
Modeling State-Dependent Objects using Colored Petri Nets

Robert G. Pettit IV1 and Hassan Gomaa2

1The Aerospace Corporation, 15049 Conference Center Drive,
Chantilly, Virginia, USA 20151
rob.pettit@aero.org

2George Mason University, Department of Information and Software Engineering,
Fairfax, Virginia, USA 22030-4444

hgomaa@gmu.edu

Abstract. This paper describes an approach for using Petri nets to model and analyze the
behavioral characteristics of state-dependent objects represented in the Unified Modeling
Language (UML). Specifically, this paper describes an approach for systematically
mapping UML state-dependent objects and their corresponding statecharts into colored
Petri nets. This work is part of an on-going effort to automate the behavioral analysis of
concurrent and real-time object-oriented software designs. The benefit of this approach is
that by providing a systematic means for modeling state-dependent objects using colored
Petri nets and relating this to the larger research effort, the overall concurrent architecture
may then be modeled and analyzed using a single, cohesive technique.

Keywords: UML; Statechart; Colored Petri Net; Behavioral Analysis; COMET

1 Introduction

This paper presents an approach for using colored Petri nets to model and subsequently
validate the behavioral characteristics of state-dependent objects represented in the Unified
Modeling Language (UML) [1;2]. This research represents part of a larger effort [3] to
integrate colored Petri nets with UML software architectures created using the COMET
method [4]. The goal of this overall effort is to provide a systematic and seamless integration
of CPNs with object-oriented software architectures in order to effectively model and analyze
the behavioral properties of an architecture prior to implementation.

In COMET (Concurrent Object Modeling and Architectural Design Method), state-
dependent objects are active (asynchronous) objects that react to stimuli based on the current
state of the object. Each state-dependent object has an associated statechart that defines the
state-based behavior for that object. Typically, a state-dependent object will have one input
interface (operation) for processing events. When an event is received, the state-dependent
object will then use the encapsulated statechart information to determine the appropriate
behavior to execute. Based on the input that was received and the current state of the object,
this behavior could range from simply changing states; executing some action; sending a
message to other objects; or no behavior at all.

There are several tools currently available to simulate statechart execution. The benefit of
this approach is that by providing a systematic means for modeling state-dependent objects
using colored Petri nets and relating this to the larger research effort mentioned above, the
overall concurrent architecture may then be modeled and analyzed using a single, cohesive
technique.
 The Petri net formalism was chosen based on its modeling and analytical power for
concurrent systems. There are three general characteristics of Petri nets that make them

interesting in capturing concurrent, object-oriented behavioral specifications. First, Petri nets
allow the modeling of concurrency, synchronization, and resource sharing behavior of a
system. Second, there are many theoretical results associated with Petri nets for the analysis
of such issues as deadlock detection and performance analysis. Finally, the integration of
Petri nets with an object-oriented software architecture provides a means for automating
behavioral analysis.

The basic notation for Petri nets is a bipartite graph consisting of places and transitions
that alternate on a path and are connected by directional arcs [5]. In general, circles represent
places, whereas bars or boxes represent transitions. Tokens are used to mark places, and
under certain enabling conditions, transitions are allowed to fire, thus causing a change in the
placement of tokens.

A colored Petri net (CPN) is a special case of Petri net in which the tokens have
identifying attributes; in this case the color of the token [6]. At first, colored Petri nets seem
less intuitive than the basic Petri net. However, by allowing the tokens to have an associated
attribute, colored Petri nets scale to large problems much better than basic Petri nets.

2 The COMET Method

COMET is a Concurrent Object Modeling and Architectural Design Method for the
development of concurrent applications, in particular distributed and real-time applications
[4]. As the UML is now the standardized notation for describing object-oriented models [1,2],
the COMET method uses the UML notation throughout.

The COMET Object-Oriented Software Life Cycle is highly iterative. In the Requirements
Modeling phase, a use case model is developed in which the functional requirements of the
system are defined in terms of actors and use cases.

