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Rajdoot: A Remote Procedure Call Mechan ism 
Supporting  Orphan Detection and Killing  

FABIO PANZIERI AND SANTOSH K. SHRIVASTAVA 

Abstract-Rajdoot is an  RPC mechanism with a  number  of fault tol- 
erance capabilities. The paper first discusses the reliability related is- 
sues and then describes how these issues have been dealt with in the 
RPC design. Rajdoot supports exactly once semantics with call nesting 
capability and  incorporates effective measures for orphan detection and 
killing. Previously reported RPC mechanisms have not paid adequate 
attention to orphan treatment issues. Performance figures show that 
the reliability measures of Rajdoot impose little overhead. 

Index Terms-Distributed systems, fault tolerance, interprocess 
communications, network protocols, remote procedure calls. 

I. INTRoDLJCTI~N 

T HIS paper  descr ibes Rajdoot, a  remote procedure call 
(RPC) mechanism intended for distributed program- 

ming. (Rajdoot, der ived from Sanskrit, means  a  royal 
messenger.)  Rajdoot has  been  des igned to provide a  con- 
venient set of primitives that can  be  used by  arbitrary 
clients and  servers. Language  and  programming environ- 
ment specific issues to do  with stub generat ion, binding, 
and  naming, a l though important, have  not been  addressed 
here; rather, the paper  concentrates on  novel o rphan han-  
dling aspects of Rajdoot. It is our  claim that existing RPC 
mechanisms have  paid little attention to the orphan prob- 
lem and  this represents their major shortcoming. The  de-  
sign of Rajdoot was completed during the W inter of 1984.  
A version running on  PDPl l’s connected by  a  Cambridge 
Ring was soon completed. Since then it has  been  ported 
on  4.2BSD UNIX@ systems connected by  an  Ethernet. 

The  paper  is structured as  follows. In the next section 
we discuss those RPC related reliability issues that we 
have  regarded as  important and  then descr ibe in Section 
III the design choices made  for Rajdoot where we mention 
the specific reliability mechanisms of the RPC. The  re- 
maining sections descr ibe the design and  implementation 
of those mechanisms. 

W e  conclude this introduction by  summarizing the main 
features of our  RPC. Rajdoot supports: 1) exactly once  
semantics; 2) arbitrary nest ing of RPC’s; 3) client 
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t imeouts and  repeated retries of the call; and  4) o rphan 
detection and  killing. As we shall see, Rajdoot differs 
from other RPC mechanisms reported in the literature 
mainly because of the manner  in which a  number  of fault 
tolerance features (e.g., o rphan killing) have  been  inte- 
grated into it. 

II. RELIABILITY RELATED DESIGN Issuss 
Failures in a  distributed system, such as  lost messages 

and  node  crashes, can  create reliability problems not nor- 
mally encountered in a  central ized (one node)  system. 
Thus, treatment of failures is one  of the main issues that 
requires close attention in an  RPC design. In this section 
we discuss the reliability issues, pointing out the prob- 
lems posed  by  orphans.  

A. Fault Models, RPC Semantics, and  (I Correctness 
Criterion 

W e  will model  a  distributed system as a  collection of 
nodes  connected by  a  communicat ion subsystem. Faults 
in the communicat ion subsystem are responsible for the 
following types of failures: 1) a  message transmitted from 
a  node  does  not reach its intended destination (termed a  
communicat ion failure); 2) messages are not received in 
the same order as  they were sent; 3) a  message gets cor- 
rupted during its transmission; and  4) a  message gets rep- 
licated during its transmission. 

There are well known mechanisms (based on  check- 
sums and  sequence numbers)  that enable a  receiver to treat 
messages that arrive out of order, corrupted or are copies 
of previously received messages,  so  we need  only concern 
ourselves with the treatment of communicat ion failures. 
The  fault model  for node  fuilures is as  follows: either a  
node  works according to its specifications or that node  
stops working (crushes). After a  crash, a  node  is repaired 
within a  finite amount  of time and  made  active again. Most 
publ ished works on  RPC’s have  implicitly assumed the 
fault models we have  descr ibed here explicitly (e.g.. 111,  
PI). 

Given that we wish to design an  RPC mechanism for a  
system prone to the faults just described, we can envisage 
a  range of fault tolerance measures.  The  following is one  
such classification (which indicates RPC’s with increas- 
ing degrees of fault tolerances). W e  will assume that the 
reception of a  reply message from the called server con- 
stitutes a  normal termination of a  call. Then  the classifi- 
cation given below indicates condit ions under  which a  
normal termination is possible. 
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1) No communicat ion and/or node  failures occur during 
the call. 2) The  RPC mechanism copes with a  fixed finite 
number  of communicat ion failures. 3) The  RPC mecha-  
nism copes with a  fixed finite number  of communicat ion 
failures and  server node  crashes (server crashes, for 
short). 4) Same as 3), but in addition, tolerance to fixed 
finite number  of client node  crashes (client crashes, for 
short) is also present. 

