PLANETLAB

Towards a Comprehensive PlanetLab Architecture

Larry Peterson, Andy Bavier, Marc Fiuczynski, Steve Muir
Princeton University

Timothy Roscoe
Intel Research — Berkeley

PDN-05-030
June 2005

Status: Ongoing Dratft.

Towards a Comprehensive PlanetLab Architecture

Larry Peterson, Andy Bavier, Marc Fiuczynski,
Steve Muir, and Timothy Roscoe

June 7, 2005

1 Introduction

PlanetLab has evolved rapidly over the past two years acwptd a set of design
principles [12], but with minimal attention paid to distimghing between its un-
derlying architecture and its current implementation. sTdwcuments attempts to
address this shortcoming by defining the PlanetLab ard¢bite¢as of Version 3),
and in the process, identifying various implementatiorfeats.

This report comes with three caveats. First, we make no diaétthe Version
3 architecture is the final word; this document should berméted as a starting
point for a general discussion of what the PlanetLab arctite should be. Sec-
ond, this document is not intended as a user reference guitkscribes PlanetLab
from a management perspective rather than the user’s péikspeThird, the in-
terfaces presented in this report are simplified abstnaetid the actual interfaces;
the syntax of actual calls are documented on the PlanetLalsite

The central goal of PlanetLab is to suppaidtributed virtualizatior—allocating
a widely distributed set of virtual machines to a user or igptibn, with the goal
of supporting broad-coverage services that benefit fronmgawultiple points-of-
presence on the network. This is exactly the purpose of dnecfllabsliceabstrac-
tion [3]. The central challenge of PlanetLab is to provideaidralized control of
distributed virtualization.

PlanetLab’s model for decentralized management is, in guided by two de-
sign requirements. The first is that management of dis&tbuirtualization should
be decomposed into a large number of separate functionsovdisng resources,
creating slices on a set of nodes, buying and selling nodmuress, keeping the
code running in a slice up-to-date, monitoring a slice’sawatr, and so on. To
preserve generality, PlanetLab attempts to keep theséidnacseparate. Conse-
guently there is no single “management entity” as such, ¢wengh particular

systems may collapse many of these functions into one coemporwWe refer to
this decoupling asinbundled management

The second requirement is that systems must preservehtie of responsi-
bility among all the relevant principals. That is, it must be pdedib map exter-
nally visible activity (e.g., a transmitted packet) to thiapipal responsible for that
packet. The ability to do this is essential to preservingitigt relationships among
various parties. Note that the chain of responsibility doesattempt to eliminate
the possibility that bad things might happen, it just regsiithat the system be able
to identify the responsible party when something does gaairo

2 BaseElements

This section outlines the base architectural elementsafiddlab. For each, we
give examples of how the element might be implemented, dictphow the ele-
ment is implemented in the current version, as well as otbssiple realizations.

A nodeis a machine capable of hosting one or more virtual machimésre
is currently a one-to-one mapping between nodes and phys@&ehines, but a
node might be implemented by a cluster of machines, wherexdde manager
running on each node is responsible for instantiating airmmachines on some
processor in the cluster (and possibly migrating the vintuachine from processor
to processor over time). Nodes also need not be of the sam@meaarchitecture,
although the current implementation is limited to x86 psswes. In fact, a single
node might include a heterogeneous collection of procgssiements, such as a
general-purpose processor with one or more network proress

A virtual machine(VM) is an execution environment in which a slice runs on
a particular node. VMs are implemented byigtual machine monitoVMM)
running on the node. It is expected that the VMM provides séewel of isola-
tion between the VMM’s it hosts. Each VM is specified by a setatifibutes
called aresource specificatioifrspeq, that defines how much of the node’s re-
sources are allocated to the VM. Tispecalso specifies the VM's/pe PlanetLab
currently supports a single Linux-based VMM, and so definsigle VM type
(linux-vserver), but other types are possible (e.gen-domain). A given node
might support more than one VM type.

A node manage(NM) is a program running on each node that creates virtual
machines on the node, and controls the resources allocatdthse VMs. All
operations that manipulate virtual machines on a node ade rieough the node
manager; the native VMM interface is not called directly.eféis a one-to-one
mapping between nodes and node managers.

A sliceis a set of virtual machines, with each element of the setingnan

a unique node. Each slice runs a netwsekvice The specification for a slice is
given by a slice-widespec A slice is bound to a set of principals that are respon-
sible for developing the service that runs in the slice. JaalhVMs belonging to

a slice must be of a single type. This is because PlanetLabriigone type, of
course, but also because @pec is defined on a per-slice basis rather than on a
per-VM basis. That s, a singlspec is used for all VMs belonging to a slice. This
obviously leads to a simpler implementation, but is not#{rinecessary.

An infrastructure servicas a “helper” service used by other slices (services).
For example, an infrastructure service might create sboesset of nodes; buy and
sell node resources; keep the code running in a slice updig-dhonitor a slice’s
behavior, and so on. Multiple competing infrastructureviees are possible, and
in fact, encouraged by PlanetLab’s principle of unbundlethagement.

3 Principals and Relationships

This section identifies the key principals (and the relaiops among them) in the
PlanetLab architecture. There are four principals of notenershost one or more
nodes;service providersmplement and deploy network services on a set of nodes;
management authoritiegperate a set of nodes on behalf of one or more owners;
andslice authoritiesregister a set of service providers. These principals Haee t
following responsibilities:

e A management authority is responsible for installing andnitaiéning the
software (e.g., VMM and NM) that runs on the nodes it managésough
this software, the management authority creates VMs onsjadenitors
these nodes for correct behavior, and takes appropriatmaghen anoma-
lies and failures are detected. A management authority reay lze the
owner of some fraction of the nodes it manages.

e A slice authority is responsible for registering providesseating (naming)
slices, and binding a set of providers to each slice. It masitde to map a
slice to the providers that are responsible for its behavAoslice authority
also registers credentials for providers; for example, ayymollect public
keys and distribute them to the nodes that host that slice.

e Each owner retains ultimate control over their own nodessélects a single
management authority to manage its nodes, and approves omere slice
authorities on whose behalf it is willing to accept slices.

e Each provider implements and deploys a network service. proeder is
responsible for the behavior of its service.