In the Analysis Modeling phase, static and dynamic models of the system are developed.
The static model defines the structural relationships among problem domain classes. Object
structuring criteria are used to determine the objects to be considered for the analysis model.
A dynamic model is then developed in which the use cases from the requirements model are
refined to show the objects that participate in each use case and how they interact with each
other. In the dynamic model, state dependent objects are defined using statecharts.

In the Design Modeling phase, an Architectural Design Model is developed. Subsystem
structuring criteria are provided to design the overall software architecture. For distributed
applications, a component based development approach is taken, in which each subsystem is
designed as a distributed self-contained component. The emphasis is on the division of
responsibility between clients and servers, including issues concerning the centralization vs.
distribution of data and control, and the design of message communication interfaces,
including synchronous, asynchronous, brokered, and group communication. Each concurrent
subsystem is then designed, in terms of active objects (tasks) and passive objects. Task
communication and synchronization interfaces are defined. The performance of real-time
designs is estimated using an approach based on rate monotonic analysis.

The aspect of the COMET method that is specifically addressed in this paper is the
emphasis on dynamic modeling, in the form of both object interaction modeling and finite
state machine modeling, describing in detail how object collaborations and statecharts
[8,9,10] work together.

3 Statecharts in the COMET Method

3.1 State Transition Diagrams and Statecharts

Traditionally, finite state machines were modeled by means of state transition diagrams or
state transition tables. One of the potential problems of state transition diagrams is the
proliferation of states and transitions, thereby making the state transition diagram very
cluttered and difficult to read. A very important way of simplifying state transition diagrams
was made by Harel with the introduction of statecharts [8,10], which increases the modeling
power of state transition diagrams by introducing superstates and the hierarchical
decomposition of superstates.

Significant simplification of statecharts can often be achieved through the use of
hierarchical decomposition of states, where a superstate is decomposed into two or more
interconnected substates. This decomposition is sometimes referred to as the or
decomposition, because being in the superstate means that the statechart is in one and only
one of the substates. The hierarchical statechart notation also allows a transition out of every
one of the substates on a statechart to be aggregated into a transition out of the superstate.
Careful use of this feature can significantly reduce the number of state transitions on a
statechart.

Another kind of hierarchical state decomposition supported is the and decomposition.
That is, a state on one statechart can be decomposed into two or more concurrent statecharts.
When the higher-level statechart is in the superstate, it is simultaneously in one of the
substates on the first lower-level concurrent statechart and in one of the substates on the
second lower-level concurrent statechart.

Although the name concurrent statechart implies that there is concurrent activity within
the object containing the statechart, the and decomposition can be used to show different
aspects of the same object, which are not concurrent. This latter approach is used in the
COMET method.

3.2 State Dependent Objects and Statecharts

State dependent objects are control objects whose behavior depends not only on the input
received, but also on the current state. In COMET, a state dependent object is described by
means of a statechart. A complex system can have many state dependent objects and hence
several statecharts. COMET encourages the design of objects with only one thread of control;
to address concurrency, multiple concurrent objects can be used. The Cruise Control system
described in this paper has one state dependent object and hence one statechart. However, in
other case studies given in [4], there are examples of distributed control in which the control
aspects of the system are distributed among many state dependent objects, each described by
its own statechart. If there are many objects of the same type, then each object will execute an
instance of the same statechart.

4 Modeling UML State-Dependent Objects Using Colored Petri Nets

Using the COMET method, state-dependent objects are defined to encapsulate the behavior
specified by a statechart. These state-dependent objects provide an interface for receiving
events and then perform some behavior based on the input event, the current state, and the
state-transition specifications of the encapsulated statechart.

To fit within the context of modeling a large-scale concurrent software architecture, the
approach used in this paper to specifically model state-dependent objects must address both
the high-level behavioral structure of state-dependent objects as well as the specific state-
dependent behavior of the associated statechart. To capture both of these aspects, the
resulting CPN model is structured using a series of hierarchical decompositions as described
in the following sections.