Next, we present a  classification for the semantics of 
remote calls [ 11, [3]: 

1) At least once  semantics: a  normal termination im- 
plies one  or more execut ions at the called server. 

2) Exactly once  semantics: a  normal termination im- 
plies exactly one  execut ion at the called server. 

Both of the above  semantics say nothing about  what 
happens  if a  call does  not terminate normally and  it is 
assumed that zero, partial, one,  or more execut ions [for 
type l)] or zero, partial or one  execut ion [for type 2)] are 
a  possibility. A “stronger’ ’ semantics is specif ied by  the 
third type given below [4]: 

3) At most once  semantics: same as exactly once,  but 
in addition, calls that do  not terminate normally do  not 
produce any  side effects. 

Choosing appropriate fault tolerance capabilities and  
semantics is indeed one  of the most important decisions 
to be  taken in an  RPC design. W e  next present a  simple 
and  intuitively appeal ing correctness criterion for an  RPC 
implementation. 

Let C, denote a  call made  by a  client and  W, represent 
the corresponding computat ion invoked at the called 
server. Let C, and  Cl be  any  two calls made  by a  client 
such that: 1) Cj happens  after Ci (denoted by  C; then Cj); 
and  2) computat ions W, and  W j share some data such that 
W i and/or W j modify the shared data. Then  we say that an  
RPC implementation must meet the following correctness 
criterion, in the presence of specif ied types of failures [5]: 

CR: Ci then C, implies W i then W j 

The  criterion CR states that a  sequence of calls at a  client 
should give rise to computat ions invoked in the same se- 
quence  (obviously, if W, and  W, are disjoint-do not share 
any  data-then strictly speaking, no  ordering is neces-  
sary). In the absence of any  failures, the synchronous na-  
ture of calls guarantees that CR will be  satisfied. How- 
ever, failures can create orphans (see the next subsect ion) 
that do  require special measures in order to meet CR. Note 
that the correctness criterion must be  met irrespective of 
the RPC semantics chosen.  

In any  large distributed system, communicat ion and  
node  failures can be  relatively frequently occurr ing 
events, so  any  well engineered RPC mechanism must 
strive to meet CR. In this respect, most existing RPC 
mechanisms (e.g., [2], [ll], [12]) are inadequate.  In con- 
trast, Rajdoot meets CR in a  very efficient manner.  

B. Orphans 
Orphans are unwanted execut ions that can  occur due  to 

communicat ion and  node  failures. W e  will say that a  call 

terminates abnormally if the termination occurs because 
no  reply message is received from the called server. Net- 
work protocols typically employ t imeouts to prevent a  
process waiting for a  message from being held up  indefi- 
nitely. Assume that a  client process waiting for results 
from the called server has  a  timer set (or equivalently, 
some other protocol dependent  mechanism that signals the 
client if no  reply is received after some duration). If the 
call terminates abnormally (the timeout expires) then there 
are four mutually exclusive possibilities to consider: 1) 
the server did not receive the call message;  2) the reply 
message did not reach the client; 3) the server crashed 
during the call execut ion and  either has  remained crashed 
or is not resuming the execut ion after crash recovery; and  
4) the server is still execut ing the call, in which case the 
execut ion could interfere with subsequent  activities of the 
client, as  depicted in Fig. 1. 

Client K at node  A issues a  call to server X at node  B 
which executes the requested work (“work 1” in Fig. l), 
and  the call terminates abnormally before X completes the 
work. The  client then issues another call to some server 
Y at node  B (“work 2” in Fig. 1). If the computat ion by  
X is still in progress, and  “work 1” and  “work 2” have  
data in common,  then these computat ions can interfere 
with each  other. Note that the concurrency depicted in 
Fig. 1  must be  regarded as  undesirable, since it is ex- 
pected that the execut ion of a  sequential program should 
give rise to a  sequential computat ion character ized by  a  
single flow of control. Concurrency control techniques 
(e.g., locking) are normally intended to prevent interfer- 
ences between different programs under  the assumption 
that each  program will invoke a  sequential computat ion. 

