A Dynamic Object Replication and Migration Protocol for an
Internet Hosting Service

Michael Rabinovich Irina Rabinovich Rajmohan Rajaraman
AT&T Labs — Research The Dun & Bradstreet Corp. DIMACS Center
180 Park Avenue 3 Sylvan Way Rutgers University
Florham Park, N.J 07932 Parsippany, NJ 07054 Piscataway, NJ 08854

Amit Aggarwal
Department of Computer Science
University of Washington
Seattle, WA 98195

Abstract

This paper proposes a protocol suite for dynamic replication and migration of Internet objects. It
consists of an algorithm for deciding on the number and location of object replicas and an algorithm for
distributing requests among currently available object replicas. Our approach attempts to place replicas
in the vicinity of a majority of requests while ensuring at the same time that no servers be overloaded.
The request distribution algorithm uses the same simple mechanism to take into account both server
proximity and load, without actually knowing the latter. The replica placement algorithm executes
autonomously on each node, without the knowledge of other object replicas in the system.

The proposed algorithms rely on the information available in databases maintained by Internet
routers. A simulation study using synthetic workloads and the network backbone of UUNET, one of
the largest Internet service providers, shows that the proposed protocol is effective in eliminating hot
spots and achieves a significant reduction of backbone traffic and server response time at the expense of
creating only a small number of extra replicas.

1 Introduction

Replication, or mirroring in Internet parlance, is commonly used to address a scalability problem of popular
Internet sites. Currently, mirroring is done manually by system administrators, who monitor the demand
for information on their sites and decide what data should be replicated and where. This daunting task is
especially difficult and important for a growing number of companies that offer a hosting service, i.e., the
service of maintaining and providing access to objects belonging to third-party information providers. As the
scale of these systems increases (in terms of the number of objects and hosting servers), the decision space for
replica placement increases while a brute-force worst case design becomes prohibitively expensive. Without
appropriate new technology, system administration related to object placement may become a factor limiting
the scale of hosting platforms.

In this paper, we propose a suite of algorithms that dynamically replicate Internet objects in response to
changing demand. In addition to automating the placement decisions by system administrators, automatic

dynamic replication would make the system more responsive to changes in the demand patterns.

Two fundamental issues any dynamic replication system must address are deciding on the number and
placement of replicas and distributing requests among object replicas. In our protocol, replica placement
decisions are made by each node autonomously, based on the requests serviced by the node and without any
knowledge of other replicas of the same objects that might exist.

Our request distribution algorithm takes both server load and proximity into account without knowing
the actual load of the servers. To illustrate the problem, a simple round-robin request distribution (e.g.,
[23]) would distribute the load among all replicas but would be oblivious to the proximity of requesters to
servers. On the other hand, always directing requests to the closest replica (e.g., one of the algorithms in
[9]) would create problems when a server is swamped with requests originating from its vicinity: no matter
how many additional replicas the server creates, all requests will be sent to it anyway.

The main novelty of our request distribution algorithm is that it allows a hosting server to derive bounds
on the number of requests going to potential new replicas based on local knowledge only. This makes the
algorithm well-suited for dynamic object replication. Beside allowing a host to decide on object migration
and replication autonomously, these bounds enable object relocation to be done en masse, without waiting
for load observations after each move. Without this, a system of our intended scale would be hopelessly slow
in adjusting to demand changes.

Our replica placement algorithm relies on the bounds provided by the request distribution algorithm to

avoid vicious cycles of back-and-forth migrations and replications and deletions of objects.

1.1 Past Work

Much work has been done on caching by clients or by proxy servers that provide a shared cache to multi-
ple clients. While clearly useful, caching alone cannot obviate the need for replication within the hosting
platform, as evidenced by a wide use of mirrors. First, only static non-personalized objects can be cached.
Second, caching is outside control of the service provider, which complicates many issues (such as copyright
protection, usage metering, advertisement insertion, update propagation, etc.), giving service providers an
incentive to disallow caching even when objects are otherwise cacheable. Overall, numerous studies have
shown proxy hit ratios of only around 40%. Caching therefore is complimentary to a service-based solution
considered here. In the remainder of this paper, we only consider client requests that missed in their caches.

Many commercial products offer transparent load balancing among Web servers on a local area network.
using a front-end TP multiplexing device (see [14] for a now-incomplete survey). Approaches by Katz et al.
[23] and Colajanni et al. [11] use DNS servers as request distributors. They also focus on load only and thus
target primarily local-area networks.

CISCO DistributedDirector, IBM Network Dispatcher, and WindDance are products that allow request
distribution over a wide-area network. They differ in the network point where request distribution is per-
formed (clients, or DNS server, or HTTP redirectors) and server selection algorithms. None of them offer
dynamic object replication or migration.

Several research proposals for server selection in a wide-area network have been described (e.g., [15, 32,

8, 33]). Notably, in algorithms by Sayal et al [32] and Fei et al [15], clients choose servers based on previously
observed latencies and response times, thereby implicitly accounting for both load and network proximity
factors. All these protocols focus on replica selection and do not consider replica placement aspect. Another
difference with our approach is that our request distribution algorithm allows hosts to predict effects of
potential replica set changes on future request distribution. This makes it well-suited for a system where
hosts make dynamic decisions on the number and location of replicas.

Guyton and Schwartz describe various methods that can be used to determine proximity of nodes in
the network [17]. Following CISCO Distributed Director, we use routers databases to extract proximity
information. Unlike CISCO, we do it asynchronously with client requests, thereby reducing request latency
at the expense of potential staleness of the proximity information. One reason for using the routing-based
proximity metric is our network-centric view, in which reducing the backbone bandwidth is an overriding
concern.

Much of existing work on dynamic replication has concentrated on maintaining system availability during
failures [20]. In contrast, our work employs replication and migration for performance, and assumes that
asynchronous update propagation and not quorums is used for consistency.

Existing protocols for performance-motivated dynamic replication rely on assumptions that are unrealistic
in the Internet context. Wolfson et al [36] propose an ADR protocol that dynamically replicates objects to
minimize communication costs due to reads and writes. Given that most of Internet objects are rarely
written (see, e.g., [26]), this is not a suitable cost metric for the Internet. In addition, the protocol imposes
logical tree structures on hosting servers and requires that requests travel along the edges of these trees.
Because of a mis-match between the logical and physical topology, and especially because each node on the
way must interpret the request to collect statistics (which requires in practice a separate TCP connection
between each pair of nodes), this would result in impractically high delay of request propagation.

Heddaya and Mirdad’s WebWave dynamic replication protocol [19] was proposed specifically for the Web.
However, it burdens the Internet routers with the task of maintaining replica locations for Web objects and
intercepting and interpreting requests for Web objects. It also assumes that each request arrives in a single
packet. As the authors note, this protocol cannot be deployed in today’s networks.

