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Abstract
Process migration is the act of transferring a process between two machines. It enables dynamic load distribution, fault re-
silience, eased system administration, and data access locality. Despite these goals and ongoing research efforts, migration
has not achieved widespread use. With the increasing deployment of distributed systems in general, and distributed operat-
ing systems in particular, process migration is again receiving more attention in both research and product development. As
high-performance facilities shift from supercomputers to networks of workstations, and with the ever-increasing role of the
World Wide Web, we expect migration to play a more important role and eventually to be widely adopted.

This survey reviews the field of process migration by summarizing the key concepts and giving an overview of the most
important implementations. Design and implementation issues of process migration are analyzed in general, and then revis-
ited for each of the case studies described: MOSIX, Sprite, Mach and Load Sharing Facility. The benefits and drawbacks
of process migration depend on the details of implementation and therefore this paper focuses on practical matters. This
survey will help in understanding the potentials of process migration and why it has not caught on.

Categories and Subject Descriptors: C.2.4 [Computer-Communication Networks]: Distributed Systems - network oper-
ating systems; D.4.7 [Operating Systems]: Organization and Design - distributed systems; D.4.8 [Operating Systems]:
Performance: measurements; D.4.2 [Operating Systems]: Storage Management - distributed memories.

Additional Key Words and Phrases: process migration, distributed systems, distributed operating systems, load distribution.
1 INTRODUCTION

A process is an operating system abstraction represent-
ing an instance of a running computer program. Process
migration is the act of transferring a process between
two machines during its execution. Several implemen-
tations have been built for different operating systems,
including MOSIX [Barak and Litman, 1985], V
[Cheriton, 1988], Accent [Rashid and
Robertson, 1981], Sprite [Ousterhout et al., 1988],
Mach [Accetta et al., 1986], and OSF/1 AD TNC
[Zajcew et al., 1993]. In addition, some systems pro-
vide mechanisms that checkpoint active processes and
resume their execution in essentially the same state on
another machine, including Condor [Litzkow
et al., 1988] and Load Sharing Facility (LSF) [Zhou
et al., 1994]. 

Process migration enables:

• dynamic load distribution, by migrating processes
from overloaded nodes to less loaded ones,

• fault resilience, by migrating processes from node
that may have experienced a partial failure,

• improved system administration, by migrating
processes from the nodes that are about to be s
down or otherwise made unavailable, and 

• data access locality, by migrating processes close
to the source of some data.
August 10, 199
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Despite these goals and ongoing research efforts, mig
tion has not achieved widespread use. One reason for
is the complexity of adding transparent migration to sy
tems originally designed to run stand-alone, since d
signing new systems with migration in mind from th
beginning is not a realistic option anymore. Another re
son is that there has not been a compelling commer
argument for operating system vendors to support p
cess migration. Checkpoint-restart approaches offe
compromise here, since they can run on more loose
coupled systems by restricting the types of processes 
can migrate.

In spite of these barriers, process migration continues
attract research. We believe that the main reason is
potentials offered by mobility as well as the attraction 
hard problems, so inherent to the research commun
There have been many different goals and approache
process migration because of the potentials migration 
offer to different applications (see Section 2.3 on goa
Section 4 on approaches and Section 2.4 on appli
tions).

With the increasing deployment of distributed systems
general, and distributed operating systems in particu
the interest in process migration is again on the rise b
in research and in product development. As high-perf
9 5:48 pm
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mance facilities shift from supercomputers to Networks
of Workstations (NOW) [Anderson et al., 1995] and
large-scale distributed systems, we expect migration to
play a more important role and eventually gain wider ac-
ceptance. 

Operating systems developers in industry have consid-
ered supporting process migration, for example Solaris
MC [Khalidi et al., 1996], but thus far the availability of
process migration in commercial systems is non-existent
as we describe below. Checkpoint-restart systems are be-
coming increasingly deployed for long-running jobs. Fi-

nally, techniques originally developed for process
migration have been employed in developing mobile
agents on the World Wide Web. Recent interpreted pro-
gramming languages, such as Java [Gosling et al., 1996],
Telescript [White, 1996] and Tcl/Tk [Ousterhout, 1994]
provide additional support for agent mobility.

There exist a few books that discuss process migration
[Goscinski, 1991; Barak et al., 1993; Singhal and
Shivaratri, 1994; Milojicic et al., 1999]; a number of sur-
veys [Smith, 1988; Eskicioglu, 1990; Nuttal, 1994],
though none as detailed as this survey; and Ph.D. theses
that deal directly with migration [Theimer et al., 1985;
Zayas, 1987a; Lu, 1988; Douglis, 1990; Philippe, 1993;
Milojicic, 1993c; Zhu, 1992; Roush, 1995], or that are
related to migration [Dannenberg, 1982; Nichols, 1990;
Tracey, 1991; Chapin, 1993; Knabe, 1995;
Jacqmot, 1996].

This survey reviews the field of process migration by
summarizing the key concepts and describing the most
important implementations. Design and implementation
issues of process migration are analyzed in general and
then revisited for each of the case studies described:
MOSIX, Sprite, Mach, and LSF. The benefits and draw-
backs of process migration depend on the details of im-
plementation and therefore this paper focuses on
practical matters. In this paper we address mainly pro-
cess migration mechanisms. Process migration policies,
such as load information management and distributed
scheduling, are mentioned to the extent that they affect
the systems being discussed. More detailed descriptions
of policies have been reported elsewhere (e.g., Chapi
survey [1996]). 

This survey will help in understanding the potential o
process migration. It attempts to demonstrate how a
why migration may be widely deployed. We assume th
the reader has a general knowledge of operating syste

Organization of the Paper

The paper is organized as follows. Section 2 provid
background on process migration. Section 3 describ
the process migration by surveying its main character
tics: complexity, performance, transparency, fault res
ience, scalability and heterogeneity. Section 4 classif
various implementations of process migration mech
nisms and then describes a couple of representatives
each class. Section 5 describes four case studies of 
cess migration in more detail. In Section 6 we compa
the process migration implementations presented ear
In Section 7 we discuss why we believe that process 
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gration has not caught on so far. In the last section we
summarize the paper and describe opportunities for fur-
ther research.

2 BACKGROUND

This section gives some background on process migra-
tion by providing an overview of process migration ter-
minology, target architectures, goals, application
taxonomy, migration algorithms, system requirements,
load information management, distributed scheduling,
and alternatives to migration. 

2.1   Terminology

A process is a key concept in operating systems
[Tanenbaum, 1992]. It consists of data, a stack, register
contents, and the state specific to the underlying Operat-
ing System (OS), such as parameters related to process,
memory, and file management. A process can have one
or more threads of control. Threads, also called light-
weight processes, consist of their own stack and register
contents, but share a process’s address space and some of
the operating-system-specific state, such as signals. The
task concept was introduced as a generalization of the
process concept, whereby a process is decoupled into a
task and a number of threads. A traditional process is
represented by a task with one thread of control. 

Process migration is the act of transferring a process be-
tween two machines (the source and the destination
node) during its execution. Some architectures also de-
fine a host or home node, which is the node where the
process logically runs. A high-level view of process mi-
gration is shown in Figure 1. The transferred state in-
cludes the process’s address space, execution point
(register contents), communication state (e.g., open files
and message channels) and other operating system de-
pendent state. Task migration represents transferring a

task between two machines during execution of 
threads.

During migration, two instances of the migrating proce
exist: the source instance is the original process, and the
destination instance is the new process created on th
destination node. After migration, the destination in
stance becomes a migrated process. In systems with a
home node, a process that is running on other mach
may be called a remote process (from the perspective o
the home node) or a foreign process (from the perspec
tive of the hosting node).

Remote invocation is the creation of a process on a re
mote node. Remote invocation is usually a less “expe
sive” operation than process migration. Although th
operation can involve the transfer of some state, such
code or open files, the contents of the address space 
not be transferred. 

Generally speaking, mobility can be classified into har
ware and software mobility, as described in Figure
Hardware mobility deals with mobile computing, such 
with limitations on the connectivity of mobile computer
and mobile IP (see [Milojicic et al., 1999] for more de
tails). A few techniques in mobile computing have a
analogy in software mobility, such as security, locatin
naming, and communication forwarding. Software m
bility can be classified into the mobility of passive da
and active data. Passive data represents traditional m
of transferring data between computers; it has been e
ployed ever since the first two computers were conne
ed. Active data can be further classified into mobi
code, process migration and mobile agents. These th
classes represent incremental evolution of state trans
Mobile code, such as Java applets, transfers only c
between nodes. Process migration, which is the m
theme of this paper, deals primarily with code and da
transfer.   It also deals with the transfer of authority, f
instance access to a shared file system, but in a lim
way: authority is under the control of a single administr
tive domain.  Finally, mobile agents transfer code, da

Figure 1: High Level View of Process Migration. Process
migration consists of extracting the state of the process on the
source node, transferring it to the destination node where a
new instance of the process is created, and updating the con-
nections with other processes on communicating nodes. 

source node 

migrating process
(source instance)

destination node 

migrating process
(destination instance)

communicating node 

communicating

state transfer

process

Figure 2: Taxonomy of Mobility. 

Mobility

Hardware Software

Passive data Active data

Mobile code Process migration Mobile agents
(code+data) (code+data+authority)(code)
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and especially authority to act on the owner’s behalf  on
a wide scale, such as within the entire Internet.

2.2   Target Architectures

Process migration research started with the appearance
of distributed processing among multiple processors.
Process migration introduces opportunities for sharing
processing power and other resources, such as memory
and communication channels. It is addressed in early
multiprocessor systems [Stone, 1978; Bokhari, 1979].
Current multiprocessor systems, especially symmetric
multiprocessors, are scheduled using traditional schedul-
ing methods. They are not used as an environment for
process migration research.

Process migration in NUMA (Non-Uniform Memory
Access) multiprocessor architectures is still an active
area of research [Gait, 1990; Squillante and
Nelson, 1991; Vaswani and Zahorjan, 1991; Nelson and
Squillante, 1995]. The NUMA architectures have a dif-
ferent access time to the memory of the local processor,
compared to the memory of a remote processor, or to a
global memory. The access time to the memory of a re-
mote processor can be variable, depending on the type of
interconnect and the distance to the remote processor.
Migration in NUMA architectures is heavily dependent
on the memory footprint that processes have, both in
memory and in caches. Recent research on virtual ma-
chines on scalable shared memory multiprocessors
[Bugnion, et al., 1997] represents another potential for
migration. Migration of whole virtual machines between
processors of a multiprocessor abstracts away most of
the complexities of operating systems, reducing the mi-
grateable state only to memory and to state contained in
a virtual monitor [Teodosiu, 1999]. Therefore, migration
is easier to implement if there is a notion of a virtual ma-
chine.

Massively Parallel Processors (MPP) are another type of
architecture used for migration research [Tritscher and
Bemmerl, 1992; Zajcew et al., 1993]. MPP machines
have a large number of processors that are usually shared
between multiple users by providing each of them with a
subset, or partition, of the processors. After a user relin-
quishes a partition, it can be reused by another user. MPP
computers are typically of a NORMA (NO Remote
Memory Access) type, i.e., there is no remote memory
access. In that respect they are similar to network clus-
ters, except they have a much faster interconnect. Migra-
tion represents a convenient tool to achieve
repartitioning. Since MPP machines have a large number

of processors, the probability of failure is also larger. Mi-
grating a running process from a partially failed node, for
example after a bank of memory unrelated to the process
fails, allows the process to continue running safely. MPP
machines also use migration for load distribution, such
as the psched daemon on Cray T3E, or Loadleveler on
IBM SP2 machines.

Since its inception, a Local Area Network (LAN) of
computers has been the most frequently used architec-
ture for process migration. The bulk of the systems de-
scribed in this paper, including all of the case studies, are
implemented on LANs. Systems such as NOW [Ander-
son et al., 1995] or Solaris [Khalidi et al., 1996] have re-
cently investigated process migration using clusters of
workstations on LANs. It was observed that at any point
in time many autonomous workstations on a LAN are
unused, offering potential for other users based on pro-
cess migration [Mutka and Livny, 1987]. There is, how-
ever, a sociological aspect to the autonomous
workstation model. Users are not willing to share their
computers with others if this means affecting their own
performance [Douglis and Ousterhout, 1991]. The prior-
ity of the incoming processes (processing, VM, IPC pri-
orities) may be reduced in order to allow for minimal
impact on the workstation’s owner [Douglis an
Ousterhout, 1991; Krueger and Chawla, 1991].

Most recently, wide-area networks have presented
huge potential for migration. The evolution of the We
has significantly improved the relevance and the opp
tunities for using a wide-area network for distribute
computing. This has resulted in the appearance of mo
agents, entities that freely roam the network and rep
sent the user in conducting his tasks. Mobile agents 
either appear on the Internet [Johansen et al., 1995] o
closed networks, as in the original version of Telescr
[White, 1996]. 

2.3   Goals

The goals of process migration are closely tied with t
type of applications that use migration, as described
next section. The goals of process migration include:

Accessing more processing power is a goal of migra-
tion when it is used for load distribution. Migration i
particularly important in the receiver-initiated distribut-
ed scheduling algorithms, where a lightly loaded no
announces its availability and initiates process migrati
from an overloaded node. This was the goal of many s
tems described in this survey, such as Locus [Walk
et al., 1983], MOSIX [Barak and Shiloh, 1985], an
4
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Mach [Milojicic et al., 1993a]. Load distribution also de-
pends on load information management and distributed
scheduling (see Sections 2.7 and 2.8). A variation of this
goal is harnessing the computing power of temporarily
free workstations in large clusters. In this case, process
migration is used to evict processes upon the owner’s re-
turn, such as in the case of Sprite (see Section 5.2). 

Exploitation of resource locality is a goal of migration
in cases when it is more efficient to access resources lo-
cally than remotely. Moving a process to another end of
a communication channel transforms remote communi-
cation to local and thereby significantly improves perfor-
mance. It is also possible that the resource is not
remotely accessible, as in the case when there are differ-
ent semantics for local and remote accesses. Examples
include work by Jul [1989], Milojicic et al. [1993], and
Miller and Presotto [1981].

Resource sharing is enabled by migration to a specific
node with a special hardware device, large amounts of
free memory, or some other unique resource. Examples
include NOW [Anderson et al., 1995] for utilizing mem-
ory of remote nodes, and the use of parallel make in
Sprite [Douglis and Ousterhout, 1991] and work by Sko-
rdos [1995] for utilizing unused workstations.

Fault resilience is improved by migration from a partial-
ly failed node, or in the case of long-running applications
when failures of different kinds (network, devices) are
probable [Chu et al., 1980]. In this context, migration
can be used in combination with checkpointing, such as
in Condor [Litzkow and Solomon, 1992] or Utopia
[Zhou et al., 1994]. Large-scale systems where there is a
likelihood that some of the systems can fail can also ben-
efit from migration, such as in Hive [Chapin95] and
OSF/1 AD TNC [Zajc93].

System administration is simplified if long-running
computations can be temporarily transferred to other ma-
chines. For example, an application could migrate from
a node that will be shutdown, and then migrate back after
the node is brought back up. Another example is the re-
partitioning of large machines, such as in the OSF/1 AD
TNC Paragon configuration [Zajcew et al., 1993].

Mobile computing also increases the demand for migra-
tion. Users may want to migrate running applications
from a host to their mobile computer as they connect to
a network at their current location or back again when
they disconnect [Bharat and Cardelli, 1995].

2.4   Application Taxonomy

The type of applications that can benefit from proce
migration include:

Parallelizable applications can be started on certain
nodes, and then migrated at the application level or b
system-wide migration facility in response to things lik
load balancing considerations. Parallel Virtual Machin
(PVM) [Beguelin et al., 1993] is an example of applica
tion-level support for parallel invocation and interpro
cess communication, while Migratory PVM (MPVM)
[Casas et al., 1995] extends PVM to allow instances o
parallel application to migrate among nodes. Some ot
applications are inherently parallelizable, such as t
make tool [Baalbergen, 1988]. For example, Sprite pr
vides a migration-aware parallel make utility that distrib-
utes a compilation across several nodes [Douglis a
Ousterhout, 1991]. Certain processor-bound applic
tions, such as scientific computations, can be paralleliz
and executed on multiple nodes. An example includ
work by Skordos [1995], where an acoustic applicati
is parallelized and executed on a a cluster of works
tions. Applications that perform I/O and other nonidem
potent operations are better suited to a system-w
remote execution facility that provides location transpa
ency and, if possible, preemptive migration. 

Long-running applications, which can run for days or
even weeks, can suffer various interruptions, for exa
ple partial node failures or administrative shutdown
Process migration can relocate these applications tra
parently to prevent interruption. Examples of such sy
tems include work by Freedman [1991] and MPVM
[Casas et al., 1995]. Migration can also be supported
the application level [Zhou et al., 1994] by providing 
checkpoint/restart mechanism which the application c
invoke periodically or upon notification of an impendin
interruption. 

Generic multiuser workloads, for example the random
job mix that an undergraduate computer laboratory p
duces, can benefit greatly from process migration. As 
ers come and go, the load on individual nodes var
widely. Dynamic process migration [Barak an
Wheeler, 1989, Douglis and Ousterhout, 1991] can au
matically spread processes across all nodes, includ
those applications that are not enhanced to exploit 
migration mechanism.

An individual generic application, which is preempt-
able, can be used with various goals in mind (s
Section 2.3). Such an application can either migrate
5
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self, or it can be migrated by another authority. This type
of application is most common in various systems de-
scribed in Section 4 and in the case studies described in
Section 5. Note that it is difficult to select such applica-
tions without detailed knowledge of past behavior, since
many applications are short-lived and do not execute
long enough to justify the overhead of migration (see
Section 2.7). 

Migration-aware applications are applications that
have been coded to explicitly take advantage of process
migration. Dynamic process migration can automatically
redistribute these related processes if the load becomes
uneven on different nodes, e.g. if processes are dynami-
cally created, or there are many more processes than
nodes. Work by Skordos [1995], Freedman [1991] and
Cardelli [1995] represent this class of application. They
are described in more detail in Section 4.6. 

Network applications are the most recent example of
the potential use of migration: for instance, mobile
agents and mobile objects (see Sections 4.7 and 4.8).
These applications are designed with mobility in mind.
Although this mobility differs significantly from the
kinds of “process migration” considered elsewhere in
this paper, it uses some of the same techniques: location
policies, checkpointing, transparency, and locating and
communicating with a mobile entity. 

2.5   Migration Algorithm

Although there are many different migration implemen-
tations and designs, most of them can be summarized in
the following steps (see also Figure 3):

1. A migration request is issued to a remote node.
After negotiation, migration has been accepted. 

2. A process is detached from its source node by sus-
pending its execution, declaring it to be in a migrating
state, and temporarily redirecting communication as
described in the following step. 