3

As with other aspects of the architecture, we note that sdintbese roles may
be conflated in a particular implementation; e.g., a nodeepwmay act as its own
management authority.

To make this discussion more tangible, consider that Rlabeturrently con-
sists of nodes owned by roughly 200 autonomous systemsr{isgaover 260
sites), and hosts slices affiliated with approximately 2@@pendent organizations
(representing over 450 research projects, or buddingceeprioviders). Establish-
ing 200x 200 pairwise trust relationships is an unmanageable tasksearcher
would have to obtain permission to create VMs on nodes owge2DD organiza-
tions, while a university would need to approve requestsi$ar of its nodes from
200 independent research organizations. (The set of @ations hosting nodes
and the set of organizations acquiring slices are almosticid in PlanetLab, but
this need not be the case in general.)

A key insight to reducing such an>\N problem into an order N problem
is to use trusted intermediaries. TRéanetLab Consortiunis one such trusted
intermediary: node owners trust it to manage the behaviovM§ that run on
their nodes, and service providers trust it to provide axtes set of nodes that
are capable of hosting their servicesThus, understanding the underlying trust
assumptions is the key to defining the PlanetLab architectur

The following describes the critical trust relationshipaamg principals, and
sketches the incentives each party has in not violatinghss. Figure 1 schemat-
ically depicts these trust relationships.

1. An owner trusts a management authority to install so#wat is able to
map network activity to the responsible slice. This sofevarust also iso-
late and bound/limit slice behavior. The owner will find a moeliable
management authority if this trust is violated.

2. Each owner trusts certain slice authorities to reliabiprslices to providers.
An owner will configure its nodes to accept slices only frommsted slice
authorities.

3. A provider trusts a slice authority to act as its agentating slices on its
behalf and checking credentials so that only that provider iostall and
modify the software running in its slice.

4. A slice authority expresses trust in a provider by issuirggedentials that
lets it access slices. This means that the provider musuadklg convince

1We use “PlanetLab” as a shorthand for “PlanetLab Consottitie intermediary, but the mean-
ing should be clear from the context.

Node | | Service |
i Provider !

Figure 1: Critical trust relationships among principals.

the slice authority of its identity (e.g., affiliation wittose organization or
group).

5. A provider may trust only certain management authorttigsrovide it with
working VMs, and to not falsely accuse them of out-of-boubésavior.
The provider will only run a service on those nodes with attwasthy man-
agement authority.

6. A management authority must trust owners to keep theiesiqdhysically
secure. It is in the best interest of owners to not circumtemimanagement
authority (upon which it depends for accurate policing sfibdes). It must
also verify that every node it manages actually belongs tovamer with
which it has an agreement.

The key feature of the trust relationships shown in Figurs that there ar@o
trust dependencies between owners and providers. Thisabsewhat allows the
system scale in the number of providers and owners it suppArsecondary fea-
ture is that, while they could be combined into a single gntitere is no inherent
dependency between management and slice authorities. aradyee to evolve
independent of each other.

Architecturally, the requirement implied by these relaships is a name space
for management and slice authorities, where each slicdagsiely identified by the
pair:

(slice_name, slice_authority_name)

For simplicity, we identify a slice by itslice_name alone in the remainder of this
document.

4 Architectural Components

This section identifies PlanetLab’s central architectamahponents, with a partic-
ular focus on the role these components play in managingrtisé telationships
involved in distributed virtualization.

41 CreateSlices

A slice authority typically provides an interface (frormeh through which service
providers can request that slices be created on their belafice authority also
needs a way to create VMs on individual nodes, which imphesit needs a point-
of-presence on each node. We refer to this point-of-presescaslice creation
service and it is an example of an infrastructure service.

Such a slice creation service runs on each node on whichiteeasithority is
allowed to create slices. It invokes the node manager onmaaé to create a VM
belonging to some slice and associates resources with att\Also installs cre-
dentials, keys or other state belonging to the responsiiieipals in those slices,
thereby giving those principals access to the VMs for th@gse of installing code
and starting processes. The slice creation service conuatesi with the slice au-
thority over a private protocol that is not specified by thehéecture.

4.2 Audit Service

Management authorities must audit the behavior of slices.tlis purpose, each
management authority runs auditing serviceon each node it manages. The
auditing service records information about packets trattschfrom the node, and
is responsible for mapping network activity to the slicettipanerates it. Looking
at the expectations in more detail, the node owner trustmtreagement authority
to (1) constrain a service to a VM, (2) audit the VM’s netwoudtiaty, and (3)
map a VM to a slice name. The node owner separately trustditdeeasithority
to map a slice name into the set of responsible principalsutimy each of these
expectations hold, it is possible to provide the owner wittustworthy audit chain:

packet signature — slice — provider

where a packet’s signature consists of a source addresstiaadion address, and
atime. This is the essential requirement for preservinghi@n of responsibility.

4.3 Createand Provision VMs

The management authority must honor requests by a slickaregrvice to create
virtual machines, should the slice authority behind it hthe authority to do so.
The node manager provides an interface that is used to ¢réédeon local nodes
and bind resources to them. Again, to cleanly separateitnadity in the architec-
ture, this interface is by definition invoked only from the#bnode; remote access
is provided indirectly through one or more infrastructueevices bootstrapped on
the node. Note that the interface of the NM is one of the gl6fetd points” of
the architecture (along with a common name space for slieeghe sense that
PlanetLab requires global agreement on this interface graoy set of owners,
providers, slice authorities, and management authotiiasmay want to interact
on a set of nodes.