Algorithmically, both ADR and WebWave decide on replica placement based on the assumption that
requests are always serviced by the closest replica. Therefore, neither protocol allows load sharing when a
server is overloaded with requests from its vicinity. Objects are replicated only between neighbor servers,
which would result in high delays and overheads for creating distant replicas, a common case for mirroring
on the Internet. Also, ADR requires replica sets to be contiguous, making it expensive to maintain replicas
in distant corners of the global network even if internal replicas maintain only control information.

The works of Bestavros [5] and Bestavros and Cunha [6] appear to be the predecessors of WebWave. [5]
proposes to reduce network traffic within an intra-net by caching organization’s popular objects close to the
intra-net’s entry point. In our context, any backbone node in the hosting platform can be such an entry

point. Our protocols address the problems of choosing entry points at which to place object replicas and

allocating requests to those replicas. These questions are not considered in [5]. In [6], Bestavros and Cunha
discuss the benefits of replicating popular objects from the host server up the request tree. No algorithms
are described.

Baentsch et al [4] propose an infrastructure for performing replication on the Web, without describing
algorithms for deciding on replica sets. Also, the infrastructure assumes gradual learning of the replica set
by clients, which may hurt the responsiveness of the system. Our protocol is complimentary to this work.
Gwertzman and Seltzer [18] motivate the need for geography-based object replication. They propose to base
replication decisions on the geographical distance (in miles) between clients and servers. This measure may
not correctly reflect communication costs for fetching an object, since the network topology often does not
correspond to the geographical distances.

The problem of placing objects in the proximity of requesting clients has also been addressed in research
on file allocation (see [25] for early survey and [3] and references therein for more recent work). Early work
in this area assumes a central point where decisions on object placement are made by solving an integer
programming optimization problem. Even when the search space is heuristically pruned, the scale of our
application would make such approaches impractical. Also, this approach requires the decision-making point
to have complete information on network topology, server loads, and demand patterns. However, it would be
an interesting question for future work to see how much worse the performance of our protocol is compared
to the optimal placement obtained by solving the global integer programming optimization problem.

More recently, Awerbuch, Bartal, and Fiat designed a distributed file allocation protocol and show that
it is nearly optimal in terms of total communication cost and storage capacity of the nodes [3]. However,

their protocol does not address the load balancing issue.

1.2 Our Contributions

Our main contributions are as follows.

e We present a protocol for dynamic replication on the Internet by integrating an algorithm for deciding
on the number and placement of object replicas with an algorithm for distributing requests among
replicas. Our request distribution algorithm allows derivation of bounds on load changes due to any
potential object migration or replication. The replica placement algorithm relies on these bounds in
making placement decisions autonomously on each node, without even knowing of the existence of
other replicas. Moreover, these bounds allow a host to safely decide on replica placement for many

objects at once, without waiting to observe actual loads after each move.

e Our protocol relies on practical assumptions derived from the existing Internet technology. We use
information available from routing databases and IP headers to drive the protocol. No new functionality

is required from the routers.

e System responsiveness to changes in demand patterns is one of the explicit design goals. Responsiveness

is improved in two ways. First, unlike existing work, our protocol performs replication between distant

Internet
C1 C2

(h A node containing arouter, a host, and a distributor

& A node containing arouter, a host, and aredirector

| A stand-alone redirector
(O A node containing arouter and a host

Figure 1: A system model.

nodes directly, without replicating with all intermediate nodes on the path. Second, based on bounds
on the load of the new object replicas, the protocol relocates multiple objects at once, without waiting
for new access statistics after each move. Given the intended scale of the system, a protocol without
this feature could be so slow that by the time it arrives to a desired replication scheme, the demand

pattern may change again.

A simulation study using synthetic workloads on the backbone topology of UUNET, one of the largest
commercial Internet Service Providers, shows that our protocol is effective in eliminating hot spots among
servers and achieves a significant reduction of backbone traffic and server response time at the expense
of creating only a small number of extra replicas. The protocol also showed acceptable responsiveness to

changes in demand patterns.

2 The System Model

We consider a Internet hosting system that maintains and provides access to Web objects. The system
contains a set of nodes, each consisting of a router and a hosting server connected to each other by a
local area network. Hosting servers (hosts for short) maintain Web objects, while routers are connected

via wide-area links to form the platform backbone. Some (or perhaps all) of the nodes, called gateway

nodes, have connections to the outside Internet. These are the nodes through which all requests are coming
into the system. These nodes contain distributors, in addition to routers and hosts. Finally, the system
also contains redirectors. Distributors and redirectors, whose functions will be described shortly, may be
physically co-located on the same machine with hosts.

A request from a client ¢ to any object is directed to the “closest” gateway’s distributor, regardless of
the requested object, either using CISCO’s Distributed Director DNS server [9], or anycast [27] when the

1 The notion of “closeness” used in either mechanism is the same as used

latter becomes widely available.
by Internet routing protocols, so a requested object would be sent to the client through this gateway node
anyway. The distributor forwards the request (via a UDP message) to a redirector, which chooses a host
among those that currently have a replica of the object and forwards the request (again, as a UDP message)
to that host. The host sends the object directly to the distributor, which forwards the object to the client.
The same redirector is used for all requests to the same object. For scalability, the load is divided among
multiple redirectors by hash-partitioning the URL namespace.

Note that, by sending requests for a given object through the same redirector, our protocol does not
reduce the distance traveled by requests. Its goal is to reduce the distance for the response message. Since
responses carry object data, they are typically much larger than requests and are the determining factor in
backbone bandwidth consumption.

For simplicity, we will assume homogeneous hosts. Heterogeneity could be introduced by incorporating
into the protocol weights corresponding to relative power of hosts.

Our heuristics for replica placement are based on the routes messages take getting from the source to the
destination. (Granted different messages between a given pair of nodes can take different routes every time,
in practice these routes are usually the same or very similar [29].) Let s = r1... — 7, — ¢ is the internal
router path from a host s to an external client ¢. The preference path between s and ¢ is a sequence of
hosts co-located with the corresponding routers. From now on, we will not distinguish hosts from co-located
routers. A message from host s to client ¢ passes by the hosts on the preference path from s to ¢. It would
have been advantageous for this request if the request was serviced by one of these hosts. Furthermore, the
closer the data is on the preference path to ¢ the greater the benefits.

We will assume that a host s knows the preference path from itself to any client ¢. This information can
be statically extracted (and periodically refreshed) from the routing database kept by the platform routers

[21]. The routing information also allows comparing the network distance between hosts within the platform.

