
Towards a Comprehensive PlanetLab Architecture

Larry Peterson, Andy Bavier, Marc Fiuczynski, Steve Muir
Princeton University

Timothy Roscoe
Intel Research – Berkeley

PDN–05–030

June 2005

Status: Ongoing Draft.

D
R

A
FT

Towards a Comprehensive PlanetLab Architecture

Larry Peterson, Andy Bavier, Marc Fiuczynski,
Steve Muir, and Timothy Roscoe

June 7, 2005

1 Introduction

PlanetLab has evolved rapidly over the past two years according to a set of design
principles [12], but with minimal attention paid to distinguishing between its un-
derlying architecture and its current implementation. This documents attempts to
address this shortcoming by defining the PlanetLab architecture (as of Version 3),
and in the process, identifying various implementation artifacts.

This report comes with three caveats. First, we make no claimthat the Version
3 architecture is the final word; this document should be interpreted as a starting
point for a general discussion of what the PlanetLab architecture should be. Sec-
ond, this document is not intended as a user reference guide;it describes PlanetLab
from a management perspective rather than the user’s perspective. Third, the in-
terfaces presented in this report are simplified abstractions of the actual interfaces;
the syntax of actual calls are documented on the PlanetLab web site.

The central goal of PlanetLab is to supportdistributed virtualization—allocating
a widely distributed set of virtual machines to a user or application, with the goal
of supporting broad-coverage services that benefit from having multiple points-of-
presence on the network. This is exactly the purpose of the PlanetLabsliceabstrac-
tion [3]. The central challenge of PlanetLab is to provide decentralized control of
distributed virtualization.

PlanetLab’s model for decentralized management is, in turn, guided by two de-
sign requirements. The first is that management of distributed virtualization should
be decomposed into a large number of separate functions: discovering resources,
creating slices on a set of nodes, buying and selling node resources, keeping the
code running in a slice up-to-date, monitoring a slice’s behavior, and so on. To
preserve generality, PlanetLab attempts to keep these functions separate. Conse-
quently there is no single “management entity” as such, eventhough particular

1

D
R

A
FT

systems may collapse many of these functions into one component. We refer to
this decoupling asunbundled management.

The second requirement is that systems must preserve thechain of responsi-
bility among all the relevant principals. That is, it must be possible to map exter-
nally visible activity (e.g., a transmitted packet) to the principal responsible for that
packet. The ability to do this is essential to preserving thetrust relationships among
various parties. Note that the chain of responsibility doesnot attempt to eliminate
the possibility that bad things might happen, it just requires that the system be able
to identify the responsible party when something does go wrong.

2 Base Elements

This section outlines the base architectural elements of PlanetLab. For each, we
give examples of how the element might be implemented, including how the ele-
ment is implemented in the current version, as well as other possible realizations.

A nodeis a machine capable of hosting one or more virtual machines.There
is currently a one-to-one mapping between nodes and physical machines, but a
node might be implemented by a cluster of machines, where thenode manager
running on each node is responsible for instantiating virtual machines on some
processor in the cluster (and possibly migrating the virtual machine from processor
to processor over time). Nodes also need not be of the same machine architecture,
although the current implementation is limited to x86 processors. In fact, a single
node might include a heterogeneous collection of processing elements, such as a
general-purpose processor with one or more network processors.

A virtual machine(VM) is an execution environment in which a slice runs on
a particular node. VMs are implemented by avirtual machine monitor(VMM)
running on the node. It is expected that the VMM provides somelevel of isola-
tion between the VMM’s it hosts. Each VM is specified by a set ofattributes,
called aresource specification(rspec), that defines how much of the node’s re-
sources are allocated to the VM. Therspecalso specifies the VM’stype. PlanetLab
currently supports a single Linux-based VMM, and so defines asingle VM type
(linux-vserver), but other types are possible (e.g.,xen-domain). A given node
might support more than one VM type.

A node manager(NM) is a program running on each node that creates virtual
machines on the node, and controls the resources allocated to those VMs. All
operations that manipulate virtual machines on a node are made through the node
manager; the native VMM interface is not called directly. There is a one-to-one
mapping between nodes and node managers.

A slice is a set of virtual machines, with each element of the set running on

2

D
R

A
FT

a unique node. Each slice runs a networkservice. The specification for a slice is
given by a slice-widerspec. A slice is bound to a set of principals that are respon-
sible for developing the service that runs in the slice. Today all VMs belonging to
a slice must be of a single type. This is because PlanetLab hasonly one type, of
course, but also because anrspec is defined on a per-slice basis rather than on a
per-VM basis. That is, a singlerspec is used for all VMs belonging to a slice. This
obviously leads to a simpler implementation, but is not strictly necessary.

An infrastructure serviceis a “helper” service used by other slices (services).
For example, an infrastructure service might create sliceson a set of nodes; buy and
sell node resources; keep the code running in a slice up-to-date; monitor a slice’s
behavior, and so on. Multiple competing infrastructure services are possible, and
in fact, encouraged by PlanetLab’s principle of unbundled management.

3 Principals and Relationships

This section identifies the key principals (and the relationships among them) in the
PlanetLab architecture. There are four principals of note:ownershost one or more
nodes;service providersimplement and deploy network services on a set of nodes;
management authoritiesoperate a set of nodes on behalf of one or more owners;
andslice authoritiesregister a set of service providers. These principals have the
following responsibilities:

• A management authority is responsible for installing and maintaining the
software (e.g., VMM and NM) that runs on the nodes it manages.Through
this software, the management authority creates VMs on nodes, monitors
these nodes for correct behavior, and takes appropriate action when anoma-
lies and failures are detected. A management authority may also be the
owner of some fraction of the nodes it manages.

• A slice authority is responsible for registering providers, creating (naming)
slices, and binding a set of providers to each slice. It must be able to map a
slice to the providers that are responsible for its behavior. A slice authority
also registers credentials for providers; for example, it may collect public
keys and distribute them to the nodes that host that slice.