4.1 CPN Structural Model of State-Dependent Objects

Using our approach, the top-level CPN model captures the high-level state-dependent object
as a whole. This top-level model is illustrated in Figure 1. At this level, we can see the
interface between the state-dependent object and its surrounding environment, including
input events, output actions, the current state, and the high-level control flow within the
object.

Figure 1. Top-Level CPN Model for State-Dependent Objects

In the COMET method, state-dependent objects are modeled as active objects in UML,
thus indicating that they operate concurrently with their own thread of control. In our CPN
model, this concept is maintained by using a control token (labeled CTRL in the CPN
diagrams) to model the flow of control within the object. Each active object is modeled with
its own control token, which, in addition to modeling the flow of control, is used to model
synchronization with other objects and (with a timestamp) is used to simulate the progression
of time for each object.

A state-dependent object modeled with the CPN segment from Figure 1 would begin its
lifecycle with a control token residing in the Ready place. Thus, the ProcessInput transition
would then be enabled by the presence of an input event. Upon firing, ProcessInput would
pair the input event with the control token and pass this tuple to the EventRx place, indicating
that an event has been received and needs to be processed through the state transition
diagram. The ExecuteSTD transition is decomposed to model the specific statechart behavior
encapsulated by the state-dependent object. This decomposition is described in Section 4.2.

Once the statechart model has completed its execution (including any output actions), the
control token is passed to the STDComplete place. The PostProcessing transition then
increments the time tag on the control token (to simulate the processing time for the state-
dependent object to handle an event) and returns the control token to the Ready place to await
the next event.

One final note to be aware of at this level is the definition of state. The current state is
maintained in the CurrentState place. The ExecuteSTD transition (and its subsequent
decompositions) remove the current state from this place with each input event and return the
modified (new) state upon completion. The state of the object itself is actually represented by
a tuple stored at CurrentState. This tuple not only contains the “state” of the system as we
would normally consider it, but it also contains the current status of system conditions used to
make transition determinations in the statechart. Use of these conditions combined with the
state is further illustrated in Section 5 with an example from the Cruise Control System.

4.2 Top-Level CPN Statechart Model

To begin modeling, the actual state-dependent behavior is first converted to a “flattened”
representation so that all state transitions are explicitly captured between leaf states. Any
necessary conditions that were captured in the hierarchical statechart (e.g. device status) are
then represented as conditions on the state transition and are also captured as part of the
conditions in the CurrentState tuple. Furthermore, “entry” actions for UML states are
mapped to actions on the corresponding entry transition(s) to those states. Similarly, “exit”
actions are mapped to actions on the corresponding exit transitions(s). Activities that are
persistent within a given state (represented by the UML “Do” keyword) are also mapped to
actions on the entry transition(s) as these persistent activities are implemented by separate
active objects in the COMET method [4].

Working now from a flattened statechart, the ExecuteSTD transition is then decomposed
into a lower-level CPN. This first-level decomposition provides one CPN transition for each
(leaf) state in the object’s statechart. Furthermore, the places providing tokens to and
receiving tokens from ExecuteSTD are shown at this level as port places. A port place is used
as a connector between hierarchical levels of CPNs. Thus, the EventReceived place shown at
the root level providing input to ExecuteSTD is identical to all subsequent instances of
EventReceived in the various levels of ExecuteSTD’s decompositions.

Figure 2 provides an illustration of this first-level decomposition. Note that all transitions
(representing the states of the object’s statechart) are connected to the EventReceived,
STDComplete, and CurrentState places. Additionally, if a given state generates an external
action, appropriate links will also be added to handle those cases. Furthermore, each CPN
“State” transition in Figure 2 uses an arc inscription on the input arc to enable the transition
only if the current state corresponds to the state being modeled by that transition. Thus, the
State1 transition is only enabled when the current state is equal to State1 and so forth.

4.3 Modeling Behavior for Individual States

To model the specific state-dependent behavior, each of these CPN State transitions from
Figure 2 is again decomposed into a lower-level CPN segment. This final level of
decomposition is shown in Figure 3.