2.1 Load Metrics

We assume the existence of a uniform load measure that allows load comparison of different servers. For
compactness of the presentation, we will assume that load metric represents a single computational compo-

nent. The length of the ready queue (e.g., the output of the uptime command in UNIX) can be used as the

I The Distributed Director DNS server uses the routes database from the system’s routers to resolve the logical name of a
Web site (e.g., www.foo.com) into an IP address of a host that is the fewest hops away from the client that issued the query.
In the anycast mechanism, a single TP address is used for a set of hosts, but routers advertise routes for this IP that lead to
their respective closest hosts.

measure of computational load [24]. In general, the load metric may be represented by a vector reflecting
multiple components, notably computational load and storage utilization. Extending our algorithms to allow
vector loads is a technical matter.

We assume that an individual server can estimate the fraction of its total load due to a given object on
this server. This can be done by keeping track of resource consumption (CPU time, IO operations, etc.)
due to requests for individual objects and dividing up the total load between objects proportionally to their
consumption.

Finally, load metrics are usually recorded periodically and reflect an average load since the previous
measurement. (We will call the interval between consecutive load measurements a measurement interval.)
So, a load measurement taken right after an object relocation event on a host will not reflect the change in
the set of hosted documents. To deal with this technicality, we assume that once a host accepts an object,
it uses an upper-limit estimate of what its load would be after acquiring the object in deciding whether or
not to honor further requests for accepting objects from other hosts. The host returns to using actual load
metrics only when its measurement interval starts after the last object had been acquired.? Similarly, the
host decides it needs to offload based on a lower-limit estimate of its load. Enabling the derivation of these

load bounds is one of the contributions of our protocol.

2.2 Notation and Terminology

In the rest of the paper, z, will denote a replica of object z on server p; load(p) will denote the load of
node p, and load(z,) will denote the load on node p due to object . An object is said to be geo-migrated
or geo-replicated to host s if it is placed on s for the reason of proximity to client requests. Otherwise (when
an object is migrated or replicated due to load considerations), the object is said to be load-migrated or

replicated to s.

3 Request Distribution Algorithm

The challenge in designing the algorithm for assigning requests to replicas that would service them is that
the algorithm must combine the goal of distributing load with the goal of choosing a replica that is close to
the request. As an example, consider a hosting system with just two hosts, one in America and the other in
Europe. Choosing replicas in the round-robin manner would neglect the proximity factor. If roughly half of
requests come from each region, the round-robin distribution may well result in directing American requests
to the European replica and vice versa. On the other hand, always choosing the closest replicas could result
in poor load distribution. Assume that the American site is overloaded due to “local” requests. Then, if the
closest replicas were always chosen, creating additional replicas in Europe would not help the overloaded site
- all requests would still be directed to this site anyway. Our goal is an algorithm that would direct requests

to their closest hosts in the first case while distributing requests among both hosts (regardless of the origin

2When frequent object relocations make most of measurement intervals contain a relocation event, a host can always
periodically halt relocations to take fresh load measurements.

ChooseReplica(gc, z):
/* Executed by the redirector responsible for object = */
let p be the closest host to gateway g. that has a replica of z;

let ratiol = %
let ¢ be the host that has a replica of z with the smallest value of ratio2 = ZC;L;((EI:)) ;
if m;—“ﬂ > ratio2
choose p;
rent(zp) = rent(zp) + 15
else
choose s;
rent(zs) = rent(zs) + 15
endif

end

Figure 2: The algorithm for choosing a replica.

of requests) in the second case. In addition, the algorithm should allow derivation of bounds on load changes
due to object relocations. These bounds enable hosts to make replica placement decisions autonomously and
for multiple objects at the same time, without waiting to observe the effects of each object relocation. The
latter is especially important for the responsiveness of the system.

The algorithm is run by the redirector responsible for the requested object z, and is shown in Figure 2.
For each replica zg, the redirector keeps a count of the number of times it chooses this replica, the request
count rent(zs). Tt also maintains the replica affinity, af fr(zs). Affinity is a compact way of representing
multiple replicas of the same object on the same host. When the replica is first created, its affinity is
initialized to 1; when an object is migrated or replicated to a host that already has a replica of this object,
its affinity is incremented, instead of creating another replica. (The subscript in aff, indicates that this
variable is kept by the redirector.) We refer to the ratio % as a unit request count, since it reflects the
request count per affinity unit.

When a request from client ¢ arrives, the algorithm begins by identifying a replica z, with the smallest
unit request count, and a replica x, that is the closest to the client. It then chooses the replica (among
these two) by comparing the unit request count of the least-requested replica with the unit request count
divided by 2 of the closest replica. (A different constant can be chosen, with corresponding changes to load
bounds in the replica placement algorithm below. We explore tradeoffs in choosing this constant in [1]. In
this paper, we only show that a somewhat arbitrary constant that makes intuitive sense works well.)

Applying this algorithm to the above example, in the first case, both replicas will have roughly the same
request count, and therefore every request will be directed to the closest replica (assuming both replicas have
affinity one). In the second case, the American site will receive all requests until its request count exceeds
the request count of the European site by a factor of two, at which point the European site will be chosen.
Therefore, the load on the American site will be reduced by one-third on average. Creating more replicas
would reduce its load even further. Assume that n replicas of an object are created. Even if the same replica
is the closest to all requests, it is easy to see that this replica will have to service only 2N/(n + 1), where N

is the total number of requests. Thus, by increasing the number of replicas, we can make the load on this

replica arbitrarily low. Still, whenever an odd request arrives from another replica’s region, this request will
be directed to its local replica.

Replica affinities allow the protocol to be very flexible in request distribution. Continuing with our exam-
ple, assume that request patterns change from being equally divided between the American and European
replicas to the 90%-10% split. If neither site is overloaded, the replica placement algorithm can set the
affinity of the American replica to 4. With regular request inter-spacing (i.e., when a request from Europe
arrives after every nine requests from America), the request distribution algorithm would direct 1/9 (11%)
of all requests, including all those from Europe, to the European site and the rest to the American site.

One problem with this algorithm is that when a new replica is created, it will be chosen for all requests
until 1ts request count catches up with the rest of replicas. This may cause a temporary overloading of new
replicas. To avoid that, the redirector resets all request counts to 1 whenever it is notified of any changes to
the replica set for the object.

The main strength of this protocol is that is allows derivation of bounds on load effects resulting from
object replication and migration. These bounds are given by the following theorems. The proofs and the

formal definition of steady demand are given in [30].

Theorem 1 Let host i replicate object x on host j, i.e., create a new replica of x on j with affinity 1 or, if j
already has it, increment its affinity by 1. Then, under steady demand and in the absence of other replications

and maigrations, the load on i may decrease by at most %E, where £ 1s the load on x; before replication.

Theorem 2 Let host i replicate object x on host j and £ be the load on wx; before replication. Then, un-
der steady demand and in the absence of other replications, migrations and deletions, the load on j after
‘

replication may increase by at most 4%‘

Theorem 3 Let host i migrate object x on host j, i.e., (1) create a new replica of x on j with affinity 1 or,
if j already has it, increment its affinity by 1, and (2) reduce the affinity of z; by 1 and drop z; if its affinity

becomes 0. Then, under steady demand and in the absence of other replications and muigrations, the load on

1 after the migration may decrease by at most affz(x y + %Ea’;;gf(;);l, where € is the load and af f(z;) is the

affinity of x; before migration.

