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ABSTRACT
This paper presents a CORBA-compliant middleware architecture
that is more flexible and extensible compared to standard CORBA.
The portable design of this architecture is easily integrated in any
standard CORBA middleware; for this purpose, mainly the han-
dling of object references (IORs) has to be changed. To encapsulate
those changes, we introduce the concept of a generic reference
manager with portable profile managers. Profile managers are
pluggable and in extreme can be downloaded on demand. To illus-
trate the use of this approach, we present a profile manager imple-
mentation for fragmented objects and another one for bridging
CORBA to the Jini world. The first profile manager supports truly
distributed objects, which allow seamless integration of partition-
ing, scalability, fault tolerance, end-to-end quality of service, and
many more implementation aspects into a distributed object without
losing distribution and location transparency. The second profile
manager illustrates how our architecture enables fully transparent
access from CORBA applications to services on non-CORBA plat-
forms.

Categories and Subject Descriptors
D.1.5 [Programming Techniques]: Object-oriented Program-
ming; D.2.7 [Software Engineering]: Distribution, Maintenance,
and Enhancement - extensibility, portability; D.2.12 [Software En-
gineering]: Interoperability - distributed objects; 

General Terms
Design, Management, Standardization

Keywords
Software architecture for middleware; extensible and reconfigura-
ble middleware; middleware interoperability; CORBA

1. INTRODUCTION
Middleware systems are heavily used for the implementation of
complex distributed applications. Current developments like mo-
bile environments and ubiquitous computing lead to new require-
ments that future middleware systems will have to meet. Examples
for such requirements are the support for self-adaptation and self-
optimisation as well as scalability, fault-tolerance, and end-to-end
quality of service in the context of high dynamics. Heterogeneity in
terms of various established middleware platforms calls for cross-
platform interoperability. In addition, not all future requirements
can be predicted today. A proper middleware design should be well-
prepared for such future extensions.
CORBA is a well-known standard providing an architecture for ob-
ject-based middleware systems [5]. CORBA-based applications are
built from distributed objects that can transparently interact with
each other, even if they reside on different nodes in a distributed en-
vironment. CORBA objects can be implemented in different pro-
gramming languages. Their interface has to be defined in a single,
language-independent interface description language (IDL). Prob-
lem-specific extensions allow to add additional features to the un-
derlying base architecture.
This paper discusses existing approaches towards a more flexible
middleware infrastructure and proposes a novel modularisation pat-
tern that leads to a flexible and extensible object middleware. Our
design separates the handling of remote references from the object
request broker (ORB) core and introduces the concept of ORB-in-
dependent portable profile managers, which are managed by a ge-
neric reference manager. The profile managers encapsulate all
tasks related to reference handling, i.e., reference creation, refer-
ence marshalling and unmarshalling, external representation of ref-
erences as strings, and type casting of representatives of remote ob-
jects. The profile managers are independent from a specific ORB,
and may even be loaded dynamically into the ORB. Only small
modifications to existing CORBA implementations are necessary
to support such a design.
Our architecture enables the integration of a fragmented object
model into CORBA middleware platforms, which allows transpar-
ent support of many implementation aspects of complex distributed
systems, like partitioning, scalability, fault-tolerance, and end-to-
end quality-of-service guarantees. It also provides a simple mecha-
nism for the integration of cross-platform interoperability, e.g., the
integration with services running on non-CORBA middleware plat-
forms, like Jini or .NET remoting. Our design was named AspectIX
and implemented as an extension to the open-source CORBA im-
plementation JacORB, but is easily ported to other systems.
This paper is organised as follows: The following section discusses
the monolithic design of most current middleware systems in more
detail. It addresses the extension features of CORBA and discusses
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their lack of flexibility. Section 3 explains our novel approach to
middleware extensibility based on a generic reference manager
with pluggable profile managers. In Section 4, two CORBA exten-
sions and the corresponding profile managers are presented: One
for integrating the powerful fragmented-object model into the sys-
tem, and one for transparently accessing Jini services from CORBA
applications. Section 5 evaluates the implementation effort and run-
time overhead of our approach, and Section 6 presents some con-
cluding remarks. 

