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Abstract

To improve the scalability of the Web it is common practice to apply caching and repli-
cation techniques. Numerous strategies for placing and maintaining multiple copies of Web
documents at several sites have been proposed. These approaches essentially apply a global
strategy by which a single family of protocols is used to choose replication sites and keep
copies mutually consistent. We propose a more flexible approach by allowing each dis-
tributed document to have its own associated strategy. We propose a method for assigning
an optimal strategy to each document separately and prove that it generates a family of
optimal results. Using trace-based simulations, we show that optimal assignments clearly
outperform any global strategy. We have designed an architecture for supporting documents
that can dynamically select their optimal strategy, and evaluate its feasibility using a proto-
type implementation running in an emulated Internet environment.
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1 Introduction

Web users often experience slow document transfers caused by poorly performing servers and
overloaded parts of the network. These scalability problems are commonly tackled through
caching and replication by which multiple copies of a document are distributed across servers in
the network [25]. A user’s request for a document is then directed to a nearby copy, thus reducing
access times, average server loads, and overall network traffic.

There are several ways in which copies of a document can be distributed. In general, a
distinction is made between caching and replication. With caching, whenever a user requests a
document for the first time, the client process or local server handling the request will fetch a
copy from the document’s server. Before passing it to the user, the document is stored locally in
a cache. Whenever that document is requested again, it can simply be fetched from the cache.
In principle, there is no need to contact the document’s server again; the request can be entirely
handled locally. In the case of replication, a document’s server proactively places copies of the
document at various servers in the network, anticipating that enough clients will make use of
those copies that warrant their replication. Apart from this difference in the creation time of
copies, we consider caching and replication to be fundamentally the same mechanism.

Although caching and replication can significantly alleviate scalability problems, having mul-
tiple copies of a document also introduces a consistency problem. Whenever a document is up-
dated it is necessary to ensure that all copies are brought up-to-date as well; otherwise clients
may access stale data. Unfortunately, maintaining strong consistency, that is, keeping all copies
of a document identical, is often costly. For example, in the case of a cache, it may be necessary
to first contact the document’s server to see if the cached copy is still valid. Contacting the server
introduces global communication that may negate the performance initially gained by caching.
In the case of replication, strong consistency may require that updates are immediately propa-
gated to all copies, even if there are currently no clients requesting the document. In that case,
update propagation wastes network bandwidth.

A solution to this problem is to weaken the consistency for carefully selected documents.
For example, many Web caches follow a policy in which a cached document is always returned
to the requesting user without checking for consistency with the document’s server. To avoid
having cached documents becoming too old to be useful, each one has an associated expiration
time beyond which it is purged from the cache. This caching policy is derived from the Alex file
system [8] and is followed in the widely-used Squid caches [9].

Weak consistency is not universally applicable. In fact, in most cases, users simply want
to have an up-to-date copy of a document returned when requested and protocols implementing
weak consistency generally fail to meet this requirement. Unfortunately, since there are several
evaluation metrics involved, it is not clear what the best solution for maintaining strong consis-
tency is. We argue that there is no single best solution and that for each document it should be
decided separately what the best strategy is to distribute its copies and to keep them consistent.
Moreover, servers must be prepared to dynamically adapt a strategy for a document, for example,
because its usage and update pattern have changed.

We have conducted a series of trace-driven simulation experiments that substantiate these
claims. In this paper, we first propose a method for associating a replication policy to each
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document, and prove that it generates a family of optimal assignments. We then show that the
resulting assignments perform significantly better than assignments where every document uses
the same replication strategy. Finally, we propose an architecture for supporting replicated Web
documents that can dynamically analyze their recent access pattern and select the policy which
suits them best.

Preliminary results have been reported in [29]. However, it presented only empirical results
based on a single trace file, which confirmed our intuition that differentiating replication strate-
gies provides better performance than one-size-fits-all assignments. The contributions made in
the present paper are threefold: (i) we provide a mathematical proof of correctness of our assign-
ment method; (ii) simulations are based on two different trace files, and (iii) we also now present
results on the dynamic adaptation of replication policies. None of these contributions have been
reported in [29].

The paper is organized as follows. In Section 2 we present tradeoffs that need to be made
when implementing replication strategies, and discuss related work on selecting a replication
policy. We proceed with describing how we evaluate strategies in Section 3, and describe the
results of our simulations in Section 4. In Section 5 we propose and evaluate an architecture for
supporting our approach to distributed Web documents. We conclude in Section 6.

2 Related Work

There are many ways in which copies of a Web document can be distributed across multiple
servers. One has to decide how many copies are needed, where and when to create them, and
how to keep them consistent. We define a replication policy as an algorithm that makes these
decisions.

We briefly describe commonly used placement protocols (which decide on where and when
to create copies) and consistency protocols (which decide on how to keep the copies consistent).
We then discuss the existing results on selecting an appropriate replication policy.

2.1 Placement Protocols

A placement protocol is used to determine when and where a copy of a document is to be placed
or removed. Placement can be initiated either by servers or clients, as shown in Figure 1. We
distinguish three different layers of hosts that can hold a copy of a document.

The core layer consists of servers that host permanent replicas of a document. In many cases,
each Web document is hosted by only a single primary server. Clusters of Web servers [1, 13]
and servers that mirror entire Web sites are examples of multiple permanent replicas.

The middle layer consists of servers for hosting document-initiated replicas. These replicas
are normally created by one of the permanent replicas, but possibly also by one of the other
document-initiated replicas. In the context of the Internet, document-initiated replicas appear
in Content Delivery Networks (CDNs), such as RaDaR [33] and Akamai [21]. In these sys-
tems, content is transferred to servers in the proximity of requesting clients. How the transfer is
initiated is part of the consistency protocol as we describe below.
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Permanent
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Document-initiated
replicas

Client-initiated replicas
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Client-initiated replication

Document-initiated replication

Figure 1: Conceptual layering of document hosts.

