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Abstract

Developing distributed applications is a difficult task due to three major problems:
the complexity of programming interprocess communication, the need to support ser-
vices across heterogeneous platforms, and the need to adapt to changing conditions.
Traditional middleware (such as CORBA, DCOM, and Java RMI) addresses the first
two problems to some extent through the use of a “black-box” approach, such as encap-
sulation in object-oriented programming. However, traditional middleware is limited
in its ability to support adaptation. To address all the three problems, adaptive mid-
dleware has evolved from traditional middleware. In addition to the object-oriented
programming paradigm, adaptive middleware employs several other key technologies
including computational reflection, component-based design, aspect-oriented program-
ming, and software design patterns. This survey paper proposes a three-dimensional
taxonomy that categorizes different adaptive middleware approaches. Examples of each
category are described and compared in detail. Suggestions for future research are also
provided.
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1 Introduction

Developing distributed applications is a difficult task for several reasons. First, writing code for

interprocess communications is tedious and error prone. Low level socket programming and mar-

shalling and unmarshalling messages are examples of such code. Second, supporting multiple

interacting platforms is difficult. Many heterogeneous hardware devices, computer networks, oper-

ating systems, and programming languages have emerged during the last two decades. Distributed

applications are more likely than stand-alone applications to involve heterogeneous technologies.

Third, adapting to dynamic changing conditions is hard to achieve without the right tools and

techniques. Emerging distributed applications often involve multimedia communication, mobility,

embedded computing, group communications, and high availability. Addressing these issues means

that systems must adapt to changing conditions, such as unexpected security attacks, hardware

failures, and dynamic network environments.

To tackle the first two problems, middleware was invented. Traditionally, middleware hides

the underlying details of interprocess communication and heterogeneous technologies from the

application developers using a “black-box” paradigm such as encapsulation in object-oriented pro-

gramming. Although traditional middleware solves these problems to some extent, it is limited in

its ability to support adaptation. Adaptive middleware has evolved from traditional middleware to

solve all the three problems together. We identify two types of adaptation provided by adaptive

middleware: static and dynamic. Static adaptation can occur during compile or startup time, and

dynamic adaptation occurs only after startup time.

In addition to the object-oriented programming paradigm, adaptive middleware employs four

key software technologies in order to support adaptation. Computational reflection [1] enables mid-

dleware to inspect, reason about, and adapt itself at run time. Component-based design [2] enables

decomposition of middleware functionality, which makes it easier to manage and modify the struc-

ture of the middleware both statically and dynamically. Aspect-oriented programming [3] enables

separation of middleware cross-cutting concerns (such as quality-of-service, energy consumption,

security, and fault tolerance) at development time; later, at compile or run time, these concerns can

be selectively woven into the application code. Finally, software design patterns [4] enable reuse of

best adaptive designs, such as the virtual component pattern [5], in adaptive middleware.

This paper uses three orthogonal methods to classify adaptive middleware. The first method,

proposed by Schmidt [6], categorizes middleware into four layers: host-infrastructure, distribution,
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common-services, and domain-services. The second method, introduced here, classifies middleware

according to its adaptation type. We define and focus on four types of adaptation: configurable,

customizable, tunable, and mutable. The third method, also introduced here, classifies adaptive

middleware according to the application domain. We focus on three major domains: QoS-oriented

systems, dependable systems, and embedded systems.

The remainder of this survey paper is divided into the following sections. Section 2 provides

background on middleware and reviews a well-established taxonomy of traditional middleware. Sec-

tion 3 discusses supporting paradigms and standards for adaptive middleware. Section 4 proposes

a three-dimensional taxonomy of adaptive middleware. Section 5 introduces, compares, and cate-

gorizes several recent adaptive middleware projects according to the proposed taxonomy. Section 6

brings together all the projects discussed in Section 5 and shows where each project fits in the big

picture. Finally, Section 7 concludes the paper and suggests possible future research directions.