• Each owner retains ultimate control over their own nodes, but selects a single
management authority to manage its nodes, and approves one or more slice
authorities on whose behalf it is willing to accept slices.

• Each provider implements and deploys a network service. Theprovider is
responsible for the behavior of its service.

3

D
R

A
FT

As with other aspects of the architecture, we note that some of these roles may
be conflated in a particular implementation; e.g., a node owner may act as its own
management authority.

To make this discussion more tangible, consider that PlanetLab currently con-
sists of nodes owned by roughly 200 autonomous systems (spanning over 260
sites), and hosts slices affiliated with approximately 200 independent organizations
(representing over 450 research projects, or budding service providers). Establish-
ing 200×200 pairwise trust relationships is an unmanageable task: aresearcher
would have to obtain permission to create VMs on nodes owned by 200 organiza-
tions, while a university would need to approve requests foruse of its nodes from
200 independent research organizations. (The set of organizations hosting nodes
and the set of organizations acquiring slices are almost identical in PlanetLab, but
this need not be the case in general.)

A key insight to reducing such an N×N problem into an order N problem
is to use trusted intermediaries. ThePlanetLab Consortiumis one such trusted
intermediary: node owners trust it to manage the behavior ofVMs that run on
their nodes, and service providers trust it to provide access to a set of nodes that
are capable of hosting their services.1 Thus, understanding the underlying trust
assumptions is the key to defining the PlanetLab architecture.

The following describes the critical trust relationships among principals, and
sketches the incentives each party has in not violating thistrust. Figure 1 schemat-
ically depicts these trust relationships.

1. An owner trusts a management authority to install software that is able to
map network activity to the responsible slice. This software must also iso-
late and bound/limit slice behavior. The owner will find a more reliable
management authority if this trust is violated.

2. Each owner trusts certain slice authorities to reliably map slices to providers.
An owner will configure its nodes to accept slices only from trusted slice
authorities.

3. A provider trusts a slice authority to act as its agent, creating slices on its
behalf and checking credentials so that only that provider can install and
modify the software running in its slice.

4. A slice authority expresses trust in a provider by issuingit credentials that
lets it access slices. This means that the provider must adequately convince

1We use “PlanetLab” as a shorthand for “PlanetLab Consortium”, the intermediary, but the mean-
ing should be clear from the context.

4

D
R

A
FT

Owner

Mgmt
Authority

Slice
Authority

Provider
Service

5

2 3

4

6

1

Node

Figure 1: Critical trust relationships among principals.

the slice authority of its identity (e.g., affiliation with some organization or
group).

5. A provider may trust only certain management authoritiesto provide it with
working VMs, and to not falsely accuse them of out-of-boundsbehavior.
The provider will only run a service on those nodes with a trustworthy man-
agement authority.

6. A management authority must trust owners to keep their nodes physically
secure. It is in the best interest of owners to not circumventthe management
authority (upon which it depends for accurate policing of its nodes). It must
also verify that every node it manages actually belongs to anowner with
which it has an agreement.

The key feature of the trust relationships shown in Figure 1 is that there areno
trust dependencies between owners and providers. This absence is what allows the
system scale in the number of providers and owners it supports. A secondary fea-
ture is that, while they could be combined into a single entity, there is no inherent
dependency between management and slice authorities. Theyare free to evolve
independent of each other.

Architecturally, the requirement implied by these relationships is a name space
for management and slice authorities, where each slice is uniquely identified by the
pair:

5

D
R

A
FT

〈 slice name, slice authority name 〉

For simplicity, we identify a slice by itsslice name alone in the remainder of this
document.

4 Architectural Components

This section identifies PlanetLab’s central architecturalcomponents, with a partic-
ular focus on the role these components play in managing the trust relationships
involved in distributed virtualization.

4.1 Create Slices

A slice authority typically provides an interface (front-end) through which service
providers can request that slices be created on their behalf. A slice authority also
needs a way to create VMs on individual nodes, which implies that it needs a point-
of-presence on each node. We refer to this point-of-presence as aslice creation
service, and it is an example of an infrastructure service.

Such a slice creation service runs on each node on which the slice authority is
allowed to create slices. It invokes the node manager on eachnode to create a VM
belonging to some slice and associates resources with that VM. It also installs cre-
dentials, keys or other state belonging to the responsible principals in those slices,
thereby giving those principals access to the VMs for the purpose of installing code
and starting processes. The slice creation service communicates with the slice au-
thority over a private protocol that is not specified by the architecture.

4.2 Audit Service

Management authorities must audit the behavior of slices. For this purpose, each
management authority runs anauditing serviceon each node it manages. The
auditing service records information about packets transmitted from the node, and
is responsible for mapping network activity to the slice that generates it. Looking
at the expectations in more detail, the node owner trusts themanagement authority
to (1) constrain a service to a VM, (2) audit the VM’s network activity, and (3)
map a VM to a slice name. The node owner separately trusts the slice authority
to map a slice name into the set of responsible principals. Ensuring each of these
expectations hold, it is possible to provide the owner with atrustworthy audit chain:

packet signature −→ slice −→ provider

6

D
R

A
FT

where a packet’s signature consists of a source address, a destination address, and
a time. This is the essential requirement for preserving thechain of responsibility.

4.3 Create and Provision VMs

The management authority must honor requests by a slice creation service to create
virtual machines, should the slice authority behind it havethe authority to do so.
The node manager provides an interface that is used to createVMs on local nodes
and bind resources to them. Again, to cleanly separate functionality in the architec-
ture, this interface is by definition invoked only from the local node; remote access
is provided indirectly through one or more infrastructure services bootstrapped on
the node. Note that the interface of the NM is one of the global“fixed points” of
the architecture (along with a common name space for slices), in the sense that
PlanetLab requires global agreement on this interface among any set of owners,
providers, slice authorities, and management authoritiesthat may want to interact
on a set of nodes.