Since a node manager is responsible for associating resowith VMs, re-
source allocation concepts form major parts of its intexfatle have already intro-
duced the notion of arspeg which describes a particular collection of resources.
Precisely what a resource specification describes wilMevaver time; we describe
the currentrspecused in PlanetLab in Section 5. In general, it consist of aket
(type, value) pairs. The NM manipulates the local resouliceation interface on
behalf of individual VMs in order to implememnspec.

The node manager also supportesource poohkbstraction. A pool is a col-
lection of resources not (yet) associated with a VM. Any noudest manage (via
the node manager) its own pool of resources, and must bebiedte new pools
from this pool to allocate to slices, though we make no assiomgere that re-
source specifications are additive or conserved. We donethat a node manager
can provide a pool for any new slice. For generality, we agstirat a node man-
ager may create new resource pools from existing ones vigld”“speration.
Access to pools is provided by a resource capabilitag), which both names a
resource pool and confers the right to use and/or split té @oncretely, the NM
must be able to map anapto a pool and implement basic operations on pools for
holders of validrcaps.

We acknowledge that this trio of rspecs, pools, and rcapassemewhat arbi-
trary and abstract. However, we claim that almost any resoallocation scheme
for distributed virtualization can be expressed in thesms$e and furthermore, all
three concepts are needed to capture the requirements hifeatares for dis-
tributed virtualization. For example, decoupling poolsl afirtual machines lets
each be created at a different time. A pool can be createdrasfm“root alloca-

tion decision” made by the owner at system boot time, whildvatiat is going to

use that pool is created at a later time by a slice creationcgerSimilarly, a bro-

kerage service that owns a pool can put the correspondinginess on a market,
independent of a slice creation service that is used toeMlts and bind them
to resources obtained on that market. Also notice that g#tmupools and VMs

means that an existing slice-with its own set of resourcemdbdo it—can own an
rcap for a separate pool of resources.

Finally, one link in the chain of responsibility is that thede manager must
preserve is being able to map a VM that performs some actithetslice it belongs
to. In some systems, the node manager interface can definelafeabstraction
that hides the implementation details of the VMM (for exaeapgbroviding the
same interface to a vserver-based VMM and a Xen-based VMiMgny case, the
NM must ask the VMM to identify the VM that invoked an operaticand then
(since the NM itself created the VM on behalf of a slice) it caap that VM to the
calling slice. We use the notion ofértual machine identifiefor naming a VM on
a particular node.

4.4 Owner Preferences

The PlanetLab architecture intends to provide the owner adét much autonomy
as possible, while offloading responsibility for managing mode to a trusted man-
agement authority. Therefore, owners need some way of cancating how they
want their nodes managed by the management authority. Fonge, owners
might want to prescribe what set of services (slices) runhair thodes, includ-
ing the slice creation service of whatever slice autharitlee owner trusts. The
owner might also want to assign resources from a pool to omaarse services.
This might be implemented with a configuration file, but sin@#ual machines
play such a dominant role in PlanetLab, it is natural to hayeidleged owner-
VM on each node that is automatically started by the node maeagé time the
node boots. The owner could then specify an initializationps$ that runs in the
owner-VM. This script would configure the node manager tcectfthe owner’s
preferences for the node.

45 Putting it all Together

We now put all the pieces together, as schematically depictd-igure 2. Each
management authority maintains: (1) a NM and VMM to run orhed@nt node;
(2) an auditing service to run on each client node; and (3)abdae of credentials
for a set of client owners (and their nodes). It also runs &gs® to securely
boot the NM, VMM, and “bootstrap” services on nodes beloggim owners with

3 Mgmt .
Authority!

! ! node
l ' database
. Node ownerii NM 3
 Owner RV VIVEL
| scs 1 VM Service |
l X Provider !
slice :
database | |
' Slice |
‘Authority

Figure 2: A node (in center) with the components run by eaahcipal. SCS
denotes a local point-of-presence of a slice creation aervi

which it has a management agreement. It is able to use thergusiervice to map
network activity on the nodes it manages to the responsiicie. s

Each slice authority maintains: (1) a database containisgtaof slice-to-
provider bindings; (2) a database with the identity of (kéy9 each registered
provider; and (3) a slice creation service that runs on eadenA slice authority
needs to be able to map a slice name to a set of responsibliegnzvit also has to
run a slice creation service on each node that might host fahe slices for which
it is responsible.

Finally, each owner maintains: (1) the identity of (keys)fttre management
authority that it is responsible for its nodes; and (2) a $&bootstrap” slices (and
associated rspec) that are to be instantiated on the noden Wimode boots, it
contact its management authority, which in turn boots thedd VMM. Once the
system is running, the NM creates the owner-VM from which dimaer invokes
the NM to create an initial set of VMs, including the “booggit' slice creation
services provided by the trusted slice authorities.

5 Implementation

This section outlines the data structures and interfaced insPlanetLab to imple-
ment the components described in the previous section. @sarigtion purposely
abstracts the implementation in two respects. First, ttesfaces are not complete;
see the online Guides atww.planet-lab.org/doc/ for the authoritative version of
the various interfaces. Second, PlanetLab currently coesdone management au-
thority and one slice authority into a single front-end,responding to the GUI
and programmatic interfaces availablevavw.planet-lab.org. However, these
two components are separable, and will be described as suicis isection.

5.1 Node Manager

The PlanetLab node manager implements a uniform interfacaigh which all
other components create and manipulate VMs and resourt¢g poo manipulates
the VM control facilities in the kernel.

5.1.1 Rspecsand Rcaps

At the heart of the node manager is a table of
rcap — (rspec, vm_id)

bindings, whererm_id is the virtual machine identifier for a VM that the NM has
created. Thespec is the basis for all object manipulation performed by theenod
manager. In standard object-oriented terminology it astslzase class for all other
objects (e.qg., slices, pools). The PlanetLab node manag@ementsrcaps as
128-bit random values, where knowledge ofraap corresponding to a particular
object ¢spec) lets the bearer perform any operation supported by thecbbjdis
lets slices easily transfer the ability to manipulate otgdetween each other.