2. MIDDLEWARE ARCHITECTURE AND 
EXTENSION POINTS

2.1 Standard CORBA Architecture
CORBA uses a monolithic object model: CORBA objects have to
reside on a specific node and are transparently accessed by client-
side proxies called stubs. The stubs use an RPC-based communica-
tion protocol to contact the actual object, to pass parameters, and to
receive results from object invocations. A CORBA-based middle-
ware implementation is free to choose the actual protocol, but has
to support the Internet Inter-ORB Protocol (IIOP) for interoperabil-
ity.
CORBA uses interoperable object references (IORs) to address re-
mote objects. The IOR is a data structure composed of a set of pro-
files. According to the standard, each profile may specify contact
information of the remote object for one specific interaction proto-
col; for interoperability between ORBs of different vendors, an
IIOP profile needs to be present. In addition to protocol profiles, the
IOR may contain a set of tagged components. Each tagged compo-
nent is a name-value pair with a unique tag registered with the OMG
and arbitrary associated data; these components define protocol-in-
dependent information, like a unique object ID.
In standard CORBA, IORs are created internally at the server ORB.
A server application creates a servant instance and registers the
servant with the ORB (or, to be more specific, with an object adapt-
er of the ORB). Usually this IOR contains an automatically created
IIOP profile that contains hostname, port, object adapter name, and
object ID for accessing the object via IIOP. Additionally, it may
contain other profiles representing alternative ways to access the
object.
An IOR can be passed to remote clients, either implicitly or explic-
itly. If a reference to a remote object is passed as a parameter or re-
turn value, the IOR data structure will be implicitly serialised and
transferred. Upon deserialisation, the receiving client ORB auto-
matically instantiates a local stub for accessing the remote object,
initialised with the information available in the IOR. If multiple
profiles exist in the IOR, the ORB may use a vendor-specific strat-
egy to select a single profile that is understood by the ORB. The
IIOP profile should be understood by all ORBs. Beside implicit
transfer, an explicit transfer is possible. The server application may
call a object_to_string method at the ORB, which serial-
ises the IOR and transforms it to a string, an IOR-URL. This string
can be transferred to a client; the client application may call the lo-
cal ORB method string_to_object to create the stub for
the remote object referenced by the IOR. 

2.2 Status Quo of Extensible Middleware
Many practical tasks—e.g., authorisation, security, load balancing,
fault tolerance, or special communication protocols—require ex-
tensions to the basic CORBA model. For example, fault-tolerant
replication requires that multiple communication addresses (i.e., of
all replicas) are known to a client. Typically this means that these
addresses have to be encoded into the remote reference; binding to