Theorem 4 Let host i migrate object x on host j and £ and aff(z;) be the load and affinity of z; before
magration. Then, under steady demand and in the absence of replications, migrations, and deletions, the

load on j after the migration may increase by at most 4#@7)‘

4 Replica Placement Algorithm

A trivial solution to replica placement would replicate every object on every server. However, requiring every
server to have enough storage capacity would be too expensive. We will see in Section 6 that significant

reduction in network traffic can be achieved at the expense of only few extra replicas. Thus, even if it were

feasible to have servers holding the entire Web repository, it is better to spend money on a greater number
of inexpensive hosts.

In fact, our request distribution algorithm makes having needless replicas harmful. Indeed, since the
algorithm is oblivious to server loads, it distributes requests to all available replicas. Thus, excessive replicas
would cause more requests to be sent to distant hosts. Our replica placement protocol therefore creates new

replicas only if it 1s likely to be beneficial for either client proximity or server load reasons.

4.1 The Control State

A host s maintains the following state for every object z; it keeps.

For each host p that has appeared on preference paths of some requests to zs since the last execution
of the replica placement algorithm, host s keeps the count of the number of these appearances, cnt(p,),
referred to as the access count of p. In particular, ent(s, z5) = cnt(z;) gives the total access count for z;.

Host s also maintains replica affinity, aff(zs). We will call a ratio ntp:®:) o ynit access count of

aff(ws)

candidate p, and a ratio % a unit load of replica x;.

4.2 The Algorithm

Periodically, a host s runs the algorithm illustrated in figure 3 to decide on replica placement for its objects.
There are two pairs of tunable parameters in the protocol: low and high load watermarks for hosts, {w and
hw, and deletion and replication thresholds for objects, u and m.

Water-marking is a standard technique to add stability to the system. The high watermark reflects host
capacity. Exceeding this load would degrade the performance of a host to an undesirable level. The low
watermark must be chosen to be below the high watermark.

Deletion and replication thresholds determine options for replica placement. A replica can be dropped if
its count falls below u, 1t can only migrate if its count is between u and m, and it can either migrate or be
replicated if its count is above m.

To provide stability, these parameters must be chosen subject to a theoretical constraint 4u < m. The

reason for this constraint is provided by the following theorem:

Theorem 5 If host i replicates object x on host j only when its unit access count on i exceeds m, then,
under steady demand, m/4 is the lower bound on the unit access count of any replica of after replication,

even if other nodes independently replicate or migrate x.

Thus, when object replication(s) occur, every replica after replication will have the access count exceeding
u, so no replicas will be dropped. Knowing this allows a host to make an autonomous decision to replicate an
object based just on its own replica load, without creating a vicious cycle of replica creations and deletions.
In practice, the m/u ratio should be higher, to prevent boundary effects. We use m/u = 6 in our experiments.
A host s can be in one of the two modes of operation. If its load exceeds high-water mark hw, it switches

to an of floading mode, where 1t sheds objects to other hosts, even if it is not beneficial from the proximity

10

DecidePlacement():

/* Executed by host s */
if load(s) > hw of floading = Yes;
if load(s) < lw of floading = No;
for each =,

.p cnt(s,zs)
o) <
ReduceAffinity(zs);

else
Loop through nodes with non-zero access counts to z, in the decreasing order of distance form s.

For each node p such that S22l > MIGR_RATIO
crw ,,7 ° load(zs) .
send CreateObj(“MIGRATE” .z, aFF(z0)) to p;

if p responded with “OK”
ReduceAffinity(zs);
break from loop;
endif
endloop
endif

if . has not been dropped or migrated AND

cnt(s,zs)
; afflz) ~ ™ . .
Loop through nodes with non-zero access counts to z, in the decreasing order of distance from s.

For each node p such that $242:2s) 5 REPL_RATIO

cnt(s,zs)
send CreateObj(“REPLICATE" ., {f}‘}‘?ﬁ}) to p
if p responded with “OK”
break from loop;
endif
endloop
endif
endfor
if of floading = Yes AND no objects were dropped, migrated or replicated
Offload();
endif

ReduceAffinity(zs):
ifaff(zs)>1
decrement a f f(z) and send the new value of af f(zs) to &’s redirector;
else
inform z’s redirector of the intention to drop z;
if the redirector responds with “OK”, drop z;
endif

end

Figure 3: Replica placement algorithm.

perspective. Once in this mode, the host continues in this manner until its load drops below a low water
mark, lw. Then, it moves objects only if it is improves their proximity to the requesters, and stays in
this mode until its load again exceeds hw. These two modes of operations are described in the next two

subsections.

4.2.1 Geo-Migration and Replication

After establishing its mode of operation, s examines access counts of each of its objects to decide on its
placement.

An affinity unit of an object can be dropped if its unit access count is below a deletion threshold u. (The
redirector ensures that the last replica of an object be not deleted, by arbitrating among competing replica

deletions and disallowing the last one in the ReduceAffinity procedure.)

11

An object z; is chosen for migration if there is a host p that appears in preference paths in M IGR_RATIO
fraction of requests for this object. To prevent an object from migrating back and forth between nodes,
MIGR_-RATIO must be over 0.5. We choose 60%, to provide extra stability in the presence of load fluctu-
ations around the 50% boundary.

An object z; is chosen for replication if it has not been migrated and if its total unit access count exceeds
m and there i1s a candidate that was closer than s to some minimum number of requests, relative to the
total number of requests received by s. REPL_RATIO must be chosen to be less than MIGR_RATIO, for
replication to ever take place. We chose REPL_RATIO = 1/6, to ensure that replication is beneficial at
least when the object to be replicated is represented by the sole copy, as illustrated below.

Assume s has the sole replica of object z, and replicates z on host p that appeared in 1/6 of its requests.
Assuming requests from any given client are evenly spaced in time and neglecting some boundary effects right
after the replication, the request distribution algorithm will direct 1/3 of all requests to host p, including all
requests that are closer to . That constitutes 50% of requests serviced by p. If p’s access count on s prior
to replication exceeded 1/6 of the total, the number of requests closer to p would exceed 50% of all requests

p will service after the replication, and therefore the replication would be beneficial.

CreateObj(method,zs,load(zs)):
/* Executed by candidate p. */
if load(E) > lw
send “Refuse” to invoker and terminate;
endif
if method = “MIGRATE” and load(E) + 4load(zs) > hw
send “Refuse” to invoker and terminate;
endif
if » does not have z already
copy = from host s;

aff(il?r) =1
else

aff(ﬁr) = aff(l"r) +1
endif

if a new copy zp has been created or the value of af f(zp) has changed
notify z’s redirector

endif

load(r) = load(r) + 4load(zs);

send “OK” to invoker;

end

Figure 4: Algorithm for creating an object replica.

