
30 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING. VOL. 14. NO. I. JANUARY 198X

Rajdoot: A Remote Procedure Call Mechan ism
Supporting Orphan Detection and Killing

FABIO PANZIERI AND SANTOSH K. SHRIVASTAVA

Abstract-Rajdoot is an RPC mechanism with a number of fault tol-
erance capabilities. The paper first discusses the reliability related is-
sues and then describes how these issues have been dealt with in the
RPC design. Rajdoot supports exactly once semantics with call nesting
capability and incorporates effective measures for orphan detection and
killing. Previously reported RPC mechanisms have not paid adequate
attention to orphan treatment issues. Performance figures show that
the reliability measures of Rajdoot impose little overhead.

Index Terms-Distributed systems, fault tolerance, interprocess
communications, network protocols, remote procedure calls.

I. INTRoDLJCTI~N

T HIS paper descr ibes Rajdoot, a remote procedure call
(RPC) mechanism intended for distributed program-

ming. (Rajdoot, der ived from Sanskrit, means a royal
messenger.) Rajdoot has been des igned to provide a con-
venient set of primitives that can be used by arbitrary
clients and servers. Language and programming environ-
ment specific issues to do with stub generat ion, binding,
and naming, a l though important, have not been addressed
here; rather, the paper concentrates on novel o rphan han-
dling aspects of Rajdoot. It is our claim that existing RPC
mechanisms have paid little attention to the orphan prob-
lem and this represents their major shortcoming. The de-
sign of Rajdoot was completed during the W inter of 1984.
A version running on PDPl l’s connected by a Cambridge
Ring was soon completed. Since then it has been ported
on 4.2BSD UNIX@ systems connected by an Ethernet.

The paper is structured as follows. In the next section
we discuss those RPC related reliability issues that we
have regarded as important and then descr ibe in Section
III the design choices made for Rajdoot where we mention
the specific reliability mechanisms of the RPC. The re-
maining sections descr ibe the design and implementation
of those mechanisms.

W e conclude this introduction by summarizing the main
features of our RPC. Rajdoot supports: 1) exactly once
semantics; 2) arbitrary nest ing of RPC’s; 3) client

Manuscript received July 3 I, 1985; revised April 30, 1986. This work
was huppottcd in part by the Royal Signals and Radar Establishment of the
UK Ministry of Defcnce and the UK Science and Engineering Research
Council.

F. Panzicri is with the Department of Computer Science. University of
Piss, 56100 Piss. Italy.

S. K. Shrlbastava is with the Comput ing Laboratory, University of
Newcastle upon Tyne. Newcastle upon Tync NE1 7RU, England.

IEEE Log Number 87 18294.
“UNIX i\ a registered trademark of AT&T Bell Laboratories.

t imeouts and repeated retries of the call; and 4) o rphan
detection and killing. As we shall see, Rajdoot differs
from other RPC mechanisms reported in the literature
mainly because of the manner in which a number of fault
tolerance features (e.g., o rphan killing) have been inte-
grated into it.

II. RELIABILITY RELATED DESIGN Issuss
Failures in a distributed system, such as lost messages

and node crashes, can create reliability problems not nor-
mally encountered in a central ized (one node) system.
Thus, treatment of failures is one of the main issues that
requires close attention in an RPC design. In this section
we discuss the reliability issues, pointing out the prob-
lems posed by orphans.

A. Fault Models, RPC Semantics, and (I Correctness
Criterion

W e will model a distributed system as a collection of
nodes connected by a communicat ion subsystem. Faults
in the communicat ion subsystem are responsible for the
following types of failures: 1) a message transmitted from
a node does not reach its intended destination (termed a
communicat ion failure); 2) messages are not received in
the same order as they were sent; 3) a message gets cor-
rupted during its transmission; and 4) a message gets rep-
licated during its transmission.

There are well known mechanisms (based on check-
sums and sequence numbers) that enable a receiver to treat
messages that arrive out of order, corrupted or are copies
of previously received messages, so we need only concern
ourselves with the treatment of communicat ion failures.
The fault model for node fuilures is as follows: either a
node works according to its specifications or that node
stops working (crushes). After a crash, a node is repaired
within a finite amount of time and made active again. Most
publ ished works on RPC’s have implicitly assumed the
fault models we have descr ibed here explicitly (e.g.. 111,
PI).

Given that we wish to design an RPC mechanism for a
system prone to the faults just described, we can envisage
a range of fault tolerance measures. The following is one
such classification (which indicates RPC’s with increas-
ing degrees of fault tolerances). W e will assume that the
reception of a reply message from the called server con-
stitutes a normal termination of a call. Then the classifi-
cation given below indicates condit ions under which a
normal termination is possible.