and invoking methods at such a remote object require a more com-
plex handling at the client side compared to the simple stub-service
design. As a second example, a peer-to-peer-like interaction be-
tween users of a service might sometimes be desired. In this case,
the client-server structure needs to be completely abandoned.
A good example for the lack of extensibility of standard CORBA is
the fault-tolerant CORBA standard (FT-CORBA) [5, Chapter 23].
It was not possible to define this standard in a way that all platform
implementations are portable across different ORBs. Instead, each
FT-CORBA-compliant middleware has its vendor-specific imple-
mentation inside of a single ORB. A system design such as we en-
vision allows to implement a generic “FT-CORBA plugin” that
makes any ORB, independent of its vendor, aware of fault-tolerance
mechanisms.
Existing concepts for interception, custom object adapters, and
smart proxies provide some mechanisms for such extensions. In
part, they are included in the CORBA standard; in part, they are
only available in non-standardised middleware implementations.
The portable interceptor specification supports interception within
the official CORBA standard. The specification defines request in-
terceptors and IOR interceptors as standardised way to extend the
middleware functionality. Using request interceptors, several hooks
may be inserted both at client and at server side to intercept remote
method calls. These hooks allow to redirect the call (e.g., for load
balancing), abort it with an exception (e.g., for access restriction),
extract and modify context information embedded in the request,
and perform monitoring tasks. A direct manipulation of the request
is not permitted by the specification. Multiple request interceptors
may be used simultaneously. Interceptors add additional overhead
on each remote method invocation; furthermore, they do not allow
to modify the remote invocations completely. IOR interceptors, on
the other hand, are called when a POA needs to create an IOR for a
service. This allows to insert additional data into the IOR (e.g., a
tagged component for context information that is later used in a re-
quest interceptor).
CORBA allows to define custom POA implementations. The POA
is responsible for forwarding incoming invocation requests to a
servant implementation. This extension point allows to integrate
server-side mechanisms like access control, persistence, and life-
cycle management. It has, however, no influence on the interaction
of clients with a remote service.
Beside the standardised IIOP protocol, any CORBA implementa-
tion may support custom invocation protocols. Additional IOR pro-
files may be used for this purpose. However, establishing such ex-
tensions is not standardised and every vendor may include his own
proprietary variant, which limits the interoperability of this ap-
proach.
Smart proxies are a concepts for extending ORB flexibility, which
is not yet standardised by the OMG, but which is implemented by
some ORB vendors, e.g., in the ACE ORB/Tao [11]. They allow to
replace the default CORBA stub by a custom proxy that may imple-
ment some extended functionality. As such, they allow to imple-
ment parts of the object’s functionality at the client side.
Closely related to our research is the work on OpenORB at Lancas-
ter University [1]. This middleware project uses reflection to define
dynamic (re)configuration of componentised middleware services.
The main difference to our design is that it completely restructures
the middleware architecture, whereas our concept with a reference
manager and pluggable profile managers is integrated in any exist-
ing CORBA implementation with only minimal modifications. It
nevertheless provides equal flexibility forreconfigurations. Compo-
nent technology could be used in the internal design of complex
profile managers.
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PolyORB [10] is a generic middleware system that aims at provid-
ing a uniform solution to build distributed applications. It supports
several personalities both at the application-programming interface
(API) level and the network-protocol level. The personalities are
compliant to several existing standards. This way, it provides mid-
dleware-to-middleware interoperability. Implementations of per-
sonalities are specific to PolyORB, unlike our profile managers,
which are intended to be portable between different ORB imple-
mentations. We do not address the issue of genericity at the API lev-
el. 

3. DESIGNING A GENERIC REFERENCE 
MANAGER

The fundamental extension point of an object middleware is the
central handling of remote references. It is the task of any object
middleware to provide mechanisms to create remote references, to
pass them across host boundaries, and to use them for remote invo-
cations. As explained above, merely providing extension points at
the invocation level is insufficient for several complex tasks. The
essential point of our work is to provide a very early extension point
by completely separating the reference handling from the middle-
ware core.
The impact of such a design is not only that a single middleware im-
plementation gets more flexible. It is also highly desirable to pro-
vide this extensibility in an vendor-independent way. That is, an ex-
tension module should be portable across different middleware im-
plementations. Furthermore, these extensions should be dynami-
cally pluggable and, in the extreme, be loaded on demand by the
middleware ORB.
Our design provides such a middleware architecture. It is currently
designed as an extension to standard CORBA, and maintains inter-
operability with any legacy CORBA system. Our design represents,
however, a generic design pattern that easily applies to any other
object middleware.
The only prerequisite made is that remote references are represent-
ed by a sufficiently extensible data structure. In CORBA, the Inter-
operable Object Reference (IOR) provides such a data structure.
Each profile of the IOR represents an alternative way to contact the
object. Each profile type has its own data-type definition, described
in CORBA IDL. Hence, at the IOR level, CORBA is open to arbi-
trary extensions. The IOR handling, however, is typically encapsu-
lated in the internals of a CORBA-compliant ORB implementation.
Currently, if a vendor uses the power of IORs for custom exten-
sions, these will only be implemented internally in the respective
ORB. The extension will not be portable.

3.1 Overview of our Design
Our approach introduces a generic interface for plugging in portable
extension modules for all tasks related to IOR profile handling. This
makes it easy to support extended features like fault-tolerant repli-
cation, a fragmented object model, or transparent interaction with
other middleware systems. This improves the flexibility of a
CORBA middleware. We factored out the IOR handling of the
ORB and put it into pluggable modules. This way, custom handlers
for IOR profiles may be added to the ORB without modifying the
ORB itself. Dynamically downloading and installing such handlers
at run-time further contributes to the richness of this approach. 
Factoring out the basic remote-reference handling of the ORB core
into a pluggable module affects five core functions of the middle-
ware: first, the creation of new object references; second, the mar-
shalling process, which converts object references into an external-
ly meaningful representation (i.e., a serialised IOR); third, the un-
marshalling process, which has to convert such representation into