The  interference depicted in Fig. 1  might also occur in 
the case of a  crash of the client node  A. If the client re- 
sumes execut ion after recovery by  reissuing the call, or 
by  making a  new call to the same node,  then we have  a  
similar situation as  before. W e  will refer to unwanted 
computat ions (e.g., “work 1”) as  orphans.  As a  further 
example, consider the case where a  server’s work is some 
arbitrary computat ion, including calls to other servers, 
such that a  crash of a  server can leave orphans on  other 
nodes.  The  scenario depicted in Fig. 2  is thus possible. 
Note that this type of interference in a  nested call can  also 
occur in the absence of a  server crash, as  illustrated in 
Fig. 3. 

It is needless to say that the examples given here do  not 
constitute an  exhaust ive list of possible interferences. 
They are intended to show that there are a  variety of ways 
interferences can occur (and not just because of crashes 
as  is often assumed).  

How should orphans be  treated’?  The  correctness crite- 
rion CR stated before essentially states that execut ions 
such as  work 1, work 2, Fig. 1, should be  serialized to 
take place in the same order as  the invoking calls. One  
way of meet ing this requirement dynamically is to make 
sure that a  server receiving a  call request obeys  the fol- 
lowing two rules [5]: 1) a  call request belonging to a  ‘past’ 
call is not accepted for execution; and  2) once  a  call re- 
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of any side-effects that may have been produced. 

Note that some RPC mechanisms (e.g.: 121) do not em- 
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_-----------_-- 

i 

-------)I 
interference 

c 
work 2 which could still occur if the probe mechanism is used for 

terminating the first call. The situation depicted in Fig. 1 
Fig. 1. Example of interference caused by a timeout. is also possible if a communication failure lasting a suf- 

ficiently long time occurs which causes the first call to be 
NODE A NODE B NODE C terminated abnormally. We thus see that orphan creations 

CLIENT K due to abnormally terminated calls is a fundamental prob- 
lem. 
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$ Interference ) work This section describes the design choices made in our 

RPC. We wanted the RPC mechanism to be general pur- 
Fig. 2. Possible interference in a nested call (crash case). pose, rather than for simply invoking idempotent opera- 

tions, which limits the choice to either at most once or 
Node A Node B Node C excatly once. Out of the two, we have opted for exactly 

CLIENT K 
once for the following reason. At most once calls require 
sophisticated backward error recovery support of atomic 

{be 
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I” 1st SERVER X transactions [4], [6]. We wanted our RPC mechanism to 
call call 

---w---), be sufficiently “neutral” to support applications that do 
I work 

i 
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and do not make use of atomic transactions, which sug- 
---------+I SERVERY gests that exactly once semantics is more appropriate. 

timeout I 
I Out of the four options for normal termination pre- 

{end 1st I 
call} rep/Y , I work sented in the previous section, the fourth one-permitting 

+-w---J , 
I a call to terminate normally in the presence of both client 

Cd/i I SERVER 2 
{2nd call} -----------------+------~, and server crashes-was discounted straightaway on the 

I I work 
t Interference * grounds that it provides too much functionality and is far 

Fig. 3. Possible interference in a nested call (no crash case). 
too complex to implement. It is better for a client to fix 
its own crash resistance strategy, rather than to fix it at 
the RPC level. The choice is then between 2) and 3), and 

quest is accepted, the corresponding execution is started we have opted for 2). That is, a call can complete nor- 
only after any ongoing executions belonging to “past” mally in the presence of a fixed finite number of com- 
calls on the node have been aborted. It is easy to see that munication failures, but not if the server node crashes (in 
this will ensure that orphan executions will neither inter- which case the call is guaranteed to terminate abnor- 
fere nor overtake the “current” execution. mally). Allowing a call to terminate normally in the pres- 

A number of orphan detection and abortion techniques ence of server crashes would have required backward er- 
have been discussed in [3], [5]. They tend to be expensive ror recovery facilities-which in our view is better 
and difficult to implement (since these techniques them- employed at higher levels than at the level of RPC. 
selves must be robust against failures). As we shall see, The correctness criterion CR is met by Rajdoot by em- 
Rajdoot has three mechanisms built in to cope with or- ploying three orphan handling mechanisms: 
phans-it is by breaking the orphan problem into three M,: If a client call terminates abnormally, then it is 
subproblems that Rajdoot achieves its efficiency. We note guaranteed that any computations the call may have gen- 
that the semantics of the RPC can also impose some ad- erated have also terminated. 
ditional requirements not captured by CR. In particular, Ik12: Consider a node that crashes and after recovery 
for at mosr once calls, not only should orphans be aborted makes a remote call to some node C. Then. if C has anv ~~..~ _ .~ d 
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orphans because of the caller’s crash, then they will be  
aborted before the execut ion of the call starts at C. 