Since a node manager is responsible for associating resources with VMs, re-
source allocation concepts form major parts of its interface. We have already intro-
duced the notion of anrspec, which describes a particular collection of resources.
Precisely what a resource specification describes will evolve over time; we describe
the currentrspecused in PlanetLab in Section 5. In general, it consist of a setof
(type, value) pairs. The NM manipulates the local resource allocation interface on
behalf of individual VMs in order to implementrspecs.

The node manager also supports aresource poolabstraction. A pool is a col-
lection of resources not (yet) associated with a VM. Any nodemust manage (via
the node manager) its own pool of resources, and must be able to create new pools
from this pool to allocate to slices, though we make no assumption here that re-
source specifications are additive or conserved. We do require that a node manager
can provide a pool for any new slice. For generality, we assume that a node man-
ager may create new resource pools from existing ones via a “split” operation.
Access to pools is provided by a resource capability (rcap), which both names a
resource pool and confers the right to use and/or split the pool. Concretely, the NM
must be able to map anrcap to a pool and implement basic operations on pools for
holders of validrcaps.

We acknowledge that this trio of rspecs, pools, and rcaps seems somewhat arbi-
trary and abstract. However, we claim that almost any resource allocation scheme
for distributed virtualization can be expressed in these terms, and furthermore, all
three concepts are needed to capture the requirements of architectures for dis-
tributed virtualization. For example, decoupling pools and virtual machines lets
each be created at a different time. A pool can be created as part of a “root alloca-

7

D
R

A
FT

tion decision” made by the owner at system boot time, while a VM that is going to
use that pool is created at a later time by a slice creation service. Similarly, a bro-
kerage service that owns a pool can put the corresponding resources on a market,
independent of a slice creation service that is used to create VMs and bind them
to resources obtained on that market. Also notice that decoupling pools and VMs
means that an existing slice–with its own set of resources bound to it–can own an
rcap for a separate pool of resources.

Finally, one link in the chain of responsibility is that the node manager must
preserve is being able to map a VM that performs some action tothe slice it belongs
to. In some systems, the node manager interface can define a level of abstraction
that hides the implementation details of the VMM (for example, providing the
same interface to a vserver-based VMM and a Xen-based VMM). In any case, the
NM must ask the VMM to identify the VM that invoked an operation, and then
(since the NM itself created the VM on behalf of a slice) it canmap that VM to the
calling slice. We use the notion of avirtual machine identifierfor naming a VM on
a particular node.

4.4 Owner Preferences

The PlanetLab architecture intends to provide the owner with as much autonomy
as possible, while offloading responsibility for managing the node to a trusted man-
agement authority. Therefore, owners need some way of communicating how they
want their nodes managed by the management authority. For example, owners
might want to prescribe what set of services (slices) run on their nodes, includ-
ing the slice creation service of whatever slice authorities the owner trusts. The
owner might also want to assign resources from a pool to one ormore services.
This might be implemented with a configuration file, but sincevirtual machines
play such a dominant role in PlanetLab, it is natural to have aprivilegedowner-
VM on each node that is automatically started by the node manager each time the
node boots. The owner could then specify an initialization script that runs in the
owner-VM. This script would configure the node manager to reflect the owner’s
preferences for the node.

4.5 Putting it all Together

We now put all the pieces together, as schematically depicted in Figure 2. Each
management authority maintains: (1) a NM and VMM to run on each client node;
(2) an auditing service to run on each client node; and (3) a database of credentials
for a set of client owners (and their nodes). It also runs a process to securely
boot the NM, VMM, and “bootstrap” services on nodes belonging to owners with

8

D
R

A
FT

NM

VMM

SCS VM
Provider

Slice

Mgmt

Authority

Authority

Service

Owner VM
owner

database

node

slice

database

Node

Figure 2: A node (in center) with the components run by each principal. SCS
denotes a local point-of-presence of a slice creation service.

which it has a management agreement. It is able to use the auditing service to map
network activity on the nodes it manages to the responsible slice.

Each slice authority maintains: (1) a database containing aset of slice-to-
provider bindings; (2) a database with the identity of (keysfor) each registered
provider; and (3) a slice creation service that runs on each node. A slice authority
needs to be able to map a slice name to a set of responsible providers. It also has to
run a slice creation service on each node that might host one of the slices for which
it is responsible.

Finally, each owner maintains: (1) the identity of (keys for) the management
authority that it is responsible for its nodes; and (2) a set of “bootstrap” slices (and
associated rspec) that are to be instantiated on the node. When a node boots, it
contact its management authority, which in turn boots the NMand VMM. Once the
system is running, the NM creates the owner-VM from which theowner invokes
the NM to create an initial set of VMs, including the “bootstrap” slice creation
services provided by the trusted slice authorities.

9

D
R

A
FT

5 Implementation

This section outlines the data structures and interfaces used in PlanetLab to imple-
ment the components described in the previous section. The description purposely
abstracts the implementation in two respects. First, the interfaces are not complete;
see the online Guides atwww.planet-lab.org/doc/ for the authoritative version of
the various interfaces. Second, PlanetLab currently combines one management au-
thority and one slice authority into a single front-end, corresponding to the GUI
and programmatic interfaces available atwww.planet-lab.org. However, these
two components are separable, and will be described as such in this section.

5.1 Node Manager

The PlanetLab node manager implements a uniform interface through which all
other components create and manipulate VMs and resource pools, and manipulates
the VM control facilities in the kernel.

5.1.1 Rspecs and Rcaps

At the heart of the node manager is a table of

rcap −→ (rspec, vm id)

bindings, wherevm id is the virtual machine identifier for a VM that the NM has
created. Therspec is the basis for all object manipulation performed by the node
manager. In standard object-oriented terminology it acts as a base class for all other
objects (e.g., slices, pools). The PlanetLab node manager implementsrcaps as
128-bit random values, where knowledge of anrcap corresponding to a particular
object (rspec) lets the bearer perform any operation supported by the object. This
lets slices easily transfer the ability to manipulate objects between each other.