When object z; is to be replicated or migrated, s attempts to place the replica on the farthest among
all qualified candidates. This 1s a heuristic that improves the responsiveness of the system. To replicate
or migrate object z; on a candidate F, s sends a request to E, which includes the ID of the object to be
replicated or migrated and the load on host s generated due to z,. The candidate accepts a replication
request if its load is below low watermark. To accept a migration request, the candidate checks, in addition,
if its upper-bound load estimate after the proposed migration would be below the high watermark. This

prevents migration to a host in cases when a single object migration would bring the recipient’s load from

12

Offload():
/* Executed by the offloading host s */
find a host r with load(r) < lw;
recipient_load := load(r);
while load(s) > lw AND recipient_load < lw AND not all objects have been examined
let z: be the unexamined object with the highest value of %(f’—f:)l for some F/
if S2tZs) <oy 7
aff(zs) =
send CreateObj(“MIGRATE" z, %j—j)l) to g;
if ¢ responded “OK”

load(s) = load(s) — % — (3/4) x load(zs) = %;

recipient_load = recipient_load + 4 l;;}i((zs)) ;
ReduceAffinity(af f(zs))
else exit.
else
load(zs)

send CreateObj(“REPLICATE” z,, aFFlz.]) to g;
if ¢ responded “OK”

load(s) = load(s) — (3/4) % load(zs);
load(zs) .
aff(zs)?

recipient_load = recipient_load + 4
else exit.
endif;
endwhile;
end

Figure 5: The protocol for host offloading.

below the low watermark to above the high watermark. Without it, a vicious cycle could occur when an
object load-migrates from a locally overloaded site, only to geo-migrate back to the site. Note the absence
of a similar restriction in the replication heuristics. Overloading a recipient temporarily may be necessary in
this case in order to bootstrap the replication process. The vicious cycle is not a danger here because each
replication brings the system into a new state.

If the conditions for migration or replication are satisfied, p creates a copy of z, notifies the corresponding
redirector about the new copy, and updates 1ts upper-bound load estimate. The load estimates are based on
the fact that, when a host acquires a new replica of an object, extra load imposed on this host is bounded
by four times the load of an existing replica of the object [30]. In the case of migration, once the source host
s learns that the recipient p created a copy, it removes its copy by executing ReduceAffinity.

Whenever a replica set for an object changes, the corresponding redirector is notified. Note that the
redirector is notified of copy creation after the fact and of deletion before the fact. This sequence of actions
preserves the invariant that the replica set recorded by the redirector is always a subset of object replicas
that actually exist. This ensures that the redirector never assigns requests to non-existing replicas, without

resorting to expensive distributed transactions for updating its state.

4.2.2 Host Offloading

When host s i1s in Offloading mode, 1t migrates or replicates objects to other nodes even if it is not
beneficial from the proximity perspective. The protocol is shown on Figure 5. The offloading host s first

finds a recipient node. We refer the reader to [30] for details on finding or choosing the recipient. (For the

13

purpose of this paper, one can assume that hosts periodically exchange load reports, so that each host knows
a few probable candidates.)

The recipient accepts the offloading request if its load is below low watermark, in which case 1t responds
to the requesting host with its load value. The offloading host then goes through all its objects, starting
with those that have a higher rate of “foreign” requests, and attempts to migrate or replicate them to the
recipient. Choosing between migration and replication is done similarly to the DecidePlacement algorithm.
The only difference is that the offloading host does not try to migrate heavily loaded objects - objects with
the unit access count above replication threshold m can only be replicated. The reason is that load-migrating
these objects out might undo a previous geo-replication.

To decide conservatively when to stop the offloading process, the sending node re-calculates the lower-
bound estimate of its load and the upper-bound estimate of the recipient load upon every object migration
or replication. When the former falls below or the latter rises above the low watermark, the offloading stops
until actual load measurements are available.

Note that these estimates reflect the load changes only due to the migration or replication performed;
concurrent changes in replica placement on other nodes can obviously affect the load of the nodes involved
in the offloading. However, this is true for even a single object transfer, when no load estimates are used.
Using estimates does not worsen our load prediction while allowing transferring objects in bulk, which is

essential for responsiveness of the system to demand changes.

5 Replica Consistency

All objects can be divided into the following types:

1. Objects that do not change as the result of user accesses. These objects can be either static HTML

pages, or dynamic pages that retrieve information, e.g., weather reports, or map-drawing services.

2. Objects in which the only per-access modification involves collecting access statistics or other commut-

ing updates.
3. Objects where updates that result from user accesses do not commute.

Objects in the first category can change only as a result of updates by the content provider. Consistency
of these updates can be maintained by using the primary copy approach, with the node hosting the original
copy of the object acting as the primary. Depending on the needs of the application, updates can propagate
from the primary asynchronously to the rest of currently existing replicas either immediately or in batches
using epidemic mechanisms [13]. These objects can be replicated or migrated freely, provided the location
of the primary copy is tracked by the object’s redirector. Multiple studies (e.g., [26, 28]) have shown that
an overwhelming majority (80-95%) of Web object accesses are to this category of objects.

Objects in the second category can still be replicated using our protocol if a mechanism is provided

for merging access statistics recorded by different replicas. The problem arises if content served to clients

14

Parameter Value
Number of objects 10000
Size of object 12KB
Placement decision frequency Every 100 seconds
Node request rate 40 requests per sec
Server capacity 200 requests per sec
Network delay 10ms per hop
Link bandwidth 350 KBps
High watermark 50 and 90 requests/sec
Low watermark 40 and 80 requests/sec
Deletion threshold u 0.03 requests/sec
Replication threshold m 6u, or 0.18 requests/sec

Table 1: Simulation parameters.

includes some access statistics, as is the case of access counter appearing in some pages. If application
requires this information to always be served current, then such objects become equivalent to objects in the
third category for the purpose of our protocol.

Objects in the third category, in general, can only be migrated. In the case when the application can
tolerate some inconsistency, updates can be propagated asynchronously, either immediately after the access
or in batches. In this case, 1t may still be beneficial to create a limited number of replicas. The protocol
itself remains the same, with the additional restriction that the total number of replicas remain within the

limit.

6 Performance

We have performed an event-driven simulation of our algorithm to study its performance. We use synthetic
workloads for our simulation. [1] presents the results of a trace driven simulation and explores in depth the

tradeoffs involved in adjusting the various parameters in the algorithm.