As a concrete example of aspec-subclass, consider the definition of a class
representing a slice, which PlanetLab defines to be dgtaohe, value) pairs, in-
cluding the following attribute namesm_type, cpu_share, mem_limit, disk_quota,
base_rate, burst_rate, andsustained_rate. Each attribute defines a particular re-
source allocation or constraint to be applied to instantés®slice. The mapping
of each of these values to the underlying VMM parametersssriteed below.

5.1.2 Interface

The node manager interface consists of five operations éatioig and manipulat-
ing resource pools and virtual machines:

10

rcap = create_root_pool(rspec, slice_name)
rcap = get_rcap()

rspec = get_rspec(rcap)

rcap = split_pool(rcap, rspec)

bind(rcap, slice_name)

A root resource pool is created on behalf of sostiee_name using thecre-
ate_root_pool operation. This operation can only be invoked by the trusteder-
VM on the node and is generally used when the node is inidgdlizZlypically, the
owner-VM creates a slice pool for each trusted slice auty)oaind creates addi-
tional resource pools on behalf of any particular servia the owner wants to
run on the node.

At some future time, the slice named in tbeeate_root_pool operation re-
trieves thecap for its pool by calling theget_rcap operation. For example, a slice
creation service calls this operation each time it runs emthide. Once a slice has
retrieved thacap for a pool of resources, it can learn the rspec associatettinat
pool by calling theget_rspec operation.

A slice that possesses arap for a pool can create a new ‘sub-pool’ by calling
split_pool. This operation takes an rspec for the new sub-pool as amnmamy
and returns amcap for the new pool. Thespec for the original pool (cap) is
reduced accordingly (i.e., callinget_rspec on the originalrcap returns an rspec
corresponding to the remainder of resources after the.split

A pool of resources is bound to a VM using thand operation. If the VM
does not already exist, this operation also creates the Wkle VM does exist, the
resources represented by tisap are added to those currently bound to it.

513 VMM Support

The node manager invokes native VMM operations to create ®iisallocate re-
sources to them. The current implementation supports omlyxX-based VMs. It
runs in a privileged VM context, and uses a combination oh&emodules to en-
force isolation between unprivileged VMs. Specificallypik-based VM isolation
is implemented through a combination of vservers [8] primgchame space iso-
lation and enforce disk quotas, CKRM [9] providing classdxh management of
CPU and memory resources as well as limits on per-class task,cand HTB [1]
implements bandwidth allocation. As these individual nagdms have been de-
scribed elsewhere, we focus on the NM-level semantics df esgiec attribute.
PlanetLab currently supports only a Linux-based node memamd as such,
it defines only onesm_type: linux_vserver. The presence of this attribute in an
rspec indicates that the node manager should create a corresgpidi. If the

11

attribute is not present, thepec is interpreted to specify a resource pool, but no
VM is instantiated.

Each node runs a proportional share CPU scheduler, witegytlocated ac-
cording to acpu_share attribute. Slices are currently granted an equal number of
shares, although it is also possible to grant a slice enohgtes to guarantee it
some fraction of each node’s capacity. The scheduler is wankerving, meaning
that any unused capacity is shared among active slices rogron to the number
of shares assigned to that slice.

Each slice is given a per-node upper bound on both the amddigkospace it
can consume (the current defaultlisk_quota = 5GB) and the amount of memory
it can use (no default is currently set forem_limit). Disk quotas have not been
a problem since most services do not have significant staegérements; the
5GB limit effectively keeps services from maintaining unbded log files and
exceptions to the 5GB limit is made on a case by case basis.

In contrast, for memory usage it has not been possible to se¢aningful
upper bound, largely due to “burst” needs of slices as theynttlad software
packages. Moreover, even a modest allocation of memoryctos&e so seriously
overbooks the available capacity as to be meaningless. Assequence, the node
manager lets slices consume as much memory as they needsbts the VM
with the largest memory usage on the node should swap spaoenbe90% full.
An email is sent to the service provider of the slice contajrh summary of the
memory usage of their specific VM. This has forced servicdsetoonservative in
their memory usage without requiring hard upper limits. tagtice, only slices
with memory leaks trigger this mechanism, and the email &eatslice’s service
provide has helped in tracking down such bugs.

For bandwidth usage, the default settingslaase_rate = 1Kbps, burst_rate
= none, andsustained_rate = 1.5Mbps. The first implies that most slices do
not receive a meaningful minimum transmission rate, butans fairly share the
available capacity. (A slice given a largbase rate would be guaranteed that
larger rate, plus receive a proportionally larger sharemyf @nused capacity on
each node.) Not setting an upper bound onlahiest_rate means that each VM can
burst outgoing packets up to the rate supported by the naedsgteby the node’s
owner. This value is usually either 10Mbps or 100Mbps. Ehetained_rate
limits how much outgoing bandwidth the slice can consume,noele, over an
extended period of time. The current implementation e®tbis limit over a 24
hour period, meaning that a VM can transmit up to 16GB per aftgr which it is
limited to an overall maximum rate of 1.5Mbps for the remaindf the 24 hour
period.

One important message to take away from this discussionaistite man-
agement authority—through the NM and VMM it runs on each nibdeanages—

12

effectively defines how strong or weak resource guaranteegaad how strong

or weak isolation between VMs is). PlanetLab currently salidargely “best ef-

fort” approach (with the option of giving certain slicesmstger guarantees), while
another management authority might offer stronger guaesntBoth can co-exist
within the architectural framework defined in the previoast®n.

5.2 Management Authority

The PlanetLab management authority is responsible fordfteare running every
node, including the boot process through which nodes dawhtbis software.
This software includes an auditing service that is able tp metwork activity to
the responsible slice, as well as an owner-VM that lets thdemwner control
various aspects of the node.