3. Communication is temporarily redirected by queu-
ing up arriving messages directed to the migrated pro-
cess, and by delivering them to the process after
migration. This step continues in parallel with steps 4,
5, and 6, as long as there are additional incoming
messages. Once the communication channels are
enabled after migration (as a result of step 7), the
migrated process is known to the external world. 

4. The process state is extracted, including memory
contents; processor state (register contents); commu-
nication state (e.g., opened files and message chan-
nels); and relevant kernel context. The
communication state and kernel context are OS-

dependent. Some of the local OS internal state is 
transferable. The process state is typically retained
the source node until the end of migration, and 
some systems it remains there even after migrat
completes. Processor dependencies, such as reg
and stack contents, have to be eliminated in the c
of heterogeneous migration. 

5.A destination process instance is created into which
the transferred state will be imported. A destinatio
instance is not activated until a sufficient amount 
state has been transferred from the source proc
instance. After that, the destination instance will b
promoted into a regular process. 

6.State is transferred and imported into a new
instance on the remote node. Not all of the stat
needs to be transferred; some of the state could
lazily brought over after migration is completed (se
lazy evaluation in Section 3.2). 

7.Some means of forwarding references to the
migrated process must be maintained. This is required
in order to communicate with the process or to cont
it. It can be achieved by registering the current loc
tion at the home node (e.g. in Sprite), by searching fo
the migrated process (e.g. in the V Kernel, at the co
munication protocol level), or by forwarding mes
sages across all visited nodes (e.g. in Charlotte). T
step also enables migrated communication chann
at the destination and it ends step 3 as communica
is permanently redirected.

8.The new instance is resumed when sufficient state
has been transferred and imported. With this ste
process migration completes. Once all of the state 
been transferred from the original instance, it may 
deleted on the source node. 

2.6   System Requirements for Migration 

To support migration effectively, a system should pr
vide the following types of functionality: 

• Exporting/importing the process state. The system
must provide some type of export/import interface
that allow the process migration mechanism to extr
a process’s state from the source node and import 
state on the destination node. These interfaces ma
provided by the underlying operating system, the pr
gramming language, or other elements of the progra
ming environment that the process has access to. S
includes processor registers, process address space
communication state, such as open message chan
in the case of message-based systems, or open files
signal masks in the case of UNIX-like systems.

• Naming/accessing the process and its resources. Af-
ter migration, the migrated process should be acce
ble by the same name and mechanisms as if migrat
6



never occurred. The same applies to process’s resourc-
es, such as threads, communication channels, files and
devices. During migration, access to a process and/or
some of its resources can be temporarily suspended.
Varying degrees of transparency are achieved in nam-
ing and accessing resources during and after migration
(see Section 3.3).

• Cleaning up the process’s non-migratable state.
Frequently, the migrated process has associated sys-
tem state that is not migratable (examples include a lo-
cal process identifier, pid, and the local time; a local
pid is relevant only to the local OS, and every host may
have a slightly different value for the local time---
something that may or may not matter to a migrating
process). Migration must wait until the process finish-
es or aborts any pending system operation. If the oper-
ation can be arbitrarily long, it is typically aborted and
restarted on the destination node. For example, migra-
tion can wait for the completion of local file operations
or local device requests that are guaranteed to return in

a limited time frame. Waiting for a message or access-
ing a remote device are examples of operations that
need to be aborted and restarted on the remote node.
Processes that cannot have their non-migrateable state
cleaned cannot be considered for migration. 

2.7   Load Information Management

The local processes and the resources of local and remote
nodes have to be characterized, in order to select a pro-
cess for migration and a destination node, as well as to
justify migration. This task is commonly known as load
information management. Load information is collected
and passed to a distributed scheduling policy (see
Figure 4). Load information management is concerned
with the following three questions: 

What is load information and how is it represented?
The node load is typically represented by one or more of
the following load indices: utilization of the CPU, the
length of the queue of processes waiting to be executed,

external
communication

kernel kernel

process X

external
communication

kernel kernel

kernel kernel

kernel kernel

kernel kernel

kernel kernel

1. A migration request is issued to a remote node

2. A process is detached from its source node

3. Temporary Communication redirection (ends in Step 7)

4. The process state is extracted

5. A destination process instance is created

6. State is transferred and imported into a new instance

7. Some means of forwarding references, 

Figure 3: Migration Algorithm. Many details have been simplified, such as user v. kernel migration, when is process actually
suspended, when is the state transferred, how are message transferred, etc. These details vary subject to particular implementation.
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the stretch factor (ratio between turnaround- and execu-
tion-time—submission to completion v. start to comple-
tion) [Ferrari and Zhou 1986], the number of running
processes, the number of background processes, paging,
communication [Milojicic, 1993c], disk utilization, and
the interrupt rate [Hwang et al., 1982]. A process load is
typically characterized by process lifetime, CPU usage,
memory consumption (virtual and physical), file usage
[Hac, 1989a], communication [Lo, 1989], and paging
[Milojicic, 1993c]. Kuntz uses a combination of work-
load descriptions for distributed scheduling
[Kunz, 1991]. The application type is considered in Ce-
dar [Hagmann, 1986].

When are load information collection and dissemina-
tion activated? These can be periodic or event-based. A
typical period is in the range of 1 second or longer, while
typical events are process creation, termination, or mi-
gration. The frequency of information dissemination is
usually lower than the frequency of information collec-
tion, i.e. it is averaged over time in order to prevent insta-
bility [Casavant and Kuhl, 1988b]. It also depends on the
costs involved with dissemination and the costs of pro-
cess migration. The lower the costs, the shorter the peri-
od can be; the higher the costs, less frequently load
information is disseminated.

How much information should be transferred? It can
be the entire state, but typically only a subset is trans-
ferred in order to minimize the transfer costs and have a
scalable solution. In large systems, approximations are
applied. For example, only a subset of the information
might be transferred, or it might be derived from the sub-
set of all nodes [Barak and Shiloh, 1985; Alon
et al., 1987; Han and Finkel, 1988; Chapin and
Spafford, 1994].

There are two important observations derived from t
research in load information management. The first o
is that just a small amount of information can lead to su
stantial performance improvements. This observation
related to load distribution in general, but it also appli
to process migration. Eager et al. were among the first to
argue that load sharing using minimal load informatio
can gain dramatic improvements in performance over 
non-load-sharing case, and perform nearly as well 
more complex policies using more information [Eag
et al., 1986b]. The minimal load information they us
consists of the process queue length of a small numbe
successively probed remote nodes. A small amount
state also reduces communication overhead. Kunz co
to the same conclusion using the concept of stocha
learning automata to implement a task schedu
[Kunz, 1991]. 

The second observation is that the current lifetime o
process can be used for load distribution purposes. T
issue is to find how old the process needs to be befor
is worth to migrate it. Costs involved with migrating
short-lived processes can outweigh the benefits. Lela
and Ott were the first to account for the process age in
balancing policy [1986]. Cabrera finds that it is possible
to predict a process’s expected lifetime from how long
has already lived [Cabrera, 1986]. This justifies migra
ing processes that manage to live to a certain age. In 
ticular, he finds that over 40% of processes doubled th
age. He also finds that the most UNIX processes 
short-lived, more than 78% of the observed proces
have a lifetime shorter than 1s and 97% shorter than 

Harchol-Balter and Downey explore the correlation be-
tween process lifetime and acceptable migration co
[Harchol-Balter and Downey, 1997]. They derive a mo
accurate form of the process life-time distribution that a
lows them to predict the life-time correlated to the pr
cess age and to derive a cost criterion for migratio
Svensson filters out short-running processes by rely
on statistics [Svensson, 1990], whereas Wang et al. 
ploy AI theory for the same purpose [Wang et al., 1993

2.8   Distributed Scheduling

This section addresses distributed scheduling closely
lated to process migration mechanisms. General surv
are presented elsewhere [Wang and Morris, 1985; Ca
vant and Kuhl, 1988a; Hac, 1989b; Goscinski, 199
Chapin, 1996]. 

Distributed scheduling uses the information provided 
the load information management module to make m

Migration

Load
Information

Managementinformation

local information
collection

information
dissemination

Figure 4: Load Information Management Module collects
load information on the local node and disseminates it among
the nodes. Distributed Scheduling instructs the migration
mechanism when, where, and which process to migrate.

load

local node

to remote nodes

Mechanism

migration
directivesDistributed

Scheduling
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gration decisions, as described in Figure 4. The main
goal is to determine when to migrate which process
where. The activation policy provides the answer to the
question when to migrate. Scheduling is activated peri-
odically or it is event-driven. After activation, the load is
inspected, and if it is above/below a threshold, actions
are undertaken according to the selected strategy. The se-
lection policy answers the question which process to mi-
grate. The processes are inspected and some of them are
selected for migration according to the specified criteria.
Where to migrate depends on the location policy algo-
rithm, which chooses a remote node based on the avail-
able information.

There are a few well-known classes of distributed sched-
uling policies:

• A sender-initiated policy is activated on the node that
is overloaded and that wishes to off-load to other
nodes. A sender-initiated policy is preferable for low
and medium loaded systems, which have a few over-
loaded nodes. This strategy is convenient for remote
invocation strategies [Eager et al., 1986a; Krueger and
Livny, 1987b; Agrawal and Ezzat, 1987].

• A receiver-initiated policy is activated on underload-
ed nodes willing to accept the load from overloaded
ones. A receiver-initiated policy is preferable for high
load systems, with many overloaded nodes and few
underloaded ones. Process migration is particularly
well-suited for this strategy, since only with migration
can one initiate process transfer at an arbitrary point in
time [Bryant and Finkel, 1981; Eager et al., 1986a;
Krueger and Livny, 1988].

• A symmetric policy is the combination of the previ-
ous two policies, in an attempt to take advantage of the
good characteristics of both of them. It is suitable for a
broader range of conditions than either receiver-initi-
ated or sender-initiated strategies alone [Krueger and
Livny, 1987b; Shivaratri et al., 1992].

• A random policy chooses the destination node ran-
domly from all nodes in a distributed system. This
simple strategy can result in a significant performance
improvement [Alon et al., 1987; Eager et al., 1986b;
Kunz, 1991]. 

The following are some of the issues in distributed
scheduling related to the process migration mechanism: 

• Adaptability is concerned with the scheduling impact
on system behavior [Stankovic, 1984]. Based on the
current host and network load, the relative importance
of load parameters may change. The policy should
adapt to these changes. Process migration is inherently
adaptable because it allows processes to run prior to
dispatching them to other nodes, giving them a chance

to adapt. Migration can happen at any time (there
adapting to sudden load changes), whereas ini
placement happens only prior to starting a process. 
amples of adaptive load distribution include work b
Agrawal and Ezzat [1987], Krueger and Livny [1988
Concepcion and Eleazar [1988], Efe and Gros
[1989], Venkatesh and Dattatreya [1990], Shivara
and Krueger [1990], and Mehra and Wah [1992]. 

• Stability is defined as the ability to detect when the e
fects of further actions (e.g. load scheduling or pagin
will not improve the system state as defined by a use
objective [Casavant and Kuhl, 1988b]. Due to the d
tributed state, some instability is inevitable, since it 
impossible to transfer state changes across the sys
instantly. However, high levels of instability should b
avoided. In some cases it is advisable not to perfo
any action, e.g. under extremely high loads it is bet
to abandon load distribution entirely. Process migr
tion can negatively affect stability if processes are m
grated back and forth among the nodes, similar to 
thrashing introduced by paging [Denning, 1980]. T
prevent such behavior a limit on the number of migr
tions can be imposed. Bryant and Finkel demonstr
how process migration can improve stability [Bryan
and Finkel, 1981].

• Approximate and heuristic scheduling is necessary
since optimal solutions are hard to achieve. Subop
mal solutions are reached either by approximating t
search space with its subset or by using heurist
Some of the examples of approximate and heuris
scheduling include work by Efe [1982], Leland an
Ott [1986], Lo [1988], Casavant and Kuhl [1988a
and Xu and Hwang [1990]. Deploying process migr
tion introduces more determinism and requires few
heuristics than alternative load distribution mech
nisms. Even when incorrect migration decisions a
made, they can be alleviated by subsequent mig
tions, which is not the case with initial process plac
ment where processes have to execute on the s
node until the end of its lifetime. 

• Hierarchical scheduling integrates distributed and
centralized scheduling. It supports distributed sched
ing within a group of nodes and centralized scheduli
among the groups. This area has attracted much
search [Bowen et al., 1988; Bonomi an
Kumar, 1988; Feitelson and Rudolph, 1990; Gup
and Gopinath, 1990; Gopinath and Gupta, 199
Chapin, 1995]. A process migration mechanism is
good fit for hierarchical scheduling since processes 
typically migrated within a LAN or other smaller do
main. Only in the case of large load discrepancies 
processes migrated between domains, i.e. betw
peers at higher levels of the hierarchy.
9



The most important question that distributed scheduling
studies address related to process migration is whether
migration pays off. The answer depends heavily on the
assumptions made. For example, Eager et al. compare
the receiver- and sender-initiated policies [Eager
et al., 1986a], and show that the sender-initiated policies
outperform the receiver-initiated policies for light and
moderate system loads. The receiver-initiated policy is
better for higher loads, assuming that transfer costs are
same. They argue that the transfer costs for the receiver
policy, that requires some kind of migration, are much
higher than the costs for mechanisms for the sender-ini-
tiated strategies, where initial placement suffices. They
finally conclude that under no condition could migration
provide significantly better performance than initial
placement [Eager et al., 1988].

Krueger and Livny investigate the relationship between
load balancing and load sharing [Krueger and
Livny, 1988]. They argue that load balancing and load
sharing represent various points in a continuum defined
by a set of goals and load conditions [Krueger and
Livny, 1987]. They claim that the work of Eager et al.
[Eager et al., 1988] is only valid for a part of the contin-
uum, but it cannot be adopted generally. Based on better
job distributions than those used by Eager et al., their
simulation results show that migration can improve per-
formance.

Harchol-Balter and Downey present the most recent re-
sults on the benefits of using process migration [Harchol-
Balter and Downey, 1997]. They use the measured distri-
bution of process lifetimes for a variety of workloads in
an academic environment. The crucial point of their
work is understanding the correct lifetime distribution,
which they find to be Pareto (heavy-tailed). Based on the
trace-driven simulation, they demonstrate a 35-50% im-
provement in the mean delay when using process migra-
tion instead of remote execution (preemptive v. non-
preemptive scheduling) even when the costs of migration
are high. 

Their work differs from [Eager et al., 1988] in system
model and workload description. Eager et al. model serv-
er farms, where the benefits of remote execution are
overestimated: there are no associated costs and no affin-
ity toward a particular node. Harchol-Balter and Downey
model a network of workstations where remote execu-
tion entails costs, and there exists an affinity toward
some of the nodes in a distributed system. The workload
that Eager et al. use contains few jobs with non-zero life-

times, resulting in a system with little imbalance and lit-
tle need for process migration. 

2.9   Alternatives to Process Migration

Given the relative complexity of implementation, and
the expense incurred when process migration is invoked,
researchers often choose to implement alternative mech-
anisms [Shivaratri et al., 1992; Kremien and
Kramer, 1992].

Remote execution is the most frequently used alterna-
tive to process migration. Remote execution can be as
simple as the invocation of some code on a remote node,
or it can involve transferring the code to the remote node
and inheriting some of the process environment, such as
variables and opened files. Remote execution is usually
faster than migration because it does not incur the cost of
transferring a potentially large process state (such as the
address space, which is created anew in the case of re-
mote execution). For small address spaces, the costs for
remote execution and migration can be similar. Remote
execution is used in many systems such as COCANET
[Rowe and Birman, 1982], Nest [Agrawal and
Ezzat, 1987], Sprite [Ousterhout et al., 1988], Plan 9
[Pike et al., 1990], Amoeba [Mullender et al., 1990],
Drums [Bond, 1993], Utopia [Zhou et al., 1994], and
Hive [Chapin et al., 1995].

Remote execution has disadvantages as well. It allows
creation of the remote instance only at the time of pro-
cess creation, as opposed to process migration which al-
lows moving the process at an arbitrary time. Allowing a
process to run on the source node for some period of time
is advantageous in some respects. This way, short-lived
processes that are not worth migrating are naturally fil-
tered out. Also, the longer a process runs, the more infor-
mation about its behavior is available, such as whether
and with whom it communicates. Based on this addition-
al information, scheduling policies can make more ap-
propriate decisions.

Cloning processes is useful in cases where the child pro-
cess inherits state from the parent process. Cloning is
typically achieved using a remote fork mechanism. A re-
mote fork, followed by the termination of the parent, re-
sembles process migration. The complexity of cloning
processes is similar to migration, because the same
amount of the process state is inherited (e.g. open files
and address space). In the case of migration, the parent is
terminated. In the case of cloning, both parent and child
may continue to access the same state, introducing dis-
tributed shared state, which is typically complex and
10



costly to maintain. Many systems use remote forking
[Goldberg and Jefferson, 1987; Smith and
Ioannidis, 1989; Zajcew et al., 1993].

Programming language support for mobility enables a
wide variety of options, since such systems have almost
complete control over the runtime implementation of an
application. Such systems can enable self-checkpointing
(and hence migratable) applications. They are suitable
for entire processes, but also for objects as small as a few
bytes, such as in Emerald [Jul et al., 1988; Jul, 1989] or
Ellie [Andersen, 1992]. Finer granularity incurs lower
transfer costs. The complexity of maintaining communi-
cation channels poses different kinds of problems. In
Emerald, for example, the pointers have to be updated to
the source object. Programming language support allows
a programmer to introduce more information on object
behavior, such as hints about communication and con-
currency patterns.

Object migration at the middleware level is also pos-
sible. Because of the increasing costs of operating sys-
tem development and the lack of standard solutions for
distributed systems and heterogeneity, middleware level
solutions have become of more interest
[Bernstein, 1996]. Distributed objects are supported in
middleware systems such as DCE [Rosenberry
et al., 1992] and CORBA [OMG, 1996]. Object migra-
tion at the middleware level has not attracted as much re-
search as process migration in operating systems. One of
the reasons is that the early heterogeneity of these sys-
tems did not adequately support mobility. Nevertheless,
a couple of systems do support mobility at the middle-
ware level, such as DC++ [Schill and Mock, 1993] and
the OMG MASIF specification for mobile agents
[Milojicic et al., 1998b] based on OMG CORBA. 

Mobile agents are becoming increasingly popular. The
mobility of agents on the Web emphasizes safety and se-
curity issues more than complexity, performance, trans-
parency and heterogeneity. Mobile agents are
implemented on top of safe languages, such as Java
[Gosling et al., 1996], Telescript [White, 1996] and Tcl/
Tk [Ousterhout, 1994]. Compared to process migration,
mobile agents have reduced implementation complexity
because they do not have to support OS semantics. Per-
formance requirements are different due to the wide-area
network communication cost, which is the dominant fac-
tor. Heterogeneity is abstracted away at the language lev-
el. The early results and opportunities for deployment, as
well as the wide interest in the area of mobile agents, in-
dicate a promising future for this form of mobility. How-

ever, the issues of security, social acceptance, and
commercializable applications have been significantly
increased and they represent the main focus of research
in the mobile agent community. Mobile agents are de-
scribed in more detail in Section 4.8.