0098-5589/88/0100-0030$01 .OO 0 1988 IEEE

PANZIERI AND SHRIVASTAVA: RAJDOOT: REMOTE PROCEDURE CALL MECHANISM 31

1) No communicat ion and/or node failures occur during
the call. 2) The RPC mechanism copes with a fixed finite
number of communicat ion failures. 3) The RPC mecha-
nism copes with a fixed finite number of communicat ion
failures and server node crashes (server crashes, for
short). 4) Same as 3), but in addition, tolerance to fixed
finite number of client node crashes (client crashes, for
short) is also present.

Next, we present a classification for the semantics of
remote calls [11, [3]:

1) At least once semantics: a normal termination im-
plies one or more execut ions at the called server.

2) Exactly once semantics: a normal termination im-
plies exactly one execut ion at the called server.

Both of the above semantics say nothing about what
happens if a call does not terminate normally and it is
assumed that zero, partial, one, or more execut ions [for
type l)] or zero, partial or one execut ion [for type 2)] are
a possibility. A “stronger’ ’ semantics is specif ied by the
third type given below [4]:

3) At most once semantics: same as exactly once, but
in addition, calls that do not terminate normally do not
produce any side effects.

Choosing appropriate fault tolerance capabilities and
semantics is indeed one of the most important decisions
to be taken in an RPC design. W e next present a simple
and intuitively appeal ing correctness criterion for an RPC
implementation.

Let C, denote a call made by a client and W, represent
the corresponding computat ion invoked at the called
server. Let C, and Cl be any two calls made by a client
such that: 1) Cj happens after Ci (denoted by C; then Cj);
and 2) computat ions W, and W j share some data such that
W i and/or W j modify the shared data. Then we say that an
RPC implementation must meet the following correctness
criterion, in the presence of specif ied types of failures [5]:

CR: Ci then C, implies W i then W j

The criterion CR states that a sequence of calls at a client
should give rise to computat ions invoked in the same se-
quence (obviously, if W, and W, are disjoint-do not share
any data-then strictly speaking, no ordering is neces-
sary). In the absence of any failures, the synchronous na-
ture of calls guarantees that CR will be satisfied. How-
ever, failures can create orphans (see the next subsect ion)
that do require special measures in order to meet CR. Note
that the correctness criterion must be met irrespective of
the RPC semantics chosen.

In any large distributed system, communicat ion and
node failures can be relatively frequently occurr ing
events, so any well engineered RPC mechanism must
strive to meet CR. In this respect, most existing RPC
mechanisms (e.g., [2], [ll], [12]) are inadequate. In con-
trast, Rajdoot meets CR in a very efficient manner.

B. Orphans
Orphans are unwanted execut ions that can occur due to

communicat ion and node failures. W e will say that a call

terminates abnormally if the termination occurs because
no reply message is received from the called server. Net-
work protocols typically employ t imeouts to prevent a
process waiting for a message from being held up indefi-
nitely. Assume that a client process waiting for results
from the called server has a timer set (or equivalently,
some other protocol dependent mechanism that signals the
client if no reply is received after some duration). If the
call terminates abnormally (the timeout expires) then there
are four mutually exclusive possibilities to consider: 1)
the server did not receive the call message; 2) the reply
message did not reach the client; 3) the server crashed
during the call execut ion and either has remained crashed
or is not resuming the execut ion after crash recovery; and
4) the server is still execut ing the call, in which case the
execut ion could interfere with subsequent activities of the
client, as depicted in Fig. 1.

Client K at node A issues a call to server X at node B
which executes the requested work (“work 1” in Fig. l),
and the call terminates abnormally before X completes the
work. The client then issues another call to some server
Y at node B (“work 2” in Fig. 1). If the computat ion by
X is still in progress, and “work 1” and “work 2” have
data in common, then these computat ions can interfere
with each other. Note that the concurrency depicted in
Fig. 1 must be regarded as undesirable, since it is ex-
pected that the execut ion of a sequential program should
give rise to a sequential computat ion character ized by a
single flow of control. Concurrency control techniques
(e.g., locking) are normally intended to prevent interfer-
ences between different programs under the assumption
that each program will invoke a sequential computat ion.

The interference depicted in Fig. 1 might also occur in
the case of a crash of the client node A. If the client re-
sumes execut ion after recovery by reissuing the call, or
by making a new call to the same node, then we have a
similar situation as before. W e will refer to unwanted
computat ions (e.g., “work 1”) as orphans. As a further
example, consider the case where a server’s work is some
arbitrary computat ion, including calls to other servers,
such that a crash of a server can leave orphans on other
nodes. The scenario depicted in Fig. 2 is thus possible.
Note that this type of interference in a nested call can also
occur in the absence of a server crash, as illustrated in
Fig. 3.

It is needless to say that the examples given here do not
constitute an exhaust ive list of possible interferences.
They are intended to show that there are a variety of ways
interferences can occur (and not just because of crashes
as is often assumed).

How should orphans be treated’? The correctness crite-
rion CR stated before essentially states that execut ions
such as work 1, work 2, Fig. 1, should be serialized to
take place in the same order as the invoking calls. One
way of meet ing this requirement dynamically is to make
sure that a server receiving a call request obeys the fol-
lowing two rules [5]: 1) a call request belonging to a ‘past’
call is not accepted for execution; and 2) once a call re-

NODE A

CLIENT K

NODE B as stated above, the abortion must also include undoing
of any side-effects that may have been produced.