Table 1: Various tradeoffs for implementing consistency protocols.

Parameter Values Meaning

Change
distribution

- notification
- full state
- state differences
- operation

Describes how changes between replicas are distributed: is only a
notification (or invalidation) sent telling that an update is needed, is the
full state sent, or only differences, or is the operation sent that is to be
carried out to update the receiver’s state?

Replica
responsiveness

- immediate
- lazy (e.g., periodic)
- passive

Describes how quickly a replica reacts when it notices it is no longer
consistent with the other replicas. A passive replica will do nothing.

Replica
reaction

- pull
- push

Describes what a (non passive) replica does when it notices it is
inconsistent with other replicas. It either sends or requests updates.

Write set - single
- multiple

This parameter gives the number of writers that may simultaneously
access the document.

Coherence
group

- permanent only
- permanent and

document-initiated

Describes who implements the consistency model: permanent and/or
document-initiated replicas. Caches are generally not part of the
coherence group.

The outer layer consists of servers for hosting client-initiated replicas, also known as cache
servers. Creating a cached version of a document is entirely a local decision that is, in principle,
taken independently from the replication strategy of the document. However, the decision to
cache may be subject to many constraints. For example, a client may decide to cache only those
documents that it expects will not change soon. Also, it may have limited disk space available
for caching. Web proxy caches form a typical example of client-initiated replicas in the Internet.

2.2 Consistency Protocols

A consistency protocol implements a specific consistency model. There are various tradeoffs to
be made when implementing such models, and the most efficient implementation is often de-
pendent on the current state of the network or usage of the document. Table 1 shows various
parameters by which consistency protocols can be characterized (an overview of various algo-
rithms can be found in [34]).

Change distribution is about what is distributed. Possibilities include a notification that some-
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thing has changed (such as an invalidation message) [7], the full content of a document [14], only
differences [4], or the operation that caused a change.

Another issue is when a replica actually responds after it notices it contains stale data. For
example, assume a replica has just processed an update sent to it by a client. Its responsiveness
describes whether it immediately propagates the update, or that it waits some time as in lazy
replication [20]. It may also decide to do nothing and wait until a validation request is issued by
another replica.

The reaction of a replica is another design issue and describes how an update is propagated.
There are essentially only two alternatives: an update is either pushed to a replica, or a replica
pulls in an update from another replica. Most Web caching schemes follow a pull-based strategy.

When dealing with replication, it is important to consider how many processes are allowed
to update a document. If the number of updating processes is one, then inconsistencies resulting
from concurrent updates cannot occur. In many existing solutions there is a single primary server
that serializes all updates. For Web-based applications, this approach often works because there
is only a single owner for a document. However, problems may arise in the case of collaborative
Web-based applications, such as proposed in [39].

Finally, it is important to consider which group of replicas is responsible for maintaining
consistency. If there is only a single permanent replica, maintaining consistency is easy although
other replicas may be updated in a lazy fashion. This approach comes close to the single-writer
case. With several replicas being responsible for maintaining consistency, various synchroniza-
tion techniques are needed to ensure that updates are propagated in the order dictated by the
consistency model.

In conclusion, we see that there is large variety of strategies and that we cannot decide in
advance which strategy is best. Our research concentrates on finding the best strategy for each
document separately, aiming at a global optimization of various performance metrics as we ex-
plain next.

2.3 Selecting an Appropriate Policy

Our work is based on the premise that it makes sense to differentiate caching and replication
policies for Web documents. Obvious as this may seem, it is only recently that researchers are
starting to look for solutions that allow very different strategies to co-exist in a single system.

Most research has concentrated on supporting a single family of strategies. For example,
the TACT toolkit [41] provides support for replication based on anti-entropy schemes [10] for
a range of consistency models. In a similar fashion, caching algorithms exist that base their
decisions on temporal correlations between requests [16, 36], but otherwise essentially follow
the same protocol. Closer to our approach are systems that have protocols that adapt the way
updates are propagated. For example, the adaptive leases described in [12] provide a way for
switching from a protocol in which updates are pushed to replicas, to one in which updates are
pulled in on demand. Combinations of push and pull strategies are also possible, as described
in [11].

Related to our work are systems that dynamically decide on the placement of replicas. Exam-
ples of such systems in the Web are content delivery networks like RaDaR [33] and Akamai [21].
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These systems adapt the number and location of document copies to provide copies close to the
users’ locations and to balance the load of servers. Dynamic placement of replicas has also been
exploited in areas such as parallelism [2] and distributed databases [40].

Studying past access patterns to optimize future behavior of a system is not a new idea in
the Web community. Services such as prefetching, for example, rely on past access analysis to
determine which documents are worth downloading [15, 22, 27]. Other systems dynamically
organize the search path for a URL among a cache mesh based on a shared knowledge of caches’
contents [24].

All these systems have in common that they do not provide support for very different con-
sistency protocols. At best, they offer facilities for optimizing protocols that belong to a single
(relatively small) family of solutions, although optimizations can often be done on a per-object
basis.

Also related to our work are systems that can dynamically change their internal composition.
Such flexibility has been deployed in many domains. Flexible group communication systems,
such as the x-kernel [26] and Horus [37] split protocols into elementary modules that can be
composed together to obtain required features. The same principle has been applied for building
routers [18], network traffic analyzers [28], and so on. However, there are relatively few repli-
cation systems that allow one to statically or dynamically choose between different replication
strategies. Examples of such systems are described in [6, 17], but neither of these have been
deployed in the context of the Web.

3 Evaluating Replication Strategies

To see whether per-document replication strategies are useful, we set up an experiment in which
we compared various strategies. Our experiment consisted of collecting access and update traces
from various Web servers and replaying those traces for different caching and replication strate-
gies. In this section, we explain our approach to evaluating strategies using trace-driven simula-
tions.