a local representation (e.g., a stub, a smart proxy, or a fragment);
and fourth, the explicit binding operation, which turns some sym-
bolic reference (e.g., a stringified IOR) into a local representation
and vice versa. A fifth function is not as obvious as the others: The
type of a remote object reference can be changed as long as the re-
mote object supports the new type. In CORBA this is realised by a
special narrow operation. As in some cases the narrow operation
needs to create a new local representation for a remote object, this
operation has to be considered too.
An extension to CORBA will have to change all five functions for
its specific needs. Thus, we collect those function in a module that
we call a profile manager. A profile manager is usually responsible
for a single type of IOR profile, but there may be reasons to allow
profile managers to manage multiple profile types. Profile manag-
ers are pluggable modules. A part of the ORB called reference man-
ager manages all available profile managers and allows for registra-
tion of new profile-manager modules.
The basic design can be found as a UML class diagram in Fig. Fig-
ure. Sometimes an application needs to access the reference manag-
er directly. By calling resolve_initial_references(), a
generic operation for resolving references to system-dependent ob-
jects, it can retrieve a reference to the reference manager pseudo ob-
ject from the ORB. At the reference manager, profile managers can
be registered. As profile managers are responsible for a single or for
multiple IOR profile types, the registration requires a parameter
identifying those profile types. For identification a unique profile
tag is used. Those tags are registered with the OMG to ensure their
uniqueness. With the registration at the reference manager, it is ex-
actly known which profile managers can handle what profile types.
Several tasks of reference handling are invoked at the reference
manager and forwarded to the appropriate profile manager. The ar-
chitecture resembles the chain-of-responsibility pattern introduced
by Gamma et al. [2].

3.2 Refactoring the Handling of References
In the following, we describe the handling of the five core functions
of reference handling in our architecture:
Creating object references. In traditional CORBA, new object
references are created by registering a servant at a POA of the serv-
er. The POA usually maintains a socket for accepting incoming in-
vocation requests, e.g., in form of IIOP messages. The POA en-
codes the contact address of the socket into an IIOP profile and cre-
ates an appropriate IOR. The details of the POA implementation

ProfileManager

+insertProfile: void

+profileToObject:

CORBA::Object

+objectToIor: IOR

+iriToIor: IOR

+iorToIri: string

+narrow: CORBA::Object

ReferenceManager

+setObjID: void

+getObjID: string

+createNewIor: IOR

+registerProfileManager: void

+getProfileManager: ProfileManager

+getProfileManagers: ProfileManager[]

+iorToObject: CORBA::Object

+objectToIor: IOR

+objectToIri: string

+iorToString: string

+stringToIor: IOR

+narrow: CORBA::Object

ORB

1 n

Figure 1: UML class diagram of the CORBA extension
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varies from ORB to ORB. In general, the registration at the POA
creates an IOR and an internal data structure containing all neces-
sary information for invocation handling.
To be as flexible as possible our extension completely separates the
creation of the IOR from the handling in a POA. The creation of an
IOR requires the invocation of createNewIor() at the refer-
ence manager. As standard CORBA is not able to clearly identify
object references referring to the same object, we added some oper-
ations to the reference manager that allow for integrating a univer-
sally unique identifier (UUID) into the IOR. The UUID is stored as
a tagged component and in principle can be used by any profile
manager.
For filling the IOR with profiles, an appropriate profile manager
must be identified. Operations at the reference manager allow the
retrieval of profile managers being able to handle a specific profile
type. A profile manager has to provide an operation insertPro-
file() that adds a profile of a specific type into a given IOR. This
operation has manager-dependent parameters so that each manager
is able to create its specific profile. Instead of creating the IOR it-
self, the POA of our extended ORB has to create the IOR by asking
the IIOP profile manger for adding the appropriate information
(host, port, POA name and object ID) to a newly created IOR. As
an object may be accessible by multiple profiles, an object adapter
can ask multiple profile managers for inserting profiles into an IOR.
Marshalling of object references. A CORBA object passed as a
method parameter in a remote invocation needs to be serialised as
an IOR. In classic CORBA, this is done „magically“ by the ORB by
accessing internal data structures. In the Java language mapping, for
example, a CORBA object reference is represented as a stub that
delegates to a sub-type of org.omg.CORBA.Delegate. In-
stances of this type store the IOR.
In our architecture, we cannot assume any specific implementation
of an object reference as each profile manager may need a different
one. Thus, there is no generic way to retrieve the IOR to be serial-
ised. Instead, the reference manager is asked to convert the object
reference into an IOR that in the end can be serialised. Therefore,
the reference manager provides an operation called object-
ToIor(). The reference manager, in turn, will ask all known pro-
file managers to do the job. Profile managers will usually check
whether the object reference is an implementation of their middle-
ware extension. If so, the manager will know how to retrieve the