Ms: What  if the node  remains crashed or after recovery 
never  makes calls to C? In this case it is guaranteed that 
any  orphans on  C will nevertheless be  detected and  killed 
within a  finite amount  of time. 

These mechanisms are discussed at length in the rest of 
the paper,  but we give some hints here to present their 
essential mode  of operation. 

M,: Every call contains a  deadline, indicating to the 
server the maximum time available for execution. If the 
deadl ine expires, then the server aborts the execut ion and  
the call terminates abnormally. W e  thus see that if there 
are no  node  crashes in the system, then M, will be  enough  
to cope with orphans.  The  remaining two mechanisms 
cope with crashes. 

M2: Every node  maintains a  stable (crash proof) 
counter-cal led a  crushcount-that is incremented im- 
mediately after a  node  recovers from a  crash. A node  also 
maintains a  table of crashcount values for clients that have  
made  calls to it. A call request contains the client’s crash- 
count  value-if this value is greater than the one  in the 
table at the called server, then there could be  orphans at 
the server which are first aborted before proceeding with 
the call. 

M3: Every node  has  a  terminator process that occa- 
sionally checks the crashcount values of other nodes-by 
sending messages to them and  receiving repl ies-and 
aborts any  orphans when  it detects any  crashes. 

Mechanisms MI and  M2 can be  des igned to provide a  
remarkably powerful method of o rphan handl ing with 
hardly any  performance overheads in that no  extra mes- 
sages are needed  for o rphan detection and  killing. Mech-  
anism M3 does  impose some overheads but as  it turns out, 
they need  not be  excessive since a  terminator need  only 
perform its checks once  every few minutes. 

For the sake of completeness we present here the spec- 
ification of the RPC primitive available to a  client (where 
parameters and  results are passed by  values): 

rpc(server: . . . ; call: . . ; t imeout: . . . ; retry: . . . ; 
var reply: . . . ; var rpc-status: . . .); 

The  rpc-status variable can assume one  of the following 
values: 

rp-status = (OK, NOTDONE, UNABLE); 

The  second parameter contains the name together with the 
relevant parameters of the operat ion to be  performed by 
the server whose address is in the first parameter.  The  
retry parameter indicates the number  of times the call is 
to be  retried (default value being zero). Let, for some call, 
II be  the value of the retry parameter and  t be  the timeout 
value. Then,  if after issuing the call, no  reply is received 
within durat ion t, the call will be  reissued; this process is 
repeated a  maximum of n  times. So, the worst case nor- 
mal complet ion time for a  call will be  at most (n +  l)* 
t units of time. The  semantics of the call under  status OK, 
NOTDONE, and  UNABLE is given below: 

rpc-status = OK: The  specif ied call has  been  exe- 
cuted once  by  the server; the result is available in “re- 
ply.” This represents a  normal termination of a  call, with 
the call taking at most (n +  1  )* t units of time to com- 
plete. 

rpc-status = NOTDONE: The  call has  not been  ex- 
ecuted. This response is obtained when  some communi-  
cation failure prevents the call message from being trans- 
mitted to the server; the response is obtained in less than 
t units of time. 

rpc-status = UNABLE: At most one  execut ion may 
have  taken place at the called server; “reply” does  not 
contain any  results. This case represents an  abnormal  ter- 
mination, with the call taking at most (n +  1  )* t units of 
time to complete. It is guaranteed that any  computat ion 
the call may have  generated has  also terminated. 

So, referring back to the previous examples of interfer- 
ences,  when  the first call from the client K terminates 
(either abnormally as  in Figs. 1  and  2, or normally as  in 
Fig. 3) there will be  no  ongoing computat ions for that 
client at nodes  B and  C. 

W e  claim that Rajdoot closely approximates the behav-  
ior of local calls. For a  program, when  a  local call ter- 
minates either normally or abnormally (an exceptional re- 
turn is obtained), we do  not expect  any  ongoing activities 
at the called procedure.  The  same behavior is modeled by  
our  RPC. In a  single node  system, a  crash destroys all the 
ongoing computat ions. This behavior is approximated by  
Rajdoot as  follows: a  crash of a  node  does  not “in- 
stantly” stop all the remote calls initiated from the node,  
rather, when  post crash calls are made,  any  orphans on  
the called node  are first aborted. 

IV. RELIABILITY MECHANISMS 

This section contains the details of the three reliability 
mechanisms ment ioned before. In order to present these 
details, it is important to know the execut ion model  em- 
ployed by  the RPC mechanism. This model, together with 
some protocol related details are presented in the next 
subsection. 