3.1 Simulation Model

To simplify matters, we assume that each document has a single owner who is allowed to update
its content. Each document has an associated primary server holding a main copy. In terms of
our model, presented in the previous section, we adopt the situation that there is only a single
permanent replica. Any other server hosting a replica of a document is referred to as a secondary
server for that document.

We consider only static documents, that is, documents of which the content changes only
when they are updated by their owner. Conceptually, when the primary server of such a document
receives a request, it merely needs to fetch the document from its local file system and initiate a
transfer to the requesting client. A widely-applied alternative is to generate a document on each
request using a myriad of techniques such as server-side scripts and CGI programs. However, in
many cases this approach can be emulated by replicating the generators to other servers along
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Figure 2: The general organization of clients, intermediate servers, and primary server for a
single Web document.

with the necessary data needed to construct the document that is to be returned to the client. For
simplicity, we did not consider these dynamic documents in our experiments.

To evaluate caching and replication strategies, we need a model in which documents can be
placed on multiple hosts throughout the Internet. The validity of this model is important for
justifying the final results. We decided to group clients based on the autonomous system (AS)
of which they are part. An AS plays a crucial role in deciding how to route packets across the
Internet [5]. At the highest level, the Internet can be viewed as a routing network in which
the ASes jointly form the nodes. ASes are pairwise connected based on various routing-policy
decisions. Within an AS, routing takes place following an AS-specific internal routing protocol.

An interesting feature of many ASes that is relevant for our experiments is that an AS groups
hosts that are relatively close to each other in a network-topological sense. In other words,
communication performance within an AS is often much better than between different ASes.
Based on this assumption, we decided to allocate at most one intermediate server for each AS in
our simulation models. All clients within an AS forward their requests through the intermediate
server for that AS, as shown in Figure 2. Clients for which we could not determine their AS were
assumed to directly contact a document’s primary server. This approach for clustering clients is
similar to that of [19], although at a coarser grain.

In our simulations, an intermediate server was configured either as a cache server or as a
server for document-initiated replicas. Documents were never allowed to be cached longer than
seven days. We also considered situations in which clients in an AS sent their requests directly
to the primary.

We simulated the benefit that our approach would bring when replicating a given Web server’s
content on a worldwide basis. In order to keep simulation results as realistic as possible, we chose
to run trace-based simulations [30]. Input data came from access traces that we collected for a
Web server. In addition, we gathered traces at the primary on when documents were created or
updated. We also measured network performance to simulate transfer delays. For this purpose,
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we measured actual latency and bandwidth between the primary server for a document and each
of the intermediate servers. In other words, we did not adopt a hypothetical model of the network.
Since more detailed information was not available, we assumed that communication performance
within each AS was roughly the same. Further details on our experimental setup are described
in [29].

We evaluated overall system performance for various strategies, using three performance
metrics. For each client request we measured its turnaround time, that is, the interval between
submission of a request and completion of the response. These values were added to obtain the
total turnaround time. The second metric was the number of stale documents that were delivered
to clients. Finally, we measured the consumed bandwidth for requests issued by intermediate
servers or clients to the primary server, thus obtaining the total consumed bandwidth over inter-
AS links.

The properties of these metrics allow us to simulate the behavior for each document sepa-
rately, and subsequently add the results per metric to obtain the overall performance for a set of
documents.

3.2 Caching and Replication Strategies

Our experiment consisted of selecting a specific caching or replication strategy and distributing
the copies of a document across the intermediate servers. Table 2 lists the various strategies that
we evaluated. Besides applying no replication or caching at all (NR), a distinction was made
between caching, replication, and hybrid strategies that combined both.

The CV caching strategy corresponds to having a cache server check the validity of a cached
document by sending an If-Modified-Since request to the primary server each time a client asks
for such a document. The CLV strategy has been implemented in the Alex file system [8]. When
a document is cached, it is timestamped with an expiration time Texpire that depends on the last
time the document was modified. A cached document is considered valid until its expiration
time. If Tcached is the time when the document is stored in the cache and Tlast modified the time it
was last modified, then

Texpire � Tcached
� α ��� Tcached � Tlast modified �

where α is generally set equal to 0 � 2, such as in the default Squid configuration files. The CLV
strategy thus simply assigns a longer expiration time to documents that have not been modified
for a long time. After the expiration time, the document is removed from the cache. A variation
to CLV is CDV. In this case, instead of removing the document at its expiration time, the cache
server keeps the document in the cache, but issues an If-Modified-Since request to the primary
server the next time it is requested, thus pulling in a fresh copy only if necessary. CDV is followed
in the Squid cache server [9].

In the SI strategy, intermediate servers still follow a caching policy, but the server promises
it will send an invalidation message whenever the document is updated. This strategy has been
followed in the AFS distributed file system [35], but has also been used in combination with
leases for Web caching [7, 12]. This strategy obviously requires the server to keep track of all
copies of its documents.
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Table 2: Evaluated caching and replication strategies.

Abbr. Name Description

NR No replication No replication or caching takes place. All clients forward their requests directly to
the primary.

CV Verification Intermediate servers cache documents. At each subsequent request, the
primary is contacted for revalidation.

CLV Limited validity Intermediate servers cache documents. A cached document has an associated
expiration time before it becomes invalid and is removed from the cache.

CDV Delayed verification Intermediate servers cache documents. A cached document has an associated
expiration time after which the primary is contacted for revalidation.

SI Server invalidation Intermediate servers cache documents, but the primary invalidates cached
copies when the document is updated.

SUx Server updates The primary maintains copies at the x most relevant intermediate servers; x =
10, 25 or 50

SU50+CLV Hybrid SU50 & CLV The primary maintains copies at the 50 most relevant intermediate servers; the
other intermediate servers follow the CLV strategy.