5.2.1 Database

The management authority maintains a database of reglste@es. Each node
is affiliated with an organization (owner) and is located aita belonging to the
organization. The database includes the following tuples:

principal = (hame, email, org, addr, keys, role)
org = (name, address, admin, sites| |)

site = (name, tech, subnets, lat_long, nodes][])
node = (ipaddr, state, nodekey, nodeid)

where

state = (install | boot | debug)
role = (admin | tech)

Theadmin field of eachorg tuple is a link to gorincipal with role = admin; this

corresponds to the primary administrative contact for tlyaoization. Similarly,
thetech field in thesite tuple is a link to gorincipal with role = tech; this is the
person that is allowed to define the node-specific configurdtiformation used
by the management authority’s slice creation service whembde boots.

The nodestate indicates whether the node should (re)install the next iime
boots, boot the standard version of the system, or come upafeiebug) mode
that lets the PlanetLab management authority inspect tde mdthout allowing
any slices to be instantiated or any network traffic to be gged. The manage-
ment authority inspects this field to determine what actmnake when a node
contacts it, as described below.

There are both a GUI and programmatic interface to the dat¢alwehich we do
not describe in this report.

13

5.2.2 Boot Server

An organization (node owner) enters into a management exgneewith PlanetLab
through an out-of-band process, during which time Plartefearns and verifies
the identities of the principals associated with the org@tmon: its administrative
and technical contacts. These principals are then allowegoad their public
keys into the management authority database, and creaiieadat entries for their
sites and nodes. The nodes are initially marked (in the daggbas being in the
install state.

The site technical contact createB@otCD and a network configuration floppy
(pl_node.txt) and uses them to boot each of the site’s nodes. BdwCD image
is download from the web. PlanetLab provides a GUI interfduzd allows the
technical contact to generat@hnode.txt file for each of the organization’s nodes.
The file includes the name and IP address of the node, alohgawihiquenode-
key generated by the PlanetLab management authorityn®tiekey is also stored
in the correspondingnode tuple of the database. The following is an example
pl_node.txt file:

IP_.METHOD = "dhcp”

IP_ADDRESS ="128.112.139.71"

HOST_NAME = "planetlabl.cs.foo.edu”
NET_DEV = "00:06:5B:EC:33:BB”

NODE_KEY ="79efbe871722771675de604a2..”
NODE_ID ="121"

Each node is configured to boot from tBeotCD, which contains a minimal
Linux system that initializes the node’s hardware, readstbde’s network config-
uration information fronpl_node.txt, and contacts the boot server. The boot server
returns an executable program, called ble®t managefapproximately 20KB of
code), which the node immediately invokes.

The boot manager (running on the node) readstigekey from pl_node.txt,
and uses HMAC [7] to authenticate itself to the boot serveahthis key. Each
call to the server is independently authenticated via HMARe boot server also
makes sure the source address corresponds to the onerexjistethe node, to
ensure that the floppy has been put in the right machine, mutsttonly a sanity
check, as the server trusts that the node is physically secur

The first thing the node learns from the boot server is itserustate. If the
state = install, the boot manager runs an installer program that wipes gieadfid
downloads the latest VMM, NM, and other required packagas fihe boot server,
and chain-boots the new kernel. The downloaded packagedsareached to the
local disk. A newly installed node changes the node’s statieeadatabase tooot

14

so that subsequent attempts do not result in a completestaitin

If the node is inboot state, the boot manager contacts the boot server to verify
whether its cached software packages are up-to-date, dadslany out-of-date
packages, and then chain-boots the most current versioallyiif the boot man-
ager learns that the node is debug state, it continues to run the Linux kernel
it had booted from the CD, which lets PlanetLab operassfs into and inspect
the node. Both operators at PlanetLab and the site techrocghcts may set the
node’s state (in the database)d®bug or install, as necessary.

In addition to boot-time, there are two other situations tmchk the node and
boot server synchronize. First, running nodes periodicahtact the boot server
to see if they need to update their software, as well as tm ldghey need to
reinstall. Each node currently does this once a day. Seashepnever the node
state is set talebug in the database, the boot server contacts the node to trigger
the boot process, making it possible to bring the node inadfastate very quickly.
This mechanism has been used to bring all the nodes on P&EmEDO at the time)
into a safe state in less than ten minutes.

523 Owner-VM

Once a node boots—and both the VMM and NM are running—the NiMadhately
creates a locabwner-VMthat provides the local owner with access to the node.
Technical and administrative contacts for the owning ogion canssh into the
owner-VM using the keys they uploaded to the managemenbstyth

The owner-VM, calledsite_admin, exists on each node, and provides a lo-
cal account by which the site’s technical contact can adoéssmation about the
state of the node, review network logs, and define varioug{specific configu-
ration scripts. Among these is the list of slices (and res®yiools) that are to be
instantiated on the node at startup time.

Specifically, an initialization script running isite_admin invokes the NM
to create a resource pool for each slice in the list. It doés uking thecre-
ate_root_pool operation described earlier in this Section. Typicallys st in-
cludes a pool for the slice creation service of each sliceaity trusted by the
node’s owner. For example, a site that wants to ensure flcatrsl/_favorite_cdn
receives 10% of the node’s capacity, and the remaining regsare distributed via
PlanetLab’s slice creation servigel (conf, described below) would run the script:

rcapl0 = create_root_pool(rspecl0, my_favorite_cdn)
rcap85 = create_root_pool(rspec85, pl_conf)

rcap5 = create_root_pool(rspec5, pl_conf)
bind(rcap5, pl_conf)

15

The first line sets aside 10% of the node’s capacity for a CDMiae that the
owner wishes to host; a VM corresponding to that serviceages at some later
time. The last three lines of the script set aside 90% of traeisocapacity for
redistribution to other slices: the second line createsch parresponding to 85%
of the node’s capacity and makes this pool availablplioconf for redistribution,
while the last two lines allocate and bind 5% of the node’saciyp to pl_conf to
ensure that the service has sufficient resources to run. \Mheonf starts, it uses
theget_rcap operation to retrieve a handle on the pool assigned to it.