A. The  Execution Model  and  the RPC Protocol 
The  execut ion model  adopted has  been  inf luenced by 

the use  of RPC’s in the Newcast le distributed system [7], 
and  is descr ibed here with the help of a  diagram (see Fig. 
4). Each node  runs a  manager  process that operates at 
some well known address.  The  primary task of a  manager  
is that of creating server processes that execute clients’ 
remote calls; in particular, each  server executes only the 
calls of the client for which it was created. At the same 
time, once  a  server has  been  created at a  node,  a  client 
directs all its remote calls intended for that node  to the 
created server. Servers themselves may invoke remote 
calls as  part of their “work,” thus giving rise to nested 
calls. 

The  process of creating a  server is handled transpar- 
ently to the client program by the RPC mechanism. In 
essence,  the first remote call issued by  a  client to a  node  
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Fig. 4. RPC execution model. 

is converted by the RPC mechanism into a request for the 
manager at that node to create a server, and is transmitted 
to that manager (the create server message of Fig. 4). The 
manager spawns a server and goes back to receive re- 
quests from the network. The spawned server acquires a 
(logical) address, which remains private to that server un- 
til it terminates, and replies to the client by sending it this 
address (the server address message of Fig. 4). This mes- 
sage contains the same sequence number as the corre- 
sponding “create server” request, so the client is in a 
position to accept the right message. Lack of “server ad- 
dress” message within a predefined timeout period causes 
a retransmission of the “create server” request. The RPC 
mechanism incorporates measures for dealing with the 
possibility of multiple servers being created for the same 
client by possible retransmissions of this request (see the 
next subsection). 

Once a server has been activated and its address re- 
ceived by the client, the client’s call is transmitted with a 
new sequence number to that server. Any exceptions dur- 
ing transmission of the “call” message are dealt with by 
retransmitting that message with the same sequence num- 
ber. The server receives the call, discarding further calls 
with the same sequence number, performs the work and 
sends the result as a “reply” message containing the same 
sequence number as the corresponding “call” message. 
If the client does not receive the reply within the specified 
timeout period, and “retry” value is nonzero, the call 
message is sent again (with the same sequence number as 
before), and “retry” value is decremented by one. A 
server always maintains the results of the most recently 
executed call, so that it can effectively cope with retry 
requests arising out of lost replies. The manager process 
of a node has been designed to be “stateless”: after ser- 
vicing a create server request, the manager simply “for- 
gets” about this request. This greatly simplifies its design 
and implementation. 

B. Reliability Mechanisms 
We employ local (stable, crash proof) clocks for ob- 

taining monotonically increasing sequence numbers for 

messages. A node crash will destroy all the servers on that 
node which are not recreated, thus ensuring that respec- 
tive client calls will terminate abnormally. A server main- 
tains the sequence number of the most recently executed 
call and will only accept new requests with higher num- 
bers. This is a well known method of ensuring that de- 
layed messages, representing “past” calls do not cause 
any executions. 

It was stated earlier that the manager process of a node 
does not maintain any state. This means that client retries 
for creating a server can result in more than one server 
being created. A newly created server starts an idle 
timeout and waits for a call request; the duration of the 
timeout is set to slightly more than two message round 
trip delays. If the timeout expires, then it can only mean 
that 1) the client has crashed or it cannot send a request 
due to some communication failure; or 2) the server has 
been created spuriously. In either case, the server aborts 
itself. This simple technique ensures that only the right 
number of servers survive. Once a server gets a call re- 
quest, it “knows” that it is not unwanted, so it will not 
unilaterally destroy itself (if this server becomes an or- 
phan due to a client crash, it will be destroyed by a dif- 
ferent mechanism which will be discusssed shortly). 

A call request to a server contains the deadline (n + 
l)* t, representing the maximum time available for exe- 
cuting that call. The server receiving a call starts a timer 
whose value is based on the deadline; if the deadline ex- 
pires-the server is still executing the call-then the ex- 
ecution is aborted, with the server initialized to receive 
new calls. At about the same time the client’s timeout will 
expire, causing the call to terminate abnormally. Let d be 
the maximum transmission delay for a message, and D be 
the deadline for a call; then the computation time T avail- 
able at the called server is: T 5 D - 2* d. If the server 
makes remote calls, then the deadlines for these calls must 
be calculated properly. For example, if a server is making 
just one remote call, the deadline D 1 should be: D 1 5 T 
- t 1, where t 1 is the local computation time. The dead- 
line mechanism provides a simple means of guaranteeing 
that an abnormally terminated call does not have ongoing 
computations at remote nodes. The price paid for this 
simplicity is the requirement for clients to estimate com- 
putation times; however, the retry parameter of a call does 
provide some flexibility in this direction (we will return 
to this subject in a subsequent section). 