SU50+CDV Hybrid SU50 & CDV The primary maintains copies at the 50 most relevant intermediate servers; the
other intermediate servers follow the CDV strategy.

In the SU family of replication strategies, the primary server chooses the “best” x ASes for
which it pushes and maintains copies of a document. Whenever a document is updated, the
primary will propagate the new version of the document to the x selected intermediate servers.
We define “best” as the ASes where most requests came from in the past. Our traces showed
that a relatively small number of ASes were responsible for the bulk of the client requests. For
example, 53% of all requests for one of our servers came from clients distributed in only 10 ASes
out of a total of 1480 ASes in our traces, and 71% of the requests could be traced back to no more
than 50 ASes. In our experiments, the values chosen for x were 10, 25, and 50.

Finally, we experimented with two hybrid strategies. For the top best 50 ASes, we used strat-
egy SU50, while all remaining intermediate servers were configured as cache servers, following
strategy CLV and CDV, respectively.

4 Simulations

We collected traces from two different Web servers: the Vrije Universiteit Amsterdam in The
Netherlands (VU Amsterdam), and the Friedrich-Alexander University Erlangen-Nürnberg in
Germany (FAU Erlangen). Table 3 shows the general statistics for these two sites. Although
we collected traces at other sites as well, they turned out to be too small in terms of number of
accesses that we decided to exclude them from further experiments.

We filtered the traces by removing documents that had been requested fewer than 10 times
during the months-long tracing period. Simulating replication policies for such documents would
not provide any meaningful result, nor would these results be useful for predicting which repli-
cation policy will be optimal in the near future. The filtering process removed about 67% of the
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Table 3: General access and update statistics for the chosen Web sites.

Issue FAU Erlangen VU Amsterdam

Start date 20/3/2000 13/9/1999

End date 11/9/2000 18/12/1999

Duration (days) 175 96

Number of documents 22,637 33,266

Number of requests 1,599,777 4,858,369

Number of updates 3338 11,612

Number of ASes 1480 2567

documents from the traces, yet only 5% of the requests. One can safely associate any replication
policy to these documents, but they will hardly have any effect on the total evaluation metrics
over the whole document set.

4.1 Applying a Global Strategy

In our first experiment each document was assigned the same strategy. The results are shown
in Table 4. Not surprisingly, strategy NR (i.e., no caching or replication) leads to much con-
sumed bandwidth and gives relatively bad performance with respect to the total turnaround time.
Likewise, strategy CV in which the validity of a cached document is always checked with the
primary upon each request, leads to high total turnaround times. Improvement is achieved with
CLV and CDV at the cost of returning stale documents. When comparing SI to CV, CLV, and
CDV, it shows to be best with respect to total turnaround time. Of course, SI cannot return stale
documents, except in the rare case when a request is sent during the invalidation propagation
period. Its performance with respect to consumed bandwidth is approximately the same as the
others.

The replication strategies can bring down the total turnaround times, but generally lead to
an increase of consumed bandwidth. This increase in bandwidth is caused by the fact that an
update may be outdated by a next update before a client issued a request. Combining SU50 with
a caching strategy for the remaining intermediate servers improves the total turnaround time, but
also leads to returning stale documents.

Table 4 also shows that most strategies are relatively good with respect to one or more metrics,
but no strategy is optimal in all cases. In the next section, we discuss the effects if a global
strategy is replaced by assigning a strategy to each document separately and show that per-
document replication policies lead to better performance with respect to all metrics at the same
time.
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Table 4: Performance results using the same strategy for all documents, measuring the total
turnaround time (TaT), the number of stale documents that were returned, and the total consumed
bandwidth. Optimal and near-optimal values are highlighted for each metric.

FAU Erlangen VU Amsterdam

Strategy TaT (hrs) # Stale docs Bandw. (GB) TaT (hrs) # Stale docs Bandw. (GB)

NR 158.4 0 16.50 312.6 0 114.87

CV 176.6 0 15.82 324.3 0 99.76

CLV 141.8 203 15.82 241.8 136 99.88

CDV 141.8 196 15.80 241.8 130 99.72

SI 141.7 0 15.81 241.1 0 99.72

SU10 99.4 0 14.00 273.2 0 114.12

SU25 88.9 0 17.25 224.1 0 118.50

SU50 79.4 0 23.16 194.9 0 131.90

SU50+CLV 77.9 35 23.11 170.4 43 124.88

SU50+CDV 77.9 35 23.11 170.4 38 124.86

4.2 Applying Per-Document Strategies

Instead of applying the same strategy to all documents, we propose to assign each document
its own strategy. By doing so, it becomes possible to obtain good performance with respect to
each of the three metrics. Crucial to this approach is the method by which a strategy is assigned
to each document separately, referred to as an assignment method. In this section, we derive
assignment methods that will lead to sets of (document, strategy)-pairs that are optimal with
respect to overall system performance. We first explain what optimality actually means before
discussing our assignment methods.

4.2.1 Optimal Arrangements

Let D be a set of documents, and S a set of strategies for replicating documents. If we assign
a specific strategy to each document d � D, we obtain what we refer to as an arrangement: a
collection of (document, strategy)-pairs. Each arrangement will consist of

�
D

�
elements. With�

S
�
strategies, there are a total of

�
S

��� D �
different arrangements. We denote the set of all possible

arrangements as A .
To compare arrangements, we take a look at how well an arrangement performs with respect

to various performance metrics. We assume that there are N performance metrics, and that each
metric is designed such that a lower value indicates better performance. The three performance
metrics introduced above (i.e., turnaround time, stale copies delivered, and bandwidth) meet this
criterion. Let sA � d � denote the strategy that is assigned to document d in arrangement A, and
res � mk � d � sA � d � � the value in metric mk that is attained for document d using strategy sA � d � . For
each arrangement A, we can then construct the following result vector total � A � :
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total � A � ��� total � A ��� 1 � � � � � � total � A ���N ���
with

total � A ��� k � � ∑
d � A

res � mk � d � sA � d � �

Note that total � A ��� k � is simply the aggregated performance in metric mk. For example, in our
experiments each total � A ��� k � represents the total turnaround time, the total number of returned
stale documents, or the total consumed bandwidth on inter-AS links, respectively.