3 CHARACTERISTICS

This section addresses issues in process migration, such
as complexity, performance, transparency, fault resil-
ience, scalability and heterogeneity. These characteris-
tics have a major impact on the effectiveness and
deployment of process migration.

3.1   Complexity and Operating System Support

The complexity of implementation and dependency on
an operating system are among the obstacles to the wider
use of process migration. This is especially true for fully-
transparent migration implementations. Migration can
be classified according to the level at which it is applied.
It can be applied as part of the operating system kernel,
in user space, as part of a system environment, or as a
part of the application (see Figure 5). Implementations at
different levels result in different performance, complex-
ity, transparency and reusability. 

User-level migration typically yields simpler implemen-
tations, but suffers too much from reduced performance
and transparency to be of general use for load distribu-
tion. User-space implementations are usually provided
for the support of long-running computations [Litzkow
and Solomon, 1992]. Migration implemented as part of
an application can have poor reusability if modifications
are required to the application, as was done in the work
by Freedman [1991] and Skordos [1995]. This requires
familiarity with applications and duplicating some of the
mechanisms for each subsequent application, frequently
involving effort beyond re-linking the migration part
with the application code. It could be somewhat im-

Figure 5: Migration levels differ in implementation complexi-
ty, performance, transparency, and reusability.
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proved if parts of migration support is organized in a re-
usable run-time library. Lower-level migration is more
complex to implement, but has better performance,
transparency and reusability.

Despite high migration costs, user-level implementa-
tions have some benefits with regard to policy. The lay-
ers closer to an application typically have more
knowledge about its behavior. This knowledge can be
used to derive better policies and hence, better overall
performance. Similar motivations led to the development
of microkernels, such as Mach [Accetta et al., 1986],
Chorus [Rozier, 1992], and Amoeba [Tanenbaum,
1990], which have moved much of their functionality
from the kernel into user space. For example, file servers
and networking may be implemented in user space, leav-
ing only a minimal subset of functionality provided in
the microkernel, such as virtual memory management,
scheduling and interprocess communication. 

Extensible kernels, such as Spin [Bershad et al., 1995],
Exokernel [Engler et al., 1995], and Synthetix [Pu
et al., 1995], have taken an alternative approach by al-
lowing user implemented parts to be imported into the
kernel. Both microkernels and extensible kernels provide
opportunities for extracting a process’s state from the op-
erating system. 

There have been many implementations of migration for
various operating systems and hardware architectures;
many of them required a significant implementation ef-
fort and modifications to the underlying kernel [Barak
and Shiloh, 1985; Theimer et al., 1985; Zayas, 1987a;
Douglis and Ousterhout, 1991]. This complexity is due
to the underlying operating system architecture and spe-
cifically its lack of support for the complex interactions
resulting from process migration. In the early days, mi-
gration required additional OS support, such as exten-
sions for communications forwarding [Artsy
et al., 1987], or for data transfer strategies [Theimer
et al., 1985; Zayas, 1987a]. In the case of some subse-
quent migration implementations, this support already
existed in the OS, such as in the case of Mach [Milojicic
et al., 1993a].

In UNIX-like operating systems, support for opened files
and signals requires significant interaction with various
kernel subsystems [Douglis, 1989; Welch, 1990]. Pro-
cess migration in message-passing kernels requires sig-
nificant effort to support message handling [Theimer
et al., 1985; Artsy et al., 1987; Artsy and Finkel, 1989].
Recent operating systems provide much of this support,

such as transparent distributed IPC with message 
warding, and external distributed pagers, which allo
easier optimizations and customizing [Black et al., 199
Rozier, 1992]. Nevertheless, migration still challeng
these mechanisms and frequently breaks them [Dou
and Ousterhout, 1991; Milojicic, 1993c].

3.2   Performance

Performance is the second important factor that affe
the deployment of process migration. Migration perfo
mance depends on initial and run-time costs introduc
by the act of migration. The initial costs stem from sta
transfer. Instead of at migration time, some of the st
may be transferred lazily (on-demand), thereby incurring
run-time costs. Both types of cost may be significant, d
pending on the application characteristics, as well as
the ratio of state transferred eagerly/lazily.

If only part of the task state is transferred to anoth
node, the task can start executing sooner, and the in
migration costs are lower. This principle is called lazy
evaluation: actions are not taken before they are rea
needed with the hope that they will never be need
However, when this is not true, penalties are paid 
postponed access. For example, it is convenient to 
grate a huge address space on demand instead of eag
In the lazy case, part of the space may never be tra
ferred if it is not accessed. However, the source no
needs to retain lazily evaluated state throughout the l
time of the migrated process.

A process’s address space usually constitutes by far
largest unit of process state; not surprisingly, the perf
mance of process migration largely depends on the p
formance of the address space transfer. Various d
transfer strategies have been invented in order to av
the high cost of address space transfer. 

• The eager (all) strategy copies all of the address spa
at the migration time. Initial costs may be in the ran
of minutes. Checkpoint/restart implementations typ
cally use this strategy, such as Condor [Litzkow a
Solomon, 1992] or LSF [Zhou et al., 1994]. 

• The eager (dirty) strategy can be deployed if there i
remote paging support. This is a variant of the eag
(all) strategy that transfers only modified (dirty) page
Unmodified pages are paged in on request from
backing store. Eager (dirty) significantly reduces th
initial transfer costs when a process has a large add
space. Systems supporting eager (dirty) strategy 
clude MOSIX [Barak and Litman, 1985] and Locu
[Popek and Walker, 1985]
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• The Copy-On-Reference (COR) strategy is a net-
work version of demand paging: pages are transferred
only upon reference. While dirty pages are brought
from the source node, clean pages can be brought ei-
ther from the source node or from the backing store.
The COR strategy has the lowest initial costs, ranging
from a few tens to a few hundred microseconds. How-
ever, it increases the run-time costs, and it also re-
quires substantial changes to the underlying operating
system and to the paging support [Zayas, 1987a]. 

• The flushing strategy consists of flushing dirty pages
to disk and then accessing them on demand from disk
instead of from memory on the source node as in copy-
on-reference [Douglis and Ousterhout, 1991]. The
flushing strategy is like the eager (dirty) transfer strat-
egy from the perspective of the source, and like copy-
on-reference from the target’s viewpoint. It leaves de-
pendencies on the server, but not on the source node.

• The precopy strategy reduces the “freeze” time of the
process, the time that process is neither executed on
the source nor on the destination node. While the pro-
cess is executed on the source node, the address space
is being transferred to the remote node until the num-
ber of dirty pages is smaller than a fixed limit. Pages
dirtied during precopy have to be copied a second
time. The precopy strategy cuts down the freeze time
below the costs of the COR technique [Theimer
et al., 1985].

There are also variations of the above strategies. The
most notable example is migration in the Choices oper-
ating system [Roush and Campbell, 1996]. It uses a vari-
ation of the eager (dirty) strategy which transfers
minimal state to the remote node at the time of migration.
The remote instance is started while the remainder of the
state is transferred in parallel. The initial migration time
is reduced to 13.9ms running on a SparcStation II con-
nected by a 10Mb Ethernet, which is an order of magni-
tude better than all other reported results, even if results
are normalized (see work by Rousch [1995] for more de-
tails on normalized performance results).

Leaving some part of the process state on the source or
intermediate nodes of the migrated instance results in a
residual dependency. Residual dependencies typically
occur as a consequence of two implementation tech-
niques: either using lazy evaluation (see definition be-
low), or as a means for achieving transparency in
communication, by forwarding subsequent messages to a
migrated process. 

A particular case of residual dependency is the home de-
pendency, which is a dependency on the (home) node
where a process was created [Douglis and

Ousterhout, 1991]. An example of a home dependenc
redirecting systems calls to the home node: for examp
local host-dependent calls, calls related to the file syst
(in the absence of a distributed file system), or operatio
on local devices. A home dependency can simplify m
gration, because it is easier to redirect requests to 
home node than to support services on all nodes. How
er, it also adversely affects reliability, because a migra
foreign process will always depend on its home nod
The notion of the home dependency is further elabora
upon below in Section 5.1 (MOSIX) and Section 5.
(Sprite). 

Redirecting communication through the previously e
tablished links represents another kind of residual dep
dency. In general, dependencies left at multiple nod
should be avoided, since they require complex supp
and degrade performance and fault resilience. Therefo
some form of periodic or lazy removal of residual depe
dencies is desirable. For example, the system could fl
remaining pages to the backing store, or update resid
information on migrated communication channels. 

3.3   Transparency

Transparency requires that neither the migrated task 
other tasks in the system can notice migration, with t
possible exception of performance effects. Communic
tion with a migrated process could be delayed during m
gration, but no message can be lost. After migration, 
process should continue to communicate through pre
ously opened I/O channels, for example printing to t
same console or reading from the same files.

Transparency is supported in a variety of ways, depe
ing on the underlying operating system. Sprite and NO
MOSIX maintain a notion of a home machine that ex
cutes all host-specific code [Douglis an
Ousterhout, 1991; Barak et al., 1995]. Charlotte suppo
IPC through links, which provide for remapping afte
migration [Finkel et al., 1989].

Transparency also assumes that the migrated insta
can execute all system calls as if it were not migrate
Some user-space migrations do not allow system c
that generate internode signals or file access [Mand
berg and Sunderam, 1988; Freedman, 1991].

Single System Image (SSI) represents a complete fo
of transparency. It provides a unique view of a syste
composed of a number of nodes as if there were just 
node. A process can be started and communicated w
without knowing where it is physically executing. Re
sources can be transparently accessed from any nod
13



the system as if they were attached to the local node. The
underlying system typically decides where to instantiate
new processes or where to allocate and access resources.

SSI can be applied at different levels of the system. At
the user-level, SSI consists of providing transparent ac-
cess to objects and resources that comprise a particular
programming environment. Examples include Amber
[Chase et al., 1989] and Emerald [Jul, 1989]. At the tra-
ditional operating system level, SSI typically consists of
a distributed file system and distributed process manage-
ment, such as in MOSIX [Barak and Litman, 1985],
Sprite [Ousterhout et al., 1988] and OSF/1 AD TNC
[Zajcew et al., 1993]. At the microkernel level, SSI is
comprised of mechanisms, such as distributed IPC, dis-
tributed memory management, and remote tasking. A
near-SSI is implemented for Mach [Black et al., 1992]
based on these transparent mechanisms, but the policies
are supported at the OSF/1 AD server running on top of
it. At the microkernel level the programmer needs to
specify where to create remote tasks.

SSI supports transparent access to a process, as well as to
its resources, which simplifies migration. On the other
hand, the migration mechanism exercises functionality
provided at the SSI level, posing a more stressful work-
load than normally experienced in systems without mi-
gration [Milojicic et al., 1993a]. Therefore, although a
migration implementation on top of SSI may seem less
complex, this complexity is pushed down into the SSI
implementation. 

Some location dependencies on another host may be in-
evitable, such as accessing local devices or accessing
kernel-dependent state that is managed by the other host.
It is not possible transparently to support such dependen-
cies on the newly visited nodes, other than by forwarding
the calls back to the home node, as was done in Sprite
[Douglis and Ousterhout, 1991].

3.4   Fault Resilience

Fault resilience is frequently mentioned as a benefit of
process migration. However, this claim has never been
substantiated with a practical implementation, although
some projects have specifically addressed fault resil-
ience [Chou and Abraham, 1983; Lu et al., 1987]. So far
the major contribution of process migration for fault re-
silience is through combination with checkpointing, such
as in Condor [Litzkow and Solomon, 1992], LSF Zhou
et al., 1994] and in work by Skordos [1995]. Migration
was also suggested as a means of fault containment
[Chapin et al., 1995].

Failures play an important role in the implementation of
process migration. They can happen on a source or target
machine or on the communication medium. Various mi-
gration schemes are more or less sensitive to each type of
failure. Residual dependencies have a particularly nega-
tive impact on fault resilience. Using them is a trade-off
between efficiency and reliability. 

Fault resilience can be improved in several ways. The
impact of failures during migration can be reduced by
maintaining process state on both the source and destina-
tion sites until the destination site instance is successfully
promoted to a regular process and the source node is in-
formed about this. A source node failure can be
overcome by completely detaching the instance from the
source node once it is migrated, though this prevents lazy
evaluation techniques from being employed. One way to
remove communication residual dependencies is to de-
ploy locating techniques, such as multicasting (as used in
V kernel Theimer et al., 1985), reliance on the home
node (as used in Sprite [Douglis and Ousterhout, 1991],
and MOSIX [Barak and Litman, 1985]), or on a forward-
ing name server (as used in most distributed name servic-
es, such as DCE, as well as in mobile agents, such as
MOA [Milojicic et al., 1999]). This way dependencies
are singled out on dedicated nodes, as opposed to being
scattered throughout all the nodes visited, as is the case
for Charlotte [Artsy et al., 1987]. Shapiro, et al. [1992]
propose so-called SSP Chains for periodically collapsing
forwarding pointers (and thereby reducing residual de-
pendencies) in the case of garbage collection. 

3.5   Scalability

The scalability of a process migration mechanism is re-
lated to the scalability of its underlying environment. It
can be measured with respect to the number of nodes in
the system, to the number of migrations a process can
perform during its lifetime, and to the type and complex-
ity of the processes, such as the number of open channels
or files, and memory size or fragmentation.

The number of nodes in the system affects the organiza-
tion and management of structures that maintain residual
process state and the naming of migrated processes. If
these structures are not part of the existing operating sys-
tem, then they need to be added.

Depending on the migration algorithm and the tech-
niques employed, some systems are not scalable in the
number of migrations a process may perform. As we
shall see in the case study on Mach (see Section 5.3),
sometimes process state can grow with the number of
14



migrations. This is acceptable for a small number of mi-
grations, but in other cases the additional state can dom-
inate migration costs and render the migration
mechanism useless.

Migration algorithms should avoid linear dependencies
on the amount of state to be transferred. For example, the
eager data transfer strategy has costs proportional to the
address space size, incurring significant costs for large
address spaces. The costs for a lazily copied process are
independent of the address space size, but they can de-
pend on the granularity and type of the address space. For
example, the transfer of a large sparse address space can
have costs proportional to the number of contiguous ad-
dress space regions, because each such region has meta-
data associated with it that must be transferred at
migration time.  This overhead can be exacerbated if the
meta-data for each region is transferred as a separate op-
eration, as was done in the initial implementation of
Mach task migration [Milojicic et al., 1993b].

Communication channels can also affect scalability. For-
warding communication to a migrated process is accept-
able after a small number of sequential migrations, but
after a large number of migrations the forwarding costs
can be significant. In that case, some other technique,
such as updating communication links, must be em-
ployed.

3.6   Heterogeneity 

Heterogeneity has not been addressed in most early mi-
gration implementations. Instead, homogeneity is con-
sidered as a requirement; migration is allowed only
among the nodes with a compatible architecture and pro-
cessor instruction set. This was not a significant limita-
tion at the time since most of the work was conducted on
clusters of homogeneous machines.

Some earlier work indicated the need as well as possible
solutions for solving the heterogeneity problem, but no
mature implementations resulted [Maguire and
Smith, 1988; Dubach, 1989; Shub, 1990; Theimer and
Hayes, 1991]. 

The deployment of world-wide computing has increased
the interest in heterogeneous migration. In order to
achieve heterogeneity, process state needs to be saved in
a machine-independent representation. This permits the
process to resume on nodes with different architectures.
An application is usually compiled in advance on each
architecture, instrumenting the code to know what proce-
dures and variables exist at any time, and identifying
points at which the application can be safely preempted

and checkpointed. The checkpointing program sets a
breakpoint at each preemption point and examines the
state of the process when a breakpoint is encountered.
Smith and Hutchinson note that not all programs can be
safely checkpointed in this fashion, largely depending on
what features of the language are used [Smith and
Hutchinson, 1998]. Emerald [Steensgaard and Jul, 1995]
is another example of a heterogeneous system. 

In the most recent systems, heterogeneity is provided at
the language level, as by using intermediate byte code
representation in Java [Gosling et al., 1996], or by rely-
ing on scripting languages such as Telescript [White,
1996] or Tcl/Tk [Ousterhout, 1994]. 

3.7   Summary

This subsection evaluates the trade-offs between various
characteristics of process migration, and who should be
concerned with it. 

Complexity is much more of a concern to the implemen-
tors of a process migration facility than to its users. Com-
plexity depends on the level where migration is
implemented. Kernel-level implementations require sig-
nificantly more complexity than user-level implementa-
tions. Users of process migration are impacted only in
the case of user-level implementations where certain
modifications of the application code are required or
where migration is not fully transparent.

Long-running applications are not concerned with per-
formance as are those applications whose lifetimes are
comparable to their migration time. Short-running appli-
cations are generally not good candidates for migration.
Migration-time performance can be traded off against
execution-time (by leaving residual dependencies, or by
lazily resolving communication channels). Residual de-
pendencies are of concern for long-running applications
and for network applications. Applications with real-
time requirements generally are not suitable candidates
for residual dependency because of the unpredictable
costs of bringing in additional state. On the other hand,
real-time requirements can be more easily fulfilled with
strategies, such as precopy.

Legacy applications are concerned with transparency in
order to avoid any changes to existing code. Scientific
applications typically do not have transparency require-
ments. Frequently, one is allowed to make modifications
to the code of these applications, and even support mi-
gration at the application level (e.g. by checkpointing
state at the application level). Transparency typically in-
curs complexity. However, transparency is not related to
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migration exclusively, rather it is inherent to remote ac-
cess. Transparent remote execution can require support
that is as complex as transparent process migration
[Douglis and Ousterhout, 1991]. 

Scientific applications (typically long-running), as well
as network applications are concerned with failure toler-
ance. In most cases periodic checkpointing of the state
suffices. 

Scalability requires additional complexity for efficient
support. It is of concern for scientific applications be-
cause they may require a large number of processes,
large address spaces, and a large number of communica-
tion channels. It is also important for network applica-
tions, especially those at the Internet scale.

Heterogeneity introduces performance penalties and ad-
ditional complexity. It is of most concern to network ap-
plications which typically run on inhomogeneous
systems. 

4 EXAMPLES 

This section classifies process migration implementa-
tions in the following categories: early work; UNIX-like
systems supporting transparent migration; systems with
message-passing interfaces; microkernels; user-space
migration; and application-specific migration. In addi-
tion, we also give an overview of mobile objects and mo-
bile agents. These last two classes do not represent
process migration in the classic sense, but they are simi-
lar in sufficiently many ways to warrant their inclusion
[Milojicic et al., 1998a]. For each class, an overview and
some examples are presented. Finally, in the last subsec-
tion, we draw some conclusions. The next section ex-
pands upon four of these systems in substantial detail.

