolu-
tionary prototype instead of a valuable, cheap but mostly
explorative prototype.

8.

ACKNOWLEDGMENTS

Our work was partially supported by the UC Discovery
Grant and the Industry-University Cooperative Research
Program, as well as by funds from the California Institute for
Telecommunications and Information Technology (Calit2).
Further funds were provided by the Deutsche Forschungsge-
meinschaft (DFG) within the project InServe. We are grate-
ful to the anonymous reviewers for insightful comments.

9.
(1]

(2]

(3]

(4]

(5]

[6]

[7]

(8]

(9]

[10]

(11]

(12]

(13]

(14]

(15]

[16]

REFERENCES

M. Broy and I. H. Kriiger, editors. Pre-Proceedings of the
Automotive Software Workshop San Diego 2004. UCSD,
2004. http://aswsd.ucsd.edu/2004.

P. Clements, R. Kazman, and M. Klein. Fvaluating
Software Architectures — Methods and Case Studies.
Addison-Wesley, 2002.

G. Denaro, A. Polini, and W. Emmerich. Early
performance testing of distributed software applications. In
WOSP ’04: Proceedings of the 4th international workshop
on Software and performance, pages 94-103. ACM Press,
2004.

E. Evans. Domain Driven Design. Addison-Wesley, 2003.
R. France, G. Georg, and I. Ray. Supporting
Multi-Dimensional Separation of Design Concerns. In The
8rd AOSD Modeling With UML Workshop, 2003.

E. Gamma, R. Helm, R. Johnson, and J. Vlissides. Design
Patterns. Elements of Reusable Object-Oriented Software.
Addison-Wesley, 1995.

J. Hannemann and G. Kiczales. Design pattern
implementation in Java and AspectJ. In Proceedings of
OOPSLA’02, pages 161-173. ACM Press, 2002.

ITU-TS. Recommendation Z.120 : Message Sequence
Chart (MSC). Geneva, 1996.

E. Kendall. Aspect Oriented Programming for Role
Models. In International Workshop on Aspect Oriented
Programming at ECOOP, volume 1743 of LNCS, pages
294-295. Springer Verlag, 1999.

G. Kiczales, E. Hilsdale, J. Hugunin, M. Kersten, J. Palm,
and W. G. Griswold. An overview of AspectJ. In
Proceedings of the 15th European Conference on
Object-Oriented Programming, volume 2072 of LNCS,
pages 327-353. Springer Verlag, 2001.

G. Kiczales, J. Lamping, A. Mendhekar, C. Maeda,

C. Lopes, J.-M. Loingtier, and J. Irwin. Aspect Oriented
Programming. Technical report, Xerox Corporation, 1997.
B. Kristensen. Object-Oriented Modeling with Roles. In
Proceedings of the 1st Conference on Object Information
Systems, 1996.

I. Kriiger. Distributed System Design with Message
Sequence Charts. PhD thesis, Technische Universitét
Miinchen, 2000.

I. Kriiger, R. Grosu, P. Scholz, and M. Broy. From MSCs
to Statecharts. In F. J. Rammig, editor, Distributed and
Parallel Embedded Systems, pages 61-71. Kluwer Academic
Publishers, 1999.

I. H. Kriiger. Capturing Overlapping, Triggered, and
Preemptive Collaborations Using MSCs. In M. Pezze,
editor, FASE 2003, volume 2621 of LNCS, pages 387—402.
Springer Verlag, 2003.

I. H. Kriiger, J. Ahluwalia, D. Gupta, R. Mathew,

P. Moorthy, W. Phillips, and S. Rittmann. Towards a
Process and Tool-Chain for Service-Oriented Automotive
Software Engineering. In Proceedings of the ICSE 2004

71

(17]

(18]

(19]

20]

(21]

(22]

23]

(24]

25]

[26]

27]

(28]

(29]

(30]

(31]
(32]

(33]

(34]

Workshop on Software Engineering for Automotive
Systems (SEAS), 2004.

I. H. Kriiger and R. Mathew. Systematic Development and
Exploration of Service-Oriented Software Architectures. In
Proceedings of the 4th Working IEEE/IFIP Conference on
Software Architecture (WICSA), pages 177-187. IEEE,
2004.

L. Lamport. Time, Clocks, and the Ordering of Events in a
Distributed System. Communications of the ACM,
27(7):558-565, July 1978.

Y. Liu and I. Gorton. Accuracy of Performance Prediction
for EJB Applications: A Statistical Analysis. In
Proceedings of the 4th Int. Workshop on Software
Engineering and Middleware (SEM’2004), volume 3437 of
LNCS, pages 185-198, 2005.

R. Mathew. Systematic Definition, Implementation and
Evaluation of Service-Oriented Software. Master’s thesis,
University of California, San Diego, 2004.

R. Mathew and I. H. Kriiger. Full Service Specification for
CTAS System, 2006. http://sosa.ucsd.edu/
publications/icse2006/CTASServiceSpecification.pdf.
OMG Model Driven Architecture.
http://www.omg.org/mda.

B. Paech. A Framework for Interaction Description with
Roles. Technical Report TUM-19731, Technische
Universitat Miinchen, 1997.

E. Pulvermiiller, A. Speck, and A. Rashid. Implementing
Collaboration-Based Designs Using Aspect-Oriented
Programming. In TOOLS ’00: Proc. of the Technology of
Object-Oriented Languages and Systems (TOOLS 34°00),
pages 95-104. IEEE Computer Society, 2000.

SCSEM 2003 Case Study. 2nd Int. Workshop on Scenarios
and State Machines: Models, Algorithms, and Tools. CTAS
Case study Overview, Requirements, 2002. http:
//www.doc.ic.ac.uk/~su2/SCESM/CS/requirements.pdf.
K. Sen, G. Rosu, and G. Agha. Runtime Safety Analysis of
Multithreaded Programs. Proceedings of the 10th European
Software Engineering Conference and the 11th ACM
SIGSOFT Symposium on the Foundations of Software
Engineering, pages 337-346, 2003.

M. Shaw and D. Garlan. Software Architecture,
Perspectives on an Emerging Discipline. Prentice Hall,
1996.

Y. Smaragdakis and D. Batory. Implementing Layered
Designs with Mixin Layers. In Proceedings of ECOOP
1998, volume 1445 of LNCS, pages 550-570. Springer
Verlag, 1998.

J. Snell, D. Tidwell, and P. Kulchenko. Programming Web
Services with SOAP. O’Reilly, 2002.

D. Trowbridge, U. Roxburgh, G. Hohpe, D. Manolescu,
and E. Nadhan. Integration Patterns. Patterns &
Practices. Microsoft Press, 2004.

UML 2.0. http://wuw.omg.org/uml.

M. VanHilst and D. Notkin. Using Role Components to
Implement Collaboration-Based Designs. In Proceedings of
OOPSLA’96, pages 359-369. ACM Press, 1996.

Xerox Corp., Palo Alto Research Center Inc. The AspectJ
Programming Guide. http:
//wuw.eclipse.org/aspectj/doc/released/progguide,
2004.

P. Zave. Feature-Oriented Description, Formal Methods,
and DFC. In Proceedings of the FIRFEworks Workshop on
Language Constructs for Describing Features, pages 11-26.
Springer-Verlag, 2001.