Because we assume that a lower value in a metric always indicates a better performance,
using result vectors introduces a partial ordering on the complete set A of arrangements, such
that

total � A1 �
	 total � A2 � iff � i �
�
1 � � � � � N � : total � A1 ��� i �� total � A2 ��� i � and�

j �
�
1 � � � � � N � : total � A1 ��� j � 	 total � A2 ��� j �

Obviously, if total � A1 �
	 total � A2 � then A1 should be considered to be better than A2 as it leads
to better performance values for each metric.

As an example, consider the results from Table 4 for FAU Erlangen. Let ACV be the arrange-
ment in which each document is assigned strategy CV, ACLV be the arrangement with CLV and
ACDV be the one with CDV for each document. In this case, we have

total � ACV � � � 176 � 6 � 0 � 15 � 82 �
total � ACLV � � � 141 � 8 � 203 � 15 � 82 �
total � ACDV � � � 141 � 8 � 196 � 15 � 80 �

and that total � ACDV ��	 total � ACLV � . In our experiments with traces from FAU Erlangen, it is
seen that CDV is indeed better than CLV. However, ACV cannot be ordered with respect to either
ACLV or ACDV ; ACV is neither better nor worse than either of the other two.

It does not make sense to further consider an arrangement that is outperformed by another ar-
rangement on all metrics. So, for example, choosing ACLV as an arrangement is pointless because
ACDV is better or equal with respect to all metrics for the set of documents in our experiment.

In general, the collection of all possible arrangements A has a subset of optimal arrangements
A � . Formally, A � is defined as

A � � �
A � A

��� �
A � � A : total � A � ��	 total � A � �

Our goal is to find assignment methods that will lead to this set of optimal arrangements. One
approach to finding A � is to use the brute-force assignment method. With this method, we simply
compute the result vectors for all

�
S

��� D �
arrangements in A , and choose the arrangements with the

best ones. Of course, this approach is computationally infeasible. In the following, we derive a
much more efficient method.
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Figure 3: (a) The area of attainable result vectors for arrangements. (b) Approximating the set of
optimal arrangements using tangents.

4.2.2 Optimal Assignment Methods

To simplify our explanation, consider only two performance metrics m1 and m2, for example,
turnaround time and bandwidth. In Figure 3(a), the shaded area represents all possible result
vectors for arrangements irrespective of the assignment method used. As we explained, this area
represents

�
S

� � D �
arrangements. Optimal arrangements will be represented by points on the border

of this area, as also shown in Figure 3(a). Keep in mind that an optimal arrangement is achieved
by the appropriate assignment of strategies to documents.

The area representing arrangements is bounded by the two lines m1 � total � Â ��� 1 � and m2 �
total � Â ��� 2 � , where Â represents an ideal arrangement with total � Â � � total � A � for any arrange-
ment A � A . Note that, in general, Â will not exist, that is, there is no assignment of strategies
to documents that produces total � Â � . However, we can consider total � Â � as a best point: it
represents the best attainable performance for any possible arrangement.

The question is how we can efficiently find optimal arrangements. If we consider infinitely
large sets of documents and, likewise, assume that there are an infinite number of replication
strategies to select from, the set of optimal arrangements can be approximated by a continuous
and convex curve, as shown in Figure 3(b). Each point on this curve represents an optimal
arrangement. If we can devise a method for finding a point on this curve, we argue that such a
method can also be used to find an optimal arrangement for a finite set of documents and finite
set of strategies. In the following, we first devise a method for finding points on the curve, and
then transform that method so that it can be applied to finite sets of arrangements.

Our first concern is to find points on the curve. To do so, we construct tangents. With two
performance metrics, m1 and m2, a tangent can be represented by a straight line

a � m1
�

b � m2 � C
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which has a specific slope for any given constant C. The tangent has the property that it intersects
the curve at exactly one point (which corresponds to an optimal arrangement). In addition, a
tangent for a convex curve has the property that for any constant C � 	 C, the line

a � m1
�

b � m2 � C �
will not intersect it.

Tangents can be constructed as follows. We take a look at linear combinations of the values
in each performance metric. In particular, we can associate a total cost with each arrangement
A by considering a weight vector w � � w � 1 � � � � � � w �N ��� with ∑N

k � 1 w � k � � 1 and � k : w � k � �
0,

leading to:

costw � A � �
N

∑
k � 1

w � k � � total � A ��� k �

With N � 2, each weight vector w is uniquely associated with a specific slope. It is important to
note, that although we associate a specific cost with each arrangement, it is senseless to compare
two costs if they are computed with different weight vectors. In fact, it may be hard to interpret a
cost meaningfully as we are adding noncommensurate values. Costs are used only for comparing
arrangements, provided they are computed using the same weight vector.

Each weight vector leads to a collection of parallel lines, each line representing arrangements
that have the same cost under w as shown in Figure 3(b). We then need to find the arrangement
A for which costw � A � is minimal. This arrangement will be optimal for w and will lie on the
curve forming the border of the area representing arrangements as shown in Figure 3(b). As a
consequence, the curve itself can be expressed as the set A � (recall that we are still considering
infinitely large sets of arrangements):

A � �
�

w

�
A � A

� � A � � A : costw � A � � costw � A � � �

The following observation is important. Constructing a tangent will lead to finding an optimal
arrangement. To construct a tangent, we are looking for a method that, for a given weight vector
w and an infinitely large set of arrangements A , will minimize costw � A � . This method can also
be used for finding an optimal arrangement in a finite set of arrangements.