Figure 2. First Level Decomposition of CPN Statechart Model

At this level, there is one transition (State-n-DetSt) to determine the next state and the
particular action branch that needs to be taken. Once the current state is determined and the
appropriate DetSt transition is enabled (using the arc inscription from CurrentState), this
transition executes a code segment to determine the next state (newState) and the action
branch (branch) based on the current state and the input event (inputEvent). This code
segment simply consists of a case statement in the ML language that specifies the desired
output of new state and action branch for each possible input event.

After the newState and branch values are determined, a tuple containing these values is
passed to the State-n-Branch place. From this branch place, one branch is chosen based on
the value of the branch variable. Each branch is a series of alternating transitions and places
that model the behavior of the action to be performed. Each transition in a branch is labeled
by the name “Action”, followed by the branch number (0..n), followed by the step number
(a..z). In our approach, branch zero (0) will always be used when no action (other than a
possible state change) is required.

For branches with more than one step, an interim place is used to connect each transition
in the path. This interim place contains the new state tuple and is labeled by the name,
“State” followed by the branch number, followed by the previous and next step numbers. For
example, in Figure 3, the interim state along branch 1 between steps “a” and “b” is labeled,
“State-n-State1ab”.

Along these action paths, the CPN model may generate tokens to be passed as messages,
events, or operation calls to other objects. In the case of asynchronous actions, the branch
may be continued uninterrupted. However, in the case of synchronous processing, the next
step must wait for the previous step to complete before continuing. This is accomplished by
having the next transition enabled by both the interim state place and a return place from the
synchronizing action. An example of a synchronous message can be found in the Cruise
Control example of Section 5.

EventRx
P In

InternalEvent

STDComplete
P Out

Control

CurrentState

P I/OState

State1

State2

StateN

ExecuteSTD

1`(State1,…)

1`(State2,…)

1`(StateN,…)

1`newState

1`newState

1`newState

1`(inputEvent,CTRL)

1`(inputEvent,CTRL)

1`(inputEvent,CTRL)

1`CTRL
1`CTRL

1`CTRL

HS

HS

HS

Figure 3. Detailed State Decomposition

Finally, when a given path has completed, it’s last action is to update the CurrentState
place with the new state and to pass a control token to the STDComplete place indicating that
the current input event has now been processed.

The STDComplete place then essentially returns to the top level CPN diagram and passes
the control token to the PostProcessing transition. This transition performs any necessary
post processing actions and uses its time delay to simulate the processing time for the state-
dependent object. When this transition completes, the control token is returned to Ready
place and the model is ready to process the next input event.

At this point, the CPN model for the state-dependent object may be executed through a
simulator or analyzed by constructing an occurrence graph of the state-space using tools such
as DesignCPN [7]. The state-dependent object may be analyzed in isolation using CPN
places for the input and output stubs or it may be integrated into the CPN model of the overall
concurrent software architecture.

In the following section, we use an example from the Cruise Control System to illustrate
how a specific state-dependent object within a software architecture may be modeled using
the approach described in the above sections.

EventRx
P In

InternalEvent

STDComplete
P Out

Control

CurrentState

P I/O

State

1‘ (inputEvent,CTRL)

1‘CTRL

StateN
State-n-DetSt

C

State-n-Action1c

State-n-ActionNa

State-n-Action1b

State-n-Action1aState-n-Action0a

State-n-Branch

State-n-State1bc

State-n-State1ab

1‘CTRL

1‘newState

1‘newState

State

State

StateBranch

.

.

.

1`(StateN,…)

1`(newState,branch)

1`(newState,1)1`(newState,0)
1`(newState,N)

1`newState

1`newState

1`newState

1`newState

Input (inputEvent);
output(newState,branch);
action
case inputEvent of
 event1 => (State1,0) |
 event2 => (State2,1) |
 event3 => (State3,1);

5 Case Study: Cruise Control System

The Cruise Control System [4] is a real-time control system that manages the speed of an
automobile based on inputs from the driver (via a lever on the steering column). The
behavior of the cruise control is state-dependent in that the executed actions correspond not
only to the driver input, but also on the current state of the system and with the status of the
engine and the brake.