Note that the values irspec85 effectively limit the resources that the node
wishes to make available to VMs. For example, by setfipgk_rate = 10Mbps
the node owner specifies that slices cannot transmit at @higke than 10Mbps.
Not specifying an upper bound causes the node manager tohzewer capacity
(e.g., disk space or memory size) happens to be availableeonade. Also note
that with this script owners can disallow certain slicesrfrbeing instantiated on
their nodes.

5.2.4 Audit Service

The PlanetLab management authority includes an auditingcsein the software
installed on each node. This service, calfetflow, runs in its own VM, and uses
ulogd [14] to record information about every packet flow transedtby the node.
The service records

(prot, src_ip, src_port, dst_ip, dst_port, byte_cnt, pkt_cnt, vm_id)

tuples for each flow, retrieves a batch of such tuples fronkémeel at five minute
intervals (hence providing a timestamp for each tuple),lagd the tuples to disk.
The auditing service is able to determine the slice asstiaith each flow be-
cause every socket call happens in the context of a VM (veemetext) and the
NM records the VM-to-slice mapping.

The auditing service on each node also runs a web serverxteanhal users
query the auditing information recorded on that node forl#s¢ 24 hours. This
lets users determine the slice responsible for any susgdabrk traffic. Older
audit logs are uploaded and archived by the managementrautho

5.3 Slice Authority

The PlanetLab slice authority defines precisely what cuie a system-wide
slice. It maintains a database that records the persistatet af each registered
slice, including information about every principal thasteccess to the slice.

16

5.3.1 Database

The slice authority maintains a database of registeredipafs, and the slices they
have created. The database includes:

principal = (name, email, org, addr, key, role)
org = (name, addr, admin)
slice = (name, time, state, rspec, user[], nodes[])

where

role = (admin | user)
state = ((delegated | central) & (start | stop) & (active | deleted))

Similar to the management authority databaseatiin field of eachorg tuple is

a link to aprincipal with role = admin (this corresponds to the person responsible
for all users at the organization) and thser array in theslice tuple is a set of
links to principals with role = user (these are the people allowed to access the
slice).

Note that the main way the current implementation levergigesnanagement
and slice authorities being combined is that it runs a sidgkabase that includes
tuples from both authorities. The only tuple they have in gam is the set of
principals, and in fact, these are shared, with thie field given by the union
of the two role sets. Since organizations that join Planeth@ both owners and
providers, the same person is typically #min in practice, and so there has been
no reason to distinguish between these two cases.

Both a programmatic and GUI front-end let principals regishformation
about themselves, create slices, bind users to slices,eapueist that the slice be
instantiated on a set of nodes. The current implementatieohies a two-level
validation process for principals: PlanetLab first entats an off-line agreement
with an organization, which identifies an administrativehauity that is respon-
sible for approving additional principals at that orgatima The slice authority
then lets this admin approve a principal at the organizatioeate slices (this re-
sults in aslice record in the database), and associate principals witbsslithose
principals are then free to define the slicespec, associate the slice with a list of
users (references fwrincipals), and request that the slice be instantiated on a set
of nodes.

The rspec maintained by the PlanetLab slice authority is a supersehef
corerspec defined for use by the node manager. This lets the slice atthme
the same structure to record additional information abbetdlice, and pass this

2All PlanetLab documentation apart from this report refershie admin role as theprincipal
investigator but we elect to use the former as it is a more generic termhcorresponding user.

17

information to its point-of-presence on each node (i.s.slice creation service).
For example, the PlanetLab slice authority maintains abdata identifier for each
slice that can be used to determine when a slice is deletedeanehted. This is
a critical idea: the slice authority defines exactly whatstibutes a slice, and its
database gives a slice permanence; node managers sintplytiate local VMs.

For eachrspec attribute type, the database maintains a record of thelgmivi
level required to change the associated value, therebgdeatsers (who have the
least privilege) modify certain resource allocations. @htabase also lets default
resource values be specified for each type by either theipaincreating the slice
or by the PlanetLab slice authority.

For each slice, the database maintairstade field that indicates several key
properties of the slice. The state is a combination of séwedapendent values,
each recording an aspect of the slice’s current mode of use fifist bit indicates
whether the creation of VMs for the slice has bektegated to another service,
or should be performed by the slice authority’s agent on @ade (corresponding
to valuecentral). The second bit indicates whether the slice is curresidyted
or stopped — a slice may be stopped by either associated users or thetPdém
slice authority, for example, it the slice behaves in a matnat has adverse ef-
fects. The third bit indicates whether a sliceastive or has beerdeleted; for
auditing purposes we retain all slice records in the dataleasn after they have
been deleted by their users. We explain the two ways of itiatang a slice in the
next subsection.

5.3.2 SliceCreation Service

The slice authority has a point-of-presence on each nodkeeiform of a slice cre-
ation service—that creates slices on that node. The Plabedlice creation service
(pl_conf) supports slice creation in two different ways: by contagtihe Planet-
Lab database periodically to get a list of currently activees, and by acting as a
local (per-node) agent for existing slices to redeem sidickdtsthat represent the
ability to create a specific slice. Both of these mechanissesalcommon back-end
to interact with the node manager to create slices.

Figure 3 illustrates the two methods to instantiate a shogépefore either can
be invoked, the slice must be created in the slice authoats@hse. This is shown
in the figure as the initiatreate slicearrow, and corresponds to multiple operations
that we do not describe here. The slice is then instantiatemiset of nodes in one
of two ways.