2 Middleware Background

Middleware is connectivity software that encapsulates a set of services residing above the network

operating system layer and below the user application layer. Middleware facilitates the communi-

cation and coordination of application components that are potentially distributed across several

networked hosts. Moreover, middleware provides application developers with high-level program-

ming abstractions, for example, use of remote objects instead of socket programming [7]. In this

manner, middleware can hide interprocess communication, mask the heterogeneity of the underly-

ing systems (hardware devices, operating systems, and network protocols), and facilitate the use

of multiple programming languages at the application level. Middleware can also be considered

as a “glue” that enables integration of legacy applications [8], effectively implementing the session

and presentation layers (layers 5 and 6) of the ISO OSI reference model [9]. Next, we discuss a

well-known taxonomy of traditional middleware [9]. Following that, object-oriented middleware

(upon which most adaptive middleware projects introduced in this paper are based) is discussed

at length.

2.1 A Taxonomy of Traditional Middleware

Emmerich [9] provides a frequently referenced taxonomy of middleware. His taxonomy is based

on the type of programming-language abstraction that middleware provides for interaction among
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distributed software components: transactional, message-oriented, procedural, or object-oriented.

The corresponding primitive communication techniques are distributed transactions, message pass-

ing, remote procedure calls, and remote object invocations, respectively. We note that Bakken [8]

introduced a similar taxonomy that also includes four classifications: distributed tuples, message-

oriented, remote procedure call, and distributed object. In this paper, however, we use the Em-

merich’s taxonomy to help lay a foundation for our later discussion of adaptive middleware.

Transactional middleware supports distributed transactions among processes running on dis-

tributed hosts. Originally, this type of middleware was targeted at interconnecting heterogeneous

database systems. Goals include providing data integrity, high-performance, and availability using

the two-phase commit protocol [10]. IBM CICS [11] and BEA Tuxedo [12] are two examples of this

category.

Message-oriented middleware facilitates asynchronous message exchange between clients and

servers using the message-queue programming abstraction [9], a generalization of the operating

system mailbox. Messages do not block a client and are deposited into a queue with no specific

receiver information. In addition, the message-queue abstraction decouples clients and servers,

which enables interaction among otherwise incompatible systems. IBM MQSeries [13] and Sun

Java Message Queue [14] are two examples of this category.

Procedural middleware extends the procedure call in procedural programming languages to in-

clude remote procedure calls (RPC), where the body of the procedure resides on a remote host and

can be called the same way as a local procedure. Birrell and Nelson [15] implemented the first

full-fledged version of RPC. Sun Microsystems adopted RPC as part of its open network comput-

ing. Later, Open Group developed a standard for RPC called distributed computing environment

(DCE) [16]. Most Unix and Windows operating systems now support RPC facilities.

Finally, object-oriented middleware is based on both the object-oriented programming paradigm

and the RPC architecture. It provides the abstraction of a remote object, whose methods can be

invoked as if the object were in the same address space as its client. Encapsulation, inheritance,

and polymorphism are often supported by this type of middleware. CORBA [17], Java RMI [18],

and DCOM [19] are three major object-oriented middleware approaches.

Among these four types, in this survey, our primary focus is on object-oriented middleware,

which is the basis for most research in adaptive middleware. Therefore, the remainder of this

section reviews the three major object-oriented middleware approaches.
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2.2 Object-Oriented Middleware

Object-oriented middleware separates an object interface (a set of functionally related methods)

from its implementation, provides a local representation of a remote object, and hides the inter-

process communication between a remote object and its local representation.

The Common Object Request Broker Architecture (CORBA) [17] is a distributed object frame-

work proposed by the Object Management Group (OMG) [20]. CORBA supports distributed

object-oriented computing across heterogeneous hardware devices, operating systems, network pro-

tocols, and programming languages. Figure 1 illustrates the CORBA components described as

follows. The Object Request Broker (ORB) [21], the core of CORBA, allows objects to interact

transparently with other objects (located locally or remotely). A CORBA object is represented by

its interface, is identified by its reference, and is realized in an object-oriented program as a local

object called “servant.” The client of a CORBA object acquires the object reference called interop-

erable object reference (IOR) and calls methods on this reference as if the object were located in the

client address space. The Interface Definition Language (IDL) is a language for defining CORBA

interfaces. An IDL compiler is used to automatically generate the code for stubs and skeletons. An

IDL stub represents a servant locally in the client address space and an IDL skeleton represents a

client locally in the servant address space. IDL stubs and skeletons marshal and unmarshal requests

to enable transmission of the requests over a network.