As a concrete example of anrspec-subclass, consider the definition of a class
representing a slice, which PlanetLab defines to be set of(name, value) pairs, in-
cluding the following attribute names:vm type, cpu share, mem limit, disk quota,
base rate, burst rate, andsustained rate. Each attribute defines a particular re-
source allocation or constraint to be applied to instances of this slice. The mapping
of each of these values to the underlying VMM parameters is described below.

5.1.2 Interface

The node manager interface consists of five operations for creating and manipulat-
ing resource pools and virtual machines:

10

D
R

A
FT

rcap = create root pool(rspec, slice name)
rcap = get rcap()
rspec = get rspec(rcap)
rcap = split pool(rcap, rspec)
bind(rcap, slice name)

A root resource pool is created on behalf of someslice name using thecre-
ate root pool operation. This operation can only be invoked by the trustedowner-
VM on the node and is generally used when the node is initialized. Typically, the
owner-VM creates a slice pool for each trusted slice authority, and creates addi-
tional resource pools on behalf of any particular service that the owner wants to
run on the node.

At some future time, the slice named in thecreate root pool operation re-
trieves thercap for its pool by calling theget rcap operation. For example, a slice
creation service calls this operation each time it runs on the node. Once a slice has
retrieved thercap for a pool of resources, it can learn the rspec associated with the
pool by calling theget rspec operation.

A slice that possesses anrcap for a pool can create a new ‘sub-pool’ by calling
split pool. This operation takes an rspec for the new sub-pool as an argument,
and returns anrcap for the new pool. Therspec for the original pool (rcap) is
reduced accordingly (i.e., callingget rspec on the originalrcap returns an rspec
corresponding to the remainder of resources after the split).

A pool of resources is bound to a VM using thebind operation. If the VM
does not already exist, this operation also creates the VM. If the VM does exist, the
resources represented by thercap are added to those currently bound to it.

5.1.3 VMM Support

The node manager invokes native VMM operations to create VMsand allocate re-
sources to them. The current implementation supports only Linux-based VMs. It
runs in a privileged VM context, and uses a combination of kernel modules to en-
force isolation between unprivileged VMs. Specifically, Linux-based VM isolation
is implemented through a combination of vservers [8] providing name space iso-
lation and enforce disk quotas, CKRM [9] providing class-based management of
CPU and memory resources as well as limits on per-class task count, and HTB [1]
implements bandwidth allocation. As these individual mechanisms have been de-
scribed elsewhere, we focus on the NM-level semantics of each rspec attribute.

PlanetLab currently supports only a Linux-based node manager, and as such,
it defines only onevm type: linux vserver. The presence of this attribute in an
rspec indicates that the node manager should create a corresponding VM. If the

11

D
R

A
FT

attribute is not present, therspec is interpreted to specify a resource pool, but no
VM is instantiated.

Each node runs a proportional share CPU scheduler, with cycles allocated ac-
cording to acpu share attribute. Slices are currently granted an equal number of
shares, although it is also possible to grant a slice enough shares to guarantee it
some fraction of each node’s capacity. The scheduler is workconserving, meaning
that any unused capacity is shared among active slices in proportion to the number
of shares assigned to that slice.

Each slice is given a per-node upper bound on both the amount of disk space it
can consume (the current default isdisk quota = 5GB) and the amount of memory
it can use (no default is currently set formem limit). Disk quotas have not been
a problem since most services do not have significant storagerequirements; the
5GB limit effectively keeps services from maintaining unbounded log files and
exceptions to the 5GB limit is made on a case by case basis.

In contrast, for memory usage it has not been possible to set ameaningful
upper bound, largely due to “burst” needs of slices as they download software
packages. Moreover, even a modest allocation of memory to each slice so seriously
overbooks the available capacity as to be meaningless. As a consequence, the node
manager lets slices consume as much memory as they need, but resets the VM
with the largest memory usage on the node should swap space become 90% full.
An email is sent to the service provider of the slice containing a summary of the
memory usage of their specific VM. This has forced services tobe conservative in
their memory usage without requiring hard upper limits. In practice, only slices
with memory leaks trigger this mechanism, and the email sentto a slice’s service
provide has helped in tracking down such bugs.

For bandwidth usage, the default settings arebase rate = 1Kbps, burst rate
= none, andsustained rate = 1.5Mbps. The first implies that most slices do
not receive a meaningful minimum transmission rate, but instead fairly share the
available capacity. (A slice given a largerbase rate would be guaranteed that
larger rate, plus receive a proportionally larger share of any unused capacity on
each node.) Not setting an upper bound on theburst rate means that each VM can
burst outgoing packets up to the rate supported by the node, as set by the node’s
owner. This value is usually either 10Mbps or 100Mbps. Thesustained rate
limits how much outgoing bandwidth the slice can consume, per node, over an
extended period of time. The current implementation enforces this limit over a 24
hour period, meaning that a VM can transmit up to 16GB per day,after which it is
limited to an overall maximum rate of 1.5Mbps for the remainder of the 24 hour
period.

One important message to take away from this discussion is that the man-
agement authority–through the NM and VMM it runs on each nodeit manages–

12

D
R

A
FT

effectively defines how strong or weak resource guarantees are (and how strong
or weak isolation between VMs is). PlanetLab currently takes a largely “best ef-
fort” approach (with the option of giving certain slices stronger guarantees), while
another management authority might offer stronger guarantees. Both can co-exist
within the architectural framework defined in the previous section.

5.2 Management Authority

The PlanetLab management authority is responsible for the software running every
node, including the boot process through which nodes download this software.
This software includes an auditing service that is able to map network activity to
the responsible slice, as well as an owner-VM that lets the node owner control
various aspects of the node.