In the first case, corresponding to arr@e the slice authority causes the slice
to be instantiated on each node (and sets the skitate = central) by calling a

18

Sttt . 2a STt .

ticket

create b ticket | 2b
slice get ticket
Effj la pl_ | 2c v
Slice et [[Ticket | Agent
Authority
3 | split + bind
Y

Node
Manager

Figure 3: Mechanisms by which slices are created.

slice_instantiate(slice_name)

operation on the slice authority. In the the second caseysheacquires a ticket
from the slice authority via the

ticket = slice_get _ticket(slice_name)

operation (arrowlb). The user is then responsible for contacting the indiMidua
nodes and redeeming the ticket. In the example shown, tbe stier passes the
signed ticket to a third-party servic¥, which assumes responsibility for slice cre-
ation. This lets services such &sprovide an enhanced slice creation facility,
perhaps providing lower latency or improved error repgytian top of the basic
functionality provided by the default slice creation seevi

To complete the first mode of slice creatigsi,conf contacts the PlanetLab
slice authority every 10 minutes and downloads a compresbtidrepresentation
of the relevant parts of the slice database, as shown by d@oor each slice that
is not already instantiated on the nog,conf pushes the corresponding XML
element onto the back-end queue.

To complete the second mode of slice creatiphconf accepts XML-RPC
requests (arro\c) to create new slices from an existing local slice (e¢ts agent),
where these requests take the form:

rcap = create_slice(ticket, slice_name)

The ticket passed as an argumentcteate_slice was earlier obtained from
the slice authority using the programmatic interface—ittams a complete slice

19

description, equivalent to one entry in the slice databaseé is signed by the slice
authority using a private keyl_conf uses the corresponding public key to verify
the authenticity of the ticket; if successful, the XML elamheontained in the ticket
is pushed onto the back-end queue. We use various measuirgstdoprevent
tickets being misused by malicious users, including exgimes on each ticket,
publishing a ticket-revocation list as part of the XML filevdadoaded periodically
by the service front-end, and frequently changing the lay-psed to sign the
tickets.

The back-end opl_conf takes requests from its queue and translates them into
the corresponding calls to the node manager (a@pwit first interprets service-
specific fields in thespec. For example, a unique database id for the slice is used
to detect when a slice was deleted and recreated withoutdthe ever observing
the intermediate state, perhaps due to network conngcpvablems. Similarly,

a reference to an initialization script, also stored in ti@esauthority database, is
translated into an encoded script that is passed directigde manager to initialize
the slice. The back-end uses thglit_pool operation to obtain ancap for the
desiredrspec, and then uses thatap in a bind call to associate thespec with
the appropriate slice name, thus causing the slice to banitisted on that node.

5.4 Infrastructure Services

As outlined in Section 4, the architecture explicitly deqgmses management into
separate functions rather than combining them in a singleagement entity. This
is of value when trying to understand the design space ftnilalised virtualization,
but it is also a design principle of PlanetLab, knowmuabundled managemejitl,
3]. The consequence of unbundled management is a colleatiorfrastructure
services—of which the slice authority’s slice creationvssr is one example—
which we contend has several benefits: (1) it keeps the nodagea as minimal
as possible; (2) it maximizes owner and provider choice, lzntte, autonomy;
and (3) it makes the system as a whole easier to evolve over tim

Several infrastructure services currently run on Planetiad play an active
role in the management of the system. They include resoudieiage services
used to acquire resources [2, 5], environment serviceskilggp a slice’s soft-
ware packages up-to-date [6], monitoring services thaktthe health of nodes
and slices [13, 4], and discovery services used to learn vasaurces are avail-
able [10].

20

6 Evolution of PlanetL ab

This section identifies several ways in which current imgatation of Planetlab
already takes advantage of different degrees-of-freedifened by the architec-
ture, as well as ways in which we see PlanetLab evolving iriuhee.

6.1 Chain of Responsibility

The critical need to preserve the chain of responsibilitycrieating, sustaining,
and scaling a distributed system spanning many node owndrsaavice providers
is tenent of the architecture. The requirement was not fafipreciated at the
inception of PlanetLab, but has become clear as the systemgrban far beyond a
small, known set of researchers. New organizations willoiatPlanetLab unless
they can map network activity onto responsible principafg] many of the owners
involved in the 231 security incidents reported in the lastrywould have taken
their nodes offline had the complaints not been rapidly ttaocethe responsible
party.

Moreover, while some of these incidents are due to the fattakperimental
and sometimes buggy services run on PlanetlLab, user nsstaie naive users
are seldom the explanation; in our estimation, mistakeswatcor less than 10%
of the reports. More common causes include IDS alarms atteesites reacting
to probing by services measuring the network, unexpectedvoath usage by
popular services, and violations of local Acceptable Uskcies by caching or
other content services.

In every case, using the auditing service and the slice atithtatabase to
contact the responsible principals has been importantieklyuresolving the com-
plaint. Crucially, this process does not require pairwigeeaments between own-
ers and providers, an essential factor in PlanetLab’s beéigg able to scale to
200 autonomous organizations.

6.2 Federation

Although PlanetLab currently combines the single manageraed slice author-

ities, decoupling the two offers an important degree ofdme as the system
evolves. Specifically, allowing for a federation of suchhewities has become a
necessity as PlanetLab’s reach becomes increasinglyatienal (regional centers
are planned in China and Europe) and as it crosses researchircial boundaries
(some companies are building “intranet” PlanetLabs). Tiohitecture supports
federation in two distinct stages.

21

In the first stage, multiple autonomous regions run their avamagement au-
thority, while a single global slice authority grants seevproviders access to nodes
across management boundaries. This distributes the nodag®ment problem
without balkanizing slices. The second stage sees mukigte authorities, but
distinct from management domains. There may remain a sfingéearch” slice
authority, for example, and it is easy to imagine a “publiogjbslice authority that
approves only those service providers that offer netwopbknts or SETI@HOME
style services.

We expect each slice authority to establish peering relships with others,
letting it create slices on nodes that do not run its own gieation service. In
the limit, slice authorities simply become “naming” autities, largely decoupled
from the slice creation services on nodes. Although not mgettby the architec-
ture, we expect slice authorities to communicate with eabhroviapl_conf-style
tickets (signedspecs).