A method that accomplishes this is the one that assigns to each document d a strategy s from
the complete set of strategies S, for which ∑N

k � 1 w � k � � res � mk � d � s � is minimal. This assignment
method will indeed lead to an optimal arrangement A � for the given weight vector w, which can
be seen as follows:
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costw � A � � � min
A � A

[costw � A � ]

� min
A � A

[
N

∑
k � 1

w � k � � total � A ��� k � ]

� min
A � A

[
N

∑
k � 1

w � k � � (∑
d � A

res � mk � d � sA � d � � ) ]

� min
A � A

[∑
d � A

N

∑
k � 1

w � k � � res � mk � d � sA � d � � ]

�
min
A � A

[∑
d � A

(min
s � S

[
N

∑
k � 1

w � k � � res � mk � d � s � ] ) ]

We refer to arrangements resulting from these assignment methods as cost function arrange-
ments, as they directly take the total cost of a document in terms of performance into account.
Note that to compute an optimal arrangement for a given weight vector, requires at most

�
D

� � �
S

�

computations. This is a considerable improvement over the brute-force assignment method dis-
cussed earlier.

4.3 Results

To simplify matters, we decided to make optimization of consistency a major requirement by
considering cost function arrangements with a large weight for the number of stale documents
returned. In other words, we looked at models that would implement strong consistency. By sub-
sequently modifying the relative weights of total turnaround time and total consumed bandwidth,
we obtain optimal arrangements that implement various turnaround/bandwidth tradeoffs.

Figure 4(a) shows the performance of arrangements in terms of total turnaround time and con-
sumed bandwidth for the data collected at FAU Erlangen. Each point on the curve corresponds
to a cost function arrangement over the set of documents with one particular set of weights.
Comparable results for the VU Amsterdam are shown in Figure 4(b).

We compare each arrangement with the ideal arrangement Â discussed above. This point
corresponds to the best achievable total turnaround time (obtained by selecting for each docu-
ment the strategy with the smallest turnaround time) and the best achievable bandwidth usage
(obtained by selecting for each document the strategy with the smallest consumed bandwidth).

Figures 4(c)–(d) show a detailed view of the cost function arrangements. Each point on the
curve represents an optimal arrangement. Note that none of the global strategies comes close
to the point representing the ideal arrangement, and do not even fall in the graphs shown in
Figures 4(c)–(d). However, all cost function arrangements are close to the target if we compare
them to any global strategy. In other words, selecting replication strategies on a per-document
basis provides a performance improvement over any global strategy that we considered in our
experiments.

To further substantiate our claim that differentiating strategies makes sense, we considered a
specific cost function arrangement to see which strategies were actually assigned to documents.

15



8

10

12

14

16

18

20

22

24

60 70 80 90 100 110 120 130 140 150

Ideal arrangement

SU50+CLV

SU50+CDV

SU50

SU25
SU10

CDV

CLV

SI
Cost function arrangements

To
ta

l c
on

su
m

ed
 b

an
dw

id
th

 (
G

B
)

Total turnaround time (hours)

85

90

95

100

105

110

115

120

125

130

135

160 170 180 190 200 210 220 230 240 250

Ideal
arrangement

SU50+CLV

SU50+CDV SU50

SU25

CLV

SI

CDV
Cost function
arrangementsTo

ta
l c

on
su

m
ed

 b
an

dw
id

th
 (

G
B

)
Total turnaround time (hours)

(a) (b)

10.4

10.6

10.8

11

11.2

11.4

72 73 74 75 76 77 78 79 80 81

To
ta

l c
on

su
m

ed
 b

an
dw

id
th

 (
G

B
)

Total turnaround time (hours)

Ideal arrangement

Points representing
cost function arrangements

88

90

92

94

96

98

100

102

104

106

108

169 170 171 172 173 174 175 176 177 178

Ideal
arrange-

ment

To
ta

l c
on

su
m

ed
 b

an
dw

id
th

 (
G

B
)

Total turnaround time (hours)

Points representing
cost function arrangements

(c) (d)

Figure 4: Performance of arrangements vs. global strategies. (a) FAU Erlangen: complete view.
(b) VU Amsterdam: complete view. (c) FAU Erlangen: detailed view. (d) Vrije Universiteit:
detailed view.
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Table 5: Number of documents to which a specific strategy is assigned.

Strategy FAU Erlangen VU Amsterdam

NR 1351 3239

CV 0 2

CLV 66 437

CDV 0 0

SI 137 295

SU10 13,779 4396

SU25 3243 5371

SU50 3374 15,369

SU50+CLV 682 4099

SU50+CDV 5 58

The results are shown in Table 5. These results show that it indeed makes sense to apply several
strategies, although neither CV or CDV are used often. The latter is in line with the research
results reported in [7].

5 Supporting Adaptive Distributed Documents

Up to this point, we have provided arguments to use per-document replication strategies instead
of applying a global, systemwide strategy. An important question is how assigning strategies can
be put to practical use. In this section, we discuss and evaluate an architecture for documents
that can dynamically select a strategy using real-time trace-driven simulations. We show that pe-
riodically running the simulation experiments described above using fresh traces allows a server
to dynamically replace a document’s strategy while incurring only little overhead.

5.1 System Architecture

To support adaptive replication, we consider a collection of servers hosting Web documents as
described in Section 3.1. A document’s primary server is responsible for evaluating and possibly
replacing the replication strategy currently assigned to a document. Evaluating a strategy is done
by taking traces collected over the most recent time period ∆T extracted from a local log. The
secondary servers for a document also collect traces, which they regularly send to the primary,
as shown in Figure 5.