6.1 Simulation Model

Since it is logical for an ISP to also provide hosting services, we chose the backbone of one of the largest
existing ISPs, UUNET, as a testbed. The backbone (see [34] for the map) contains 53 nodes in North
America, Europe, Pacific Rim, and Australia. We assume that all the backbone nodes serve as gateways.
In the simulation, each backbone node generates client requests at a constant rate that enter the platform
through it. Further, each node in the backbone can service client requests. There are 10K documents in the
system which are initially distributed among the nodes in the round-robin fashion, so that object ¢ is assigned
to node ¢ mod 53. Each request is assigned to a physical replica according to the algorithm of Figure 2 and is
routed to the node that hosts this replica along the shortest path, which is also the preference path for this
request. When there are equidistant paths between nodes ¢ and j, one path is chosen for all requests from
1 to j. The redirector is co-located with a node whose average distance in hops to other nodes is minimum.

In future, we plan to explore the problem of optimally placing redirectors for different objects in order to

15

minimize the added latency due to them. We assume that all pages are of equal size, and the request size is
negligible compared to the page size.
We explore the following workloads. One can expect than a real-life workload would be some mix of

workloads similar to the ones considered.

e Zipf. Previous studies [12, 2] observed that the popularity of pages requested by clients, as well as
popularity of pages on a given Web site, follows Zipf’s law, which basically says that if pages are
ranked according to their access frequency, then the popularity of the page with rank i is proportional
to 1/i. Thus, in this workload, clients choose pages according to Zipf’s law, where the page number

corresponds to its popularity rank.3

e Hot-sites. All sites are divided randomly into hot and cold, with p fraction of sites going to the cold
bucket and the rest to the hot bucket. A client chooses a random page among those initially assigned
to hot sites, with probability p, and a random document from a cold site, with probability 1 — p. We

choose p = 0.9. This workload models the situation when entire Web sites vary in popularity.

e Hot-pages. In the hot pages workload, all the pages are divided into hot and cold buckets in the ratio
1:9. A page from the hot bucket is requested with a high probability (0.9). The hot-pages workload

models the situation when some objects are uniformly more popular than others.

¢ Regional. All nodes are divided into four regions: Western North America, Eastern North America,
Europe, and Pacific and Australia. Each region is assigned a contiguous set of object numbers totaling
1% of all objects, representing a preferred object set for the region. Then, with probability 90%, each
node requests a random object from the preferred set for this node; with probability 10% a random
object from the entire set of objects is chosen. The regional workload models the situation when object

popularity varies with the region.

The time the system takes to adjust to a given workload, starting from the initial document assignment,
indicates the responsiveness of the protocol to a change in the demand pattern. Each node services requests
one by one in first-come-first-serve order. A node’s load is measured as the rate of serviced requests and is
averaged over a period called the load measurement interval, which is 20sec for our simulation. A request
incurs latency due to queuing and processing at the server and network delays.

Table 1 lists simulation parameters for our experiments. There are a number of tradeoffs involved in
choosing the parameters which are highlighted and further explored in [1]. We present some of the tradeoffs

here and the rationale for choosing particular values:

e The time between successive placement decisions determines the responsiveness of the system. A low

inter-placement time leads to high responsiveness; however it also makes the algorithm sensitive to

3 Precise modeling of Zipf's law requires a large table of points dividing a (0,1) interval into fragments with length equal to
each object’s popularity, and then determining a fragment to which a randomly chosen point on this interval belongs. Instead,
we use a closed-form approximation of Zipf’s distribution due to Jim Reeds, where the requested page number is calculated
as the value of e%(0:1)¥In(n) rounded to the closest integer, where u(0, 1) returns a random real number uniformly distributed
between 0 and 1, and n is the number of objects [31]. It gives page popularities within 15% of the actual Zipf’s law.

16

temporary bursts. For our experiments, the inter-placement time is not very relevant since the request
rate remains constant. However, in the real world, inter-placement time should be chosen so as to have
an acceptable responsiveness and at the same time mask burstiness at small time scales. [16] shows
that Internet traffic is bursty at fine time scales (of the order of seconds) but smoothes out for larger
time-scales (of the order of minutes or larger). Therefore, we choose an inter placement time of 100

seconds for our simulations.

e Deletion threshold determines how aggressively we migrate or replicate. There is again a tradeoff
involved - a low deletion threshold implies aggressive replication and migration; therefore, more replicas
are created leading to lower latency for requests. However, it may also increase the overhead traffic and
the number of extra replicas. For our simulations, we choose, rather arbitrarily, the deletion threshold
to be approximately the rate of requests sent per client per hot document in the hot-pages workload.
The replication threshold m should be greater than 4 x u (theorem 5). We choose the threshold to be
6 times the deletion threshold. [1] tries to explore the sensitivity of the algorithm to the replication
and deletion thresholds.

e The constant 2 used in the request distribution algorithm is another parameter that can be varied. [1]

explores the tradeoffs involved. In this paper, we choose a value of 2 arbitrarily.

e The watermarks (/w and hw) determine the maximum load on the host. The watermarks along with
the inter request time determine the load on the system. We choose the server capacity to be much
higher than the watermarks in order to avoid a backlog of messages. A backlog of messages is not
representative of the real world since servers normally drop messages or client timeout before queues

build up.

e The document size is chosen to be 12K B, the link delay is assumed to be 10ms while the link bandwidth
is assumed to be 350K B/sec. These values are based on preliminary experiments on traces of accesses
to pages hosted by AT&T’s EasyWWW hosting service and on the Worldnet topology [1]. We kept

the number of documents low in order to make the simulation faster.

6.2 Results

Figure 6 depicts the bandwidth consumed and the average response latency for the various workloads. The
bandwidth is determined by summing the number of bytes transmitted on each hop. Therefore, the path
taken by the response has a greater impact on the bandwidth consumed by a request since the data size
is larger than the request size. The bandwidth consumption reduces by 62.9% for hot-pages, 68.3% for
hot-sites, 60.1% for Zipf workload and by as much as 90.1% for the regional workload. In the hot-pages,
hot-sites and Zipf workloads, every document is requested with the same probability by all the hosts ze. a
popular document is globally popular. On the other hand, in the regional workload, the probability with
which a document is requested by a host depends on the region the host belongs to. Therefore, there is

some locality in document access patterns. A document is popular only in a particular region, which allows

17

Bytes per Request (bytes)

Bandwidth Consumed

60000 T
50000 ‘;

40000

Latency

T 0.13
Hot Pages —-—
Hot Sites -+~

Zipf -8
Regional -x 0.125

| 0.115 4
3
30000 ~ \é 0.11 ~
g
0.105 q
20000) q
« 01 % q
10000 x i x
* x 0.095 X, B
K o Ko X
R S KoK
o ‘ ‘ ‘ ‘ ‘ 0.09 ‘ ‘ ‘ ‘ ‘
0 5 10 15 20 25 30 0 5 10 15 20 25
Time (100 sec) Time (100 sec)
(a) Network traffic. (b) Average response latency.
Figure 6: Performance of dynamic replication.