There are also other examples of process migration that
can fit into one or more classes presented in this section.
Examples include object migration in Eden [Lazowska,
et al., 1981]; MINIX [Louboutin, 1991]; Galaxy [Sinha
et al., 1991]; work by Dediu [1992]; EMPS [van Dijk
and van Gils, 1992]; object migration for OSF DCE,
DC++ [Schill and Mock, 1993]; work by Petri and Lan-
gendorfer [1995]; MDX [Schrimpf, 1995]; and many
more. A description of these systems is beyond the scope
of this paper. In addition to other surveys of process mi-
gration already mentioned in the introduction
[Smith, 1988; Eskicioglu, 1990; Nuttal, 1994], Borghoff
provides a catalogue of distributed operating systems
with many examples of migration mechanisms
[Borghoff, 1991].

4.1   Early Work

Early work is characterized by specialized, ad hoc solu-
tions, often optimized for the underlying hardware archi-
tecture. In this subsection we briefly mention XOS,
Worm, DEMOS/MP and Butler.

Migration in XOS is intended as a tool for minimizing
the communication between the nodes in an experimen-
tal multiprocessor system, organized in a tree fashion
[Miller and Presotto, 1981]. The representation of the
process and its state are designed in a such a way as to
facilitate migration. The Process Work Object (PWO)
encapsulates process related state including stack point-
ers and registers. Migration is achieved by moving PWO
objects between the XOS nodes. The process location is
treated as a hint, and the current location is found by fol-
lowing hints.

The Worm idea has its background in the nature of real
worms [Shoch and Hupp, 1982]. A worm is a computa-
tion that can live on one or more machines. Parts of the
worm residing on a single machine are called segments.
If a segment fails, other segments cooperatively reinstan-
tiate it by locating a free machine, rebooting it from the
network, and migrating the failed worm segment to it. A
worm can move from one machine to another, occupying
needed resources, and replicating itself. As opposed to
other migration systems, a worm is aware of the underly-
ing network topology. Communication among worm
segments is maintained through multicasting.

The original Butler system supports remote execution
and process migration [Dannenberg, 1982]. Migration
occurs when the guest process needs to be “depor
from the remote node, e.g. in case when it exceeds
sources it negotiated before arrival. In such a case, 
complete state of the guest process is packaged 
transferred to a new node. The state consists of the
dress space, registers, as well as the state contained i
servers collocated at the same node. Migration does 
break the communication paths because the underly
operating system (Accent [Rashid and Robertson, 198
allows for port migration. The Butler design also dea
with the issues of protection, security, and autonom
[Dannenberg and Hibbard, 1985]. In particular, the sy
tem protects the client program, the Butler daemons
the source and destination nodes, the visiting proce
and the remote node. In its later incarnation, Butler su
ports only remote invocation [Nichols, 1987].

DEMOS/MP [Miller et al., 1987] is a successor of the
earlier version of the DEMOS operating system [Bask
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et al., 1977]. Process migration is fully transparent: a
process can be migrated during execution without limita-
tions on resource access. The implementation of migra-
tion has been simplified and its impact to other services
limited by the message-passing, location-independent
communication, and by the fact that the kernel can par-
ticipate in the communication in the same manner as any
process [Powell and Miller, 1983]. Most of the support
for process migration already existed in the DEMOS ker-
nel. Extending it with migration required mechanisms
for forwarding messages and updating links. The trans-
ferred state includes program code and data (most of the
state), swappable and non-swappable state, and messag-
es in the incoming queue of the process.

4.2   Transparent Migration in UNIX-like Systems 

UNIX-like systems have proven to be relatively hard to
extend for transparent migration and have required sig-
nificant modifications and extensions to the underlying
kernel (see Subsections 4.3 and 4.4 for comparisons with
other types of OSes). There are two approaches to ad-
dressing distribution and migration for these systems.
One is to provide for distribution at the lower levels of a
system, as in MOSIX or Sprite, and the other is by pro-
viding distribution at a higher-level, as in Locus and its
derivatives. In this section, we shall describe process mi-
gration for Locus, MOSIX and Sprite. All of these sys-
tems also happened to be RPC-based, as opposed to the
message-passing systems described in Section 4.3.

Locus is a UNIX-compatible operating system that pro-
vides transparent access to remote resources, and en-
hanced reliability and availability [Popek et al., 1981;
Popek and Walker, 1985]. It supports process migration
[Walker et al., 1983] and initial placement [Butterfield
and Popek, 1984]. Locus is one of the rare systems that
achieved product stage. It has been ported to the AIX op-
erating system on the IBM 370 and PS/2 computers un-
der the name of the Transparent Computing Facility
(TCF) [Walker and Mathews, 1989]. Locus migration
has a high level of functionality and transparency. How-
ever, this required significant kernel modifications. 

Locus has subsequently been ported to the OSF/1 AD
operating system, under the name of TNC [Zajcew
et al., 1993]. OSF/1 AD is a distributed operating system
running on top of the Mach microkernel on Intel x86 and
Paragon architectures (see Section 5.3). TNC is only par-
tially concerned with task migration issues of the under-
lying Mach microkernel, because in the OSF/1 AD
environment the Mach interface is not exposed to the us-

er, and therefore the atomicity of process migration is not
affected. Locus was also used as a testbed for a distribut-
ed shared memory implementation, Mirage [Fleisch and
Popek, 1989]. Distributed shared memory was not com-
bined with process migration as was done in the case of
Mach (see Section 5.3).

The MOSIX distributed operating system is an ongoing
project that began in 1981. It supports process migration
on top of a single system image base [Barak and
Litman, 1985] and in a Network of Workstations envi-
ronment [Barak et al., 1995]. The process migration
mechanism is used to support dynamic load balancing.
MOSIX employs a probabilistic algorithm in its load in-
formation management that allows it to transmit partial
load information between pairs of nodes [Barak and
Shiloh, 1985; Barak and Wheeler, 1989]. A case study of
the MOSIX system is presented in Section 5.1. 

The Sprite network operating system [Ousterhout
et al., 1988] was developed from 1984-1994. Its process
migration facility [Douglis and Ousterhout, 1991] was
transparent both to users and to applications, by making
processes appear to execute on one host throughout their
execution. Processes could access remote resources, in-
cluding files, devices, and network connections, from
different locations over time. When a user returned to a
workstation onto which processes had been off-loaded,
the processes were immediately migrated back to their
home machines and could execute there, migrate else-
where, or suspend execution. A case study of the Sprite
system is presented in Section 5.2.

4.3   OS with Message-Passing Interface 

Process migration for message-passing operating sys-
tems seems easier to design and implement. Message
passing is convenient for interposing, forwarding and en-
capsulating state. For example, a new receiver may be in-
terposed between the existing receiver and the sender,
without the knowledge of the latter, and messages sent to
a migrated process can be forwarded after its migration
to a new destination. However, much of the simplicity
that seems to be inherent for message-passing systems is
hidden inside the complex message-passing mechanisms
[Douglis and Ousterhout, 1991].

In this section we describe Charlotte, Accent and the V
kernel. The V kernel can be classified both as a microker-
nel and as a message passing kernel; we chose to present
it      in the message-passing section.

Charlotte is a message-passing operating system de-
signed for the Crystal multicomputer composed of 20
17



VAX-11/750 computers [Artsy and Finkel, 1989]. The
Charlotte migration mechanism extensively relies on the
underlying operating system and its communication
mechanisms which were modified in order to support
transparent network communication [Artsy et al., 1987].
Its process migration is well insulated from other system
modules. Migration is designed to be fault resilient: pro-
cesses leave no residual dependency on the source ma-
chine. The act of migration is committed in the final
phase of the state transfer; it is possible to undo the mi-
gration before committing it.

Accent is a distributed operating system developed at
CMU [Rashid and Robertson, 1981; Rashid, 1986]. Its
process migration scheme was the first one to use the
“Copy-On-Reference” (COR) technique to lazily copy
pages [Zayas, 1987a]. Instead of eagerly copying pages,
virtual segments are created on the destination node.
When a page fault occurs, the virtual segment provides a
link to the page on the source node. The duration of the
initial address space transfer is independent of the ad-
dress space size, but rather depends on the number of
contiguous memory regions. The subsequent costs for la-
zily copied pages are proportional to the number of pages
referenced. The basic assumption is that the program
would not access all of its address space, thereby saving
the cost of a useless transfer. Besides failure vulnerabili-
ty, the drawback of lazy evaluation is the increased com-
plexity of in-kernel memory management
[Zayas, 1987b]. 

The V Kernel is a microkernel developed at Stanford
University [Cheriton, 1988]. It introduces a “precopy-
ing”  technique for the process address space transfer
[Theimer et al., 1985]. The address space of the process
to be migrated is copied to the remote node prior to its
migration, while the process is still executing on the
source node. Dirty pages referenced during the precopy-
ing phase are copied again. It has been shown that only
two or three iterations generally suffice to reach an ac-
ceptably small number of dirty pages. At that point of
time the process is frozen and migrated. This technique
shortens the process freeze time, but otherwise negative-
ly influences the execution time, since overhead is in-
curred in iterative copying. Migration benefits from a
communications protocol that dynamically rebinds to al-
ternate destination hosts as part of its implementation of
reliable message delivery. Instead of maintaining pro-
cess communication end-points after migration, V relies
on multicast to find the new process location. 

4.4   Microkernels

The microkernel approach separates the classical notion
of a monolithic kernel into a microkernel and an operat-
ing system personality running on top of it in a separate
module. A microkernel supports tasks, threads, IPC and
VM management, while other functionality, such as net-
working, file system and process management, is imple-
mented in the OS personality. Various OS personalities
have been implemented, such as BSD UNIX [Golub
et al., 1990], AT&T UNIX System V [Rozier, 1992;
Cheriton, 1990], MS DOS [Malan et al., 1991], VMS
[Wiecek, 1992], OS/2 [Phelan and Arendt, 1993] and
Linux [Barbou des Places et al., 1996]. 

In the late eighties and early nineties, there was a flurry
of research into microkernels, including systems, such as
Mach [Accetta et al., 1986], Chorus [Rozier, 1992],
Amoeba [Mullender et al., 1990], QNX
[Hildebrand, 1992], Spring [Hamilton and
Kougiouris, 1993] and L3 [Liedtke, 1993], which even-
tually reached commercial implementations, and many
more research microkernels, such as Arcade [Cohn
et al., 1989], Birlix [Haertig et al., 1993], KeyKOS
[Bomberger et al., 1992] and RHODOS [Gerrity
et al., 1991].

The microkernel approach, combined with message
passing, allows for transparent, straightforward exten-
sions to distributed systems. Not surprisingly, microker-
nels are a suitable environment for various migration
experiments. The task migration mechanism can be re-
used by different OS personalities, as a common denom-
inator for different OS-specific process migration
mechanisms. In this subsection we describe process mi-
grations for RHODOS, Arcade, Chorus, Amoeba, Birlix
and Mach.

RHODOS consists of a nucleus that supports trap and
interrupt handling, context switching, and local message
passing. The kernel runs on top of the nucleus and sup-
ports IPC, memory, process, and migration managers
[Gerrity et al., 1991]. The migration mechanism is simi-
lar to that in Sprite, with some modifications specific to
the RHODOS kernel [Zhu, 1992]. 

Arcade considers groups of tasks for migration [Cohn
et al., 1989]. It is used as a framework for investigating
sharing policies related to task grouping [Tracey, 1991].
The group management software ensures that members
of the group execute on different machines, thereby ex-
ploiting parallelism.
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The Chorus microkernel was extended to support pro-
cess migration [Philippe, 1993]. The migration mecha-
nism is similar to task migration on top of Mach (cf.
Section 5.3), however it is applied at the process level,
instead of the Actor level. Actors in Chorus correspond
to Mach tasks. Chorus migration is biased toward the hy-
percube implementation (fast and reliable links). Some
limitations were introduced because Chorus did not sup-
port port migration.

Steketee et al. implemented process migration for the
Amoeba operating system [Steketee et al., 1994]. Com-
munication transparency relies on the location indepen-
dence of the FLIP protocol [Kaashoek et al., 1993].
Since Amoeba does not support virtual memory, the
memory transfer for process migration is achieved by
physical copying [Zhu et al., 1995]. 

Birlix supports adaptable object migration [Lux, 1995].
It is possible to specify a migration policy on a per-object
basis. A meta-object encapsulates data for the migration
mechanism and information collection. An example of
the use of an adaptable migration mechanism is to extend
migration for improved reliability or performance [Lux
et al., 1993].

Mach [Accetta et al., 1986] was used as a base for sup-
porting task migration [Milojicic et al., 1993b], devel-
oped at the University of Kaiserslautern. The goals were
to demonstrate that microkernels are a suitable substrate
for migration mechanisms and for load distribution in
general. The task migration implementation significantly
benefited from the near SSI provided by Mach, in partic-
ular from distributed IPC and distributed memory man-
agement. Process migration was built for the OSF/1
AD 1 server using Mach task migration [Paindaveine
and Milojicic, 1996]. Task and process migration on top
of Mach are discussed in more detail in Section 5.3.

4.5   User-space Migrations

While it is relatively straightforward to provide process
migration for distributed operating systems, such as the
V kernel, Accent, or Sprite, it is much harder to support
transparent process migration on industry standard oper-
ating systems, which are typically non-distributed. Most
workstations in the 1980s and 1990s run proprietary ver-
sions of UNIX, which makes them a more challenging
base for process migration than distributed operating
systems. Source code is not widely available for a propri-
etary OS; therefore, the only way to achieve a viable and
widespread migration is to implement it in user space. 

User-space migration is targeted to long-running pro-
cesses that do not pose significant OS requirements, do
not need transparency, and use only a limited set of sys-
tem calls. The migration time is typically a function of
the address space size, since the eager (all) data transfer
scheme is deployed. This subsection presents a few such
implementations: Condor, the work by Alonso and Kyri-
mis, the work by Mandelberg and Sunderam, the work
by Petri and Langendoerfer, MPVM, and LSF.

Condor is a software package that supports user-space
checkpointing and process migration in locally distribut-
ed systems [Litzkow, 1987; Litzkow et al., 1988; Litz-
kow and Solomon, 1992]. Its checkpointing support is
particularly useful for long-running computations, but is
too expensive for short processes. Migration involves
generating a core file for a process, combining this file
with the executable and then sending this on to the target
machine. System calls are redirected to a “shadow” p
cess on the source machine. This requires a special 
sion of the C library to be linked with the migrate
programs. 

Condor does not support processes that use sign
memory mapped files, timers, shared libraries, or IP
The scheduler activation period is 10 minutes, whi
demonstrates the “heaviness” of migration. Neverth
less, Condor is often used for long-running compu
tions. It has been ported to a variety of operating syste
Condor was a starting point for a few industry produc
such as LSF from Platform Computing [Zho
et al., 1994] and Loadleveler from IBM.

Alonso and Kyrimis perform minor modifications to the
UNIX kernel in order to support process migration 
user space [Alonso and Kyrimis, 1988]. A new signal f
dumping process state and a new system call for rest
ing a process are introduced. This implementation is li
ited to processes that do not communicate and are 
location- or process-dependent. The work by Alonso a
Kyrimis was done in parallel with the early Condor sy
tem. 

Mandelberg and Sunderam present a process migra
tion scheme for UNIX that does not support tasks th
perform I/O on non-NFS files, spawn subprocesses,
utilize pipes and sockets [Mandelberg an
Sunderam, 1988]. A new terminal interface supports d
taching a process from its terminal and monitors reque
for I/O on the process migration port.

Migratory Parallel Virtual Machine (MPVM) extends
the PVM system [Beguelin et al., 1993] to support pr
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cess migration among homogeneous machines [Casas
et al., 1995]. Its primary goals are transparency, compat-
ibility with PVM, and portability. It is implemented en-
tirely as a user-level mechanism. It supports
communication among migrating processes by limiting
TCP communication to other MPVM processes. 

Load Sharing Facility (LSF) supports migration indi-
rectly through process checkpointing and restart [Plat-
form Computing, 1996]. LSF can work with
checkpointing at three possible levels: kernel, user, and
application. The technique used for user-level check-
pointing is based on the Condor approach [Litzkow and
Solomon, 1992], but no core file is required, thereby im-
proving performance, and signals can be used across
checkpoints, thereby improving transparency. LSF is de-
scribed in more detail in Section 5.4.

4.6   Application-specific Migration

Migration can also be implemented as a part of an appli-
cation. Such an approach deliberately sacrifices transpar-
ency and reusability. A migrating process is typically
limited in functionality and migration has to be adjusted
for each new application. Nevertheless, the implementa-
tion can be significantly simplified and optimized for one
particular application. In this subsection we describe
work by Freedman, Skordos, and Bharat and Cardelli.

Freedman reports a process migration scheme involving
cooperation between the migrated process and the migra-
tion module [Freedman, 1991]. The author observes that
long-running computations typically use operating sys-
tem services in the beginning and ending phases of exe-
cution, while most of their time is spent in number-
crunching. Therefore, little attention is paid to support-
ing files, sockets, and devices, since it is not expected
that they will be used in the predominant phase of execu-
tion. This ad hoc process migration considers only mem-
ory contents. 

Skordos integrates migration with parallel simulation of
subsonic fluid dynamics on a cluster of workstations
[Skordos, 1995]. Skordos statically allocates problem
sizes and uses migration when a workstation becomes
overloaded. Upon migration, the process is restarted af-
ter synchronization with processes participating in the
application on other nodes. At the same time, it is possi-
ble to conduct multiple migrations. On a cluster of 20
HP-Apollo workstations connected by 10 Mbps Ether-
net, Skordos notices approximately one migration every
45 minutes. Each migration lasts 30 seconds on average.
Despite the high costs, its relative impact is very low.

Migrations happen infrequently, and do not last long rel-
ative to the overall execution time.

Bharat and Cardelli describe Migratory Applications,
an environment for migrating applications along with the
user interface and the application context, thereby retain-
ing the same “look and feel” across different platform
[Bharat and Cardelli, 1995]. This type of migration i
particularly suitable for mobile applications, where 
user may be travelling from one environment to anoth
Migratory applications are closely related to the under
ing programming language Oblique [Cardelli, 1995]. 

4.7   Mobile Objects

In this paper we are primarily concerned with proce
and task migration. Object migration and mobile agen
are two other forms of migration that we mention brief
in this and the following subsection. Although used 
different settings, these forms of migration serve a sim
lar purpose and solve some of the same problems as 
cess migration does. In this subsection, we give 
overview of object migration for Emerald, SOS an
COOL. 