5.2.1 Database

The management authority maintains a database of registered nodes. Each node
is affiliated with an organization (owner) and is located at asite belonging to the
organization. The database includes the following tuples:

principal = (name, email, org, addr, keys, role)
org = (name, address, admin, sites[])
site = (name, tech, subnets, lat long, nodes[])
node = (ipaddr, state, nodekey, nodeid)

where

state = (install | boot | debug)
role = (admin | tech)

Theadmin field of eachorg tuple is a link to aprincipal with role = admin; this
corresponds to the primary administrative contact for the organization. Similarly,
the tech field in thesite tuple is a link to aprincipal with role = tech; this is the
person that is allowed to define the node-specific configuration information used
by the management authority’s slice creation service when the node boots.

The nodestate indicates whether the node should (re)install the next timeit
boots, boot the standard version of the system, or come up in asafe (debug) mode
that lets the PlanetLab management authority inspect the node without allowing
any slices to be instantiated or any network traffic to be generated. The manage-
ment authority inspects this field to determine what action to take when a node
contacts it, as described below.

There are both a GUI and programmatic interface to the database, which we do
not describe in this report.

13

D
R

A
FT

5.2.2 Boot Server

An organization (node owner) enters into a management agreement with PlanetLab
through an out-of-band process, during which time PlanetLab learns and verifies
the identities of the principals associated with the organization: its administrative
and technical contacts. These principals are then allowed to upload their public
keys into the management authority database, and create database entries for their
sites and nodes. The nodes are initially marked (in the database) as being in the
install state.

The site technical contact creates aBootCD and a network configuration floppy
(pl node.txt) and uses them to boot each of the site’s nodes. TheBootCD image
is download from the web. PlanetLab provides a GUI interfacethat allows the
technical contact to generate apl node.txt file for each of the organization’s nodes.
The file includes the name and IP address of the node, along with a uniquenode-
key generated by the PlanetLab management authority. Thenodekey is also stored
in the correspondingnode tuple of the database. The following is an example
pl node.txt file:

IP METHOD = ”dhcp”
IP ADDRESS = ”128.112.139.71”
HOST NAME = ”planetlab1.cs.foo.edu”
NET DEV = ”00:06:5B:EC:33:BB”
NODE KEY = ”79efbe871722771675de604a2...”
NODE ID = ”121”

Each node is configured to boot from theBootCD, which contains a minimal
Linux system that initializes the node’s hardware, reads the node’s network config-
uration information frompl node.txt, and contacts the boot server. The boot server
returns an executable program, called theboot manager(approximately 20KB of
code), which the node immediately invokes.

The boot manager (running on the node) reads thenodekey from pl node.txt,
and uses HMAC [7] to authenticate itself to the boot server with this key. Each
call to the server is independently authenticated via HMAC.The boot server also
makes sure the source address corresponds to the one registered for the node, to
ensure that the floppy has been put in the right machine, but this is only a sanity
check, as the server trusts that the node is physically secure.

The first thing the node learns from the boot server is its currentstate. If the
state = install, the boot manager runs an installer program that wipes the disk and
downloads the latest VMM, NM, and other required packages from the boot server,
and chain-boots the new kernel. The downloaded packages arealso cached to the
local disk. A newly installed node changes the node’s state at the database toboot

14

D
R

A
FT

so that subsequent attempts do not result in a complete re-install.
If the node is inboot state, the boot manager contacts the boot server to verify

whether its cached software packages are up-to-date, downloads any out-of-date
packages, and then chain-boots the most current version. Finally, if the boot man-
ager learns that the node is indebug state, it continues to run the Linux kernel
it had booted from the CD, which lets PlanetLab operatorsssh into and inspect
the node. Both operators at PlanetLab and the site technicalcontacts may set the
node’s state (in the database) todebug or install, as necessary.

In addition to boot-time, there are two other situations in which the node and
boot server synchronize. First, running nodes periodically contact the boot server
to see if they need to update their software, as well as to learn if they need to
reinstall. Each node currently does this once a day. Second,whenever the node
state is set todebug in the database, the boot server contacts the node to trigger
the boot process, making it possible to bring the node into a safe state very quickly.
This mechanism has been used to bring all the nodes on PlanetLab (200 at the time)
into a safe state in less than ten minutes.

5.2.3 Owner-VM

Once a node boots–and both the VMM and NM are running–the NM immediately
creates a localowner-VMthat provides the local owner with access to the node.
Technical and administrative contacts for the owning organization canssh into the
owner-VM using the keys they uploaded to the management authority.

The owner-VM, calledsite admin, exists on each node, and provides a lo-
cal account by which the site’s technical contact can accessinformation about the
state of the node, review network logs, and define various node-specific configu-
ration scripts. Among these is the list of slices (and resource pools) that are to be
instantiated on the node at startup time.

Specifically, an initialization script running insite admin invokes the NM
to create a resource pool for each slice in the list. It does this using thecre-
ate root pool operation described earlier in this Section. Typically, this list in-
cludes a pool for the slice creation service of each slice authority trusted by the
node’s owner. For example, a site that wants to ensure that slice my favorite cdn
receives 10% of the node’s capacity, and the remaining resources are distributed via
PlanetLab’s slice creation service (pl conf, described below) would run the script:

rcap10 = create root pool(rspec10, my favorite cdn)
rcap85 = create root pool(rspec85, pl conf)
rcap5 = create root pool(rspec5, pl conf)
bind(rcap5, pl conf)

15

D
R

A
FT

The first line sets aside 10% of the node’s capacity for a CDN service that the
owner wishes to host; a VM corresponding to that service is started at some later
time. The last three lines of the script set aside 90% of the node’s capacity for
redistribution to other slices: the second line creates a pool corresponding to 85%
of the node’s capacity and makes this pool available topl conf for redistribution,
while the last two lines allocate and bind 5% of the node’s capacity topl conf to
ensure that the service has sufficient resources to run. Whenpl conf starts, it uses
theget rcap operation to retrieve a handle on the pool assigned to it.