6.3 Decoupling Slices and Pools

The architecture decouples the process of creating a stioethe act of acquiring
resources that can be bound to the slice. This makes it pessibirst use the slice
authority’s slice creation service to create VMs on a setamfas, and only later
acquire resources that can be bound to each VM, perhapsedsbisa brokerage
service that implements a market for node resources. Twuasics illustrate the
benefit of this decoupling.

Today, users interface with the PlanetLab slice authodtgreate slices that
span one or more PlanetLab nodes, relying on the standaedglkeation service
to instantiate a VM on each node. Once a slice has been cresitbda default
set of resources specified by the slice authority, users lvam go to brokerage
services to request additional resources; e.g., by biddiag auction, or queueing
up for additional capacity on a set of nodes during some tiote Shese brokerage
services have a point-of-presence on each node, whicthkats ¢all the local node
manager to assign some fraction of their pool to a clieneslithese allocations
happen at a much finer lifetimes (measured in hours) thanidess(measured
in weeks). Brokerage services currently acquire their padirectly through the
slice authority: each node grants all their resourcgd imonf, which has a policy
of granting some fraction of this capacity to brokerage ises/for redistribution
to existing slices.

An alternative getpl_conf out of the loop, with node owners interacting di-
rectly with brokerage services. In such a scenario, a nogepwns one or more
slice creation services. However, instead of pre-allogasiome pool of resources
to each of these slice creation services, the node owneisdtegrant all of the

22

node’s resources to a single brokerage service, expettiogell those resources
on a market.

6.4 Delegation

The principle of unbundled management requires that onécseis permitted to
manipulate another slice and/or the resources associdfethat slice. Delegation
is one mechanism for supporting such operations.

PlanetLab currently supports delegation at two levels. h&triode level, an
rcap acquired for an object represented byrsmec can easily be transferred from
the object owner to a service that the owner trusts to maaipuhe object. Trans-
feral of anrcap requires no intervention by the local node manager; jusbiheer
making the 128-bit value known to the service. For exampldice may request
that a local brokerage service temporarily grant it a bao§&PU share by contact-
ing the brokerage service and passingaap for its own VM.

PlanetLab also supports delegation at the network level.ileAfothing in
the architecture directly mandates this form of delegatiwa have implemented
just such a scheme in the current slice authority, as preljiadescribed in Sec-
tion 5.3.2. To recap, PlanetLab lets users authenticatagblees to the authority,
perform a sequence of operations on the database tuplageiipgest that the slice
authority generate a cryptographically-sigriedket that represents the operations
that the authenticated user is allowed to perform diredye user can then dele-
gate responsibility for performing those operations~elkice creation or resource
allocation—to another service by giving the signed tickett service.

6.5 Owner Autonomy

In discussing the possibilities for putting excess resesiren a market, it is im-
portant to not lose sight of the fact that owners retain fahitcol over their nodes.
They select a management authority, they determine whica althorities they
trust (and by implication, which service providers theylallow), and they make
the root resource allocation decision. This latter poinansethat an owner can first
ensure that sufficient resources are set aside for any serthat provide value to
local users, and then make the remaining resources avaibalh market, perhaps
with some fraction of the remainder earmarked for researgbublic-good pur-
poses.

References

[1] Linux Advanced Routing and Traffic Contrakttp://lartc.org.

23

[2]

[3]

[4]

[5]

[6]

[7]

[8]

[9]

[10]

[11]

[12]

[13]

[14]

A. AuYoung, B. Chun, C. Ng, D. Parkes, J. Shneidman, A.&#an, and
A. Vahdat. Bellagio: An Economic-Based Resource Alloaat®ystem for
PlanetLabhttp://bellagio.ucsd.edu/about .php.

A. Bavier, M. Bowman, D. Culler, B. Chun, S. Karlin, S. MyuL. L. Peterson,
T. Roscoe, T. Spalink, and M. H. Wawrzoniak. Operating Sysieipport for
Planetary-Scale Network Services. Pnoc. 1st NSDI San Francisco, CA,
Mar. 2004.

P. Brett, R. Knauerhase, M. Bowman, R. Adams, A. NatalajSedayao,
and M. Spindel. A Shared Global Event Propagation Systerm&bE Next
Generation Distributed Services. Rroc. 4th WORLDSSan Francisco, CA,
Dec. 2004.

David Lowenthal. Sirius: A Calendar Service for PlarglL http://
snowball.cs.uga.edu/"dkl/pslogin.php.

Juston Cappos and John Hartman. Stork: A Software Packagt Manage-
ment Service for PlanetLalbttp: //www.cs.arizona.edu/stork.

H. Krawczyk, M. Bellare, and R. Canetti. HMAC: Keyed-Hesg for Mes-
sage Authentication; RFC 210hternet Req. for CmtsFeb. 1997.

Linux VServers Projecthttp://linux-vserver.org.

S. Nabah, H. Franke, J. Choi, C. Seetharaman, S. KaplanSihghi,
V. Kashyap, and M. Kravetz. Class-based prioritized resmwontrol in
Linux. In Proc. OLS 20030ttawa, Ontario, Canada, Jul 2003.

D. Oppenheimer, J. Albrecht, D. Patterson, and A. Vahdastributed Re-
source Discovery on PlanetLab with SWORD. Rroc. 4th WORLDSSan
Francisco, CA, Dec. 2004.

L. Peterson, T. Anderson, D. Culler, and T. Roscoe. Aehint for Introduc-
ing Disruptive Technology into the Internet. Rroc. HotNets—l Princeton,
NJ, Oct 2002.

L. Peterson and T. Roscoe. The Design Principles ofé®laab. Technical
Report 04-021, PlanetLab, June 2004.

Vivek Pai and KyoungSoo Park. CoMon: A Monitoring Irgteucture for
PlanetLabhttp://comon.cs.princeton.edu.

H. Wilte. ulogd: Userspace Packet Logging for netfiltettp: //gnumonks.
org/projects.

24

	cover-05-030.pdf
	030_arch.pdf