The dynamic invocation interface (DII) enables clients to directly access the underlying request

mechanisms at run time to generate dynamic requests to objects, whose type (interface) were not

known at the client compile time. The interface repository provides the type information that

a client needs to dynamically create a request. Similarly, the dynamic skeleton interface (DSI)

enables an ORB to deliver requests to a servant that does not have compile-time knowledge of

the type of the object it supports (e.g., a gateway object may not know the type of the target

objects to which it is forwarding requests). The implementation repository enables late deployment

of CORBA objects. The implementation repository receives the first request targeted to a CORBA

object, looks up the object meta information in its database, activates the object, and forwards

the request “permanently” to the target object. Permanent forwarding, in contrast to transient

forwarding, also causes automatic forwarding of all future requests from the same client and to

the same target object directly from the client ORB. The object adapter activates servants and

dispatches requests to them. The ORB interface provides access to standard ORB services, such
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as resolving the CORBA initial services like the naming service. The general inter-ORB protocol

(GIOP) is a standard for inter-ORB communication that enables interoperability among different

CORBA-compliant ORBs. The Internet inter-ORB protocol (IIOP) is a specific mapping of the

GIOP specification that runs over TCP/IP connections.

Figure 1: CORBA architecture [22].

The Java remote method invocation (Java RMI) [18] was proposed by JavaSoft to support the

development of distributed Java-based applications. Unlike CORBA, Java RMI supports only the

Java language, but similar to CORBA, Java RMI supports distributed computing across heteroge-

neous hardware devices and operating systems using the Java Virtual Machine (JVM). Instead of

CORBA marshalling and unmarshalling, Java RMI uses object serialization, which preserves the

type of the objects being serialized. Figure 2 depicts a typical Java RMI application. The registry

in Java RMI is similar to a CORBA naming service, which resolves a symbolic name to an actual

remote object reference. A server object registers itself with the registry, where a client object can

look up the remote object address. Java RMI can dynamically load the class bytecode of an object

that is passed between remote objects using Java reflection. As shown in Figure 2, Java RMI can

use a web server to load class bytecodes. Similar to CORBA, Java RMI supports dynamic request

invocation using Java reflection.

URL protocol

URL protocol
URL protocol

RMI
RMI

RMI

Figure 2: A typical Java RMI application [23].

The Distributed Component Object Model (DCOM) [19] was proposed by Microsoft as a dis-
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tributed extension to the Component Object Model (COM) [24]. Similar to CORBA, DCOM

supports heterogeneous programming languages, but unlike CORBA and Java RMI, DCOM sup-

ports only Windows-based platforms. Figure 3 illustrates the DCOM architecture. The service

control mangager (SCM), like the CORBA ORB core, is responsible to locate an object imple-

mentation. In DCOM terminology, the object proxy and object stub are the equivalent names as

the CORBA stub and skeleton. Unlike CORBA and Java RMI, DCOM supports neither multiple

inheritance nor exceptions at the IDL level. However, with regard to inheritance, DCOM supports

multiple interfaces using a binary standard similar to the C++ vtable [19]. DCOM also supports

dynamic invocation using the IDispatch interface [19]. For more detailed comparisons of CORBA,

Java RMI, and DCOM, please refer to [7, 25,26].

Figure 3: DCOM architecture [26].

3 Key Supporting Paradigms for Adaptation

In addition to the foundation provided by the design and use of traditional middleware platforms,

numerous advances in programming paradigms [1–4, 27–34] have also contributed to the design of

adaptive middleware. Although many important contributions have been made in this area [28–34],

a review of the literature shows that four paradigms, in addition to object-oriented paradigm,

play key roles in supporting adaptive middleware: computational reflection [1], component-based

design [2], aspect-oriented programming [3], and software design patterns [4,27]. Each is discussed

in turn as follows.

3.1 Computational Reflection

Computational reflection [1,35] refers to the ability of a program to reason about, and possibly alter,

its own behavior. Reflection enables a system to “open up” its implementation details for such

analysis without compromising portability or revealing the unnecessary parts [36]. In other words,

reflection exposes a system implementation at a level of abstraction that hides unnecessary details,

but still enables changes to the system behavior [1,35]. As depicted in Figure 4, a reflective system
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(represented as base-level objects) has a self representation (represented as meta-level objects) that

is causally connected to the system, meaning that any modifications either to the system or to

its representation are reflected in the other [37]. The base-level part of a system deals with the

“normal” (functional) aspects of the system, whereas themeta-level part deals with the computation

(implementation) aspects of the system. A meta-object protocol (MOP) is a meta-level interface

that enables “systematic” (as opposed to ad hoc) inspection and modification of the base-level

objects.