Note that some RPC mechanisms (e.g.: 121) do not em-
SERVER X ploy timeouts to prevent indefinite waiting by a client, but

{iST CALL}
rau

--------------*
I

make use of special probe messages to detect if the called
I
I

server is still running. So, a call is terminated abnormally
timeout ’ work 1 orrly when a crash of the called node is suspected. We

I
,

show here that this mechanism is not enough to prevent
call SERVER Y

{ZND CALL} I
interferences. Consider the situation depicted in Fig. 2-

i

-------)I
interference

c
work 2 which could still occur if the probe mechanism is used for

terminating the first call. The situation depicted in Fig. 1
Fig. 1. Example of interference caused by a timeout. is also possible if a communication failure lasting a suf-

ficiently long time occurs which causes the first call to be
NODE A NODE B NODE C terminated abnormally. We thus see that orphan creations

CLIENT K due to abnormally terminated calls is a fundamental prob-
lem.

SERVER X
{1rt call} Cd/i

Finally we would like to remark that, in addition to
--------WI

I causing consistency problems, orphans also consume
I work
I (possibly) scarce resources such as message buffers, so
I

i

SERVER Y
their speedy abortion is desirable anyway.

Cd/l
-----------),

crash I
,

timeout I work
III. CHOOSING RAJDOOT'S FAULT TOLERANCE

,
I

CAPABILITIES
{2nd call} call

SERVER Z
I

------------------+------~,
$ Interference) work This section describes the design choices made in our

RPC. We wanted the RPC mechanism to be general pur-
Fig. 2. Possible interference in a nested call (crash case). pose, rather than for simply invoking idempotent opera-

tions, which limits the choice to either at most once or
Node A Node B Node C excatly once. Out of the two, we have opted for exactly

CLIENT K
once for the following reason. At most once calls require
sophisticated backward error recovery support of atomic

{be
7

I” 1st SERVER X transactions [4], [6]. We wanted our RPC mechanism to
call call

---w---), be sufficiently “neutral” to support applications that do
I work

i
call

and do not make use of atomic transactions, which sug-
---------+I SERVERY gests that exactly once semantics is more appropriate.

timeout I
I Out of the four options for normal termination pre-

{end 1st I
call} rep/Y , I work sented in the previous section, the fourth one-permitting

+-w---J ,
I a call to terminate normally in the presence of both client

Cd/i I SERVER 2
{2nd call} -----------------+------~, and server crashes-was discounted straightaway on the

I I work
t Interference * grounds that it provides too much functionality and is far

Fig. 3. Possible interference in a nested call (no crash case).
too complex to implement. It is better for a client to fix
its own crash resistance strategy, rather than to fix it at
the RPC level. The choice is then between 2) and 3), and

quest is accepted, the corresponding execution is started we have opted for 2). That is, a call can complete nor-
only after any ongoing executions belonging to “past” mally in the presence of a fixed finite number of com-
calls on the node have been aborted. It is easy to see that munication failures, but not if the server node crashes (in
this will ensure that orphan executions will neither inter- which case the call is guaranteed to terminate abnor-
fere nor overtake the “current” execution. mally). Allowing a call to terminate normally in the pres-

A number of orphan detection and abortion techniques ence of server crashes would have required backward er-
have been discussed in [3], [5]. They tend to be expensive ror recovery facilities-which in our view is better
and difficult to implement (since these techniques them- employed at higher levels than at the level of RPC.
selves must be robust against failures). As we shall see, The correctness criterion CR is met by Rajdoot by em-
Rajdoot has three mechanisms built in to cope with or- ploying three orphan handling mechanisms:
phans-it is by breaking the orphan problem into three M,: If a client call terminates abnormally, then it is
subproblems that Rajdoot achieves its efficiency. We note guaranteed that any computations the call may have gen-
that the semantics of the RPC can also impose some ad- erated have also terminated.
ditional requirements not captured by CR. In particular, Ik12: Consider a node that crashes and after recovery
for at mosr once calls, not only should orphans be aborted makes a remote call to some node C. Then. if C has anv ~~..~ _ .~ d

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL 14, NO. I, JANUARY 1988

PANZIERI AND SHRIVASTAVA: RAJDOOT: REMOTE PROCEDURE CALL MECHANISM 33

orphans because of the caller’s crash, then they will be
aborted before the execut ion of the call starts at C.

Ms: What if the node remains crashed or after recovery
never makes calls to C? In this case it is guaranteed that
any orphans on C will nevertheless be detected and killed
within a finite amount of time.

These mechanisms are discussed at length in the rest of
the paper, but we give some hints here to present their
essential mode of operation.

M,: Every call contains a deadline, indicating to the
server the maximum time available for execution. If the
deadl ine expires, then the server aborts the execut ion and
the call terminates abnormally. W e thus see that if there
are no node crashes in the system, then M, will be enough
to cope with orphans. The remaining two mechanisms
cope with crashes.