The primary re-evaluates its choice of replication strategy by looking at the document’s most
recent trace data and simulating several alternative strategies as described in the previous section.
The primary informs the secondary servers when it chooses a new strategy. Note that not all
secondaries may be registered at the primary; cache servers are not registered, for example. Such
servers continue to use the previous strategy, but are informed when contacting the primary the
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next time. This scheme allows for gradual dissemination of a newly selected strategy.
Servers holding a copy of a given document must collect traces of their activity for two

reasons. First, we believe that the owner of a document (i.e., the primary) should be allowed
to obtain logs of every request, independently of which server handled the request. This may
encourage the use of caching and replication also for sites whose revenue depend on their pop-
ularity [32]. Second, access traces must be centralized at the primary to enable selection of a
replication strategy.

Each secondary keeps a log of the requests it receives. Periodically, new log entries are sent
to the primary. Sending a log entry to the primary is delayed at most, say, 10 minutes, which
guarantees that the primary’s view of the logs is at most 10 minutes late. We estimate that
this limit is adequate for piggybacking log entries while allowing responsive adaptations of the
current strategy as access patterns change. However, secondaries can send traces more often if
they wish, for example to reclaim storage space in their logs.

The primary writes the traces it receives to disk immediately. Since it can receive traces from
multiple secondaries, the set of entries in the primary’s log file is not sorted in chronological
order. Therefore, when a re-evaluation takes place, the primary log file is first sorted into a
proper trace file that can be used for simulation.

5.2 Deciding When to Adapt

An important issue is when the primary should decide to re-evaluate a document’s strategy. Do-
ing so too often would waste computing resources, while re-evaluating too rarely would decrease
overall system performance. The simplest scheme for adaptation is to re-evaluate the replication
strategies at fixed time intervals, such as once a week. However, this approach does not allow
a document to react quickly to sudden changes in access or update patterns. It would be more
efficient to adapt as soon as such patterns change.

To detect these changes, each server monitors a number of variables such as frequency of
requests and average response time. Significant variation in one of these variables indicates a
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change that may warrant replacing the current strategy. Variables are computed using a standard
technique. When a copy is created, a server initializes each variable V to a value derived from a
first sample. Each time a new sample S is taken, V is updated using an aging algorithm:

V : � ω � S � � 1 � ω � V
where the value of ω controls the relative weight given to a new sample with respect to the
previous sequence of samples.

Each time an adaptation takes place, low and high watermarks such as V � 2 and 2 � V are set
up for each variable. If the value of V ever reaches one of these watermarks, we assume that the
access or update pattern may have changed enough for the current strategy not to be optimal any
more, so that a re-evaluation should take place.

A problem that must be solved is where to monitor the variables. One possibility is that the
primary server of a document does all the necessary computations. However, this would not be
very practical, since variables can be computed only from the trace data sent by copies. Since the
primary receives traces out of order, computing a sequential history of a variable would become
quite complex. Therefore, each secondary computes variables locally and transmits its value to
the primary together with the trace data. The primary does not compute a single value, but keeps
the variables separate.

The primary monitors all the variables received from the document’s secondaries. Because
many of the variables account only for a small fraction of the overall traffic, one variable reaching
its watermark does not necessarily mean that a significant change is occurring. On the other
hand, if several variables reach their watermarks within a small time interval, it is likely that a
real change in the access patterns has occurred. To prevent “false alarms” from being triggered,
the primary waits until a sufficient number of variables reach a watermark before starting a re-
evaluation.

Sometimes, a secondary cannot wait for the primary to re-evaluate strategies. For example,
during a flash crowd there is a sudden and significant increase in the number of requests received
for a specific document. In such cases, the load increase on a secondary may deteriorate not only
the turnaround time of requests for the document, but also that of every other document hosted
by the same server. This performance degradation is clearly not acceptable.

When a secondary server is receiving so many requests that its performance is being de-
graded, it can decide to adapt by itself without requiring the document’s primary to re-evaluate
strategies. This approach allows fast responsiveness in case of a flash crowd. The reaction con-
sists of creating more copies at other servers to handle the load. Although sharing the load among
several servers may solve the overload problem, such a trivial adaptation is likely not to be opti-
mal. Therefore, an alarm message is sent to the primary requesting it to immediately re-evaluate
the overall replication strategy.

5.3 Incurred Overhead Costs

Compared to traditional Web documents, distributed documents need to perform additional oper-
ations such as logging trace data, sending traces to the primary and, of course, regularly running
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Table 6: Profiling Distributed Documents

Operation Execution time
Primary Secondary

Network I/O 49% 48%
Document Delivery 24% 28%
Logging 15% 9%
Replication Policy 12% 15%

simulations to evaluate strategies. As we show in this section, the extra costs incurred by these
operations is small compared to the performance improvements that per-document replication
strategies provide.

5.3.1 Overhead Due to Collecting Traces

Collecting traces consists of logging data and sending traces to the primary. To evaluate the
overhead incurred by merely collecting traces, we built a small prototype system for distributed
documents. This prototype was used to replay the trace files collected for the various sites men-
tioned in Section 4. We emulated a complete Internet setup by running the prototype on a 200-
node cluster of workstations [3]. Each node represented an Autonomous System in the Internet.
Simulated clients located at these nodes sent requests to a number of documents. We profiled
each process to get an idea of how much time is spent for various tasks.

Table 6 shows the time that the program spends in its different modules. Network I/O oper-
ations account for most of the computation. Logging adds up to 9% of the processing time at
each secondary. As the primary must log the requests that are addressed to it as well as the trace
data sent by secondaries, it requires more time, up to 15%. Although our approach introduces
some additional overhead, we argue that the extra costs are within acceptable bounds. Each log
entry contains an average 12 requests, adding to 25 bytes of data per logged request. However,
one can expect that this figure is highly dependent on the number of requests that the document
receives every 10 minutes.