Meta Level

Base Level

MOPs

Figure 4: Relationship between meta-level objects and base-level objects.

Computational reflection has been studied for several years in the context of programming

languages [1,35,38–41] and operating systems [42–44]. Recently, reflection has also been studied in

middleware, where it enables adapting the behavior of a distributed application by modifying the

middleware implementation. Reflective middleware is often concerned with adapting non-functional

aspects of distributed applications including QoS, performance, security, fault tolerance, and energy

management. Section 5 describes several examples of reflective middleware [45–53].

We also note that several reflective programming languages [54–57] have been proposed recently

to support development of distributed systems and reflective middleware. MetaJava [54] extends

Java reflection with behavioral reflection that enables modifying the behavior of the Java RMI

package at run time (e.g., encrypting requests before transmitting them over a network). Pro-

gram Control Logic (PCL) [56] provides a programming framework that enables programmers to

design, develop, and optimize the performance of adaptive distributed applications [56]. A source-

to-source compiler is provided, which inputs meta code specified in a language very close to C++

and Java (PCLC and PCLJ respectively) and outputs a program source in C++ or Java that is

then compiled and linked with the base program. Adaptive Java [55] is an extension to Java that

introduces new language constructs to support behavioral reflection. In its behavioral reflective

meta-model architecture, Adaptive Java separates monitoring the behavior (introspection) from

changing the behavior (intercession), using “refractive” and “transmutative” meta methods, re-
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spectively. Iguana/J [57] extends the Java Virtual Machine to intercept method invocation, object

creation, and field read and write at run time. Iguana/J can adapt the intercepted operations

by loading new code dynamically. These and other reflective languages [1, 35, 38–41] are likely to

facilitate the development of adaptive middleware and distributed applications.

3.2 Component-Based Design

Software components are software units that can be independently produced, deployed, and com-

posed by third parties [2]. Components are self-contained: components clearly specify what they

require and what they provide. Component-based design (CBD) supports the large scale reuse of

software by enabling assembly of “commodity-off-the-shelf” (COTS) components from a variety of

vendors [7]. The independent deployment of components enables late composition (also referred to

as late binding), which is essential for adaptive systems. Late composition provides coupling of two

compatible components at run time through a well-defined interface. A system developed using

CBD is an amalgam of components that can be reorganized easily.

When applied to middleware, CBD provides a flexible and extensible system [47,49,50,53,58–60].

Specially, a middleware can be customized to specific application domains, through the integra-

tion of domain-specific components, and can evolve using third-party components. Moreover,

component-based middleware can be dynamically adapted to its environment using late composi-

tion. Examples of major component-based middleware solutions are DCOM [19] (discussed earlier),

EJB [61], and CCM [62]. Enterprise Java Beans (EJB) [61] is a middleware component model for

Java proposed by Sun Microsystems that enables Java developers to use off-the-shelf Java com-

ponents, or beans. Since EJB is built on top of Java technology, EJB components can only be

implemented using the Java language, however. The EJB component model supports adaptation

by automatically supporting services such as transactions and security for distributed applica-

tions. The CORBA Component Model (CCM) [62] is a distributed component model proposed by

OMG that can be considered as a cross-platform, cross-language superset of EJB. CCM supports

adaptation by enabling injection of adaptive code into component containers (i.e., the component

themselves remain intact).

3.3 Aspect-Oriented Programming

The third major software development paradigm used in adaptive middleware is aspect-oriented

programming (AOP). Kiczales et al. [3] realized that complex programs are composed of different
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intervened cross-cutting concerns (properties or areas of interest such as QoS, energy consumption,

fault tolerance, and security). While object-oriented programming abstracts out commonalities

among classes in an inheritance tree, cross-cutting concerns are still scattered among different

classes, complicating the development and maintenance of applications. AOP enables separation

of cross-cutting concerns during development time. Later, during compile or run time, an aspect

weaver can be used to weave different aspects of the program together to form a program with new

behavior. AOP proponents argue that disentangling the cross-cutting concerns leads to simpler

development, maintenance, and evolution of software.