M2: Every node maintains a stable (crash proof)
counter-cal led a crushcount-that is incremented im-
mediately after a node recovers from a crash. A node also
maintains a table of crashcount values for clients that have
made calls to it. A call request contains the client’s crash-
count value-if this value is greater than the one in the
table at the called server, then there could be orphans at
the server which are first aborted before proceeding with
the call.

M3: Every node has a terminator process that occa-
sionally checks the crashcount values of other nodes-by
sending messages to them and receiving repl ies-and
aborts any orphans when it detects any crashes.

Mechanisms MI and M2 can be des igned to provide a
remarkably powerful method of o rphan handl ing with
hardly any performance overheads in that no extra mes-
sages are needed for o rphan detection and killing. Mech-
anism M3 does impose some overheads but as it turns out,
they need not be excessive since a terminator need only
perform its checks once every few minutes.

For the sake of completeness we present here the spec-
ification of the RPC primitive available to a client (where
parameters and results are passed by values):

rpc(server: . . . ; call: . . ; t imeout: . . . ; retry: . . . ;
var reply: . . . ; var rpc-status: . . .);

The rpc-status variable can assume one of the following
values:

rp-status = (OK, NOTDONE, UNABLE);

The second parameter contains the name together with the
relevant parameters of the operat ion to be performed by
the server whose address is in the first parameter. The
retry parameter indicates the number of times the call is
to be retried (default value being zero). Let, for some call,
II be the value of the retry parameter and t be the timeout
value. Then, if after issuing the call, no reply is received
within durat ion t, the call will be reissued; this process is
repeated a maximum of n times. So, the worst case nor-
mal complet ion time for a call will be at most (n + l)*
t units of time. The semantics of the call under status OK,
NOTDONE, and UNABLE is given below:

rpc-status = OK: The specif ied call has been exe-
cuted once by the server; the result is available in “re-
ply.” This represents a normal termination of a call, with
the call taking at most (n + 1)* t units of time to com-
plete.

rpc-status = NOTDONE: The call has not been ex-
ecuted. This response is obtained when some communi-
cation failure prevents the call message from being trans-
mitted to the server; the response is obtained in less than
t units of time.

rpc-status = UNABLE: At most one execut ion may
have taken place at the called server; “reply” does not
contain any results. This case represents an abnormal ter-
mination, with the call taking at most (n + 1)* t units of
time to complete. It is guaranteed that any computat ion
the call may have generated has also terminated.

So, referring back to the previous examples of interfer-
ences, when the first call from the client K terminates
(either abnormally as in Figs. 1 and 2, or normally as in
Fig. 3) there will be no ongoing computat ions for that
client at nodes B and C.

W e claim that Rajdoot closely approximates the behav-
ior of local calls. For a program, when a local call ter-
minates either normally or abnormally (an exceptional re-
turn is obtained), we do not expect any ongoing activities
at the called procedure. The same behavior is modeled by
our RPC. In a single node system, a crash destroys all the
ongoing computat ions. This behavior is approximated by
Rajdoot as follows: a crash of a node does not “in-
stantly” stop all the remote calls initiated from the node,
rather, when post crash calls are made, any orphans on
the called node are first aborted.

IV. RELIABILITY MECHANISMS

This section contains the details of the three reliability
mechanisms ment ioned before. In order to present these
details, it is important to know the execut ion model em-
ployed by the RPC mechanism. This model, together with
some protocol related details are presented in the next
subsection.

A. The Execution Model and the RPC Protocol
The execut ion model adopted has been inf luenced by

the use of RPC’s in the Newcast le distributed system [7],
and is descr ibed here with the help of a diagram (see Fig.
4). Each node runs a manager process that operates at
some well known address. The primary task of a manager
is that of creating server processes that execute clients’
remote calls; in particular, each server executes only the
calls of the client for which it was created. At the same
time, once a server has been created at a node, a client
directs all its remote calls intended for that node to the
created server. Servers themselves may invoke remote
calls as part of their “work,” thus giving rise to nested
calls.

The process of creating a server is handled transpar-
ently to the client program by the RPC mechanism. In
essence, the first remote call issued by a client to a node

34 IEEE TRANSACTlONS ON SOFTWARE ENGINEERING, VOL. 14, NO. I, JANUARY 1988

Node A

r
{1rt ‘PC}

I
serveraddress $

+---------

L call SERVER
---------+,

I
work

=-P/Y i +---------

call
----------),

{Znd rpc}
I work

--P/Y i +---------

Fig. 4. RPC execution model.

is converted by the RPC mechanism into a request for the
manager at that node to create a server, and is transmitted
to that manager (the create server message of Fig. 4). The
manager spawns a server and goes back to receive re-
quests from the network. The spawned server acquires a
(logical) address, which remains private to that server un-
til it terminates, and replies to the client by sending it this
address (the server address message of Fig. 4). This mes-
sage contains the same sequence number as the corre-
sponding “create server” request, so the client is in a
position to accept the right message. Lack of “server ad-
dress” message within a predefined timeout period causes
a retransmission of the “create server” request. The RPC
mechanism incorporates measures for dealing with the
possibility of multiple servers being created for the same
client by possible retransmissions of this request (see the
next subsection).