IOR. If not, the profile manager will return a null reference, and the
reference manager will turn to the next profile manager.
Unmarshalling of object references. If a standard ORB receives
a serialised IOR as a method parameter or return result, it implicitly
converts it into a local representation and passes this representation
(typically a stub) to the application. This creation of the stub needs
to be factored out of the marshalling system of the ORB to handle
arbitrary reference types.
Our design delegates the object creation within unmarshalling to the
reference manager by calling iorToObject(). The reference
manager maintains an ordered list of profile types and correspond-
ing profile managers. According to this list, each profile manager is
asked to convert the IOR in a local representation by calling pro-
fileToObject(). This way the reference manager already anal-
yses the contents of the IOR and only asks those managers that are
likely to be able to convert the IOR into an object reference. A pro-
file manager checks the profile and the tagged components, and
tries to create a local representation of the object reference. For ex-
ample, an IIOP profile manager will analyse the IIOP profile. A
CORBA-compliant stub is created and initialised with the IOR. The
stub is returned to the reference manager, which returns it to the ap-
plication. If a profile manager is not able to convert the profile or
not able to contact the object for arbitrary reasons, it will throw an
exception. In this case the reference manager will follow its list and
ask the next profile manager. If none of the managers can deal with
the IOR, an exception is thrown to the caller. This is compatible
with standard CORBA for the case that no profile is understood by
the ORB.
The order of profile types and managers defines the ORB-depend-
ent strategy of referencing objects. As the first matching profile
type and manager wins, generic managers (e.g., for IIOP) should be
at the end of the list whereas more specific managers should be at
the beginning.
Explicit binding to remote references. A user application may
explicitly call the ORB method string_to_object, passing
some kind of stringified representation of the references. Usually,
this may either be a string representation of the marshalled IOR, or
a corbaloc or corbaname URI.
This ORB operation can be split into two steps: First, the string is
parsed and converted into an IOR object. As the stringified IOR can
have an extension-specific IRI format—an IRI is the international-
ised version of an URI—each profile manager is asked for conver-

Figure 2: Sequence chart for ORB::object_to_string

objectToIor

objectToIor

objectToIor
object_to_string

:ProfileManager2:ProfileManager1

:ORB :ReferenceManager

return IOR string
return IOR string

return IOR

return null
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sion by using iriToIor(). The generic IOR format will be han-
dled by the reference manager itself. Second, this IOR object is con-
verted into a local representation using the same process as used
with unmarshalling.
Calling object_to_string() is handled in a similar way.
First, the reference passed as parameter is converted into an IOR
object in the same way as for marshalling. Second, the IOR object
is converted into a string. The IOR is encoded as a hex string repre-
senting an URI in the IOR schema. The complete interaction is
shown as sequence chart in Fig. 2.
As sometimes an application may want to convert an object refer-
ence into a more-readable IRI, our extension also provides an oper-
ation called objectToIri(). In a first step, the object reference
is once again converted into an IOR. The second step, the conver-
sion into an IRI, is done with the help of the profile managers by in-
voking iorToIri(). Those may provide profile-specific URL
schemes that may not be compatible to standard CORBA. As the
conversion of an IRI into an object reference can be handled in the
profile manager this is not a problem.
Narrow operation. The narrow operation is difficult to imple-
ment. In the Java language mapping the operation is located in a
helper class of the appropriate type, expecting an object reference
of arbitrary other type. The implementation in a standard ORB as-
sumes an instance compatible to the basic stub class, which knows
a delegate to handle the actual invocations. After successfully
checking the type conformance, the helper class will create a new
stub instance of the appropriate type and connect it to the same del-
egate. With any CORBA extension it cannot be assumed that object
references conform to the basic stub class.
In our extension the helper class invokes the operation narrow()
at the reference manager. Beside the existing object reference a
qualified type name of the new type is passed to the operation as a
string. The reference manager once again will call every profile
manager for the narrow operation. A profile manager can check
whether the object reference belongs to its CORBA extension. If
yes, the manager will take care of the narrow operation. If not, a null
result is returned and the reference manager will turn to the next
profile manager.
As a profile manager has to create a type-specific instance, it can
use the passed type name to create that instance. In languages that
provide a reflection API (e.g., Java) this is not difficult to realise. In
other languages a generic implementation in a profile manager may
be impossible. Another drawback is that reflection is not very effi-
cient. An alternative implementation is the placement of profile-
specific code into the helper class (or in other classes and functions
of other language mappings). Our own IDL compiler called
IDLflex [8] can easily be adapted to generate slightly different help-
er classes. As a compromise helper classes may have profile-specif-
ic code for the most likely profiles, but if other profiles are used, the
above mentioned control flow through reference and profile manag-
ers is used. Thus, most object references can be narrowed very fast
and the ORB is still open to object-reference implementations of
profile managers that may have even be downloaded on demand.