Note that the values inrspec85 effectively limit the resources that the node
wishes to make available to VMs. For example, by settingpeak rate = 10Mbps
the node owner specifies that slices cannot transmit at a higher rate than 10Mbps.
Not specifying an upper bound causes the node manager to use whatever capacity
(e.g., disk space or memory size) happens to be available on the node. Also note
that with this script owners can disallow certain slices from being instantiated on
their nodes.

5.2.4 Audit Service

The PlanetLab management authority includes an auditing service in the software
installed on each node. This service, callednetflow, runs in its own VM, and uses
ulogd [14] to record information about every packet flow transmitted by the node.
The service records

(prot, src ip, src port, dst ip, dst port, byte cnt, pkt cnt, vm id)

tuples for each flow, retrieves a batch of such tuples from thekernel at five minute
intervals (hence providing a timestamp for each tuple), andlogs the tuples to disk.
The auditing service is able to determine the slice associated with each flow be-
cause every socket call happens in the context of a VM (vserver context) and the
NM records the VM-to-slice mapping.

The auditing service on each node also runs a web server that external users
query the auditing information recorded on that node for thelast 24 hours. This
lets users determine the slice responsible for any suspect network traffic. Older
audit logs are uploaded and archived by the management authority.

5.3 Slice Authority

The PlanetLab slice authority defines precisely what constitutes a system-wide
slice. It maintains a database that records the persistent state of each registered
slice, including information about every principal that has access to the slice.

16

D
R

A
FT

5.3.1 Database

The slice authority maintains a database of registered principals, and the slices they
have created. The database includes:

principal = (name, email, org, addr, key, role)
org = (name, addr, admin)
slice = (name, time, state, rspec, user[], nodes[])

where

role = (admin | user)
state = ((delegated | central) & (start | stop) & (active | deleted))

Similar to the management authority database, theadmin field of eachorg tuple is
a link to aprincipal with role = admin (this corresponds to the person responsible
for all users at the organization) and theuser array in theslice tuple is a set of
links to principals with role = user (these are the people allowed to access the
slice).

Note that the main way the current implementation leveragesthe management
and slice authorities being combined is that it runs a singledatabase that includes
tuples from both authorities. The only tuple they have in common is the set of
principals, and in fact, these are shared, with therole field given by the union
of the two role sets. Since organizations that join PlanetLab are both owners and
providers, the same person is typically theadmin in practice, and so there has been
no reason to distinguish between these two cases.2

Both a programmatic and GUI front-end let principals register information
about themselves, create slices, bind users to slices, and request that the slice be
instantiated on a set of nodes. The current implementation involves a two-level
validation process for principals: PlanetLab first enters into an off-line agreement
with an organization, which identifies an administrative authority that is respon-
sible for approving additional principals at that organization. The slice authority
then lets this admin approve a principal at the organization, create slices (this re-
sults in aslice record in the database), and associate principals with slices. Those
principals are then free to define the slice’srspec, associate the slice with a list of
users (references toprincipals), and request that the slice be instantiated on a set
of nodes.

The rspec maintained by the PlanetLab slice authority is a superset ofthe
corerspec defined for use by the node manager. This lets the slice authority use
the same structure to record additional information about the slice, and pass this

2All PlanetLab documentation apart from this report refers to theadmin role as theprincipal
investigator, but we elect to use the former as it is a more generic term for the corresponding user.

17

D
R

A
FT

information to its point-of-presence on each node (i.e., its slice creation service).
For example, the PlanetLab slice authority maintains a database identifier for each
slice that can be used to determine when a slice is deleted andrecreated. This is
a critical idea: the slice authority defines exactly what constitutes a slice, and its
database gives a slice permanence; node managers simply instantiate local VMs.

For eachrspec attribute type, the database maintains a record of the privilege
level required to change the associated value, thereby letting users (who have the
least privilege) modify certain resource allocations. Thedatabase also lets default
resource values be specified for each type by either the principal creating the slice
or by the PlanetLab slice authority.

For each slice, the database maintains astate field that indicates several key
properties of the slice. The state is a combination of several independent values,
each recording an aspect of the slice’s current mode of use. The first bit indicates
whether the creation of VMs for the slice has beendelegated to another service,
or should be performed by the slice authority’s agent on eachnode (corresponding
to valuecentral). The second bit indicates whether the slice is currentlystarted
or stopped — a slice may be stopped by either associated users or the PlanetLab
slice authority, for example, it the slice behaves in a manner that has adverse ef-
fects. The third bit indicates whether a slice isactive or has beendeleted; for
auditing purposes we retain all slice records in the database even after they have
been deleted by their users. We explain the two ways of instantiating a slice in the
next subsection.

5.3.2 Slice Creation Service

The slice authority has a point-of-presence on each node–inthe form of a slice cre-
ation service–that creates slices on that node. The PlanetLab slice creation service
(pl conf) supports slice creation in two different ways: by contacting the Planet-
Lab database periodically to get a list of currently active slices, and by acting as a
local (per-node) agent for existing slices to redeem signedticketsthat represent the
ability to create a specific slice. Both of these mechanisms use a common back-end
to interact with the node manager to create slices.

Figure 3 illustrates the two methods to instantiate a slice,but before either can
be invoked, the slice must be created in the slice authority database. This is shown
in the figure as the initialcreate slicearrow, and corresponds to multiple operations
that we do not describe here. The slice is then instantiated on a set of nodes in one
of two ways.

