
Linux-VServer

Resource efficient context isolation

Herbert P̈otzl Micah Anderson Bj̈orn Steinbrink

E
veryone is eager to virtualize their working en-
vironment to take advantage of the abstrac-
tion layer it provides. Some may require re-
source isolation for enhanced security, others

may need development environments for testing and debug-
ging. Whatever your needs are, virtualization will save you
resources through utilizing them more efficiently. This is
done by exploiting synergies built on proven technologies,
improving availability and reducing downtime, adding scal-
ability through duplication and gaining a certain degree of
hardware independence.

- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -

Virtualization can be done on different
levels, each one with its own advantages

and disadvantages
- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -

Gains from virtualization

The gains from virtualization are rapidly being uncovered,
however the most obvious savings are in maintenance.
Maintaining ten virtual instances of a service, application,
or system, that are all very similar to each other, is much
easier than maintaining ten separate machines, with ten dif-
ferent operating system installations, patch levels, security
updates, etc. Keeping all of your virtual instances on one
machine is much more resource efficient, and easier to man-
age.

Different virtualization levels

Virtualization can be done on different levels, each one with
its own advantages and disadvantages and each one requir-
ing different implementation techniques. Basically you can
virtualize:

• Services (web, mail, ICQ, shell. . . )
• Applications (desktop, word processing. . . )
• Userspace (jails, vservers, sandboxes. . . )
• Hardware (virtual machines, hardware partitions. . . )

Linux-VServer excels at handling the level of system and
application virtualization, by virtualizing exactly those
pieces that are required and no more, with as little overhead
as possible.

- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -

Linux-VServer excels at handling the
level of system and application

virtualization, by virtualizing exactly
those pieces that are required and no

more
- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -

What “native performance” really means

If we look at virtual machines, whose design includes binary
translation or hardware partitioning, to run many instances
of different operating systems, or the more recent para-
virtualization techniques, like Xen or UML which strive to

Free Software Magazine Issue 5, June 2005 1



FOCUS

Linux-vserver home page

reach “native performance” inside the virtual machine, you
might ask, “why is another approach needed?”

Para-virtualization performance measurements are based on
a single unit running in a virtual guest environment. As
you add more units, more overhead is incurred. The Linux-
VServer project is designed to scale virtual units without
incurring this additional overhead.

Let’s see what this actually means by hypothetically putting
each service into its own isolated environment. We’d have a
virtual unit for a web server, one for the database server, an
FTP server, probably a mail server, a shell server, an IMAP
server, maybe even some IRC services, etc. Let’s assume we
need a dozen different virtual units for our overall “Server”
to run.

Reducing the overhead by eliminating the
kernel

With Xen or UML you have to provide each unit with a ker-
nel, some memory, disk space, a network, and, of course,
some CPU share. This in turn means that you would have
about a dozen kernels running, each doing their own file
caching, disk buffering, network processing and a bunch of
other things that kernels usually do. For example, a syscall
to read a file is first processed by the guest kernel, to be
then handed upwards and result in an actual I/O by the host
kernel, which in turn has to hand back the data to the guest
kernel before it reaches the process. Now you might right-
fully ask: why would I do that?

• Why add latency and overhead of a dozen running ker-
nels?

• Why buffer and handle the same data many times?
• Why have several network stacks if one is enough?

And this is where Linux-VServer (and, of course, other free
and commercial implementations of the same idea) come
into play. By virtualizing the interface between processes
and the kernel, so that every process (or group of processes)
gets a limited view of reality, we can build units very similar
to real machines, which can work side by side on the same
hardware. Those units can run anything, from a single pro-
cess to a whole distribution, without the need for a separate
kernel, and therefore without the need to process any data
twice.

Faster than the real thing?

In a Linux-VServer virtualized environment you don’t have
a kernel for each instance, but instead the implementation
uses contexts and the mostly unknown Linux Capability
System to ensure secure interfacing with the kernel. This
means that Linux-VServer does not add invisible overhead
for each new guest. Instead, you can expect the same perfor-
mance in a Guest server as compared with the Host server
because processes running in the Guest are talking directly
to the kernel itself.