4. EXTENSIONS TO CORBA BASED ON 
PROFILE MANAGERS

This section illustrates two applications of our design. The first ex-
ample presents the AspectIX profile manager, which integrates
fragmented object into a CORBA middleware. The second exam-
ples provides a transparent gateway from CORBA to Jini.

4.1 AspectIX Profile Manager
The AspectIX middleware supports a fragmented object model
[4,7]. Unlike the traditional RPC-based client-server model, the
fragmented object model does no longer distinguish between client
stubs and the server object. From an abstract point of view, a frag-
mented object is an entity with unique identity, interface, behav-
iour, and state, as in classic object-oriented design. The implemen-
tation, however, is not bound to a certain location, but may be dis-
tributed arbitrarily over various fragments. Any client that wants to
access the fragmented object needs a local fragment, which pro-
vides an interface identical to that of a traditional stub. This local
fragment may be specific for this object and this client. Two objects
with the same interface may lead to completely different local frag-
ments.
This internal structure gives a high degree of freedom on where
state and functionality of the object is located and how the interac-
tion between fragments is done. The internal distribution and inter-
action is not only transparent on the external interface, but may
even change dynamically at run-time. Fragmented objects can eas-
ily simulate the traditional client-server structure by using the same
fragment type at all client locations that works as a simple stub.
Similarly, the fragmented object model allows a simple implemen-
tation of smart proxies by using the smart proxy as fragment type
for all clients. Moreover, this object model allows arbitrary internal
configurations that partition the object, migrate it dynamically, or
replicate it for fault-tolerance reasons. Finally, the communication
between fragments may be arbitrarily adjusted, e.g., to ensure qual-
ity-of-service properties or use available special-purpose communi-
cation mechanisms. All of these mechanisms are fully encapsulated
in the fragmented objects and are not directly visible on the outer
interface that all client application use.
Supporting a fragmented object model is clearly an extension to the
CORBA object model. With our architecture it is very easy to inte-
grate the new model. Just a new profile manager has to be devel-
oped and plugged into our ORB. When a client binds to a fragment-
ed object, a more complex task than simply loading a local stub is
needed. In our system, the local fragment is internally composed of
three components, as shown in Fig. 3: the View, the Fragment In-
terface (FIfc), and the Fragment Implementation (FImpl). The frag-
ment implementation is the actual code that provides the fragment
behaviour. The fragment interface is the interface that the client us-
es. Due to type casts, a client may have more than one interface in-
stance for the same fragmented object. Interfaces are instantiated in
CORBA narrow operations; all existing interfaces delegate invo-
cations to the same implementation. The View is responsible for all
management tasks; it stores the object ID and IOR, keeps track of
all existing interfaces, and manages dynamical reconfigurations
that exchange the local FImpl. The management needs to update all
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Figure 3: Internal structure of a fragment
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references from FIfcs to the FImpl and has to coordinate method in-
vocations at the object that run concurrently to reconfigurations.
To integrate such a model into a profile-manager-aware CORBA
system, it is necessary to create IORs with a special profile for frag-
mented objects (APX profile), and to instantiate the local fragment
(View-FImpl-FIfc) when a client implicitly or explicitly binds to
such an IOR. 
The IOR creation is highly application specific, thus it is not fully
automatic as in traditional CORBA. Instead, the developer of the
fragmented object may explicitly define, which information needs
to be present in the object. The reference manager creates an empty
IOR for a specified IDL type, and subsequently the APX profile
manager can be used to add a APX profile to this IOR. This profile
usually consists of information about the initial FImpl type that a
client needs to load and contact information on how to communi-
cate with other fragments of the fragmented object. The initial FIm-
pl type may be specified as a simple Java class name in a Java-only
environment, or as a DLS name (dynamic loading service, [3]) in a
heterogeneous environment, to dynamically load the object-specif-
ic local fragment implementation. The contact information may,
e.g., indicate a unique ID, which is used to retrieve contact address-
es from a location service) or a multicast address for a fragmented
object that uses network multicast for internal communication. 
When an ORB binds to an IOR with an APX profile, the corre-
sponding profile manager first checks, if a fragment of the specific
object already exists; if so, a reference to the existing local fragment
is returned. Otherwise, a new default view is created and connected
to a newly instantiated FImpl. Profile information specifies how
this FImpl is loaded (direct Java class name for Java-only environ-
ments, a code factory reference, or a unique ID for lookup to the
global dynamic loading service (DLS)). Finally, a default interface
is built and returned to the client application.