To illustrate the modeling of state-dependent objects using CPNs, we will use the state-
dependent “:CruiseControl” object and corresponding statechart from the Cruise Control
System. In this example, the :CruiseControl object accepts external inputs/events and
executes the cruise control statechart. Figure 4 provides a partial collaboration diagram
illustrating this state-dependent object along with its interfaces to the rest of the cruise control
system. As can be seen from this figure, the :CruiseControl object accepts event inputs from
the cruise control lever interface indicating whether the driver has selected to accelerate
(Accel), engaged the cruise (Cruise), turned the cruise off (Cruise Off), or requested that
cruising be resumed (Resume). Furthermore, the :CruiseControl object must accept
messages from the SpeedControl object indicating that the cruising speed has been reached
and accept inputs indicating the current status of the brake (Pressed or Released) and engine
(On or Off). Finally, in terms of output actions, the :CruiseControl object must set (or clear)
the desired speed and must send appropriate (state-based) commands to the SpeedControl
object that controls the throttle output and monitors the current speed.

The statechart for the :CruiseControl object is shown in Figure 5. The leaf (lowest-level)
states for :CruiseControl are: Idle, Initial, Accelerating, Cruising, Resuming, and Cruising
Off. It is these low-level states that will be used for the CPN state-dependent modeling.

Figure 4. Cruise Control State-Dependent Object

Figure 5. Cruise Control Statechart
Figure extracted from [4] with permission of Addison-Wesley Publishing.

5.1 CPN Model for Cruise Control

To start modeling the behavior of the :CruiseControl state-dependent object, we begin by
using a CPN segment to capture high-level behavioral properties of the state-dependent
object and its connections to the rest of the software architecture. This CPN segment is
illustrated in Figure 6.

At this level, the CPN models the general control flow of a state-dependent object. In the
case of the :CruiseControl object, this segment has been tailored to accept cruise control
messages as the input events via the ProcessInput transition. Additionally, the ExecuteSTD
transition is connected to CPN places corresponding to the Select and Clear operations of the
DesiredSpeed entity object as well as the places corresponding to the synchronous message
buffer for the SpeedControl object. The State colorset must also be tailored to fit the
:CruiseControl object and in this case is declared to be a tuple (specifically, a triple)
consisting of tokens representing the cruise control leaf states; the engine status; and the
brake status.

With the high-level CPN segment in place, we can now begin modeling the state-
dependent behavior of :CruiseControl by decomposing the ExecuteSTD transition into a set
of CPN transitions representing the leaf states of the cruise control statechart. This first level
decomposition is shown in Figure 7. Using the approach presented in Section 2, one CPN
transition is used for each of the six low-level states of the cruise control statechart: Idle,
Initial, Accelerating, Cruising, Resuming, and CruisingOff. Each of these CPN transitions
accepts a tuple containing the cruise control message and control token from the
EventReceived place along with the current state from the CurrentState place. When tokens
are available on both the EventReceived and CurrentState places, the transitions will then be
enabled according to the arc inscription from CurrentState. Thus, the Idle transition is only
enabled if the current state is Idle; the Initial transition is only enabled for a current state of
Initial; and so forth. Finally, the output from each of these transitions updates the

CurrentState place with the newState token and sends a control token to the STD Complete
place indicating that processing has been completed for the current input event.

The final step in modeling the state-dependent behavior is to decompose each of the
transitions in Figure 7 into a CPN segment capturing the behavior for each of the cruise
control states. To illustrate this final step, the CPN models for two of the cruise control states
(Idle and Accelerating) are described in detail in the following sections. The remaining CPN
models can be derived by applying this same systematic approach.