Naturally, these benefits are important to adaptive middleware. Moreover, AOP enables fac-

torization and separation of cross-cutting concerns from the middleware core [63], which promotes

reuse of cross-cutting code and facilitates adaptation. Using AOP, customized versions of mid-

dleware can be generated for application-specific domains. Yang et al. [64] and David et al. [65]

both provide a two-step approach to dynamic weaving of aspects, in the context of adaptive mid-

dleware, using a static AOP weaver during compile time and reflection during run time. Other

aspect-oriented middleware projects [53, 66–69] are described in detail in Section 5.

3.4 Software Design Patterns

Software design patterns [4, 27] provide a way to reuse best software designs practiced successfully

for several years. The goal of software design patterns is to create a common vocabulary for com-

municating insight and experience about recurring problems and their known “refined” solutions.

It is very costly, time consuming, and error-prone to independently rediscover and reinvent

solutions to middleware challenges. Schmidt and colleagues [4] have identified a relatively concise

set of patterns that enables developing adaptive middleware. For example, the virtual component

pattern [5], used in TAO [70] and ZEN [60], enables adapting a distributed application to the

memory constraints of embedded devices by providing a small middleware footprint including only

a minimum core, and a set of “virtual” components, whose code can be dynamically loaded on

demand. Numerous adaptive middleware projects [45, 49, 50, 53, 58, 60, 66, 67, 70–72] benefit from

the use of adaptive design patterns, as discussed in Section 5.

The paradigms introduced in this section address only part of the adaptation techniques used

by numerous recent and ongoing adaptive middleware projects. The next section describes the

three-dimensional taxonomy we use to categorize these activities.
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4 A Taxonomy of Adaptive Middleware

Adaptive middleware enables modifying the behavior of a distributed application after the applica-

tion is developed in response to some changes in functional requirements or operating conditions.

Adaptive operating systems [42–44] also enable adaptation after development time. Adaptive op-

erating systems, however, typically provide low-level and non-portable adaptive services. Adaptive

middleware, on the other hand, can exploit an underlying adaptive operating system, while pro-

viding a high-level abstraction of system resources that supports portable adaptive code. Adaptive

operating systems are beyond the scope of this survey paper. In the remainder of this section,

we describe a three-dimensional taxonomy for classifying adaptive middleware projects. The first

dimension was introduced by Schmidt [6], while the second and third are proposed by the author.

4.1 Middleware Layers

Schmidt [6] decomposes middleware into four layers: host-infrastructure, distribution, common-

services, and domain-services. Figure 5 illustrates these layers.

Kernel

Application

Distribution

Common-Services

Host-Infrastructure

Domain-Services

Middleware Layers

kernel boundary 
process boundary
layer boundary

Figure 5: Middleware layers described by Schmidt [6].

The host-infrastructure layer resides directly atop the operating system kernel and provides a

higher-level API than the operating system API that hides the heterogeneity of hardware platforms,

operating systems and, to some extent, network protocols. Host-infrastructure middleware provides

generic services to the upper middleware layers by encapsulating functionality that would otherwise

require many tedious, error-prone, and non-portable code, such as socket programming and thread

communication primitives. ACE [71], Rocks [73] and MetaSockets [53], described in Section 5, are

examples of adaptive middleware in this layer.

The distribution layer resides atop the host-infrastructure layer and provides a high-level pro-
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gramming abstraction, such as remote method invocation, to application developers. Using the

distribution layer, developers can write distributed applications similar to stand-alone applications.

Moreover, this layer hides the heterogeneity of network protocols and, to some extent, the hetero-

geneity of operating systems and programming languages. CORBA [17], DCOM [19], and Java

RMI [18], discussed earlier, are the main solutions to the distribution layer. In Section 5, we will

provide some examples of adaptive middleware at this layer including TAO [70], DynamicTAO [45],

and OpenORB [46].

The common-services layer resides atop the distribution layer and provides functionality such as

fault tolerance, security, load balancing, event propagation, logging, persistence, real-time schedul-

ing, and transactions. The high-level services provided in this layer can be reused in different

applications. QuO [66], IRL [74], and FRIENDS [51], also described in Section 5, are example of

adaptive middleware in this layer.

Finally, the domain-services layer resides atop the common-services layer and is tailored to a

specific class of distributed applications. Unlike the common-services layer, the high-level services

in this layer can be reused only for a specific domain. Boeing Bold Stroke architecture [75] is an

example of adaptive middleware in this layer.