Emerald is a programming language and environme
for the support of distributed systems [Blac
et al., 1987]. It supports mobile objects as small as a c
ple of bytes, or as large as a UNIX process [Jul, 1988; 
et al., 1988]. Objects have a global, single name spa
In addition to traditional process migration benefits, Em
erald improves data movement, object invocation a
garbage collection. 

In Emerald, communication links are pointers to oth
objects. Upon each object migration, all object pointe
need to be updated. The Emerald compiler generates
templates that are associated with the object data a
describing its layout. The templates contain informatio
about which objects are associated with the given obje
including the pointers to other objects. These pointers 
changed if the referenced object moves. Pointers are 
timized for local invocation because mobility is a rela
tively infrequent case compared to local invocatio
Objects that become unreachable are garbage collec
Moving a small passive object on a cluster of 4 M
croVax II workstations connected by a 10 megabit/se
ond Ethernet takes about 12 ms while moving a sm
process takes about 40 ms. Some modest experim
demonstrated the benefits of Emerald for load distrib
tion [Jul, 1989].

Shapiro investigates object migration and persistence
SOS [Shapiro et al., 1989]. The objects under conside
20



ation are small to medium size (a few hundred bytes). Of
particular concern are intra-object references and how
they are preserved across object migrations. References
are expressed through a new type, called a permanent
pointer. After migration, permanent pointers are lazily
evaluated, based on the proxy principle [Shapiro, 1986].
A proxy is a new object that represents the original ob-
ject, maintains a reference to it at the new location, and
provides a way to access it. Proxies, and the term proxy
principle describing its use, are extensively used in dis-
tributed systems with or without migration (e.g. for dis-
tributed IPC [Barrera, 1991], distributed memory
management [Black et al. 1998], and proxy servers on
the Web [Brooks, et al. 1995]). Functionality can be ar-
bitrarily distributed between a proxy and its principal ob-
ject. 

COOL provides an object-oriented layer on top of Cho-
rus [Amaral et al., 1992]. It supports DSM-based object
sharing, persistent store, and object clustering. Transpar-
ent remote invocation is achieved with a simple commu-
nication model using the COOL base primitives. When
re-mapped onto a new node, all internal references are
updated depending on the new location by pointer swiz-
zling [Lea et al., 1993], which is a technique for convert-
ing the persistent pointers or object identifiers into the
main memory pointers (addresses). Conversion can be
activated upon an access to the object (swizzling on dis-
covery) or eagerly (all objects at once upon the discovery
of the first persistent pointer). Pointer swizzling can also
be used for supporting large and persistent address spac-
es [Dearle, et al., 1994] and in very large data bases
[Kemper and Kossmann, 1995]. 

4.8   Mobile Agents

In the recent past, mobile agents have received signifi-
cant attention. A number of products have appeared and
many successful research systems have been developed
(see description of these systems below). A patent has
been approved for one of the first mobile agent systems,
Telescript [White, et al. 1997] and a standard was adopt-
ed by OMG [Milojicic et al., 1998b]. 

Mobile agents derive from two fields: agents, as defined
in the artificial intelligence community [Shoham, 1997],
and distributed systems, including mobile objects and
process migration [Milojicic et al., 1999]. However, their
popularity started with the appearance of the Web and
Java. The former opened vast opportunities for applica-
tions suited for mobile agents and the latter became a
driving programming language for mobile agents. 

In a Web environment, programming languages focus on
platform independence and safety. Innovations in OS
services take place at the middleware level rather than in
kernels [Bernstein, 1996]. Research in distributed sys-
tems has largely refocused from local to wide-area net-
works. Security is a dominant requirement for
applications and systems connected to the Web. In this
environment, mobile agents are a very promising mech-
anism. Typical uses include electronic commerce and
support for mobile, sporadically-connected computing
for which agents overcome limitations posed by short
on-line time, reduced bandwidth, and limited storage. 

Java has proven to be a suitable programming language
for mobile agents because it supports mobile code and
mobile objects, remote object model and language and
run-time safety, and it is operating system independent. 

While a large amount of the OS-level support for migra-
tion concentrated on transparency issues, the agent ap-
proach has demonstrated less concern for transparency.

We provide an overview a few commercial mobile agent
systems, such as Telescript, IBM Aglets, and Concordia,
and a few academic systems, such as Agent Tcl, TACO-
MA and Mole.

Telescript first introduced the mobile agent concepts
[White, 1996]. It is targeted for the MagicCap, a small
hand-held device. Telescript first introduced mobile
agent concepts place and permit and mechanisms meet
and go. IBM Aglets is one of the first commercially
available mobile agent systems based on Java [Lange
and Oshima, 1998]. It is developed by IBM Tokyo Re-
search Lab IBM. Aglets has a large community of users
and applications, even a few commercial ones. Concor-
dia is a mobile agent system developed at the Mitsubishi
Electric ITA Laboratory [Wong, et al.,  1997]. It is a
Java-based system that addresses security (by extending
the Java security manager) and reliability (using message
queuing based on two-phase-commit protocol). Concor-
dia is used for many in-house applications. 

Agent Tcl started as a Tcl/Tk-based transportable agent,
but it has been extended to support Java, Scheme and C/
C++ [Kotz, et al.,  1997]. It is used for the development
of the DAIS system for information retrieval and dissem-
ination in military intelligence [Hoffman, et al., 1998].
Agent Tcl is optimized for mobile computers, e.g. by
minimizing connection time and communication. The
TACOMA project is a joint effort by Tromso and Cor-
nell Universities [Johansen et al., 1995]. Compared to
other mobile agent research, which addresses program-
21
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ming languages aspects, TACOMA addresses operating
system aspects. The main research topics include securi-
ty and reliability. Mole is one of the first academic agent
systems written in Java [Baumann, et al., 1998]. It has
been used by industry (Siemens, Tandem, and Daimler
Benz), and academia (University of Geneva). Mole ad-
dresses groups of agents, agent termination, and security
for protecting agents against malicious hosts.

There are also many other mobile agent systems, such as
Ara [Peine and Stolpmann, 1997], Messenger [Tschudin,
1997], MOA [Milojicic et al., 1998a], and Sumatra [Ran-
ganathan, et al., 1997]. A lot of effort has been invested
in security of mobile agents, such as in the work by
Farmer, et al. [1996], Hohl [1998], Tardo and Valente
[1996], Vigna [1998], and Vitek, et al [1997]. A paper by
Chess et al. [1995] is a good introduction to mobile
agents. 

5 CASE STUDIES

This section presents four case studies of process migra-
tion: MOSIX, Sprite, Mach, and LSF. At least one of the
authors of this survey directly participated in the design
and implementation of each of these systems. Because it
is difficult to choose a representative set of case studies,
the selection of systems was guided by the authors’ per-
sonal experience with the chosen systems.

5.1   MOSIX

MOSIX is a distributed operating system from the He-
brew University of Jerusalem. MOSIX is an ongoing
project which began in 1981 and released its most recent
version in 1996. Automatic load balancing between
MOSIX nodes is done by process migration. Other inter-
esting features include full autonomy of each node in the
system, fully-decentralized control, single system image,
dynamic configuration and scalability. 

Various versions of MOSIX have been in active use at
the Hebrew University since 1983. The original version
of MOSIX was derived from UNIX Version 7 and ran on
a cluster of PDP-11/45 nodes connected by a token pass-
ing ring [Barak and Litman, 1985]. The version of
MOSIX documented in the MOSIX book is a cluster of
multiprocessor workstations which used a UNIX System
V.2 code base [Barak and Wheeler, 1989; Barak
et al., 1993]. The most recent version, developed in
1993, is called NOW MOSIX [Barak et al., 1995]. This
version enhances BSDI UNIX by providing process mi-
gration on a cluster of Intel Pentium processor based
workstations. 

Goals of the MOSIX system include:

• Dynamic process migration. At context switch time, a
MOSIX node may elect to migrate any process to a
other node. The migrated process is not aware of 
migration.

• Single system image. MOSIX presents a process with
a uniform view of the file system, devices and ne
working facilities regardless of the process’s curre
location. 

• Autonomy of each node. Each node in the system is in
dependent of all other nodes and may selectively p
ticipate in the MOSIX cluster or deny services to oth
nodes. Diskless nodes in MOSIX rely on a specif
node for file services.

• Dynamic configuration. MOSIX nodes may join or
leave a MOSIX cluster at any time. Processes that 
not running on a node or using some node specific 
source, are not affected by the loss of that node.

• Scalability. System algorithms avoid using any globa
state. By avoiding dependence on global state or c
tralized control, the system enhances its ability to sc
to a large number of nodes.

Design. The system architecture separates the UN
kernel into a lower and an upper kernel. Each object in
MOSIX, like an open file, has a universal object point
that is unique across the MOSIX domain. Universal o
jects in MOSIX are kernel objects (e.g. a file descript
entry) that can reference an object anywhere in the cl
ter. For example, the upper kernel holds a universal 
ject for an open file; the universal object migrates wi
the process while only the host of the file has the loc
non-universal file information. The upper kernel pro
vides a traditional UNIX system interface. It runs o
each node and handles only universal objects. The low
kernel provides normal services, such as device drive
context switching, and so on without having any know
edge or dependence on other nodes. The third compo
of the MOSIX system is the linker, which maps universal
objects into local objects on a specific node, and wh
provides internode communication, data transfer, p
cess migration and load balancing algorithms. When 
upper kernel needs to perform an operation on one of
universal objects that it is handling, it uses the linker 
perform a remote kernel procedure call on the objec
host node.

MOSIX transfers only the dirty pages and user area
the migrating process at the time of the migration, an ea-
ger (dirty) transfer strategy. Text and other clean page
22
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are faulted in as needed once the process resumes execu-
tion on the target node.

Process migration in MOSIX is a common activity. A
process has no explicit knowledge about what node it is
actually running on or any guarantees that it will contin-
ue to run on its current node. The migration algorithm is
cooperative: for a process to migrate to a node, the target
node must be willing to accept it. This allows individual
nodes control over the extent of their own contribution to
the MOSIX system. Individual nodes can also force all
active processes to migrate away, a procedure that is
used when shutting down an individual node.

Process migration in MOSIX relies on the fact that the
upper kernel context of each process is site-independent:
regardless of where the process physically runs, its local
upper kernel and linker route each system call to the ap-
propriate node. If the process decides to migrate to a new
node, the migration algorithm queries the new node to
ensure that it is willing to accept a new process. If so, the
upper kernel invokes a series of remote kernel procedure
calls that create an empty process frame on the new node,
moves the upper kernel context and any dirty pages asso-
ciated with the process and then resumes the process on
the new node.

Fault Resilience. Failed nodes in MOSIX affect only
processes running on the failed node or directly using re-
sources provided by the node. Nodes dynamically join
and leave a MOSIX cluster at will. Detection of stale ob-
jects—those that survive past the reboot of the object's
server—is done by maintaining per object version num-
bers. (As an example of a stale object, a universal pointer
to a file object must be reclaimed after the home node for
the file reboots.) Migrated processes leave no traces on
other nodes.

Transparency. Migration is completely transparent in
MOSIX, except for processes that use shared memory

and are not eligible for migration. Full single system im
age semantics are presented by MOSIX, making p
cesses unaware of their actual physical node. A n
system call, migrate(), was added to allow processes t
determine the current location or to request migration
a specified node. 

Scalability. MOSIX was designed as a scalable syste
The system relies on no centralized servers and ma
tains no global information about the system state. Ea
MOSIX node is autonomous and can dynamically join 
withdraw from the MOSIX system. No remote syste
operations involve more than two nodes: the initiatin
node and the node providing the service. The process
gration and load balancing algorithms also support sc
ability: load information is totally decentralized
Currently, an 80-node MOSIX system is running at H
brew University.

Load Information Management and Distributed
Scheduling. Several types of information are manage
by MOSIX in order to implement its dynamic load ba
ancing policy: the load at each node, individual proce
profiling, and load information about other nodes in th
system.

Each node computes a local load estimate that refle
the average length of its ready queue over a fixed ti
period. By selecting an appropriate interval, the impa
of temporary local load fluctuations is reduced witho
presenting obsolete information.

For each process in the system, an execution profile
maintained which reflects its usage of remote resour
like files or remote devices, communication patter
with other nodes, how long this process has run and h
often it has created new child processes via the fork()
system call. This information is useful in determinin
where a process should migrate to when selected for 
gration. For example, a small process that is mak
heavy use of a network interface or file on a specific no
would be considered for migration to that node. This pr
filing information is discarded when a process term
nates.

The MOSIX load balancing algorithm is decentralize
Each node in the system maintains a small load inform
tion vector about the load of a small subset of other no
in the system [Barak et al., 1989]. On each iteration 
the algorithm, each node randomly selects two oth
nodes, of which at least one node is known to have b
recently alive. Each of the selected nodes is sent the m
recent half of the local load vector information. In add

upper
kernel

lower
kernel

linker

process

upper
kernel

lower
kernel

linker

destination node source node

Figure 6: The MOSIX Architecture.
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tion, when a load information message is received, the
receiving node acknowledges receipt of the message by
returning its own load information back to the sending
node. 

During each iteration of the algorithm, the local load vec-
tor is updated by incorporating newly received informa-
tion and by aging or replacing older load information. To
discourage migration between nodes with small load
variations, each node adjusts its exported local load in-
formation by a stability factor. For migration to take
place, the difference in load values between two nodes
must exceed this stability value.

The load balancing algorithm decides to migrate pro-
cesses when it finds another node with a significantly re-
duced load. It selects a local process that has
accumulated a certain minimum amount of run-time,
giving preference to processes which have a history of
forking off new subprocesses or have a history of com-
munication with the selected node. This prevents short-
lived processes from migrating.

Implementation and Performance. Porting the original
version of MOSIX to a new operating system base re-
quired substantial modifications to the OS kernel in order
to layer the code base into the three MOSIX components
(linker, lower and upper kernels). Few changes took
place at the low level operating system code [Barak and
Wheeler, 1989]. 

In order to reduce the invasiveness of the porting effort,
a completely redesigned version of NOW MOSIX was
developed for the BSDI version of UNIX [Barak
et al., 1995]. The NOW MOSIX provides process migra-
tion and load balancing. without a single system image.
As in Sprite, system calls that are location sensitive are
forwarded to the home node of a migrated process as re-
quired (cf. Section 5.2). 

The performance of a migrated process in MOSIX de-
pends on the nature of the process. One measurement of
the effect that migration has on a process is the slower
performance of remote system calls. Using the frequen-
cies of system calls measured by Douglis and Ousterhout
[1987], system calls were 2.8 times slower when execut-
ed on a remote 33MHz MOSIX node [Barak
et al., 1989]. Table 1 shows the measured performance
and slowdown of several commonly used system calls.
Many system calls, for example getpid(), are always per-
formed on the processes current node and have no re-
mote performance degradation. 

The performance of the MOSIX migration algorithm de-
pends directly on the performance of the linker’s da
transfer mechanism on a given network and the size
the dirty address space and user area of the migra
process. The measured performance of the VME ba
MOSIX migration, from one node of the cluster to th
bus master, was 1.2 MB/second. The maximum d
transfer speed of the system’s VME bus was 3 MB/se
ond. 

Some applications benefit significantly from executin
in parallel on multiple nodes. In order to allow such a
plications to run on a system without negatively impac
ing everyone else, one needs process migration in o
to be able to rebalance loads when necessary. Argua
the most important performance measurement is 
measurement of an actual user-level application. Spe
ic applications, for example an implementation of 
graph coloring algorithm, show a near-linear speed
with increasing number of nodes [Barak et al., 1993]. 
course, this speedup does not apply to other types of
plications (non-CPU-bound, such as network or I/
bound jobs). These applications may experience diff
ent speedups. No attempt has been conducted to mea
an average speedup for such types of applications.

Lessons Learned. The MOSIX system demonstrated
that dynamic load balancing implemented via dynam
process migration is a viable technology for a cluster
workstations. The earlier MOSIX implementations re
quired too many changes to the structure of the base
erating system code in order to maintain the sing
system image nature of the system. Giving up the sin
system image while preserving process migration del
ers most of the benefits of the earlier MOSIX system
without requiring invasive kernel changes.

5.2   Sprite

The Sprite Network Operating System was developed
U.C. Berkeley between 1984 and 1994 [Ousterho

System Call Local Remote Slowdown

read (1K) 0.34 1.36 4.00

write (1K) 0.68 1.65 2.43

open/close 2.06 4.31 2.09

fork (256Kb) 7.8 21.60 2.77

exec (256 KB) 25.30 51.50 2.04

Table 1: MOSIX System Call Performance
24
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et al., 1988]. Its primary goal was to treat a network of
personal workstations as a time-shared computer, from
the standpoint of sharing resources, but with the perfor-
mance guarantees of individual workstations. It provided
a shared network file system with a single-system image
and a fully-consistent cache that ensured that all ma-
chines always read the most recently written data [Nel-
son et al., 1988]. The kernel implemented a UNIX-like
procedural interface to applications; internally, kernels
communicated with each other via a kernel-to-kernel
RPC. User-level IPC was supported using the file sys-
tem, with either pipes or a more general mechanism
called pseudo-devices [Welch and Ousterhout, 1988].
Virtual memory was supported by paging a process’s
heap and stack segments to a file on the local disk or a
file server. 

An early implementation of migration in Sprite [Douglis
and Ousterhout, 1987] suffered from some deficiencies
[Douglis, 1989]: 

• processes accessing some types of files, such as pseu-
do-devices, could not be migrated; 

• there was no automatic host selection; and 

• there was no automatic failure recovery. 

After substantial modifications to the shared file system
to support increased transparency and failure recovery
[Welch, 1990], migration was ported to Sun-3 worksta-
tions, and later Sparcstation and DECstation machines.
Automatic host selection went through multiple itera-
tions as well, moving from a shared file to a server-based
architecture. Migration was used regularly starting in the
fall of 1988. 

Goals:

• Workstation autonomy. Local users had priority over
their workstation. Dynamic process migration, as op-
posed to merely remote invocation, was viewed prima-
rily as a mechanism to evict other users’ processes
from a personal workstation when the owner returned.
In fact, without the assurance of local autonomy
through process migration, many users would not have
allowed remote processes to start on their workstation
in the first place.

• Location transparency. A process would appear to run
on a single workstation throughout its lifetime. 

• Using idle cycles. Migration was meant to take advan-
tage of idle workstations, but not to support full load
balancing. 

• Simplicity. The migration system tried to reuse other
support within the Sprite kernel, such as demand pag-
ing, even at the cost of some performance. For exam-

ple, migrating an active process from one workstati
to another would require modified pages in its addre
space to be written to a file server and faulted in on 
destination, rather than sent directly to the destinatio

Design. Transparent migration in Sprite was based 
the concept of a home machine. A foreign process was
one that was not executing on its home machine. Ev
process appeared to run on its home machine through
its lifetime, and that machine was inherited by desce
dants of a foreign process as well. Some location-dep
dent system calls by a foreign process would 
forwarded automatically, via kernel-to-kernel RPC, to i
home; examples include calls dealing with the time-o
day clock and process groups. Numerous other ca
such as fork and exec, required cooperation between th
remote and home machines. Finally, location-indepe
dent calls, which included file system operations, cou
be handled locally or sent directly to the machine respo
sible for them, such as a file server. 