5.1.1 Idle State
The idle state is the starting point for the cruise control statechart. The CPN implementation
of the cruise control idle state is shown in Figure 8. In the cruise control statechart shown in
Figure 5, there is only one transition identified from the idle state – this occurs when the
engine is turned on and the system transitions to the initial state. However, in the CPN
implementation of the state-dependent behavior, changes in conditions that affect the cruise
control system must also be accounted for. These conditions include changes to the brake
and engine status. Thus, the implementation for the idle state not only checks for an
“EngineOn” event, but must also check for the other possibilities of “BrakeOn,” “BrakeOff,”
and “EngineOff”. When one of these three “events” occurs, the code segment of the
IdleDetSt transition sets the status variables accordingly, and sets the branch value to 0
(indicating that no further action is necessary). This new tuple is then passed to the
IdleBranch place. From the IdleBranch place, arc inscriptions determine which branch (CPN
transition) will be enabled. With the branch value set to 0, the IdleAction0a transition is
enabled and, when fired, simply updates the Current State and sends a control token to the
STD Complete place indicating that processing is complete for this input event.

The only input event that produces an action and state transition from the idle state is the
change in engine status as indicated by a ccMsg token with the value, “EngineOn”. When
this occurs, the code segment of IdleDetSt sets the output tuple to be (Initial,true,bs,1)
indicating that the state should be changed to the initial state; the engine is turned on; the
brake status (bs) is unchanged; and the action branch is 1. This tuple is then given to the
IdleBranch place and enables the IdleAction1a transition. According to the cruise control
statechart, the action that occurs when transitioning from idle to initial states is to clear the
desired speed. Thus, the IdleAction1a “calls” the clear operation by passing a control token
to the Clear_6 place and then placing the state tuple in the IdleState1ab place to continue
down this action branch. (The Clear_6 place is part of the CPN model for the DesiredSpeed
entity object of the cruise control software architecture. The number six (6) appended to the
place name represents the object identifier for DesiredSpeed.) Since we are simulating an
operation call, we need to have some synchronization so that we wait for the operation to
complete before continuing our processing. This is accomplished by having the next
transition in the branch, IdleAction1b, wait for both a state tuple in the IdleState1ab place and
a returned control token in the ClearRtn_6 place (indicating that the clear desired speed
operation has completed). Since this is the final step in the action branch, the IdleAction1b
transition updates the Current State place with the new state and conditions and sends a
control token to the STD Complete place, completing the processing of this input event.

Figure 6. Cruise Control Object: Top-Level CPN Segment

Figure 7. Cruise Control: First Level Decomposition

Figure 8. Cruise Control: Idle

5.1.2 Accelerating State
The behavior captured by the Accelerating state is slightly more significant than that
provided by the Idle state. While in the Accelerating state, the automobile is accelerating to
reach the desired cruising speed. When a “Cruise” request is detected, the system transitions
from the Accelerating state to the Cruising state. During this transition, the Desired Speed is
selected and (as indicated by the “Do” activity of the Cruising state) a “Maintain Speed”
command is sent to the SpeedControl object. The other possible transitions from the
Accelerating state are for the driver to press the brake, thus disengaging the cruise control and
transitioning to the Cruising Off state or the engine stops and the system transitions to Idle.

The CPN model for the Accelerating state is shown in Figure 9. As with the Idle state, we
again enter the model at a CPN transition (AccelDetSt) that uses a code segment to determine
the new state and the action branch used to produce any desired actions. The only transition
that produces actions from the Accelerating state is a transition to the Cruising state. Thus,
this transition is assigned action branch 1 while all other inputs are assigned branch 0 and
simply update the state and current engine and/or brake conditions.

Proceeding through branch 1, the first action is to select the desired speed. Thus, the
AccelAction1a transition sends a control token to the CPN place corresponding to the Select
Desired Speed operation call. The internal state information is transitioned to the
AccelState1ab place and the AccelAction1b transition then waits for the Select Desired Speed
operation to return as indicated by a control token in the Select_6 place. Once this has
completed, the state information is passed to the AccelState1bc place and the AccelAction1c
transition performs the next action by sending a “MaintainSpeed” synchronous message to
the SpeedControl Message buffer. Since this is a synchronous message, the AccelAction1c
transition must first retrieve a Free token from the buffer, thus indicating that the transition is
free to place a message in the Message place of the buffer. The AccelAction1c transition then
sends the ccCommand token (set to “MaintainSpeed”) to the Message place and passes the
internal state information to the AccelState1cd place. The AccelAction1d transition must now
wait for SpeedControl to retrieve the message from the buffer (since this is modeling
synchronous communication). Once SpeedControl retrieves the message, it places a control
token in the Return place and then AccelAction1d can fire, sending the updated state
information to the Current State place and the control token to the STDComplete place. At
this point, the processing for the Accelerating state is now complete and the :CruiseControl
object may process the next event.