Hot Pages —-—
Hot Sites -+~

Zipf -8
Regional -

Overhead Traffic

15

Overhead Traffic (% of total)

0.5

x %
% X X
S x
X, XX %
x
%
X
.
/ R
o, N
X ¥)
/ RN
p, e
- Jasia
=l Bg
B--8--@.g..
Bam.g a. a
=g’ BB

T
Hot Pages —-—
Hot Sites -+~
Zipf -8--

Regional -x

15
Time (100 sec)

Figure 7: Network overhead.

all the replicas of the document to be concentrated in that region. For the

30

other workloads, the replicas

have to be spread out because of the lack of locality in access pattern. This explains the lower bandwidth

consumption for regional workloads. Another noticeable feature is that the access pattern for both hot-

sites and hot-pages is similar, only the initial configuration of documents differs (in hot-sites, all the hot

documents are concentrated at a few sites, while in hot-pages they are well distributed). The equilibrium

bandwidth consumption for both the cases is the same, which indicates that the algorithm tries to optimally

place replicas based on the access patterns, irrespective of the initial configuration.

The latency reductions also show a similar trend. Average response latency reduces by around 20% for

the Zipf and hot-pages workloads and by 28% for the regional workload. The less spectacular improvement

in latency as compared to bandwidth is due to the fact that every request goes through the global redirector.

For the hot-sites workload, the latency initially is extremely high (in the order of tens of seconds), as all

18

30

140

120

Load (regs/sec)

100

80

60

40

Maximum Load

ot

T
Hot Pages —-—
Hot Sites -+-

Zipf -8
Regional -x

(a) Maximum Load in the System.

Load (regs/sec)

Load Estimates

40 T T

A

30 |

SER—

20

Low Load Estimate <—
High Load Estimate -+~
Actual Load -8-- |

0 . . .
0 1000 2000 3000 4000 5000
Time (sec)

(b) Load Estimates.

Figure 8: Maximum Load and Load Estimates.

Workload | Adjustment Time (min) | Average Number of Replicas
Hot-sites 20 2.62
Hot-pages 22 2.59
Regional 20 1.49
Zipf 23 1.86

L
6000

Table 2: Adjustment time and average number of replicas.

7000

L
8000

L
9000

10000

requests are queued up at the popular sites. However, it quickly drops to the levels similar to the Zipf and

hop-pages workloads, indicating that the algorithm successfully removes these hot-spots.

Figure 7 shows the traffic overhead as a percentage of the total traffic. The overhead, which occurs

because of the replication and migration of documents, is always below 2.5% of (already reduced) total

traffic. Figure 8a shows the maximum load in the system. The maximum load always remains below the

high-watermark of 80reqs/sec which shows that the algorithm successfully distributes load among the servers.

Initially, the maximum load for the hot-sites and Zipf workloads is high because a few sites/documents are

excessively popular. The algorithm manages to remove these hot spots through replications and migrations.

Table 2 shows the average number of replicas created and the adjustment time for the various workloads.

We compute the adjustment time as the time it takes to reach a bandwidth consumption that is 10% above

the average equilibrium bandwidth consumption. Depending on the workload, the adjustment time is 20 —

23 minutes. Note that significant traffic reductions occur much quicker than that. The number of replicas

for all the cases is very low, considering that the number of hosts in the topology is 53 with all the nodes

requesting documents at the same rate.

Figure 8b plots the load estimates for one of the hosts in the system along with the actual load. The

actual load lies between the high load estimate and the low load estimate which shows that the algorithm is

successful in predicting the load.

Figure 9 shows the performance of dynamic replication when the load on the system is high. High load

19

Bandwidth Consumed Latency
60000 : . T 013 . T
Hot Pages —— i Hot Pages —o—
Hot Sites —+- H Hot Sites —+-

\ Zipf -8 Zipf -8-- |
50000 \1\ Regional -x Regional -x

40000
0.115

30000 0.11

I
Latency (sec)

sy T 0105 O
OB S ey e

Bytes per Request (bytes)

20000
*x 01 x |

10000 * B
0.095

. Xox
. x
Ko Ko
x x
xXXxxxXxxx PRk Kt
R e S | KKK YRR

0 L L L L 0.09 L L L L
40 50 0 10 40 50

20 30 20 30
Time (100 sec) Time (100 sec)

(a) Bandwidth Consumption. (b) Average Response Latency.

Figure 9: Performance of Dynamic Replication (High Load)

is simulated by decreasing the high and low watermark to 50 and 40 respectively. This, on average, places
the low watermark load on every server. There are two effects of the high load. First, the responsiveness of
the system decreases. This is because, with recipient nodes being close to the low watermark, the protocol
is unable to relocate multiple objects in one transfer. Second, the performance gains diminish. Although
not perceptible in the graphs, the bandwidth consumption increases by about 2% (for hot-sites) to 17%
(for regional workload) and so does the average latency as compared to the low load case. The reason for
this behavior is that the protocol has no mechanism for exchanging pages between overloaded nodes. For
instance, if node 7 has a page has a page accessed mostly from node j and vice versa, it would make sense
for these nodes to swap pages - the load would remain the same but proximity would improve. Yet the high
load prevents either node from accepting any request for page placement.

In summary, our algorithm decreases bandwidth consumption and average response latency considerably
without imposing a high network overhead. It is also successful in removing hot-spots from the network and
distributing load among the servers. Our experiments show that the algorithm correctly predicts higher and
lower bounds on the load of a host, which i1s one of the main contributions of our scheme. The performance
of the algorithm diminishes as the load increases. [1] further explores the effect of load on the performance

as well as the sensitivity of the algorithm to other simulation parameters.

7 Conclusion

Manual mirroring of Internet objects is a slow and labor-intensive process. Beside high costs, this results
in poor performance while system administrators react to changes in demand for some objects. This paper
proposes a protocol for automatic replication and migration of objects in response to demand changes. The

goal is to place objects in the proximity of a majority of requests while ensuring that no hosts become

20

overloaded.

The protocol incorporates two main parts - an algorithm for deciding on the number and placement
of replicas and an algorithms for distributing requests among replicas. The replica placement algorithm
executes autonomously on each node, without the knowledge of other object replicas in the system. The
request distribution algorithm uses the same simple mechanism to take into account both the proximity of
servers to requests and server load, without actually knowing the latter. Both algorithms only use information
that is feasible to obtain from the routing databases maintained by Internet routers.

A simulation study showed that the additional traffic generated by our protocol due to moving objects
between hosts is by far offset by the reduction of backbone traffic due to servicing client requests from nearby
hosts. It is also effective in reducing response latency experienced by clients and eliminating hot spots among
servers. These benefits are achieved at the expense of creating only a small number of extra replicas, which
indicates that the heuristics used by the protocol are successful in deciding selectively when and where to

perform replication.