Foreign processes were subject to eviction — being m
grated back to their home machine — should a local u
return to a previously idle machine. When a foreign pr
cess migrated home, it left no residual dependencies
its former host. When a process migrated away from
home, it left a shadow process there with some state 
would be used to support transparency. This state incl
ed such things as process identifiers and the parent-c
relationships involved in the UNIX wait call. 

As a performance optimization, Sprite supported bo
full process migration, in which an entire executing pr
cess would migrate, and remote invocation, in which
new process would be created on a different host,
though a fork and exec were done together (like the Lo
cus run call [Walker et al., 1983]). In the latter case, sta
that persists across an exec call, such as open files, would
be encapsulated and transferred, but other state suc
virtual memory would be created from an executable.

When migrating an active process, Sprite writes dir
pages and cached file blocks to their respective file se
er(s). The address space, including the executable
paged in as necessary. Migration in the form of remo
invocation would result in dirty cached file blocks bein
written, but would not require an address space to 
flushed, since the old address space is being discarde

The migration algorithm consists of the following step
[Douglis, 1989]: 

1. The process is signaled, to cause it to trap into 
kernel. 
25
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2. If the process is migrating away from its home
machine, the source contacts the target to confirm its
availability and suitability for migration. 

3. A “pre-migration” procedure is invoked for each ker-
nel module. This returns the size of the state that will
be transferred and can also have side effects, such as
queuing VM pages to be flushed to the file system. 

4. The source kernel allocates a buffer and calls encap-
sulation routines for each module. These too can have
side effects. 

5. The source kernel sends the buffer via RPC, and on
the receiving machine each module de-encapsulates
its own state. The target may perform other operations
as a side effect, such as communicating with file serv-
ers to arrange for the transfer of open files. 

6. Each kernel module can execute a “post-migration”
procedure to clean up state, such as freeing page
tables. 

7. The source sends an RPC to tell the target to resume
the process, and frees the buffer.

Fault Resilience. Sprite process migration was rather in-
tolerant of faults. During migration, the failure of the tar-
get anytime after step 5 could result in the termination of
the migrating process, for example, once its open files
have been moved to the target. After migration, the fail-
ure of either the home machine or the process’s current
host would result in the termination of the process. There
was no facility to migrate away from a home machine
that was about to be shut down, since there would always
be some residual dependencies on that machine. 

Transparency was achieved through a conspiracy be-
tween a foreign process’s current and home worksta-
tions. Operations on the home machine that involved a
foreign process, such as a ps listing of CPU time con-
sumed, would contact its current machine via RPC. Op-
erations on the current host involving transparency,
including all process creations and terminations, contact-
ed the home machine. Waiting for a child, even one co-
resident on the foreign machine, would be handled on the
home machine for simplicity. 

All IPC in Sprite was through the file system, even TCP
connections. (TCP was served through user-level dae-
mons contacted via pseudo-devices.) The shared net-
work file system provided transparent access to files or
processes from different locations over time.

As in MOSIX, processes that share memory could not be
migrated. Also, processes that map hardware devices di-
rectly into memory, such as the X server, could not mi-
grate.

Scalability. Sprite was designed for a cluster of workst
tions on a local area network and did not particularly a
dress the issue of scalability. As a result, neither did 
migration system. The centralized load information ma
agement system, discussed next, could potentially b
bottleneck, although a variant based on the MOS
probabilistic load dissemination algorithm was also im
plemented. In practice, the shared file servers proved
be the bottleneck for file-intensive operations such 
kernel compilations with as few as 4-5 hosts, while cp
intensive simulations scaled linearly with over ten hos
[Douglis, 1990].

Load Information Management. A separate, user-level
process (migd) was responsible for maintaining the sta
of each host and allocating idle hosts to application
This daemon would be started on a new host if it, or 
host, should crash. It allocated idle hosts to request
processes, up to one foreign “job” per available proce
sor. (A “job” consisted of a foreign process and its d
scendants.) It supported a notion of fairness, in that one
application could use all idle hosts of the same archit
ture but would have some of them reclaimed if anoth
application requested hosts as well. Reclaiming due
fairness would look to the application just like reclaim
ing due to a workstation’s local user returning: the fo
eign processes would be migrated home and either 
locally, migrated elsewhere, or suspended, depending
their controlling task’s behavior and host availability. 

Migration was typically performed by pmake, a parallel
make program like many others that eventually becam
commonplace (e.g., [Baalbergen, 1988]) Pmake would
use remote invocation and then remigrate processe
migd notified it that any of its children were evicted. I
would suspend any process that could not be remigrat

Implementation and Performance. Sprite ran on Sun
(Sun 2, Sun 3, Sun 4, SPARCstation 1, SPARCstation
and Digital (DECstation 3100 and 5100) workstation
The entire kernel consisted of approximately 200,0
lines of heavily commented code, of which approxima
10,000 dealt with migration.

The performance of migration in Sprite can be measu
in three respects. All measurements in this subsec
were taken on SPARCstation 1 workstations on a 1
Mbps Ethernet, as reported in [Douglis an
Ousterhout, 1991].

1. The time to migrate a process was a function of the
overhead of host selection (36ms to select a sin
host, amortized over multiple selections when migr
26
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tion is performed in parallel); the state for each open
file (9.4ms/file); dirty file and VM blocks that must be
flushed (480-660 Kbytes/second depending on
whether they are flushed in parallel); process state
such as exec arguments and environment variables
during remote invocation (also 480 Kbytes/second);
and a basic overhead of process creation and message
traffic (76ms for the null process). 

2. A process that had migrated away from its home
machine incurred run-time overhead from forward-
ing location-dependent system calls. Applications of
the sort that were typically migrated in Sprite, such as
parallel compilation and LaTeX text processing,
incurred only 1-3% degradation from running
remotely, while other applications that invoked a
higher fraction of location-dependent operations
(such as accessing the TCP daemon on the home
machine, or forking children repeatedly) incurred
substantial overhead. 

3. Since the purpose of migration in Sprite was to enable
parallel use of many workstations, application
speedup is an important metric. Speedup is affected
by a number of factors, including the degree of paral-
lelism, the load on central resources such as the migd
daemon, and inherently non-parallelizable operations.
By comparing the parallel compilation of several
source directories, ranging from 24 to 276 files and 1
to 3 independent link steps, one found that the
speedup compared to the sequential case ranged from
about 3 to 5.4 using up to 12 hosts, considerably
below linear speedup. During a 12-way pmake, the
processors on both the server storing the files being
read and written, and the workstation running pmake,
were saturated. Network utilization was not a signifi-
cant problem, however.

Lessons Learned. Here we summarize the two most im-
portant lessons and experiences in Sprite process migra-
tion [Douglis, 1990; Douglis and Ousterhout, 1991].

• Migration provided a considerable source of processor
cycles to the Sprite community. Over a one-month pe-
riod, 30% of user processor activity came from migrat-
ed (foreign) processes. The host that accounted for the
greatest total usage (nearly twice as many cpu-seconds
as the next greatest) ran over 70% of its cycles on other
hosts. 

• Evictions accounted for 6% of all migrations, with
about half of these evictions due to fairness consider-
ations and the other half due to users reclaiming their
machines. About 1% of all host allocations were re-
voked for one of these two reasons. (Evictions counted
for a relatively higher fraction of all migrations be-

cause one host revocation could result in many p
cesses being migrated.)

5.3   Mach

Mach is a microkernel developed at the Carnegie Mell
University [Accetta et al., 1986; Black et al., 1992], an
later at the OSF Research Institute [Bryant, 1995]. A m
gration mechanism on top of the Mach microkernel w
developed at the University of Kaiserslautern, from 19
to 1993 [Milojicic et al., 1993b].

Task migration was used for experiments with load d
tribution. In this phase, only tasks were addressed, wh
UNIX processes were left on the source machine, as 
scribed in Figure 7. This means that only Mach task st
was migrated, whereas the UNIX process state that w
not already migrated as a part of the Mach task state (
state in the UNIX “personailty server” emulating UNIX
on top of the Mach microkernel) remained on the sour
machine. Therefore, most of the UNIX system calls we
forwarded back to the source machine, while only Ma
system calls were executed on the destination machin

Process migration for the OSF/1 AD 1 server [Painda
eine and Milojicic, 1996] was developed during 1994 
the Universite Catholique de Louvain, Belgium, as a p
of a project on load-leveling policies in a distributed sy
tem [Jacqmot, 1996]. OSF/1 AD 1 is a version of th
OSF/1 operating system which provides a scalable, hi
performance single-system image version of UNIX. It 
composed of servers distributed across the differ
nodes running the Mach microkernel. Process migrat
relies on the Mach task migration to migrate microke
nel-dependent process state between nodes. 

Mach task migration was also used at the University
Utah, for the Schizo project [Swanson et al., 1993]. Ta
and process migration on top of Mach were designed a
implemented for clusters of workstations. 

microkernel

source node destination node 

(1) before

(3) after
(2) migration

microkernel

task task

UNIX
process

(1)

(2)

(3)

Figure 7: Task Migration Design. Only task abstraction is mi-
grated, while process abstraction remains on the source node.
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Goals. The first goal was to provide a transparent task
migration at user-level with minimal changes to the mi-
crokernel. This was possible by relying on Mach OS
mechanisms, such as (distributed) memory management
and (distributed) IPC. The second goal was to demon-
strate that it is possible to perform load distribution at the
microkernel level, based on the three distinct parameters
that characterize microkernels: processing, VM and IPC. 

Design. The design of task migration is affected by the
underlying Mach microkernel. Mach supported various
powerful OS mechanisms for purposes other than task
and process migration. Examples include Distributed
Memory Management (DMM) and Distributed IPC
(DIPC). DIPC and DMM simplified the design and im-
plementation of task migration. DIPC takes care of for-
warding messages to migrated process, and DMM
supports remote paging and distributed shared memory.
The underlying complexity of message redirection and
distributed memory management are heavily exercised
by task migration, exposing problems otherwise not en-
countered. This is in accordance with earlier observa-
tions about message-passing [Douglis and
Ousterhout, 1991].

In order to improve robustness and performance of
DIPC, it was subsequently redesigned and reimplement-
ed [Milojicic et al., 1997]. Migration experiments have
not been performed with the improved DIPC. However,
extensive experiments have been conducted with Con-
current Remote Task Creation (CRTC), an in-kernel ser-
vice for concurrent creation of remote tasks in a
hierarchical fashion [Milojicic et al., 1997]. The CRTC
experiments are similar to task migration, because a re-
mote fork of a task address space is performed. 

DMM enables cross-node transparency at the Mach VM
interface in support of a distributed file system, distribut-
ed processes, and distributed shared memory [Black, D,
et al., 1998]. The DMM support resulted in simplified
design and implementation of the functionality built on
top of it, such as SSI UNIX and remote tasking, and it
avoided pager modifications by interposing between the
VM system and the pager. However, the DMM became
too complex, and had performance and scalability prob-
lems. The particular design mistakes include the interac-
tions between DSM support and virtual copies in a
distributed system; transparent extension of Mach copy-
on-write VM optimization to distributed systems; and
limitations imposed by Mach’s external memory man-
agement while transparently extending it to distributed
systems. (Copy-on-write is an optimization introduced to

avoid copying pages until it is absolutely needed, a
otherwise sharing the same copy. It has also been use
Chorus [Rozier, 1992] and Sprite [Nelson and Ouste
hout, 1988].) 

DMM had too many goals to be successful; it failed o
many general principles, such as “do one thing, but d
right,” and “optimize the common case” [Lampson
1983]. Some of the experiments with task migration r
flect these problems. Variations of forking an addre
space and migrating a task significantly suffered in p
formance. While some of these cases could be impro
by optimizing the algorithm (as was done in the case
CRTC [Milojicic et al., 1997]), it would only add to an
already complex and fragile XMM design and imple
mentation. Some of the DMM features are not useful 
task migration, even though they were motivated by ta
migration support. Examples include DSM and distribu
ed copy-on-write optimizations. DSM is introduced i
order to support the transparent remote forking of a
dress spaces (as a consequence of remote fork or m
tion) that locally share memory. Distributed copy-on
write is motivated by transparently forking address spa
es that are already created as a consequence of l
copy-on-write, as well as in order to support caching
distributed case. 

Even though the DIPC and DMM interfaces support 
implementation of user-level task migration, there a
two exceptions. Most of the task state is accessible fr
user space except for the capabilities that represent ta
and threads and capabilities for internal memory sta
Two new interfaces are provided for exporting the afor
mentioned capabilities into user space. 

A goal of one of the user-space migration servers is
demonstrate different data transfer strategies. An ex
nal memory manager was used for implementation
this task migration server. The following strategies we
implemented: eager copy, flushing, copy-on-referenc
precopy and read-ahead [Milojicic et al., 1993b]. For
most of the experiments, a simplified migration serv
was used that relied on the default in-kernel data trans
strategy, copy-on-reference.

The task migration algorithm steps are:

1. Suspend the task and abort the threads in orde
clean the kernel state. 1

1.  Aborting is necessary for threads that can wait in the kernel arbitrari-

ly long, such as in the case of waiting for a message to arrive. The wait

operation is restartable on the destination node.
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2. Interpose task/thread kernel ports on the source node.

3. Transfer the address space, capabilities, threads and
the other task/thread state.

4. Interpose back task/thread kernel ports on the destina-
tion node.

5. Resume the task on the destination node.

Process state is divided into several categories: the Mach
task state; the UNIX process local state; and the process-
relationship state. The local process state corresponds to
the typical UNIX proc and user structures. Open file de-
scriptors, although part of the UNIX process state, are
migrated as part of the Mach task state.

Fault Resilience of Mach task migration was limited by
the default transfer strategy, but even more by the DIPC
and DMM modules. Both modules heavily employ the
lazy evaluation principle, leaving residual dependencies
throughout the nodes of a distributed system. For exam-
ple, in the case of DIPC, proxies of the receive capabili-
ties remain on the source node after receive capability is
migrated to a remote node. In the case of DMM, the es-
tablished paging paths remain bound to the source node
even after eager copying of pages is performed to the
destination node.

Transparency was achieved by delaying access or pro-
viding concurrent access to a migrating task and its state
during migration. The other tasks in the system can ac-
cess the migrating task either by sending messages to the
task kernel port or by accessing its memory. Sending
messages is delayed by interposing the task kernel port
with an interpose port. The messages sent to the inter-
pose port are queued on the source node and then restart-
ed on the destination node. The messages sent to other
task ports are transferred as a part of migration of the re-
ceive capabilities for these ports. Access to the task ad-
dress space is supported by DMM even during
migration. Locally shared memory between two tasks
becomes distributed shared memory after migration of
either task.

In OSF/1 AD, a virtual process (Vprocs) framework sup-
ports transparent operations on the processes indepen-
dently of the actual process’s location [Zajcew
et al., 1993]. By analogy, vprocs are to processes what
vnodes are to files, both providing location and heteroge-
neity transparency at the system call interface. Distribut-
ed process management and the single system image of
Mach and OSF/1 AD eased the process migration imple-
mentation. 

A single system image is preserved by retaining the p
cess identifier and by providing transparent access to
UNIX resources. There are no forwarding stub proces
or chains. No restrictions are imposed on the proces
considered for migration: for example, using pipes 
signals does not prevent a process from being migrat

Scalability. The largest system that Mach task migratio
ran on at University of Kaiserslautern consisted of fiv
nodes. However, it would have been possible to scal
closer towards the limits of the scalability of the unde
lying Mach microkernel, which is up to a couple of thou
sand nodes on the Intel Paragon supercomputer. 

Migration of the address space relies heavily on t
Mach copy-on-write VM optimization, which linearly
grows the internal VM state for each migratio
[Milojicic et al., 1997]. In practice, when there are jus
few migrations, this anomaly is not noticeable. Howev
for many consecutive migrations it can reduce perfo
mance.

Load Information and Distributed Scheduling. Mach
was profiled to reflect remote IPC and remote paging a
tivity in addition to processing information. This infor
mation was used to improve load distribution decision
[Milojicic, 1993c]. Profiling was performed inside of the
microkernel by collecting statistics for remote commun
cation and for remote paging and in user space, by in
posing application ports with profiler ports.

A number of applications were profiled and classified 
three categories: processing, communication and pag
intensive. Table 2 gives representatives of each class

Extended load information is used for applying more a
propriate distributed scheduling decisions [Milojici
et al., 1993a]. An application that causes a significa
amount of remote paging, or communicates with anoth
node, is considered for migration to the appropriate no
CPU-bound applications have no such preference a
can be migrated based only on the processing load cr
ria. For applications consisting of a number of proces
that communicate among themselves, improveme
achieved by considering IPC/VM information in add

type application
user/total 

time
IPC

(msg/s)
VM

(pagin+out)/s)

Processing Dhrystone 1.00 3.49 0.35+0

IPC find 0.03 512.3 2.75+0

VM WPI Jigsaw 0.09 2.46 28.5+38.2

Table 2: Processing, IPC and VM intensive applications
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tion to CPU load is proportional to the load and it can
reach up to 20-50% for distributed scheduling strategies
[Milojicic et al., 1993a]. Improvements of the perfor-
mance of a simple application due to locality of reference
can be multifold [Milojicic et al., 1993b].

Implementation and Performance. Milojicic et al.
built three implementations: two user-level migrations
(an optimized and a simple migration server); and a ker-
nel implementation. The size of the simplified migration
server is approximately 400 lines of code that took about
3 months to design and implement. A lot of this time was
spent in debugging the DIPC parts of code that were nev-
er before exercised. Task migration, especially load dis-
tribution experiments using task migration, turned out to
be a very stressful test for DIPC. 

The size of the in-kernel version is close to the simplified
migration server, from which it was derived. These two
implementations relied on the in-kernel support for ad-
dress space transfer. However, the size of the DIPC and
DMM modules was significantly higher. One of the lat-
est versions of optimized DIPC (nmk21b1) consisted of
over 32,000 lines of code. It took over 10 engineer-years
to release the second version of DIPC. The DMM, which
was never optimized, consists of 24,000 lines of code. 

The optimized migration server is largest in size with a
few thousand lines of code. Most of this implemented a
pager supporting different data transfer strategies. The
optimized migration server did not rely on in-kernel data
transfer strategy, except for the support of distributed
shared memory.

Although there is an underlying distributed state in the
microkernel, no distributed state is involved in the pro-
cess migration facility at the server level, rendering the
design of the migration mechanism simple. The process
migration code consists of approximately 800 lines of
code. However, adding distributed process management
requires about 5000 lines of additional code. The main
(initial and runtime) costs of migration are due to task
migration. Process migration has very little overhead in
addition to task migration.