Extending the “chroot” concept

The way this is achieved is through context separation and
by applying the well-known concept of a “chroot” to a much
larger set of resources than is typically done in traditional
“jails”. Although the Linux-VServer implementation uses
the tried and true chroot concept, it is important to note
that it also resolves some fundamental flaws in chroot itself,
therefore resolving any traditional chroot() escapes. These
concepts are then applied to context separation so that pro-
cess namespace and network addressing can be isolated ap-
propriately. Context separation makes processes have scope
that prohibit them from interacting in unwanted ways be-
tween processes inside the context and processes belonging
to other contexts. This means that in a Guest the groups of
processes that run there are isolated from the other Guests
on the system, as well as from the host system itself.

2 Free Software Magazine Issue 5, June 2005



FOCUS

To complete the virtual environment several kernel inter-
faces are modified to return “virtualized” information. Vir-
tualized information allows you to have separate servers
whose uptime, the host and domain name, machine type
and kernel version are all different in respect to its virtual
environment. Similar changes are made for context mem-
ory availability and disk space, even on a shared partition.

In addition to that, the administrator of the Host can get a
lot of useful information regarding the guest, and in turn
control the resources available to each guest, by specifying
limits and tuning the scheduler to adjust the process priori-
ties or even stop scheduling processes when the context has
used up its CPU share.

Sharing resources by “unification”

Resource sharing is further improved by a concept called
“unification” which is based on “protected” hard links,
which cannot be altered, but unlinked (to allow updates).
Files that are common between different Guests are shared
in a manner that does not reduce the level of security of the
isolation. Files that are not likely to change, such as libraries
or binaries are “unified” so that the amount of disk space,
inode caches, and memory mappings for shared libraries is
reduced. The Linux-VServer unification process performs
the necessary steps to find common files and then hard link
them between contexts protecting them against unwanted
modification while still allowing them to be removed in the
process of updating software inside the Guest.

- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -

Resource sharing is further improved by
a concept called “unification” which is
based on “protected” hard links, which

can not be altered, but unlinked (to allow
updates)

- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -

Hardware independence allows for many
platforms

Linux-VServer is fairly hardware independent, which
makes it available on basically all known Linux platforms,
may it be x86 or x8664, sparc/64, powerpc/64, mips, al-
pha or more exotic architectures like sh64, ia64, s390, uml

and xen (as soon as it gets into mainline). It is available for
2.4 kernels (with the focus more on stability) as well as re-
cent 2.6 kernels (where new enhancements and features are
added).

The current development version contains the following fea-
tures:

• virtual namespace support (like chroot, but more se-
cure)

• configurable context procfs permissions/visibility
• tagged filesystem support (for shared disk limits)
• modification of utsname information
• resource limits (AS, RSS, NPROC, Files, Locks, IPC,

etc.)
• socket, process and memory accounting
• token bucket priority scheduler, hard scheduler

Finally, it should be mentioned that Linux-VServer is a non
commercial community project and so you are welcome to
join the development or participate in any other way you
would like to. For more details have a look here (http:

//linux-vserver.org ) or just visit us via IRC on
#vserver at irc.oftc.net.

Copyright information

(The following license is effective immediately)

c© 2005 by Herbert P̈otzl, Micah Anderson, Bj̈orn Stein-
brink

Permission is granted to copy, distribute and/or modify this
document under the terms of the GNU Free Documentation
License, Version 1.2 or any later version published by the
Free Software Foundation; with no Invariant Sections, no
Front-Cover Texts, and no Back-Cover Texts. A copy of the
license is available at http://www.gnu.org/copyleft/fdl.html

About the author

Herbert P̈otzl has studied Computer Sciences and has
taught Object Oriented Software Engineering at the
Technical University of Vienna. He is currently work-
ing as a Consultant for Unix and Linux System Inte-
gration and Server Consolidation, and since November
2003 has been the Project Leader for the Linux-VServer
Community Project.

Free Software Magazine Issue 5, June 2005 3

http://linux-vserver.org
http://linux-vserver.org