4.2 Adaptation Type

Adaptive middleware can be categorized with respect to the type of adaptation it provides. Figure 6

shows our proposed taxonomy of adaptive middleware with respect to adaptation type mapped to

the application lifetime. If middleware enables adaptation during the application compile or startup

time, we call it static middleware (e.g., EmbeddedJava [76] minimizes the footprint of embedded

applications during the application compile time). If middleware enables adaptation during the

application run time, we call it dynamic middleware (e.g., MetaSockets [53] load adaptive code

during run time to adapt to wireless network loss rate changes). Note that, in Figure 6, dynamism

increases from left to right.

Adaptive Middleware

Static Middleware

Customizable Configurable Tunable Mutable

Development Time Compile Time Startup Time Run Time

Dynamic Middleware

Adaptation Type

Application Lifetime

Figure 6: Taxonomy of adaptive middleware with respect to adaptation type.
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Static middleware is divided further into customizable and configurable middleware. Customiz-

able middleware enables adapting an application during the application compile (or link) time so

that a developer can generate customized (adapted) versions of the application. Note that a cus-

tomized version is generated in response to the functional and environmental changes realized after

the application development time. Examples of adaptation mechanisms provided by customizable

middleware are static weaving of aspects [3], compiler flags [60], and precompiler directives [60].

QuO [66] and EmbeddedJava [76], discussed in Section 5, are examples of customizable middleware.

Configurable middleware enables adapting an application during the application startup time,

enabling an administrator to configure the middleware in response to the functional and envi-

ronmental changes realized after the application compile time. Examples of adaptation mecha-

nisms provided by configurable middleware include CORBA portable interceptors [77], optional

command-line parameters, for example, to set socket buffer-size, and configuration files such as

ORBacus configuration file [78]. In Section 5, we will describe several examples of cofigurable

middleware including Eternal [79], IRL [74], and Rocks [73].

Dynamic middleware can be divided into tunable and mutable middleware. Tunable middleware

enables adapting an application after the application startup time (but before the application is

actually being used). Doing so enables an administrator to fine-tune the application in response

to the functional and environmental changes that occur after the application is started. Examples

of adaptation mechanisms provided by tunable middleware are “two-step” adaptation approaches

(including static AOP during compile time and reflection during run time) employed by David et.

al [65] and Yang et. al [64], the component configurator pattern [4] used in DynamicTAO [45], and

the virtual component pattern [5] used in TAO [70] and ZEN [60]. We also define a variation of

tunable middleware, repeatedly-tunable middleware, that enables repeated-tuning of applications

during run time.

Mutable middleware is the most powerful type of adaptive middleware that enables adapting an

application during run time. Hence, the middleware can be dynamically adapted while it is being

used. The main difference between tunable middleware and mutable middleware is that in the

former, the middleware core remains intact during the tuning process whereas in the latter, there

is no concept of fixed middleware core. Therefore, mutable middleware are more likely to evolve

to something completely different and unexpected. Examples of adaptive techniques provided by

mutable middleware are reflection [46], late composition of components [60], and dynamic weaving

of aspects [64,68]. OpenORB [46], also discussed in Section 5, is an example of mutable middleware.
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4.3 Application Domain

The third dimension of our taxonomy categorizes adaptive middleware with respect to application

domain. Our survey of the literature reveals that most adaptive middleware projects support one of

these three main application domains: QoS-oriented systems, dependable systems, and embedded

systems. Figure 7 illustrates our taxonomy of adaptive middleware based on application domains.

QoS-oriented middleware supports real-time and multimedia applications, such as avionics systems,

video conferencing and Internet telephony, that are required to meet deadlines and adhere to some

QoS contracts, which define the acceptable levels of QoS. Dependable middleware supports critical

distributed applications that are required to be correctly operational, such as military command

and control and medical applications. Embedded middleware supports applications that are required

to have small footprints to be able to run on very limited memory devices, including set-top boxes,

smart phones, hand-held devices, industrial controllers, and scientific instruments. Each of the

three domains are further refined in the next section, where we describe each of the refinements

and use them to introduce specific adaptive middleware projects. We also discuss where each

project fits with respect to the first two dimensions of our taxonomy.

Adaptive Middleware

Dependable MiddlewareQoS-Oriented Middleware Embedded Middleware

Figure 7: Taxonomy of adaptive middleware with respect to application domain.