Once a server has been activated and its address re-
ceived by the client, the client’s call is transmitted with a
new sequence number to that server. Any exceptions dur-
ing transmission of the “call” message are dealt with by
retransmitting that message with the same sequence num-
ber. The server receives the call, discarding further calls
with the same sequence number, performs the work and
sends the result as a “reply” message containing the same
sequence number as the corresponding “call” message.
If the client does not receive the reply within the specified
timeout period, and “retry” value is nonzero, the call
message is sent again (with the same sequence number as
before), and “retry” value is decremented by one. A
server always maintains the results of the most recently
executed call, so that it can effectively cope with retry
requests arising out of lost replies. The manager process
of a node has been designed to be “stateless”: after ser-
vicing a create server request, the manager simply “for-
gets” about this request. This greatly simplifies its design
and implementation.

B. Reliability Mechanisms
We employ local (stable, crash proof) clocks for ob-

taining monotonically increasing sequence numbers for

messages. A node crash will destroy all the servers on that
node which are not recreated, thus ensuring that respec-
tive client calls will terminate abnormally. A server main-
tains the sequence number of the most recently executed
call and will only accept new requests with higher num-
bers. This is a well known method of ensuring that de-
layed messages, representing “past” calls do not cause
any executions.

It was stated earlier that the manager process of a node
does not maintain any state. This means that client retries
for creating a server can result in more than one server
being created. A newly created server starts an idle
timeout and waits for a call request; the duration of the
timeout is set to slightly more than two message round
trip delays. If the timeout expires, then it can only mean
that 1) the client has crashed or it cannot send a request
due to some communication failure; or 2) the server has
been created spuriously. In either case, the server aborts
itself. This simple technique ensures that only the right
number of servers survive. Once a server gets a call re-
quest, it “knows” that it is not unwanted, so it will not
unilaterally destroy itself (if this server becomes an or-
phan due to a client crash, it will be destroyed by a dif-
ferent mechanism which will be discusssed shortly).

A call request to a server contains the deadline (n +
l)* t, representing the maximum time available for exe-
cuting that call. The server receiving a call starts a timer
whose value is based on the deadline; if the deadline ex-
pires-the server is still executing the call-then the ex-
ecution is aborted, with the server initialized to receive
new calls. At about the same time the client’s timeout will
expire, causing the call to terminate abnormally. Let d be
the maximum transmission delay for a message, and D be
the deadline for a call; then the computation time T avail-
able at the called server is: T 5 D - 2* d. If the server
makes remote calls, then the deadlines for these calls must
be calculated properly. For example, if a server is making
just one remote call, the deadline D 1 should be: D 1 5 T
- t 1, where t 1 is the local computation time. The dead-
line mechanism provides a simple means of guaranteeing
that an abnormally terminated call does not have ongoing
computations at remote nodes. The price paid for this
simplicity is the requirement for clients to estimate com-
putation times; however, the retry parameter of a call does
provide some flexibility in this direction (we will return
to this subject in a subsequent section).

We will now discuss how orphans due to node crashes
are detected and aborted. The basic idea as mentioned
earlier is quite straightforward. Every node maintains a
variable called a crashcount which is in fact the local (sta-
ble) clock value at the time the node was rebooted after a
crash. A node also maintains crashcount values of client
nodes who have made calls to it. These values are main-
tained in a table referred to as a C-LIST. A newly created
server checks the client supplied crashcount value against
the corresponding value in the C-LIST; if the former is
greater, then this indicates that the caller has had a crash,
in which case there could be orphans on the node. So, the

PANZIERI AND SHRIVASTAVA: RAJDOOT: REMOTE PROCEDURE CALL MECHANISM 3.5

server aborts all other servers created by clients of the
calling node before execut ing the call. If the two values
are the same, then there cannot be any orphans of the call-
ing node. Finally, if the C-LIST does not contain a crash-
count entry for the caller, then an entry is made with the
client suppl ied value.

The deadl ine mechanism plus crashcount based orphan
detection and killing technique provides a powerful means
of prevent ing interferences with remarkably little over-
heads. Given the provision of stable clocks at each node,
no stable storage facility is required, neither is there any
need for keeping clocks synchronized. This completes the
discussion on mechanisms M, and MZ. A description of
the mechanism M3 follows.