4.2 Jini Profile Manager
Jini is a Java-based open software architecture for network-centric
solutions that are highly adaptive to change [9]. It extends the Java
programming model with support for code mobility in the net-
works; leasing techniques enables self-healing and self-configura-
tion of the network. The Jini architecture defines a way for clients
and servers to find each other on the network. Service providers
supply clients with portable Java objects that implement the remote
access to the service. This interaction can use any kind of technolo-
gy such as Java RMI, SOAP, or CORBA.
The goal of this CORBA extension is to seamlessly integrate Jini
services into CORBA. Jini services should be accessible to CORBA
clients like any other CORBA object. Jini services offer a Java in-
terface. This interface can be converted into an IDL interface using
the Java-to-IDL mapping from the OMG [6]. Our CORBA exten-
sion provides CORBA-compatible representatives, special proxy
objects that appear as CORBA object references, but forward invo-
cations to a Jini service. Such references to Jini services can be reg-
istered in a CORBA naming service and can be passed as parame-
ters to any other CORBA object. CORBA clients do not have to
know that those references refer to Jini services.
The reference to a Jini service is represented as a CORBA IOR. The
Jini profile manager offers operations to create a special Jini profile
that refers to a Jini service. It provides operations to marshal refer-
ences to such services by retrieving the original IOR from the spe-
cialised proxy, to unmarshal IORs to a newly created proxy, and to
type cast a proxy to another IDL type.
The Jini profile stores a Jini service ID, and optionally a group name
and the network address of a Jini lookup service. The profile man-
ager uses automatic multicast-based discovery to find a set of
lookup services where Jini services usually have to register their

proxy objects. Those lookup services are asked for the proxy of the
service identified by the unique service ID. If an address of a lookup
service is given in the profile, the profile manager will only ask this
service for a proxy. The retrieved proxy is encapsulated in a wrap-
per object that on the outside looks like a CORBA object reference.
Inside, it maps parameters from their IDL types to the correspond-
ing Java types and forwards the invocation to the original Jini
proxy.
Jini services may provide a lease for service usage. In the IOR, a
method can be named that is supposed to retrieve a lease for the
service. This lease will be locally managed by the profile manager
and automatically extended if it is due to expire.
This extension shows that it is possible to encapsulate access to oth-
er middleware platforms inside of profile managers. In case of the
Jini profile manager our implementation is rather simple. So, return
parameters referring to other Jini services are not (yet) converted to
CORBA object references. We also did not yet implement Jini IOR
profiles that encapsulate abstract queries: In this case not a specific
service ID is stored in the profile, but query parameters for the
lookup at the lookup services. This way, it will be possible to create
IORs with abstract meaning, e.g., encapsulating a reference to the
nearest colour printer service (assumed that such services are regis-
tered as Jini services at a lookup service).