In the first case, corresponding to arrow1a, the slice authority causes the slice
to be instantiated on each node (and sets the slice’sstate = central) by calling a

18

D
R

A
FT

Slice
Authority

User X

create
slice

Node
Manager

Service Y

Y
Agent

pl_
conf

split + bind

get ticket

2a

2b

2c

3

1a

1b

XML

ticket

ticket

ticket

Figure 3: Mechanisms by which slices are created.

slice instantiate(slice name)

operation on the slice authority. In the the second case, theuser acquires a ticket
from the slice authority via the

ticket = slice get ticket(slice name)

operation (arrow1b). The user is then responsible for contacting the individual
nodes and redeeming the ticket. In the example shown, the slice user passes the
signed ticket to a third-party service,Y, which assumes responsibility for slice cre-
ation. This lets services such asY provide an enhanced slice creation facility,
perhaps providing lower latency or improved error reporting, on top of the basic
functionality provided by the default slice creation service.

To complete the first mode of slice creation,pl conf contacts the PlanetLab
slice authority every 10 minutes and downloads a compressedXML representation
of the relevant parts of the slice database, as shown by arrow1a. For each slice that
is not already instantiated on the node,pl conf pushes the corresponding XML
element onto the back-end queue.

To complete the second mode of slice creation,pl conf accepts XML-RPC
requests (arrow2c) to create new slices from an existing local slice (e.g.,Y’s agent),
where these requests take the form:

rcap = create slice(ticket, slice name)

The ticket passed as an argument tocreate slice was earlier obtained from
the slice authority using the programmatic interface—it contains a complete slice

19

D
R

A
FT

description, equivalent to one entry in the slice database,and is signed by the slice
authority using a private key.pl conf uses the corresponding public key to verify
the authenticity of the ticket; if successful, the XML element contained in the ticket
is pushed onto the back-end queue. We use various measures totry to prevent
tickets being misused by malicious users, including expirytimes on each ticket,
publishing a ticket-revocation list as part of the XML file downloaded periodically
by the service front-end, and frequently changing the key-pair used to sign the
tickets.

The back-end ofpl conf takes requests from its queue and translates them into
the corresponding calls to the node manager (arrow3). It first interprets service-
specific fields in therspec. For example, a unique database id for the slice is used
to detect when a slice was deleted and recreated without the node ever observing
the intermediate state, perhaps due to network connectivity problems. Similarly,
a reference to an initialization script, also stored in the slice authority database, is
translated into an encoded script that is passed directly tonode manager to initialize
the slice. The back-end uses thesplit pool operation to obtain anrcap for the
desiredrspec, and then uses thatrcap in a bind call to associate therspec with
the appropriate slice name, thus causing the slice to be instantiated on that node.

5.4 Infrastructure Services

As outlined in Section 4, the architecture explicitly decomposes management into
separate functions rather than combining them in a single management entity. This
is of value when trying to understand the design space for distributed virtualization,
but it is also a design principle of PlanetLab, known asunbundled management[11,
3]. The consequence of unbundled management is a collectionof infrastructure
services—of which the slice authority’s slice creation service is one example—
which we contend has several benefits: (1) it keeps the node manager as minimal
as possible; (2) it maximizes owner and provider choice, andhence, autonomy;
and (3) it makes the system as a whole easier to evolve over time.

Several infrastructure services currently run on PlanetLab and play an active
role in the management of the system. They include resource brokerage services
used to acquire resources [2, 5], environment services thatkeep a slice’s soft-
ware packages up-to-date [6], monitoring services that track the health of nodes
and slices [13, 4], and discovery services used to learn whatresources are avail-
able [10].

20

D
R

A
FT

6 Evolution of PlanetLab

This section identifies several ways in which current implementation of Planetlab
already takes advantage of different degrees-of-freedom offered by the architec-
ture, as well as ways in which we see PlanetLab evolving in thefuture.

6.1 Chain of Responsibility

The critical need to preserve the chain of responsibility increating, sustaining,
and scaling a distributed system spanning many node owners and service providers
is tenent of the architecture. The requirement was not fullyappreciated at the
inception of PlanetLab, but has become clear as the system has grown far beyond a
small, known set of researchers. New organizations will notjoin PlanetLab unless
they can map network activity onto responsible principals,and many of the owners
involved in the 231 security incidents reported in the last year would have taken
their nodes offline had the complaints not been rapidly traced to the responsible
party.

Moreover, while some of these incidents are due to the fact that experimental
and sometimes buggy services run on PlanetLab, user mistakes and naive users
are seldom the explanation; in our estimation, mistakes account for less than 10%
of the reports. More common causes include IDS alarms at remote sites reacting
to probing by services measuring the network, unexpected bandwidth usage by
popular services, and violations of local Acceptable Use Policies by caching or
other content services.

In every case, using the auditing service and the slice authority database to
contact the responsible principals has been important in quickly resolving the com-
plaint. Crucially, this process does not require pairwise agreements between own-
ers and providers, an essential factor in PlanetLab’s beingbeing able to scale to
200 autonomous organizations.

6.2 Federation

Although PlanetLab currently combines the single management and slice author-
ities, decoupling the two offers an important degree of freedom as the system
evolves. Specifically, allowing for a federation of such authorities has become a
necessity as PlanetLab’s reach becomes increasingly international (regional centers
are planned in China and Europe) and as it crosses research/commercial boundaries
(some companies are building “intranet” PlanetLabs). The architecture supports
federation in two distinct stages.

21

D
R

A
FT

In the first stage, multiple autonomous regions run their ownmanagement au-
thority, while a single global slice authority grants service providers access to nodes
across management boundaries. This distributes the node management problem
without balkanizing slices. The second stage sees multipleslice authorities, but
distinct from management domains. There may remain a single“research” slice
authority, for example, and it is easy to imagine a “public good” slice authority that
approves only those service providers that offer network reports or SETI@HOME
style services.

We expect each slice authority to establish peering relationships with others,
letting it create slices on nodes that do not run its own slicecreation service. In
the limit, slice authorities simply become “naming” authorities, largely decoupled
from the slice creation services on nodes. Although not mandated by the architec-
ture, we expect slice authorities to communicate with each other viapl conf-style
tickets (signedrspecs).