After a server finishes servicing a call, it waits for the
next call to come. This waiting is performed with an idle
t imeout (which is typically a few minutes). If the timeout
expires, there could be any of the following situations
possible at the client: 1) the client has crashed and not yet
recovered; 2) the client has crashed, but after recovery no
calls to the node have been made; 3) the client program
has terminated, without informing the server; and 4) com-
munication between the nodes is no longer possible. Out
of these four possibilities, we have chosen not to deal with
possibility 3), believing it to be the responsibility of
clients to terminate servers (for which a terminate primi-
tive has been made available to clients), and possibility
4) is treated as a client crash. After the expiration of the
timeout, a server marks itself as a potential o rphan and
resumes waiting for a call. If a call is subsequent ly re-
ceived, the server unmarks itself before execut ing the call.

Every node has a terminator process that regularly
(every few minutes) constructs a list of potential o rphans
on its node and calls relevant client nodes to see if they
are running. These messages are directed to the managers
of these nodes. This then is the second function of a man-
ager. Upon receiving such a request, the manager simply
sends the current crashcount value in the reply. Since this
is a read only operation, message retries at either end do
not pose any problems. If a terminator does not get a reply
within a reasonable amount of time (after a few retries),
it is taken that the called node has crashed, in which case
the relevant potential o rphans are aborted. The same ac-
tion is performed if the crashcount value in a reply is larger
than the one in the C-LIST. The terminator based mech-
anism certainly imposes some overheads, but these are
not deemed excessive. This is because a terminator need
only activate itself infrequently and it does not generate
excessive message traffic.

V. IMPLEMENTATION NOTES

A working implementation of Rajdoot was first per-
formed over a few PDPl l’s with UNIX connected by a
Cambridge Ring. The implementation was later ported on
to 4.2BSD UNIX systems running over Vax’s, SUN’s and
Whitechapels. This section reports on some implementa-
tion details; a full report is available in [161.

The C-LIST of a node is an array of elements of the
following type:

type clistelement = record
clientnode: . . ; “client node address”
crashcount: . . . ; “clock value at client node”
serverlist: array [. . .] of serverid

end

The “cl ientnode” field contains the address of the client
node whose calls have been serviced by servers whose
identifiers are recorded in the “serverlist.” The “crash-
count” field contains the last known crashcount of the
client node. The “serverid” variable contains two fields:
a process identifier field and a Boolean flag “PO-FLAG”
indicating whether the server is a potential orphan. The
C-LIST of a node is initialized to empty at the node
startup time and is shared between clients, servers, and
the terminator of that node.

When a client calls a remote manager for creating a
server, it suppl ies its node address and crashcount value;
this pair of values is passed on to the created server. If
the caller is itself a server, then all the preceding client’s
pairs are also supplied, as illustrated below (the term rpc-
path will be used to refer to the set of such pairs). In Fig.
5, server X will be suppl ied with the rpc-path < A, i > ;
server X itself creates a server Y at node C, so the rpc-
path in the “create server” request sent to the manager at
Cwillbe <A,i>, <B,j>.

A newly created server checks if the crashcount of
clients in the rpc-path match with corresponding entries
(if any) in the C-LIST. If for some client this is not the
case, then all the servers recorded in the “serverlist” en-
try for the client node in the C-LIST must be orphans.
The server aborts these servers, clears their names from
the C-LIST and inserts the new crashcount value and its
own identity, with PO-FLAG set to false. Finally, if there
is an entry for a given pair in the rpc-path, and crashcount
values are same, then the server only logs itself in the
serverlist. It should be noted that these operat ions are per-
formed only at a server creation time and not for each and
every call; further, the rpc-path is suppl ied by a client
only when creating a server. Whenever a server becomes
a potential orphan, it changes its flag in the C-LIST. Fig.
6 shows a tabular representat ion of the C-LIST for node
C, Fig. 5.

A client who is also a server makes use of the C-LIST
as follows. Suppose server Y, Fig. 5, wants to create a
server at some node D. In this case it will scan the C-
LIST to retrieve pairs < A, i > , < B, j > and then send
a request with rpc-path < A, i > , < B, j > , < C, k >

Finally, the terminator of a node makes use of the C-
LIST to construct the list of clients to whom enquiry mes-
sages are to be sent. If for example, Y at node C is marked
as a potential orphan, then the terminator at C will send
enquir ies to nodes A and B.

Performance measures of the RPC with and without re-
liability mechanisms indicated that these mechanisms
were responsible for adding at most 30 percent overheads

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING. VOL. 14. NO. I, JANUARY 19X8

Node A Node B

crashcount = I crashcount = ,

Node C

crashcount = k

Cltent K server x Server Y

. . .

<A.,>
---------+

. . .
<A,I><@.J>

------------+

\ Fig. 5. RPC path in a nested call.

Fig. 6. Tabular representation of the C-LIST at node C.

on null calls. Since the overheads are independent of RPC
execut ion times, the percentage overhead figure reduces
for non-null calls, indicating that Rajdoot incorporates ef-
fective reliability measures quite cheaply.

VI. A CRITICAL ASSESSMENT OF THE RELIABILITY
MECHANISMS

In this section we will attempt to justify our selection
of Rajdoot’s reliability mechanisms in preference to other
mechanisms.