We will now discuss how orphans due to node crashes 
are detected and aborted. The basic idea as mentioned 
earlier is quite straightforward. Every node maintains a 
variable called a crashcount which is in fact the local (sta- 
ble) clock value at the time the node was rebooted after a 
crash. A node also maintains crashcount values of client 
nodes who have made calls to it. These values are main- 
tained in a table referred to as a C-LIST. A newly created 
server checks the client supplied crashcount value against 
the corresponding value in the C-LIST; if the former is 
greater, then this indicates that the caller has had a crash, 
in which case there could be orphans on the node. So, the 
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server aborts all other servers created by  clients of the 
calling node  before execut ing the call. If the two values 
are the same, then there cannot  be  any  orphans of the call- 
ing node.  Finally, if the C-LIST does  not contain a  crash- 
count  entry for the caller, then an  entry is made  with the 
client suppl ied value. 

The  deadl ine mechanism plus crashcount based  orphan 
detection and  killing technique provides a  powerful means  
of prevent ing interferences with remarkably little over- 
heads.  Given the provision of stable clocks at each  node,  
no  stable storage facility is required, neither is there any  
need  for keeping clocks synchronized. This completes the 
discussion on  mechanisms M, and  MZ. A description of 
the mechanism M3 follows. 

After a  server finishes servicing a  call, it waits for the 
next call to come. This waiting is performed with an  idle 
t imeout (which is typically a  few minutes). If the timeout 
expires, there could be  any  of the following situations 
possible at the client: 1) the client has  crashed and  not yet 
recovered; 2) the client has  crashed, but after recovery no  
calls to the node  have  been  made;  3) the client program 
has  terminated, without informing the server; and  4) com- 
munication between the nodes  is no  longer possible. Out 
of these four possibilities, we have  chosen not to deal with 
possibility 3), believing it to be  the responsibility of 
clients to terminate servers (for which a  terminate primi- 
tive has  been  made  available to clients), and  possibility 
4) is treated as  a  client crash. After the expiration of the 
timeout, a  server marks itself as  a  potential o rphan and  
resumes waiting for a  call. If a  call is subsequent ly  re- 
ceived, the server unmarks itself before execut ing the call. 

Every node  has  a  terminator process that regularly 
(every few minutes) constructs a  list of potential o rphans 
on  its node  and  calls relevant client nodes  to see if they 
are running. These messages are directed to the managers  
of these nodes.  This then is the second function of a  man-  
ager. Upon  receiving such a  request, the manager  simply 
sends the current crashcount value in the reply. Since this 
is a  read only operation, message retries at either end  do  
not pose  any  problems. If a  terminator does  not get a  reply 
within a  reasonable amount  of time (after a  few retries), 
it is taken that the called node  has  crashed, in which case 
the relevant potential o rphans are aborted. The  same ac- 
tion is performed if the crashcount value in a  reply is larger 
than the one  in the C-LIST. The  terminator based  mech-  
anism certainly imposes some overheads,  but these are 
not deemed excessive. This is because a  terminator need  
only activate itself infrequently and  it does  not generate 
excessive message traffic. 

V. IMPLEMENTATION NOTES 

A working implementation of Rajdoot was first per- 
formed over a  few PDPl l’s with UNIX connected by  a  
Cambridge Ring. The  implementation was later ported on  
to 4.2BSD UNIX systems running over Vax’s, SUN’s and  
Whitechapels. This section reports on  some implementa- 
tion details; a  full report is available in [ 161.  

The  C-LIST of a  node  is an  array of elements of the 
following type: 

type clistelement = record 
clientnode: . . ; “client node  address” 
crashcount:  . . . ; “clock value at client node” 
serverlist: array [. . .] of serverid 

end 

The “cl ientnode” field contains the address of the client 
node  whose calls have  been  serviced by  servers whose 
identifiers are recorded in the “serverlist.” The  “crash- 
count” field contains the last known crashcount of the 
client node.  The  “serverid” variable contains two fields: 
a  process identifier field and  a  Boolean flag “PO-FLAG” 
indicating whether the server is a  potential orphan.  The  
C-LIST of a  node  is initialized to empty at the node  
startup time and  is shared between clients, servers, and  
the terminator of that node.  