Acknowledgements

We wish to thank Vasilis Vassalos and Divesh Shrivastava for many discussions during Vasilis’es summer
internship at AT&T Labs. Thanks also go to Thimios Panagos for the simulator toolkit used in our simulation
study. Jim Reeds provided a convenient approximation for Zipf’s law. We would like to thank many other
people for stimulating discussions and comments, including Alex Biliris, Fred Douglis, H. V. Jagadish, and

Dennis Shasha.

References

[1] A. Aggarwal and M. Rabinovich. Performance of replication schemes on the Internet. Submitted for publication.

[2] V. Almeida, A. Bestavros, M. Crovella, and A. de Oliveira. Characterizing reference locality in the WWW. In
Proc. of the IEFE Conf. on Parallel and Distr. Information Sys, 1996.
[3] B. Awerbuch, Y. Bartal, and A. Fiat. Distributed Paging for General Networks. In Proc. of the 7th ACM-SIAM
Symposium on Discrete Algorithms, pp. 574-583, January 1996.
[4] M. Baentsch, L. Baum, G. Molter. S. Rothkugel, and P. Sturm. Enhancing the Web’s Infrastructure: From
Caching to Replication. IEEE Internet Computing, Vol 1, No. 2, pp. 18-27, March/April, 1997.
[5] A. Bestavros. Demand-based document dissemination to reduce traffic and balance load in distributed informa-
tion systems. In Proc. of the IFEE Symp. on Parallel and Distr. Processing, pp. 338-345, 1995.
[6] A. Bestavros and C. Cunha. Server-initiated document dissemination for the WWW. Bulletin of the Computer
Society technical Committee on Data Engineering, pp. 3-11. Vol. 19, No. 3, September 1996.
[7] H.-W. Braun and K. C. Claffy. An experimental means of providing geographically oriented responses relative
to the source of domain name server queries. Technical Report, San Diego Supercomputing Center, April 1994.
[8] R. Carter and M. Crovella. Server selection using dynamic path characterization in Wide-Area Networks. in
IFEFE Infocom’97, 1997.
[9] CISCO DistributedDirector. White paper. Available at http://www.cisco.com/warp/public/751/distdir/
[10] CISCO LocalDirector. http://www.cisco.com/warp/public/751/lodir/
1] M. Colajanni, Ph. S. Yu, and D. M. Dias. Scheduling Algorithms for Distributed Web Servers. In Proc. 17th
IFEFE Intl. Conf. on Distributed Computing Systems, May 1997.
[12] C. A. Cunha, A. Bestavros, and M. Crovella. Characteristics of WWW client-based traces. Technical Report
TR-95-010, Boston University Department of Computer Science, April 1995.

21

[13]

A. Demers, D. Greene, C. Hauser, W. Irish, J. Larson, S. Shenker, H. Sturgis, D. Swinehart, and D. Terry.
Epidemic algorithms for replicated database maintenance. In Proc. of the 6th Symp. on Principles of Distr.
Computing, pp. 1-12, 1987.

R. Farrell. Distributing the Web load. Network World, September 22, 1997.

7. Fei, S. Bhattacharjee, E. Zegura, and M. Ammar. A novel server selection technique for improving the response
time of a replicated service. In Proceedings of IEFE INFOCOM’98, 1998.

S. D. Gribble and E. A. Brewer. System design issues for Internet middleware services: deductions from a large
client trace. In Proc. USENIX Symp. on Internet Technologies and Systems, pp. 207-218. December 1997.

J. Guyton and M. Schwartz. Locating nearby copies of replicated Internet servers. In Proceedings of SIG-
COMM’95, 1995.

J. Gwertzman and M. Seltzer. The case for geographical push-caching. In Proc. of the HotOS Workshop, 1994.
Also available as ftp://das-ftp.harvard.edu/techreports/tr-34-94.ps.gz.

A. Heddaya and S. Mirdad. WebWave: Globally Load Balanced Fully Distributed Caching of Hot Published
Documents. In Proc. 17th IEFEE Intl. Conf. on Distributed Computing Systems, May 1997.

A. Helal, A. Heddaya, B. Bhargava Replication Techniques in Distributed Systems Kluwer Academic Publishers,
1996.

C. Huitema. Routing in the Internet. Prentice Hall, Englewood Cliffs, New Jersey, 1995.

IBM Interactive Network Dispatcher. http://www.ics.raleigh.ibm.com/netdispatch/

E. Katz, M. Butler, and R. McGrath. A scalable Web server: the NCSA Prototype. Computer Networks and
ISDN Systems, 27, pp. 155-164, September 1994. May 1994.

O. Kremlin and J. Kramer. Methodical Analysis of adaptive load sharing algorithms. IEEE Trans. on Parallel
and Distributed Systems, 6(3), pp.747-760, November 1992.

Q. Kure. Optimization of File Migration in Distributed Systems. PhD Dissertation, University of California
(Berkeley), 1988. Available as Technical Report UCB/CSD 88/413, Computer Science Division (EECS), Uni-
versity of California (Berkeley), April 1988.

S. Manly and M. Seltzer. Web facts and fantasy. In USENIX Symp. on Internet Technologies and Systems, pp.
125-134, 1997.

C. Partridge, T. Mendez, and W. Milliken. Host anycasting service. Request for Comments 1546, November
1993.

J. Mogul, F. Douglis, A. Feldmann and B. Krishnamurthy. Potential benefits of Delta-encoding and data com-
pression for HT'TP. In Proc. of ACM SIGCOMM’97 Conference, pp. 181-194, 1997.

V. Paxson. Measurements and Analysis of End-to-End Internet Dynamics. PhD dissertation. Lawrence Berkeley
National Laboratory, University of California. 1997.

M. Rabinovich, I. Rabinovich, and R.
Rajaraman. Dynamic Replication on the Internet. AT&T Labs Technical Report HA6177000-980305-01-TM,
March 1998. Available at http://www.research.att.com /misha/radar/tm.ps.gz.

J. Reeds. Personal communication.

M. Sayal, Y. Breitbart, P. Scheuermann, and R. Vingralek. Selection algorithms for replicated web servers.
Workshop on Internet Server Performance, June 1998. Available at

http://www.cs.wisc.edu/cao/ WISP98/html-versions/ mehmet /Select Web1.html.

S. Seshan, M. Stemm, and R. Katz. SPAND: shared passive network performance discovery. In Proc. USENIX
Symp. on Internet Technologies and Systems, pp. 135-146, 1997.

UUNET Global Backbone. Available at http://www.uu.net/lang.en/network/

Web Challenger. White paper, WindDance Network Corporation. Available at
http://www.winddancenet.com /newhitepaper.html. 1997.

O. Wolfson, S. Jajodia, and Y. Huang. An Adaptive Data Replication Algorithm. ACM Transactions on Database
Systems (TODS), Vol. 22(4), June 1997, pp. 255-314.

22