Performance measurements were conducted on a testbed
consisting of three Intel 33MHz 80486 PCs with 8MB
RAM. The NORMA14 Mach and UNIX server UX28
were used. Performance is independent of the address
space size, and is a linear function of the number of ca-
pabilities (see Figure 8). It was significantly improved in
subsequent work [Milojicic et al., 1997]. 

Lessons learned

• Relying on DIPC and DMM is crucial for the easy de
sign and implementation of transparent task migratio
but these modules also entail most of the complex
and they limit performance and fault resilience. 

• Task migration is sufficient for microkernel applica
tions. In contrast, as mentioned above, UNIX applic
tions would forward most system calls back to th
source node, resulting in an order-of-magnitude p
formance degradation. Migrating the full UNIX pro
cess state would presumably have alleviated t
overhead, similar to the evolution in Sprite toward di
tinguishing between location-dependent and locatio
independent calls [Douglis, 1989].

• Applications on microkernels can be profiled as 
function of processing, IPC and VM and this informa
tion can be used for improved load distribution. Im
provement ranges from 20-55% for collaborativ
types of applications.

5.4   LSF

LSF (Load Sharing Facility) is a load sharing and bat
scheduling product from Platform Computing Corpor
tion [Platform Computing, 1996]. LSF is based on th
Utopia system developed at the University of Toron
[Zhou et al., 1994], which is in turn based on the earl
Ph.D. thesis work of Zhou at UC Berkeley [Zhou, 198
Zhou and Ferrari, 1988].

LSF provides some distributed operating system fac
ties, such as distributed process scheduling and trans
ent remote execution, on top of various operating syst
kernels without change. LSF primarily relies on initia
process placement to achieve load balancing, but a
uses process migration via checkpointing as a comp

Figure 8:  Task migration performance as a function of
VM size: initial costs are independent of task address space
size (aside of variations due to other side effects).

0

0.2

0.4

0.6

0.8

1

1.2

0 50 100 150 200 250 300 350 400

Tr
an
sf
er
 t
im
e 
(i
n 
se
c)

memory size (in 4k pages)

transfer
time [s]

12 capabilities, 1 thread

overall
memory

capabilities
threads
30



o-

be
load
 of
ll

de-
al.
his
et-
 in
va-
ble
s is
 be
er-
ral

on

-
ed
or
run-
ad
ig-
id
nd

to
 on

e-
ed

oad
ess.
er-
in-
eue
ing
y-
ess
es-

 re-
B

he
d

ment. LSF currently runs on most UNIX-based operating
systems.

Checkpointing and Migration Mechanisms. LSF’s
support for process user-level process migration is based
on Condor’s approach [Litzkow and Solomon, 1992]. A
checkpoint library is provided that must be linked with
application code. Part of this library is a signal handler
that can create a checkpoint file of the process so that it
can be restarted on a machine of compatible architecture
and operating system. Several improvements have been
made to the original Condor checkpoint design, such as:

• No core dump is required in order to generate the
checkpoint file. The running state of the process is di-
rectly extracted and saved in the checkpoint file to-
gether with the executable in a format that can be used
to restart the process. This not only is more efficient,
but also preserves the original process and its ID
across the checkpoint.

• UNIX signals can be used by the checkpointed pro-
cess. The state information concerning the signals
used by the process is recorded in the checkpoint file
and restored at restart time.

In addition to user-level transparent process checkpoint-
ing, LSF can also take advantage of checkpointing al-
ready supported in the OS kernel (such as in Cray Unicos
and ConvexOS), and application-level checkpointing.
The latter is achievable in classes of applications by the
programmer writing additional code to save the data
structures and execution state information in a file that
can be interpreted by the user program at restart time in
order to restore its state. This approach, when feasible,
often has the advantage of a much smaller checkpoint
file because it is often unnecessary to save all the dirty
virtual memory pages as must be done in user-level
transparent checkpointing. Application-level check-
pointing may also allow migration to work across heter-
ogeneous nodes.

The checkpoint file is stored in a user-specified directory
and, if the directory is shared among the nodes, the pro-
cess may be restarted on another node by accessing this
file.

Load Information Exchange. Similar to Sprite, LSF
employs a centralized algorithm for collecting load in-
formation. One of the nodes acts as the master, and every
other node reports its local load to the master periodical-
ly. If the master node fails, another node immediately as-
sumes the role of the master. The scheduling requests are
directed to the master node, which uses the load informa-

tion of all the nodes to select the one that is likely to pr
vide the best performance.

Although many of the load information updates may 
wasted if no process need to be scheduled between 
information updates, this algorithm has the advantage
making (reasonably up-to-date) load information of a
nodes readily available, thus reducing the scheduling 
lay and considering all nodes in scheduling. Zhou et 
[1994] argue that the network and CPU overhead of t
approach is negligible in modern computers and n
works. Measurements and operational experience
clusters of several hundred hosts confirm this obser
tion. Such a centralized algorithm also makes it possi
to coordinate all process placements - once a proces
scheduled to run on a node, this node is less likely to
considered for other processes for a while to avoid ov
loading it. For systems with thousands of nodes, seve
clusters can be formed, with selective load informati
exchange among them. 

Scheduling Algorithms. LSF uses checkpoint and re
start to achieve process migration, which in turn is us
to achieve load balancing. If a node is overloaded 
needed by some higher priority processes, a process 
ning on it may be migrated to another node. The lo
conditions that trigger process migration can be conf
ured to be different for various types of jobs. To avo
undesirable migration due to temporary load spikes a
to control migration frequency, LSF allows users 
specify a time period for which a process is suspended
its execution node. Only if the local load conditions r
main unfavorable after this period would the suspend
process be migrated to another node.

The target node is selected based on the dynamic l
conditions and the resource requirements of the proc
Recognizing that different processes may require diff
ent types of resources, LSF collects a variety of load 
formation for each node, such as average CPU run qu
length, available memory and swap space, disk pag
and I/O rate, and the duration of idle period with no ke
board and mouse activities. Correspondingly, a proc
may be associated with resource requirement expr
sions such as

select[sparc && swap >= 120 && 
mem >= 64] order[cpu:mem]

which indicates that the selected node should have a
source called “sparc”, and should have at least 120 M
of swap space and 64 MB of main memory. Among t
eligible nodes, the one with the fastest, lightly loade
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CPU, as well as large memory space, should be selected.
A heuristic sorting algorithm is employed by LSF to con-
sider all the (potentially conflicting) resource preferenc-
es and select a suitable host. Clearly, good host
allocation can only be achieved if the load condition of
all nodes is known to the scheduler. 

The resource requirements of a process may be specified
by the user when submitting the process to LSF, or may
be configured in a system process file along with the pro-
cess name. This process file is automatically consulted
by LSF to determine the resource requirement of each
type of process. This process file also stores information
on the eligibility of each type of process for remote exe-
cution and migration. If the name of a process is not
found in this file, either it is excluded from migration
consideration, or only nodes of the same type as the local
node would be considered. 

Process Migration vs. Initial Placement. Although
LSF makes use of process migration to balance the load,
it is used more as an exception rather than the rule, for
three reasons. First, transparent user-level checkpointing
and migration are usable by only those processes linked
with the checkpoint library, unless the OS kernel can be
modified; in either case, their applicability is limited.
Secondly, intelligent initial process placement has been
found to be effective in balancing the load in many cases,
reducing the need for migration [Eager et al., 1988]. Fi-
nally, and perhaps most importantly, the same load bal-
ancing effect can often be achieved by process placement
with much less overhead. The remote process execution
mechanism in LSF maintains the connection between the
application and the Remote Execution Server on the ex-
ecution node and caches the application’s execution con-
text for the duration of the application execution, so that
repeated remote process executions would incur low
overhead (0.1 seconds as measured by Zhou et al. on a
network of UNIX workstations [1994]). 

In contrast, it is not desirable to maintain per-application
connections in a kernel implementation of process mi-
gration to keep the kernel simple, thus every process mi-
gration to a remote node is “cold”. Per-application
connections and cached application state are rather
“heavyweight” for kernel-level migration mechanisms,
and the kernel-level systems surveyed in this paper treat
each migration separately (though the underlying com-
munication systems, such as kernel-to-kernel RPC, may
cache connection state). The benefits of optimizing re-
mote execution are evident by comparing LSF to an ear-
lier system such as Sprite. In the case of Sprite, the

overhead of exec time migration was measured to be 
proximately 330ms on Sparcstation 1 workstations ov
the course of one month [Douglis and Ousterhout, 199
Even taking differences in processor speed into accou
as well as underlying overheads such as file syst
cache flushing, LSF shows a marked improvement in 
mote invocation performance.

6 COMPARISON

In this section, we compare the various migration imp
mentations described in the paper. We cover the c
studies, as well as some other systems mentioned
Section 4.

Table 3 summarizes the process migration classificat
provided in Section 4. We mention examples of each
class of migration, followed by the main characteristic
of each class. These columns are self-explanatory. T
OS v. Application Modification column describes
where the majority of modifications to support migratio
are performed. Migration in the early work, UNIX-like
systems, message passing and microkernels req
modifications to the underlying OS. User-space and 
plication-specific systems require modifications to th
application, typically relinking and in certain cases al
recompiling. Mobile objects and agents require modi
cations to the underlying programming environmen
However, they also have the least transparency, as
scribed below.

The Migration Complexity column describes the
amount of effort required to design and implement m
gration. Complexity is high for kernel implementation
Exceptions are message-passing kernels, which alre
provide much of the required functionality in their sup
port for message passing. This results in a simpler mig
tion mechanism. Microkernels also support migratio
more easily because of simpler abstractions and redu
functionality (for example, no UNIX compatibility).
However, extensive complexity is introduced for su
porting distributed IPC and distributed memory manag
ment. The least complex implementations are those d
at user level and those done as part of an application

The “other complexity” subfield describes where th
complexity in the system exists. Early work incurre
complexity in infrastructure support for the underlyin
hardware and software, such as Alto computers in 
case of Worms, and the X-Tree architecture in the c
of XOS. Transparent migration on UNIX-like system
incurs a lot of complexity for the support of Single Sy
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tem Image and extending UNIX semantics to a distribut-
ed system. As already pointed out, message passing
typically requires a lot of complexity; examples include
Charlotte and the V kernel, as well as some of the micro-
kernels, such as Mach and Chorus. In addition, some of
the microkernels (e.g. Mach) also support distributed
memory management, which is even harder to support.
User-space migrations trade off the simplicity of the un-
derlying support for redirecting system calls or imposing
limits on them. Application-specific migrations require
knowledge of the application semantics in order to inte-
grate migration calls at appropriate places.

Extensibility describes how easy it is to extend a process
migration implementation. Examples include support for
multiple data transfer and location strategies. In most
cases, extensibility is inversely proportional to complex-
ity. An exception to this rule are message-passing ker-
nels, which have simple migration implementations, but
are not as extensible. Extensions to a migration mecha-
nism for performance and improved fault resilience typ-
ically require complex changes to the underlying
mechanism for message passing. Portability describes
how easy it is to port the migration mechanism to another
operating system or computer. User-space and applica-
tion-specific implementations have superior portability.
Condor and LSF run on numerous versions of operating
systems and computers. Kernel-level implementations
are typically closely related to the underlying system and

consequently their portability is limited to the portability
of the operating system. For example Mach and MOSIX
were ported to a number of computer architectures.

It is hard to compare the performance of various migra-
tion mechanisms because the implementations were
done on a number of different architectures. It is also
hard and inaccurate to normalize performance (some at-
tempts toward normalizations were done by Roush
[1995]). Therefore, we have not provided a column de-
scribing performance. Nevertheless, we note that the per-
formance of user- and application-level migrations
typically fall in the range of seconds, even minutes, when
migrating processes with large address spaces. The ker-
nel supported migrations, especially the newer imple-
mentations, fall in the range of tens of milliseconds. The
most optimized kernel implemented migration (Choices)
has initial costs of only 14ms [Roush and Campbell,
1996], and it is better even if some rough normalization
is accounted for (see [Roush, 1995]). 

As mentioned earlier, the dominant performance element
is the cost to transfer the address space. Kernel-level op-
timizations can cut down this cost, whereas user-level
implementations do not have access to the relevant data
structures and cannot apply these optimizations. 

Recently, trends are emerging that allow users more ac-
cess to kernel data, mechanism, and policies [Bomberger
et al., 1992]. For example, microkernels export most of

Migration/
Characteristics

Examples
Main 

Characteristics
OS v. Appl. 

Modification 
Migration Complexity

(Other Complexity)
Extensibility
& portability

Transparency

Early Work
XOS, Worm, 

DEMOS, Butler
ad-hoc solutions, HW 

dependent
OS

low
(lack of infrastructure)

poor limited

Transp. Migration 
in UNIX-like OS

Locus, MOSIX,
Sprite

major changes to the 
underlying env.

OS
high

(Supporting SSI)
fair

(OS depend.)
full

Message-Passing
OS

Charlotte, Accent, 
V Kernel

complex OS support 
easy PM implement.

OS
low 

(Message Passing)
fair

(OS depend.)
full

Microkernels
Amoeba, Arcade, BirliX, 
Chorus, Mach, RHODOS 

no UNIX semantics
complex OS support

OS
low 

(DMM and DIPC)
good

(OS depend.)
full

User Space
Condor, Alonso&Kyrimis, 

Mandelberg, LSF
less transparency

application
(relinked)

low
(forwarding system calls)

very good
(appl. dep.)

limited

Application
Freedman, Skordos, 

Bharat&Cardelli
min. transparency, 

more appl. knowledge
application

(recompiled)
lowest

(app migration awareness)
very good minimal

Mobile objects
Emerald, SOS, 

COOL
object oriented

programming 
environment

moderate
(communication)

good full

Mobile Agents
Agent-TCL, Aglets

TACOMA, Telescript 
heterogeneity

programming 
environment

lowest
(security & safety)

good fair

Table 3: Summary of the different migration implementations.
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the kernel state needed for user-level implementations of
migration [Milojicic, 1993c]. Extensible kernels provide
even more support in this direction [Bershad et al., 1995;
Engler et al., 1995]. These trends decrease the relevance
of user versus kernel implementations.

Transparency describes the extent to which a migrated
process can continue execution after migration as if mi-
gration has not happened. It also determines whether a
migrated process is allowed to invoke all system func-
tions. Many user- or application-level implementations
do not allow a process to invoke all system calls.
Migration that is implemented inside the kernel typically
supports full functionality. In general, the higher the lev-
el of the implementation, the less transparency is provid-
ed. User-space implementations are aware of migration
and they can invoke migration only at predefined places
in the code. Kernel-supported implementations typically
have higher levels of transparency. Single system image
supports transparent migration at any point of applica-
tion code; migration can transparently be initiated either
by the migrating process or by another process. Most
mobile agent implementations do not allow transparent
migration invocation by other applications; only the mi-
grating agent can initiate it. Even though less transparent,
this approach simplifies implementation. 

More specifics on transparency in the case studies are
presented in Table 4. Migration for each case study is

categorized by whether it transparently supports open
files, forking children, communication channels, and
shared memory. If migration requires changes to the ker-
nel or relinking the application, that is also listed. 

Support for shared memory of migrated tasks in Mach is
unique. In practice, it was problematic due to a number
of design and implementation issues [Black et al. 1998].
Other systems that supported both shared memory and
migration either chose not to provide transparent access
to shared memory after migration (e.g. Locus [Walker
and Mathews, 1989; Fleisch and Popek, 1989]), or disal-
lowed migration of processes using shared memory (e.g.,
Sprite [Ousterhout et al., 1988]).

Kernel-level migration typically supports all features
transparently, whereas user-level migrations may limit
access to NFS files and may not support communication
channels or interprocess communication. In addition, a
user-level migration typically requires relinking applica-
tions with special libraries. Migration done as part of an
application requires additional re-compilation.  

In Table 5, we compare different data transfer strategies
with respect to freeze time, freeze costs, residual time
and costs, residual dependencies, and initial migra-
tion time (time passed since request for migration until
process started on remote node). 

We can see that different strategies have different goals
and introduce different costs. At one end of the spectrum,

Migration/
supported

open files fork children
communication 

channels
need to relink 

application
changes to kernel shared memory

MOSIX yes yes yes no yes no

Sprite yes yes yes no yes no

Mach & OSF/1 AD yes yes yes no yes yes

LSF some no no yes no no

Table 4: Transparency “checklist”.

data transfer
strategy example freeze time freeze costs

residual time & 
costs

residual 
dependency

initial
migration time

eager (all) most user-level and 
early migrations

 high  high none none high 

eager (dirty) MOSIX, Locus moderate moderate none none moderate

precopy V kernel very low high none none high

copy on reference Accent, Mach low small high yes low

flushing Sprite moderate moderate moderate none moderate

Table 5: Summary of Various Data Transfer Strategies.
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systems that implement an eager (all) strategy in user
space eliminate residual dependencies and residual costs,
but suffer from high freeze time and freeze costs. 

Modifying the operating system allows an eager (dirty)
strategy to reduce the amount of the address space that
needs to be copied to the subset of its dirty pages. This
increases residual costs and dependencies while reduc-
ing freeze time and costs. 

Using a precopy strategy further improves freeze time,
but has higher freeze costs than other strategies. Applica-
tions with real-time requirements can benefit from this.
However, it has very high migration time because it may
require additional copying of already transferred pages.

Copy on reference requires the most kernel changes in
order to provide sophisticated virtual mappings between
nodes. It also has more residual dependencies than other
strategies, but it has the lowest freeze time and costs, and
migration time is low, because processes can promptly
start on the remote node.

Finally, the flushing strategy also requires some amount
of change to the kernel, and has somewhat higher freeze
time than copy-on-reference, but improves residual time
and costs by leaving residual dependencies only on a
server, but not on the source node. Process migration in
the Choices system, not listed in the table, represents a
highly optimized version of eager (dirty) strategy.

The data transfer strategy dominates process migration
characteristics such as performance, complexity, and
fault resilience. The costs, implementation details and re-
sidual dependencies of other process elements (e.g. com-
munication channels, and naming) are also important but
have less impact on process migration. 

In the Mach case study, we saw that most strategies can
be implemented in user space. However, this requires a
pager-like architecture that increases the complexity of
OS and migration design and implementation.

Table 6 summarizes load information database charac-
teristics. Database type indicates whether the informa-
tion is maintained as a distributed or a centralized
database. Centralized databases have shown surprising
scalability for some systems, in particular LSF. Never-
theless, achieving the highest level of scalability requires
distributed information management. 