When  a  client calls a  remote manager  for creating a  
server, it suppl ies its node  address and  crashcount value; 
this pair of values is passed on  to the created server. If 
the caller is itself a  server, then all the preceding client’s 
pairs are also supplied, as  illustrated below (the term rpc- 
path will be  used  to refer to the set of such pairs). In Fig. 
5, server X will be  suppl ied with the rpc-path < A, i >  ; 
server X itself creates a  server Y at node  C, so the rpc- 
path in the “create server” request sent to the manager  at 
Cwillbe <A,i>, <B,j>. 

A newly created server checks if the crashcount of 
clients in the rpc-path match with corresponding entries 
(if any)  in the C-LIST. If for some client this is not the 
case, then all the servers recorded in the “serverlist” en-  
try for the client node  in the C-LIST must be  orphans.  
The  server aborts these servers, clears their names from 
the C-LIST and  inserts the new crashcount value and  its 
own identity, with PO-FLAG set to false. Finally, if there 
is an  entry for a  given pair in the rpc-path, and  crashcount 
values are same, then the server only logs itself in the 
serverlist. It should be  noted that these operat ions are per- 
formed only at a  server creation time and  not for each  and  
every call; further, the rpc-path is suppl ied by  a  client 
only when  creating a  server. Whenever  a  server becomes 
a  potential orphan,  it changes  its flag in the C-LIST. Fig. 
6  shows a  tabular representat ion of the C-LIST for node  
C, Fig. 5. 

A client who  is also a  server makes use  of the C-LIST 
as follows. Suppose server Y, Fig. 5, wants to create a  
server at some node  D. In this case it will scan the C- 
LIST to retrieve pairs <  A, i >  , <  B, j >  and  then send 
a  request with rpc-path < A, i >  , <  B, j >  , <  C, k >  

Finally, the terminator of a  node  makes use  of the C- 
LIST to construct the list of clients to whom enquiry mes- 
sages are to be  sent. If for example, Y at node  C is marked 
as  a  potential orphan,  then the terminator at C will send  
enquir ies to nodes  A and  B. 

Performance measures of the RPC with and  without re- 
liability mechanisms indicated that these mechanisms 
were responsible for adding at most 30  percent overheads 
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Node A Node B 

crashcount = I crashcount = , 

Node C 

crashcount = k 

Cltent K server x Server Y 

. . . 

<A.,> 
---------+ 

. . . 
<A,I><@.J> 

------------+ 

\ Fig. 5. RPC path in a  nested call. 

Fig. 6. Tabular representation of the C-LIST at node C. 

on  null calls. Since the overheads are independent  of RPC 
execut ion times, the percentage overhead figure reduces 
for non-null  calls, indicating that Rajdoot incorporates ef- 
fective reliability measures quite cheaply. 

VI. A CRITICAL ASSESSMENT OF THE RELIABILITY 
MECHANISMS 

In this section we will attempt to justify our  selection 
of Rajdoot’s reliability mechanisms in preference to other 
mechanisms. 

Certainly, the most controversial choice seems to be  the 
employment of the deadl ine mechanism for abort ing 
server executions, the main objection being how can 
clients estimate the required deadl ines? Putting aside this 
objection for the time being, it should be  clear that the 
deadl ine mechanism does  represent an  extremely cheap 
and  effective means  of prevent ing orphans from causing 
interferences. Consider for a  moment  a  possible altema- 
tive-that of a  server dynamically checking that there are 
no  orphans present before commencing an  execution. This 
would mean  maintaining a  shared table at a  node  that is 
accessed by  all the servers of that node  for each  and  every 
call request. This is likely to become a  performance bot- 
t leneck. Any other solution such as  requiring clients to 
send explicit abort  messages are even  more expensive and  
not particularly reliable. For these reasons we came to the 
conclusion that the deadl ine mechanism represents a  rea- 
sonable compromise. 

Returning to the problem of estimating deadlines, we 
offer a  possible solution that can  be  incorporated in a  stub 
generator.  It is common to require that remote objects 
register their interface definitions with a  name server so  
that clients can import these definitions during bind time 
[2]. If the registration information also contains an  exe- 
cution time estimate, then a  stub generator  can  automati- 
cally calculate the call deadline, assuming message trans- 
mission times can be  estimated. Note that the retry 
mechanism provides a  convenient means  of coping with 
variations in execut ion times (say due  to over load situa- 
tions). 