Certainly, the most controversial choice seems to be the
employment of the deadl ine mechanism for abort ing
server executions, the main objection being how can
clients estimate the required deadl ines? Putting aside this
objection for the time being, it should be clear that the
deadl ine mechanism does represent an extremely cheap
and effective means of prevent ing orphans from causing
interferences. Consider for a moment a possible altema-
tive-that of a server dynamically checking that there are
no orphans present before commencing an execution. This
would mean maintaining a shared table at a node that is
accessed by all the servers of that node for each and every
call request. This is likely to become a performance bot-
t leneck. Any other solution such as requiring clients to
send explicit abort messages are even more expensive and
not particularly reliable. For these reasons we came to the
conclusion that the deadl ine mechanism represents a rea-
sonable compromise.

Returning to the problem of estimating deadlines, we
offer a possible solution that can be incorporated in a stub
generator. It is common to require that remote objects
register their interface definitions with a name server so
that clients can import these definitions during bind time
[2]. If the registration information also contains an exe-
cution time estimate, then a stub generator can automati-
cally calculate the call deadline, assuming message trans-
mission times can be estimated. Note that the retry
mechanism provides a convenient means of coping with
variations in execut ion times (say due to over load situa-
tions).

W e now examine the remaining two orphan killing
mechanisms of Rajdoot. The crashcount based mecha-
nism (M2) has several advantages: 1) most modem com-
puters contain a stable clock anyway; 2) the C-LIST does
not require stable storage; 3) the C-LIST, which is shared
between all the processes of that node, is only accessed
by a server the very first time it is created-so it is not a
per formance bott leneck; and most importantly 4) no spe-
cial crash recovery procedures are required for nodes.
Contrast this with a widely known orphan killing tech-
n ique based on maintaining a “hit list” on stable storage
at each node (the list contains names of nodes to which
calls have been made). Crash recovery of a node then in-
volves sending abort messages to the nodes named in the
hit list. This turns out to be an expensive and difficult
technique to implement-particularly if several nodes are
performing crash recoveries simultaneously. Lastly, the
terminator based mechanism (M3) of Rajdoot is also
cheap since not only is it activated infrequently, but also
it does not require stable storage.

Finally we note that Rajdoot mechanisms “scale-up”
nicely-despite the fact that our implementation has been
performed and tested over a system containing only a few
nodes, there is every reason to bel ieve that our design will
be equally effective for systems containing thousands of
nodes.

VII. CONCLUDING REMARKS

W e commenced the design exercise in the W inter of
1983; the original aim was to build an orphan killing sys-
tem for the existing RPC [9], [IO]. Several schemes were
des igned but were abandoned as being too expensive for
large systems and it soon became clear that a complete
redesign of the RPC was required.

In our design we have tried to minimize the amount of
state information processes have to maintain for proper
execut ion of remote calls. Thus, the manager process of
a node maintains no state information and a server only
maintains the last sequence number value and the result
of the last call for its client. The only shared data in a
node is the C-LIST and the variable crashcount and this
data is accessed infrequently. It is our view that an RPC
mechanism that provides exactly Once semantics but fails
to provide any guarantee of f reedom from interferences
from computat ions of preceding calls is not really ade-
quate. Also, orphans generated due to node crashes must
be killed, if only to release scarce resources (such as net-
work ports and buffers). Thus, some provision for o rphan
detection and killing must be available.

The execut ion model of Rajdoot has been optimized for
mult iprogramming systems where processes are not
cheap. Referring to Fig. 4, it was stated that a client has
a single server at a remote node to service all of its calls.
This is purely an efficiency measure; logically there is no
reason as to why a client cannot have more than a single
server at a node- the orphan detection and killing mea-
sure will still work as expected. Taken to its extreme, one
could envision a system where each call is executed by a

PANZIERl AND SHRIVASTAVA: RAJDOOT: REMOTE PROCEDURE CALL MECHANISM 37

new process (an attractive possibility in operating systems
offering cheap “lightweight” processes [2]). In such a
system, mechanism M3 of Rajdoot will not be necessary
if after executing a call the process either dies or gets real-
located to serve some other call.

The first detailed study of RPC’s appeared in the Ph.D.
dissertation of Nelson [3], where among other things, a
variety of orphan killing techniques were presented but
not implemented. The subsequent Cedar implementation
[2] also has not addressed the issue of orphan treatment.
Cedar RPC supports exactly Once semantics, and like Raj-
doot, does not permit a call to terminate normally in the
presence of server crashes. However, an abnormally ter-
minated call does not guarantee that the computation in-
voked (if at all) at the callee has terminated-so no guar-
antee of freedom from interference for subsequent calls
can be given. The same is true when a crashed node, after
recovery makes remote calls. Of a few commercially
available RPC’s [111, [121, the SUN RPC does not spec-
ify the call semantics to be supported and has no provision
for orphan treatment. Similarly, Courier RPC appears to
support exactly once semantics, but its description is not
precise about its fault tolerance capabilities and no sup-
port for orphan treatment is provided. Reference [13] re-
ports on an interesting atomic RPC supporting what we
have classified here as at most once semantics: as ex-
pected, the mechanism has built in facilities for concur-
rency control and backward error recovery.