6.3 Decoupling Slices and Pools

The architecture decouples the process of creating a slice from the act of acquiring
resources that can be bound to the slice. This makes it possible to first use the slice
authority’s slice creation service to create VMs on a set of nodes, and only later
acquire resources that can be bound to each VM, perhaps assisted by a brokerage
service that implements a market for node resources. Two scenarios illustrate the
benefit of this decoupling.

Today, users interface with the PlanetLab slice authority to create slices that
span one or more PlanetLab nodes, relying on the standard slice creation service
to instantiate a VM on each node. Once a slice has been created, with a default
set of resources specified by the slice authority, users can then go to brokerage
services to request additional resources; e.g., by biddingin an auction, or queueing
up for additional capacity on a set of nodes during some time slot. These brokerage
services have a point-of-presence on each node, which lets them call the local node
manager to assign some fraction of their pool to a client slice. These allocations
happen at a much finer lifetimes (measured in hours) than do slices (measured
in weeks). Brokerage services currently acquire their poolindirectly through the
slice authority: each node grants all their resources topl conf, which has a policy
of granting some fraction of this capacity to brokerage services for redistribution
to existing slices.

An alternative getspl conf out of the loop, with node owners interacting di-
rectly with brokerage services. In such a scenario, a node owner runs one or more
slice creation services. However, instead of pre-allocating some pool of resources
to each of these slice creation services, the node owner elects to grant all of the

22

D
R

A
FT

node’s resources to a single brokerage service, expecting it to sell those resources
on a market.

6.4 Delegation

The principle of unbundled management requires that one service is permitted to
manipulate another slice and/or the resources associated with that slice. Delegation
is one mechanism for supporting such operations.

PlanetLab currently supports delegation at two levels. At the node level, an
rcap acquired for an object represented by anrspec can easily be transferred from
the object owner to a service that the owner trusts to manipulate the object. Trans-
feral of anrcap requires no intervention by the local node manager; just theowner
making the 128-bit value known to the service. For example, aslice may request
that a local brokerage service temporarily grant it a boost in CPU share by contact-
ing the brokerage service and passing anrcap for its own VM.

PlanetLab also supports delegation at the network level. While nothing in
the architecture directly mandates this form of delegation, we have implemented
just such a scheme in the current slice authority, as previously described in Sec-
tion 5.3.2. To recap, PlanetLab lets users authenticate themselves to the authority,
perform a sequence of operations on the database tuples, then request that the slice
authority generate a cryptographically-signedticket that represents the operations
that the authenticated user is allowed to perform directly.The user can then dele-
gate responsibility for performing those operations–e.g., slice creation or resource
allocation–to another service by giving the signed ticket to that service.

6.5 Owner Autonomy

In discussing the possibilities for putting excess resources on a market, it is im-
portant to not lose sight of the fact that owners retain full control over their nodes.
They select a management authority, they determine which slice authorities they
trust (and by implication, which service providers they will allow), and they make
the root resource allocation decision. This latter point means that an owner can first
ensure that sufficient resources are set aside for any services that provide value to
local users, and then make the remaining resources available on a market, perhaps
with some fraction of the remainder earmarked for research or public-good pur-
poses.

References

[1] Linux Advanced Routing and Traffic Control.http://lartc.org.

23

D
R

A
FT

[2] A. AuYoung, B. Chun, C. Ng, D. Parkes, J. Shneidman, A. Snoeren, and
A. Vahdat. Bellagio: An Economic-Based Resource Allocation System for
PlanetLab.http://bellagio.ucsd.edu/about.php.

[3] A. Bavier, M. Bowman, D. Culler, B. Chun, S. Karlin, S. Muir, L. L. Peterson,
T. Roscoe, T. Spalink, and M. H. Wawrzoniak. Operating System Support for
Planetary-Scale Network Services. InProc. 1st NSDI, San Francisco, CA,
Mar. 2004.

[4] P. Brett, R. Knauerhase, M. Bowman, R. Adams, A. Nataraj,J. Sedayao,
and M. Spindel. A Shared Global Event Propagation System to Enable Next
Generation Distributed Services. InProc. 4th WORLDS, San Francisco, CA,
Dec. 2004.

[5] David Lowenthal. Sirius: A Calendar Service for PlanetLab. http://

snowball.cs.uga.edu/~dkl/pslogin.php.

[6] Juston Cappos and John Hartman. Stork: A Software Packagement Manage-
ment Service for PlanetLab.http://www.cs.arizona.edu/stork.

[7] H. Krawczyk, M. Bellare, and R. Canetti. HMAC: Keyed-Hashing for Mes-
sage Authentication; RFC 2104.Internet Req. for Cmts., Feb. 1997.

[8] Linux VServers Project.http://linux-vserver.org.

[9] S. Nabah, H. Franke, J. Choi, C. Seetharaman, S. Kaplan, N. Singhi,
V. Kashyap, and M. Kravetz. Class-based prioritized resource control in
Linux. In Proc. OLS 2003, Ottawa, Ontario, Canada, Jul 2003.

[10] D. Oppenheimer, J. Albrecht, D. Patterson, and A. Vahdat. Distributed Re-
source Discovery on PlanetLab with SWORD. InProc. 4th WORLDS, San
Francisco, CA, Dec. 2004.

[11] L. Peterson, T. Anderson, D. Culler, and T. Roscoe. A Blueprint for Introduc-
ing Disruptive Technology into the Internet. InProc. HotNets–I, Princeton,
NJ, Oct 2002.

[12] L. Peterson and T. Roscoe. The Design Principles of PlanetLab. Technical
Report 04-021, PlanetLab, June 2004.

[13] Vivek Pai and KyoungSoo Park. CoMon: A Monitoring Infrastructure for
PlanetLab.http://comon.cs.princeton.edu.

[14] H. Wilte. ulogd: Userspace Packet Logging for netfilter. http://gnumonks.
org/projects.

24

	cover-05-030.pdf
	030_arch.pdf