5.1.3 Modeling the Remaining Cruise Control States
The remaining cruise control states can be modeled by decomposing the remaining CPN
transitions from Figure 7 using the same systematic approach used to model the Idle and
Accelerating states presented above. Once the remaining states have been captured at this
level, the :CruiseControl object may be analyzed using a tool such as DesignCPN [7]. As
mentioned earlier, this analysis may occur independently by using CPN places to simulate the
inputs and outputs. Alternately, the models may be integrated with the larger cruise control
architecture (by using the actual CPN places corresponding to message queues, operation
calls, etc.) to complete the behavioral modeling and analysis of the system as a whole. This
analysis may cover such aspects as deadlock detection, performance analysis against time
constraints, or checking boundary conditions to, for example, determine if the set queue sizes
can handle the observed volume of message traffic.

Figure 9. Cruise Control: Accelerating

6 Conclusions and Future Research

This paper presents a systematic, scaleable, and repeatable approach for using colored Petri
nets to model the behavior of UML objects containing statecharts, which is capable of being
automated. This approach may be integrated into the larger effort of modeling the overall
concurrent software architecture using CPNs. The resulting CPN is then used to validate
such dynamic properties as the absence of deadlock and starvation conditions as well as
providing a timing and behavioral analysis of the architecture through simulation. This
analysis through CPNs reduces the overall risk of software implementation by allowing
behavioral characteristics to be validated from an architectural design rather than waiting for
the system to be coded.

This paper represents on-going research efforts to integrate colored Petri nets with object-
oriented software design methods for concurrent and real-time systems. Future research will
explore the automatic generation of CPNs from UML. It is the goal of this continuing
research to arrive at a set of CPN translation rules that can be effectively integrated with
software design methods to provide increased reliability and analytical capabilities at
multiple levels of abstraction.

7 References

[1] Rumbaugh, J., Jacobson, I., and Booch, G., The Unified Modeling Language Reference
Manual Reading, Mass.: Addison-Wesley, 1999.

[2] Booch, G., Rumbaugh, J., and Jacobson, I., The Unified Modeling Language User
Guide Reading, Mass.: Addison-Wesley, 1999.

[3] Pettit, R. G. and Gomaa, H. “Validation of Dynamic Behavior in UML Using Colored
Petri Nets.” UML 2000 Behavioral Semantics Workshop. York, England. October,
2000.

[4] Gomaa, H., Designing Concurrent, Distributed, and Real-Time Applications with UML,
Addison Wesley Object Technology Series, 2000, http://www.aw.com/cseng/titles/0-
201-65793-7.

 [5] David, R. and Alla, H., "Petri Nets for Modeling of Dynamic Systems: A Survey,"
Automatica, vol. 30, no. 2, pp. 175-202, 1994.

[6] Jensen, K., Coloured Petri Nets: Basic Concepts, Analysis Methods, and Practical Use
Berlin, Germany: Springer-Verlag, 1997.

[7] DesignCPN. http://www.daimi.aau.dk/designCPN/.

[8] Harel, D., "On Visual Formalisms." CACM 31, 5 (May 1988), 514-530.

[9] Harel, D. and E. Gary, "Executable Object Modeling with Statecharts", Proc. 18th
International Conference on Software Engineering, Berlin, March 1996

[10] Harel, D. and M. Politi, "Modeling Reactive Systems with Statecharts", New York, NY:
McGraw-Hill, 1998.