Rajdoot is currently forming the basis for several re-
search projects under way at Newcastle. First of all, it is
being extended to include multicastirtg facilities enabling
calls to groups of servers to be made. An object-based
system supporting fault tolerant objects and atomic ac-
tions as discussed elsewhere [14] is being designed and
constructed on top of Rajdoot. In a different experiment,
Rajdoot is being integrated into a capability-based system
where interesting extensions to the RPC mechanism are
planned to include cheap but robust garbage collection
mechanisms.

ACKNOWLEDGMENT

Acknowledgment is due to L. Marshall, B. Randell,
and R. Stroud for their constructive criticisms. F. Heday-
ati was responsible for porting Rajdoot on 4.2 BSD UNIX
systems.

REFERENCES

[I] A. Z. Spector, “Performing remote operations efiiciently on a local
computer network,” Commun. ACM, vol. 25, no. 4, pp. 246-260,
Apr. 1982.

[2] A. D. Birrell and B. J. Nelson. “Implementing remote procedure
calls,” ACM Trams. Comput. Syst., vol. 2. no. 1, pp. 39-59, Feb.
1984.

]3] B. J. Nelson, “Remote procedure call.” Ph.D. dissertation, Comput.
Sci., Carnegie-Mellon Univ., Pittsburgh, PA, Rep. CMUCS-RI-I 19,
1981.

[4] B. Liskov and R. ScheifIer, “Guardians and actions: Linguistic sup-
port for distributed programs,” ACM Trm.\. Proqrm. Lang. SW. ,
vol. 5, pp. 381-404, July 1983.

[5] S. K. Shrivastava, “On the treatment of orphans in a distributed sys-
tem,” in Proc. 3rd Symp. Reliability io Di.srrihutcv~ SoJwure und Du-
tubuse S~sterns, IEEE Comput. Sot., Florida, Oct. 1983. pp. 155
162.

[6] L. Svobodova, “Resilient distributed computing.” /EEE Trms. Soft-
ware Eng., vol. SE-IO, no. 3, pp. 257-268. May 1984.

[7] D. R. Brownbridge, L. F. Marshall, and B. Randell, “The Newcastle
connection or Unixes of the world unite!” Sojhvcrrr : Prmtiw crtzd
Experience, vol. 12, pp. 1147-l 162, 1982.

[S] F. Panzieri, “Design and development of communication protocols
for local area networks,” Comput. Lab., Univ. Newcastle upon Tyne,
Tech. Rep. 197, Mar. 1985.

[9] S. K. Shrivastava and F. Panzieri, “The design of a reliable remote
procedure call mechanism,” IEEE Trans. Cmnput., vol. C-31, no. 7,
pp. 692-697, July 1982.

[lo] F. Panzieri and S. K. Shrivastava, “Reliable remote calls for distrib-
uted Unix: An implementation study,” in Pm-. 2nd Syp. Reliability
in Distributed Sofmare atzd Database Systems. IEEE Computer Sot.,
Pittsburgh, PA, July 1982, pp. 127-133.

[I l] “Remote procedure call specification,” Sun Microsystems. Mountain
View, CA, Jan. 1985.

[121 “Courier: The remote procedure call protocol,” Xerox System Inte-
gration Standard XSIS 0381 12, Stamford, CT, Dec. 1981.

[13] K. J. Lin and J. D. Cannon, “Atomic remote procedure call.” fEEE
Trans. Software Eng., vol. SE-11, no. 10, pp. 1126-1135, Oct. 1985.

[14] S. K. Shrivastava, “Robust distributed programs,” in Resilient Com-
puting Systems, T. Anderson, Ed. London: Collins, 1985, pp. 102-
121.

Fabio Panaieri received the “Laurea” degree in
computer science from the University of Pisa,
Pisa, Italy, in 1978, and the Ph.D. degree In corn-
puter science from the University of Newcastle
upon Tyne, Newcastle upon Tyne. England, in
1985.

From 1979 to 1985 he was a Research Asao-
ciate at the Computing Laboratory of the Univcr-
sity of Newcastle upon Tyne. Currently, he is an
independent consultant and his activity is based in
Pisa. His research interests include distributed

primitives for distributed computing. and design of
,ols for local and wide area networks.

Santosb K. Sbrivastava received the B.E. and
M.E. degrees in electronic engineering from the
University of Poona, India, in 1965 and 1967. re-
spectively, and the Ph.D. degree in computer sci-
ence from the University of Cambridge. Cam-
bridge, England, in 1975.

After working for several years in industry, he
joined the computing laboratory of the University
of Newcastle upon Tyne in 1975. where he is now
a Professor of Computing Science. His areas 01
interest include reliable distributed computing.

protocols, and system specifications.
Dr. Shrivastava is a member of the British Computer Society and the

IEEE Computer Society.