W e  now examine the remaining two orphan killing 
mechanisms of Rajdoot. The  crashcount based  mecha-  
nism (M2 ) has  several advantages:  1) most modem com- 
puters contain a  stable clock anyway;  2) the C-LIST does  
not require stable storage; 3) the C-LIST, which is shared 
between all the processes of that node,  is only accessed 
by  a  server the very first time it is created-so it is not a  
per formance bott leneck; and  most importantly 4) no  spe- 
cial crash recovery procedures are required for nodes.  
Contrast this with a  widely known orphan killing tech- 
n ique based  on  maintaining a  “hit list” on  stable storage 
at each  node  (the list contains names of nodes  to which 
calls have  been  made).  Crash recovery of a  node  then in- 
volves sending abort messages to the nodes  named in the 
hit list. This turns out to be  an  expensive and  difficult 
technique to implement-particularly if several nodes  are 
performing crash recoveries simultaneously. Lastly, the 
terminator based  mechanism ( M3  ) of Rajdoot is also 
cheap since not only is it activated infrequently, but also 
it does  not require stable storage. 

Finally we note that Rajdoot mechanisms “scale-up” 
nicely-despite the fact that our  implementation has  been  
performed and  tested over a  system containing only a  few 
nodes,  there is every reason to bel ieve that our  design will 
be  equally effective for systems containing thousands of 
nodes.  

VII. CONCLUDING REMARKS 

W e  commenced the design exercise in the W inter of 
1983;  the original aim was to build an  orphan killing sys- 
tem for the existing RPC [9], [IO]. Several schemes were 
des igned but were abandoned  as being too expensive for 
large systems and  it soon  became clear that a  complete 
redesign of the RPC was required. 

In our  design we have  tried to minimize the amount  of 
state information processes have  to maintain for proper 
execut ion of remote calls. Thus, the manager  process of 
a  node  maintains no  state information and  a  server only 
maintains the last sequence number  value and  the result 
of the last call for its client. The  only shared data in a  
node  is the C-LIST and  the variable crashcount and  this 
data is accessed infrequently. It is our  view that an  RPC 
mechanism that provides exactly Once  semantics but fails 
to provide any  guarantee of f reedom from interferences 
from computat ions of preceding calls is not really ade-  
quate. Also, orphans generated due  to node  crashes must 
be  killed, if only to release scarce resources (such as  net- 
work ports and  buffers). Thus, some provision for o rphan 
detection and  killing must be  available. 

The  execut ion model  of Rajdoot has  been  optimized for 
mult iprogramming systems where processes are not 
cheap.  Referring to Fig. 4, it was stated that a  client has  
a  single server at a  remote node  to service all of its calls. 
This is purely an  efficiency measure;  logically there is no  
reason as  to why a  client cannot  have  more than a  single 
server at a  node- the orphan detection and  killing mea-  
sure will still work as  expected. Taken to its extreme, one  
could envision a  system where each  call is executed by  a  
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new process (an attractive possibility in operating systems 
offering cheap “lightweight” processes [2]). In such a 
system, mechanism M3 of Rajdoot will not be necessary 
if after executing a call the process either dies or gets real- 
located to serve some other call. 

The first detailed study of RPC’s appeared in the Ph.D. 
dissertation of Nelson [3], where among other things, a 
variety of orphan killing techniques were presented but 
not implemented. The subsequent Cedar implementation 
[2] also has not addressed the issue of orphan treatment. 
Cedar RPC supports exactly Once semantics, and like Raj- 
doot, does not permit a call to terminate normally in the 
presence of server crashes. However, an abnormally ter- 
minated call does not guarantee that the computation in- 
voked (if at all) at the callee has terminated-so no guar- 
antee of freedom from interference for subsequent calls 
can be given. The same is true when a crashed node, after 
recovery makes remote calls. Of a few commercially 
available RPC’s [ 111, [ 121, the SUN RPC does not spec- 
ify the call semantics to be supported and has no provision 
for orphan treatment. Similarly, Courier RPC appears to 
support exactly once semantics, but its description is not 
precise about its fault tolerance capabilities and no sup- 
port for orphan treatment is provided. Reference [13] re- 
ports on an interesting atomic RPC supporting what we 
have classified here as at most once semantics: as ex- 
pected, the mechanism has built in facilities for concur- 
rency control and backward error recovery. 

Rajdoot is currently forming the basis for several re- 
search projects under way at Newcastle. First of all, it is 
being extended to include multicastirtg facilities enabling 
calls to groups of servers to be made. An object-based 
system supporting fault tolerant objects and atomic ac- 
tions as discussed elsewhere [14] is being designed and 
constructed on top of Rajdoot. In a different experiment, 
Rajdoot is being integrated into a capability-based system 
where interesting extensions to the RPC mechanism are 
planned to include cheap but robust garbage collection 
mechanisms. 
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