These figures have been obtained with a somewhat naı̈ve implementation of the log collec-
tion: in the current prototype, each document copy collects traces and sends them to its primary
in isolation from all other documents; grouping log data from several documents on the same
site into a single message would allow for a much better use of network resources.

5.3.2 Balancing Simulation Overhead vs. Prediction Accuracy

Adapting the replication strategy of a document requires running as many simulations as there
are candidate strategies. Simulations are trace driven, which means that they execute roughly in
linear time compared to the number of requests in the trace. From this perspective, traces should
be kept as small as possible to save computing resources. However, short traces may not reliably
represent the current access pattern of a document. On the other hand, very long traces may be
unsuitable for predicting the next best strategy. This can easily be seen if we assume that changes
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in access patterns occur in phases. In that case, a very long trace will span multiple phases often
making it much harder to use as a predictor for a next phase. Therefore, we need to find a tradeoff
between trace size and accuracy, while at the same time ensuring that traces have an appropriate
maximum length.

To evaluate the accuracy of using traces to predict the next best strategy, we used the same
traces as described in Section 4. We selected only those documents that received at least 5000
requests, leading to a sample size of 98 documents for the VU Amsterdam and 30 documents
for FAU Erlangen. For each of these documents, we split the trace into successive chunks of N
requests each. We simulated each of the trace chunks with different replication strategies. If the
“best” policy of chunk n is the same as the “best” policy of chunk n

�
1, then the prediction made

at time n is assumed to have been correct.
Figure 6 shows the incorrect predictions when the chunk size varies. We can see that short

trace files lead to many incorrect predictions. However, as the chunk size grows, the proportion
of error decreases to approximately 2% at 500 requests, after which it gradually increases again.

In our case, we conclude that a reasonable chunk size is something like 500 requests. Note
that the irregular shape of the FAU Erlangen traces is most likely caused by the relatively small
sample size of 30 documents. We measured the computing time required by simulations on a
600 MHz Pentium-III workstation. Each simulated request took about 28 µs. So, for example,
simulating a 500-request trace over 10 different configurations takes about 140 ms of CPU time.

5.4 Organization of a Distributed Document

To integrate adaptive distributed documents into the World Wide Web, we are developing the
Globule platform [31]. In this system, Web servers cooperate with each other to replicate doc-
uments among them and to transparently direct client requests to the “best” replica. Globule is
implemented as a module for Apache, so turning normal Web documents into adaptive replicated
documents requires only to compile an extra module into an existing Web server. Its internal or-
ganization is derived from Globe distributed shared objects [38].

Figure 7 shows the general organization of a distributed document. Each replica is made of
two separate local subobjects: a document’s content, which is available in the form of delivery
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subobject capable of producing documents, and a replication subobject, which is responsible for
enforcing the document’s replication policy.

Incoming requests are first intercepted by the redirection subobject before actually reaching
the document. This subobject figures out which replica is preferable for treating the incoming
request, and directs the client to this replica. This redirection can be implemented via basic
HTTP redirection, or by more sophisticated mechanisms such as DNS redirection [23].

Requests are then intercepted by the replication subobject, whose role is to achieve docu-
ment replication according to the document’s replication policy. Once the replication subobject
has authorized the request, the Web server uses one of its standard document delivery modules
to respond. These can be modules that deliver static documents, or modules that generate a
document on request.

Although this architecture may seem overly complex for static documents, it also supports
replication of dynamic documents. By merely replacing the document delivery module, all mech-
anisms such as replication and adaptation can be applied without modification.

Each replication subobject is internally organized as shown in Figure 8. The policy subobject
implements one specific strategy, such as the ones described in Section 3. It maintains informa-
tion about the consistency of the copy, such as the date of last modification and the date of the
last consistency check. Each time a request is issued, the protocol subobject first transmits the
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characteristics of the request to the policy subobject. Based on its implementation, the policy
subobject responds by indicating how to treat the request: answer immediately, check the va-
lidity before responding (i.e., send an If-Modified-Since request to the primary server), etc. The
protocol subobject is in charge of actually performing the operation. The protocol subobject can
also directly receive incoming network messages, such as a notification that the document has
been updated.

The protocol subobject is in charge of collecting log data and transmitting them to the pri-
mary. It also transmits the monitoring variables to the adaptor subobject. The latter implements
the adaptor component described above (see Figure 5). The adaptor subobject decides whether
an adaptation should take place. If so, it sorts the most recently received traces, runs simulations,
and informs the protocol subobject of the new optimal strategy. The protocol subobject is then
responsible for replacing the policy subobject.

Although adaptations take place at the primary, each secondary also has an adaptor subobject.
This adaptor is used only to detect flash crowds and create new replicas to handle the sudden
load. As we mentioned, whenever a secondary takes such a decision, it immediately requests the
primary to re-evaluate the overall strategy.

6 Conclusions

Based on our experiments, we argue that it makes sense to look for solutions that allow assigning
a replication strategy to individual Web documents. In the approach described in this paper, it
turns out that using trace-driven real-time simulations can be used for dynamically adapting a
strategy.

Our approach does require us to consider documents as objects instead of data. This allows
the encapsulation of replication strategies inside each document. Of course, this is a funda-
mental change that prevents current Web servers and caching proxies from hosting distributed
documents. A new platform is necessary. We are building it as a module that makes Apache
servers cooperate to replicate documents [31]. Nonstandard protocols can be confined to inter-
server communication, while clients access documents using standard protocols without further
modification to their software. Doing this will provide users with distributed documents in a
transparent manner.

However, as more strategies are introduced, and will thus need to be evaluated, our approach
may possibly introduce performance problems. A solution can be sought in combining methods
for adaptive protocols from the same family with replacement techniques for switching between
different families of protocols using real-time simulations. Our future work concentrates on
further developing our architecture and its implementation, and seeking solutions for efficient
adaptations within and between families of consistency protocols.
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