Maximum nodes deployed is defined as the number of
nodes that were actually used. It is hard to make predic-
tions about the scalability of migration and load informa-
tion management. An approximate prediction is that
centralized load information management could scale up
to 500 nodes without hierarchical organization, such as
in Sprite. With hierarchical organization, such as in LSF,
it could scale beyond 2000 nodes. Decentralized infor-
mation management, such as in MOSIX, can scale to an
even larger number of nodes. Even though Mach task mi-
gration has not been used on larger systems than a 5-node
Ethernet cluster, most of its components that can impact
scalability (distributed IPC, distributed memory man-
agement, and remote address space creation) have been
demonstrated to scale well. The Intel Paragon computer,
the largest MMP machine that runs Mach, has over 2000
nodes [Zajcew et al., 1993]. However, in order to use mi-
gration for load distribution some decentralized informa-
tion management algorithm would have to be deployed,
similar to the one used for TNC.

Database scope defines the amount of information that
is considered. Some systems, like MOSIX, maintain par-
tial system information in order to enhance scalability.
Large systems need to address fault tolerance. One
drawback of centralized databases is that storing the data
on one node introduces a single point of failure. This
problem can be alleviated by replicating the data.

Once knowledge about the state of a system is collected
and disseminated, it starts to lose its relevance as the
state of the system changes. This is an intrinsic charac-
teristic of distributed systems. The last column, knowl-

Migration/
Charact.

Database type
Maximum Nodes

Deployed
Database Scope Fault Tolerance knowledge relevance

MOSIX distributed 64 partial yes aging

Sprite centralized 30 global limited
verification, update on state 

change or periodic

Mach distributed 5 global no negotiation

LSF centralized 500 global yes none

Table 6: Load Information Database.
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edge relevance, lists the methods used by the load
information management modules to account for this.  

Table 7 describes the type of information managed by
load information collection and dissemination. Load in-
formation is maintained for each process in a system, as
well as for each machine in a system. Process parame-
ters lists the information gathered about individual pro-
cesses while system parameters shows the information
gathered per node. All systems use processor utilization
information while some of them also consider system
communication patterns and access to off-node devices.

Disseminated parameters describes how much of the
information is passed on to other nodes in a system. In
most cases, only system information is disseminated, and
the average ready queue length is of most interest. In
some systems, not all available information is retained,
as described in the retained information column. For
example, MOSIX retains only a subset of collected infor-
mation during dissemination phase. Negotiation pa-
rameters details the information exchanged at the time
of an attempted migration. Process parameters are used

during negotiation phase. Finally, the collection and dis-
semination columns detail the frequency of collection
and dissemination in four case studies. In all cases both
collection and dissemination are periodic, with the ex-
ception of Sprite---it also disseminates upon a state
change. 

Table 8 summarizes the characteristics of distributed
scheduling. The migration class column indicates the
type of migration mechanism employed. The considered
costs column indicates whether and how systems weigh
the actual cost of migration. The migration costs are con-
sidered in the case of MOSIX and LSF, and not in the
case of Sprite and Mach. In addition to CPU costs,
MOSIX also accounts for communication costs. 

Migration trigger summarizes the reasons for migration
activation. Examples include crossing a load threshold
on a single node or on demand after an application-spe-
cific request, or only for specific events like process
eviction. Sprite process migration can be initiated as a
part of the pmake program or a migratory shell, or as a

Migration/
Charact.

Per Process 
Parameters

System Parameters 
(also disseminated)

Retained 
Information

Negotiation
Parameters

Collection
- periodic (freq.)
- event driv. (event)

Dissemination
- periodic (freq.)
- event driv. (event)

MOSIX
age, I/O patterns, 

file access
average ready queue

partial
(random subset)

migrating process 
may be refused

periodic
periodic (1-60s)

(worm-like)

Sprite none
time since last local user 
input, ready queue length

all info retained
migration 
version

periodic (5s)
 periodic (1min) and
upon a state change

Mach
age, remote IPC, 

and remote paging 
average ready queue, remote 

IPC, remote paging
all info retained

destination load,
free paging space

periodic (1s) periodic (1s) 

LSF none
arbitrary 

configurable
all info retained

system parameters 
of all nodes

periodic periodic

Table 7: Load Information Collection and Dissemination 

System/
Characteristics

Migration 
Class

Considered 
Costs

Migration Trigger
A priori 

knowledge
Learning from 

the Past
Stability

MOSIX
process migration
(UNIX-like OS)

CPU & 
communication

threshold cross + 
load difference

non eligible 
processes

aging load vector
process residency

minimum residency
node refusal

info weighting

Sprite
process migration
(UNIX-like OS)

no
pmake, migratory shell, 

eviction (due to user 
activity or fairness)

non eligible
processes or list of 

eligible ones
none

bias toward 
long-idle machines

Mach
task migration
(microkernel)

no threshold cross
predefined non-eli-

gible tasks
limit consecutive 

migration
high threshold

LSF
process migration
(user-level migr.)

CPU overhead configurable thresholds
predefined non-

eligible commands
lowering standard 

deviation
 high thresholds

Table 8: Distributed Scheduling
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consequence of the eviction of a remotely executed pro-
cess.

Some of the systems use a priori knowledge, typically
in the form of specifying which processes are not al-
lowed to migrate. These are for example well known sys-
tem processes, such as in the case of MOSIX, Sprite and
Mach, or commands in the case of LSF. The learning
from the past column indicates how some systems adapt
to changing loads. Examples include aging load vectors
and process residency in MOSIX, and limiting consecu-
tive migrations in Mach. Stability is achieved by requir-
ing a minimum residency for migrated processes after a
migration (such as in MOSIX), by introducing a high
threshold per node (such as in Mach and LSF), or by fa-
voring long-idle machines (such as in Sprite). It can also
be achieved by manipulating load information as was in-
vestigated in MOSIX. For example, dissemination poli-
cies can be changed, information can be weighed subject
to current load, and processes can be refused.

7 WHY PROCESS MIGRATION
HAS NOT CAUGHT ON

In this section, we attempt to identify the barriers that
have prevented a wider adoption of process migration
and to explain how it may be possible to overcome them.
We start with an analysis of each case study; we identify
misconceptions; we identify those barriers that we con-
sider the true impediments to the adoption of migration;
and we conclude by outlining the likelihood of overcom-
ing these barriers.

7.1   Case Analysis

MOSIX. The MOSIX distributed operating system is an
exception to most other systems supporting transparent
process migration in that it is still in general use. Several
things worked against the wider adoption of the MOSIX
system: the implementation was done on a commercial
operating system which prevented wide-spread distribu-
tion of the code. One commercial backer of MOSIX
withdrew from the operating system business. 

The current outlook is much brighter. The latest versions
of MOSIX support process migration on BSDI’s version
of UNIX and Linux. The Linux port eliminates the legal
barriers that prevented the distribution of early versions
of the system.

Sprite. Sprite as a whole did not achieve a long-lasting
success, so its process migration facility suffered with it.
Sprite’s failure to expand significantly beyond U.C. Ber-
keley was due to a conscious decision among its design-

ers not to invest the enormous effort that would ha
been required to support a large external community. 
stead, individual ideas from Sprite, particularly in the a
eas of file systems and virtual memory, have found th
way into commercial systems over time. 

The failure of Sprite’s process migration facility to sim
ilarly influence the commercial marketplace has come
a surprise. Ten years ago we would have predicted t
process migration in UNIX would be commonplace to
day, despite the difficulties in supporting it. Instea
user-level load distribution is commonplace, but it 
commonly limited to applications that can run on diffe
ent hosts without ill effects, and relies either on explic
checkpointing or the ability to run to completion.

Mach and OSF/1. Compared to other systems, Mac
has gone the furthest in technology transfer. Digi
UNIX has been directly derived from OSF/1, NT inte
nals resemble the Mach design, and a lot of research 
impacted by Mach. However, almost no distributed su
port was transferred elsewhere. The distributed mem
management and distributed IPC were extremely co
plex, requiring significant effort to develop and to main
tain. The redesign of its distributed IPC wa
accomplished within the OSF RI [Milojicic et al., 1997]
but distributed memory management has never been
designed and was instead abandoned [Black et al. 19
Consequently, task and process migration have ne
been transferred elsewhere except to Universities a
Labs. 

LSF. Platform Computing has not aggressively a
dressed process migration because the broad mark
still not ready - partially due to an immature distribute
system structure, and partially due to a lack of coope
tion from OS and application vendors. But most impo
tantly there was no significant customer demand.

Since a vast majority of users run Unix and Window
NT, for which dynamic process migration is not suppo
ed by the OS kernel, Platform Computing has been us
user-level job checkpointing and migration as an indire
way to achieve process migration for the users of LSF
checkpoint library based on that of Condor is provide
that can be linked with Unix application programs to e
able transparent process migration. This has been i
grated into a number of important commerci
applications. For example, a leading circuit simulatio
tool from Cadence, called Verilog, can be checkpoint
on one workstation and resumed on another. 
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It is often advantageous to have checkpointing built into
the applications and have LSF manage the migration pro-
cess. The checkpoint file is usually smaller compared to
user-level, because only certain data structures need to
be saved, rather than all dirty memory pages. With more
wide-spread use of workstations and servers on the net-
work, Platform Computing is experiencing a rapidly in-
creasing demand for process migration.

7.2   Misconceptions 

Frequently, process migration has been dismissed as an
academic exercise with little chance for wide deploy-
ment [Eager et al., 1988; Kremien and Kramer, 1992;
Shivaratri et al., 1992]. Many rationales have been pre-
sented for this position, such as:

• significant complexity, 

• unacceptable costs,

• the lack of support for transparency, and 

• the lack of support for heterogeneity. 

Some implementations, even successful ones, indeed
have reinforced such beliefs. Despite the absence of wide
spread deployment, work on process migration has per-
sisted. In fact, recently we have seen more and more at-
tempts to provide migration and other forms of mobility
[Steensgaard and Jul, 1995; Roush and Campbell, 1996;
Smith and Hutchinson, 1998]. Checkpoint/restart sys-
tems are being deployed for the support of long-running
processes [Platform Computing, 1996]. Finally, mobile
agents are being investigated on the Web. 

If we analyze implementations, we see that technical so-
lutions exist for each of these problems (complexity,
cost, non-transparency and homogeneity). Migration has
been supported with various degrees of complexity: as
part of kernel mechanisms; as user-level mechanisms;
and even as a part of an application (see Sections 4.2-
4.6). The time needed to migrate has been reduced from
the range of seconds or minutes [Mandelberg and
Sunderam, 1988; Litzkow and Solomon, 1992] to as low
as 14ms [Roush and Campbell, 1996]. Various tech-
niques have been introduced to optimize state transfer
[Theimer et al., 1985; Zayas, 1987a; Roush and Camp-
bell, 1996] (see Section 3.2). Transparency has been
achieved to different degrees, from limited to complete
(see Section 3.3). Finally, recent work demonstrates im-
provements in supporting heterogeneous systems, as
done in Emerald [Steensgaard and Jul, 1995], Tui [Smith
and Hutchinson, 1998] and Legion [Grimshaw and
Wulf, 1996] (see Section 3.6).

7.3   True Barriers to Migration Adoption

We believe that the true impediments to deploying m
gration include the following:

• A lack of applications. Scientific applications and ac-
ademic loads (e.g. pmake and simulations) represent a
small percentage of today’s applications. The large
percentage of applications today represent stand
PC applications, such as word-processing, and desk
publishing. Such applications do not significantly be
efit from migration. 

• A lack of infrastructure. There has not been a wide
ly-used distributed operating system. Few of the d
tributed features of academically successful resea
operating systems, such as Mach, Sprite, or the V k
nel, have been transferred to the marketplace des
initial enthusiasm. This lack increases the effort nee
ed to implement process migration.

• Migration is not a requirement for users. Viable al-
ternatives, such as remote invocation and remote d
access, might not perform as uniformly as process m
gration but they are able to meet user expectations w
a simpler and well understood approach [Eag
et al., 1986a, Kremien and Kramer, 1992].

• Sociological factors have been important in limiting
the deployment of process migration. In the workst
tion model, each node belongs to a user. Users are
inclined to allow remote processes to visit their m
chines. A lot of research has addressed this proble
such as process eviction in Sprite [Douglis an
Ousterhout, 1991], or lowering the priority of foreig
processes in the Stealth scheduler [Krueger a
Chawla, 1991]. However, the psychological effects 
workstation ownership still play a role today.

7.4   How these Barriers Might be Overcome

It often takes a long time for good research ideas to 
come widely adopted in the commercial arena. Examp
include object-orientation, multi-threading, and the In
ternet. It may be the case that process mobility is not r
enough to be adopted by the commercial market. 

We address each of the barriers identified in previo
section and try to predict how migration might fit the fu
ture needs. The rest of the section is highly speculat
because of the attempts to extrapolate market needs
technology. 

Applications. To become popular in the marketplace
migration needs a “killer application” that will provide a
compelling reason for commercial operating system ve
dors to devote the resources needed to implement 
support process migration. The types of application th
are well-suited for process migration include process
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intensive tasks such as parallel compilation and simula-
tion, and I/O-intensive tasks that would benefit from the
movement of a process closer to some data or another
process (see also Section 2.4). These applications are ex-
ceedingly rare by comparison to the typical uses of to-
day’s computers in the home and workplace, such as
word processing, spreadsheets, and games. However, ap-
plications are becoming more distributed, modular, and
dependent on external data. In the near future, because of
the exceeding difference in network performance, it will
be more and more relevant to execute (migrate) applica-
tions close to the source of data. Modularity will make
parallelization easier (e.g. various component models,
such as Java Beans and Microsoft DCOM). 

Infrastructure. The NT operating system is becoming a
de facto standard, leading to a common environment.
UNIX is also consolidating into fewer versions. All these
systems start to address the needs for clustering, and
large-scale multicomputers. Both environments are suit-
able for process migration. These operating systems are
becoming more and more distributed. A lot of missing
infrastructure is becoming part of the standard commer-
cial operating systems or its programming environments. 

Convenience vs. requirement (impact of hardware
technology). The following hardware technology trends
may impact process migration in the future: high speed
networks, large scale systems, and the popularity of
hardware mobile gadgets. With the increasing difference
in network speeds (e.g. between a mobile computer and
a fiber-channel), the difference between remote execu-
tion and migration becomes greater. Being able to move
processes during execution (e.g. because it was realized
that there is a lot of remote communication) can improve
performance significantly. Secondly, with the larger
scale of systems, the failures are more frequent, thereby
increasing the relevance of being able to continue pro-
gram execution at another node. For long-running or crit-
ical applications (those that should not stop executing)
migration becomes a more attractive solution. Finally,
the increasing popularity of hardware mobile gadgets
will require mobility support in software. Examples in-
clude migrating applications from a desktop, to a laptop,
and eventually to a gadget (e.g. future versions of cellu-
lar phones or palmtops).

Sociology. There are a few factors related to sociology.
The meaning and relevance of someone’s own worksta-
tion is blurring. There are so many computers in use to-
day that the issue of computing cycles becomes less
relevant. Many computers are simply servers that do not

belong to any single user, and at the same time the p
cessing power is becoming increasingly cheap. A sec
aspect is that as the world becomes more and more c
nected, the idea of someone else’s code arriving on on
workstation is not unfamiliar anymore. Many security is
sues remain, but they are being actively addressed by
mobile code and agents community.

In summary, we do not believe that there is a need for 
revolutionary development in process migration to ma
it widely used. We believe that it is a matter of time, tec
nology development, and the changing needs of us
that will trigger a wider use of process migration.

8 SUMMARY AND FURTHER RESEARCH

In this paper we have surveyed process migration me
anisms. We have classified and presented an overview
a number of systems, and then discussed four case s
ies in more detail. Based on this material, we have su
marized various migration characteristics. Througho
the text we tried to assess some misconceptions ab
process migration, as well as to discover the true reas
for the lack of its wide acceptance. 

We believe there is a future for process migration. D
ferent streams of development may well lead to a wid
deployment of process migration. Below we includ
some possible paths.

One path is in the direction of LSF, a user-level facili
that provides much of the functionality of full-fledged
process migration systems, but with fewer headach
and complications. The checkpoint/restart model of pr
cess migration has already been relatively widely d
ployed. Packages such as Condor, LSF and Loadlev
are used for scientific and batch applications in produ
tion environments. Those environments have high d
mands on their computer resources and can ta
advantage of load sharing in a simple manner.

A second path concerns clusters of workstations. Rec
advances in high speed networking (e.g. AT
[Partridge, 1994] and Myrinet [Boden et al., 1995]) hav
reduced the cost of migrating processes, allowing ev
costly migration implementations to be deployed.

A third path, one closer to the consumers of the vast m
jority of today’s computers (Windows systems on Inte
based platforms), would put process migration right 
the home or office. Sun recently announced their Jini 
chitecture for home electronics [Sun Microsystem
1998] and other similar systems are sure to follow. O
can imagine a process starting on a personal compu
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and migrating its flow of control into another device in
the same domain. Such activity would be similar to the
migratory agents approach currently being developed for
the Web [Rothermel and Hohl, 1998].

Still another possible argument for process migration, or
another Worm-like facility for using vast processing ca-
pability across a wide range of machines, would be any
sort of national or international computational effort.
Several years ago, Quisquater and Desmedt [1991] sug-
gested that the Chinese government could solve complex
problems (such as factoring large numbers) by permit-
ting people to use the processing power in their televi-
sion sets, and offering a prize for a correct answer as an
incentive to encourage television owners to participate.
In case of extraordinary need, process migration could
provide the underlying mechanism for large-scale com-
putation across an ever-changing set of computers. 

Finally, the most promising new opportunity is the use of
mobile agents in the Web. In this setting, both technical
and sociological conditions differ from the typical dis-
tributed system where process migration has been de-
ployed (see the analysis in Section 7.2). Instead of the
processor pool and workstation models, the Web envi-
ronment connects computers as interfaces to the “net-
work-is-computer” model. The requirements for
transparency are relaxed, and user-specific solutions are
preferred. Performance is dominated by network latency
and therefore state transfer is not as dominant as it is on
a local area network; remote access and remote invoca-
tion are not competitive with solutions based on mobili-
ty. Users are ready to allow foreign code to be
downloaded to their computer if this code is executed
within a safe environment. In addition, there are plenty
of dedicated servers where foreign code can execute.
Heterogeneity is supported at the language level. Gener-
ally speaking, the use of mobile agents in a Web environ-
ment overcomes each of the real impediments to
deploying process migration, and will be a growing ap-
plication of the technology (albeit with new problems,
such as security, that are currently being addressed by the
mobile agents community). Mobile agents bear a lot of
similarity and deploy similar techniques as process mi-
gration.

Process migration will continue to attract research inde-
pendently of its success in market deployment. It is
deemed an interesting, hard, and unsolved problem, and
as such is ideal for research. However, reducing the
amount of transparency and the OS-level emphasis is
common for each scenario we outlined above. Eventual-

ly this may result in a less transparent OS support for m
gration, reflecting the lack of transparency to th
application level while still providing certain guarantee
about connectivity. 
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