5. EVALUATION
Two aspects need to be discussed to evaluate our design: First, the
effort that is needed to integrate our concept into an existing ORB;
second, the run-time overhead that this approach introduces. As we
used JacORB as basis for our implementation, we compare our im-
plementation with the standard JacORB middleware.

5.1 Implementation Cost
The integration of a generic reference manager into JacORB ver-
sion 2.2 affected two classes: org.jacorb.orb.ORB and
org.jacorb.orb.CDROutputStream. In ORB, the
methods object_to_string, string_to_object,
and _getObject (which is used for demarshalling) need to be
replaced. In addition, the reference manager is automatically loaded
at ORB initialisation and made available as initial reference. In
CDROutputStream, the method write_Object needs to
be re-implemented to access the reference manager. These changes
amount to less than 100 lines of code (LOC). The generic reference
manager consists of about 500 LOC; the IIOP profile manager con-
tains 150 LOC in addition to the IIOP implementation reused from
JacORB.
These figures show that our design easily integrates into an existing
CORBA ORB. Moreover, the generic reference manager and pro-
file managers may be implemented fully independent of ORB inter-
nals, making them portable across ORBs of different vendors—
with the obvious restrictions to the same implementation program-
ming language.

5.2 Run-time Measurements of our Imple-
mentation

We performed two experiments to evaluate the run-time cost of our
approach; all tests were done on Intel PC 2.66 GHz with Linux
2.4.27 operating system and Java 1.5.0, connected with a 100 MBit/
s LAN. In all cases, the generic reference manager in our ORB was
connected with three profile managers (IIOP, APX, Jini)
The first experiment examines the binding cost. For this purpose, a
stringified IOR of a simple CORBA servant with one IIOP profile
is generated. Then, this reference is repeatedly passed to the ORB

74



7

method string_to_object, which parses the IOR and loads
a local client stub. Table 1 shows the average time per invocation of
100,000 iterations.

The second test analyses the marshalling cost of remote references.
An empty remote method with one reference parameter is invoked
100,000 times. These operation involve first a serialisation of the
reference at client-side and afterwards a deserialisation and binding
at the servant side; all operations are delegated to the reference
manager in our ORB. Table 2 shows the results of this test. 

Both experiments show, that the increase in flexibility and extensi-
bility is paid for with a slight decrease in performance. It is to be
noted that our reference implementation has not yet been optimised
for performance, so further improvement might be possible. 

6. CONCLUSION
We have presented a novel, CORBA-compliant middleware archi-
tecture that is more flexible and extensible than standard CORBA.
It defines a portable reference manager that uses dynamically load-
able profile managers for different protocol profiles.
The concept is more flexible than traditional approaches. Unlike
smart proxies, it does not only modify the client-side behaviour, but
allows to modify the complete system structure. In contrast to ven-
dor-specific transport protocols, it provides a general extension to
CORBA that allows to implement portable profile managers, which
in the extreme may even be dynamically loaded as plug-in at run-
time. Different from CORBA portable interceptors, it gives the
service developer full control over the IOR creation process, has
less overhead than interceptors, and allows arbitrary modification
of client requests.
The concept itself is not limit to CORBA. In fact, it defines a gener-
ic design pattern for any existing and future middleware platforms.
Extracting all tasks related to the handling of remote references into
an extensible module allows to create middleware platforms that are

easily extended to meet even unanticipated future requirements.
Modern developments like ubiquitous computing, increased scala-
bility and reliability demands and so on make it likely that such ex-
tensions will be demanded. Our design principle allows to imple-
ment future systems with best efficiency and least implementation
effort.
We have presented in some detail two applications of our architec-
ture. Besides traditional IIOP for compliance with CORBA, we
have implemented a profile manager for fragmented objects and
one for accessing Jini services transparently as CORBA objects.
Currently, we are working on profile managers to handle fault-tol-
erant CORBA and a bridge to Java RMI.
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Table 1: Execution time of ORB::string_to_object invocations

Standard JacORB 2.2.1 0.22 ms

AspectIX ORB with reference manager 0.28 ms

Overhead 0.06 ms (27%)

Table 2: Complete remote invocation time with one reference 
parameter

Standard JacORB 2.2.1 0.64 ms

AspectIX ORB with reference manager 0.72 ms

Overhead 0.08 ms (12.5%)
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