5 Adaptive Middleware Projects

Before beginning our classification of adaptive middleware projects, we should emphasis that a

given project may cross domains and may reside in more than one middleware layer. In such

cases, we placed the project in the domain and layer that match its primary functionality. If a

middleware project provides more than one adaptation type, we explicitly mention that the project

provides hybrid adaptation. In addition, details of how supporting paradigms used in each project

are discussed and compared to other related projects.

5.1 QoS-Oriented Middleware

QoS-oriented middleware supports distributed applications that require quality-of-service. We fur-

ther refine QoS-oriented middleware into real-time, multimedia, reflection-oriented, and aspect-
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oriented middleware as shown in Figure 8. Examples of each category are described in turn as

follows.

QoS-Oriented Middleware

Stream-Oriented 
Middleware

Real-Time 
Middleware

Reflection-Oriented 
Middleware

Aspect-Oriented 
Middleware

Figure 8: Taxonomy of QoS-Oriented middleware.

Real-Time Middleware. Real-time middleware is required to meet the deadlines defined by

real-time applications. In a hard real-time middleware, a failure to meet a deadline may lead to loss

of life or property. Life critical military and safety critical civilian distributed real-time systems

are two examples of hard real-time applications. In a soft real-time middleware, however, a failure

to meet a deadline is not as critical as in a hard real-time middleware.

One of the earliest middleware projects is Schmidt’s Adaptive Communication Environment

(ACE) [71, 80], a real-time object-oriented framework written in C++, that provides high-

performance and real-time communication services. ACE employs software design patterns to

support distributed applications with efficiency and predictability, including low latency for delay-

sensitive applications, high performance for bandwidth-intensive applications, and predictability

for real-time applications. Figure 9 illustrates the key components in the ACE framework. Note

that the OS Adaptation Layer resides directly atop the native operating system APIs providing

a platform-independent API. Hence, we place ACE in the host-infrastructure layer. ACE compo-

nents can be dynamically updated using the service configurator pattern [4] and C++ dynamic

binding feature. Therefore, we consider ACE as repeatedly-tunable middleware (but not mutable

middleware) because the ACE core remains intact during the tuning process.

Schmidt et al. [70] extended their ACE work to create the ACE ORB (TAO), a CORBA com-

pliant real-time ORB built atop the ACE components, as shown in Figure 10. TAO enhances the

standard CORBA event service to provide real-time event dispatching and scheduling required by

real-time applications such as avionics, telecommunications and network management systems. Ear-

lier versions of TAO employ the strategy design pattern [27] to encapsulate different aspects of the

ORB internals, such as IIOP pluggable protocols, concurrency, request demultiplexing, schedul-

ing, and connection management. A configuration file is used to specify the strategies used to

implement these aspects during startup time. TAO parses the configuration file and loads the

required strategies. Therefore, we consider TAO as configurable middleware. Recent versions of
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TAO decomposes the C++ implementation of TAO into several core ORB components that can

be dynamically loaded on demand using the virtual component pattern [5]. Therefore, we also

consider TAO as repeatedly-tunable middleware. TAO naturally resides in the distribution layer

because it is a CORBA compliant ORB.

Figure 9: ACE architecture [81].

REAL-TIME ORB CORE`

Figure 10: TAO architecture [82].

The Component-Integrated ACE ORB (CIAO) [58], also developed by Schmidt et al., is the

TAO implementation of CORBA Component Model (CCM) [77], which also resides in the dis-

tribution layer. CIAO intended to provide component-based design to distributed real-time and

embedded (DRE) system developers by abstracting systemic aspects, such as QoS requirements

and composable meta-data units supported by the component framework. We consider the current

CIAO implementation only as configurable middleware.

Researchers at the University of Illinois developed several adaptive middleware [45, 49, 50, 59].

Campbell et al. [45] adopted earlier version of TAO [70], which itself is considered only as con-

figurable middleware, and built a dynamically adaptive version of TAO called DynamicTAO us-

ing computational reflection. To provide real-time services, DynamicTAO uses the Dynamic Soft

Real-Time Scheduler (DSRT) [83] that provides QoS guarantees to applications with soft real-

time requirements. Reflection in DynamicTAO does not use meta objects for reifying the ORB

aspects. Reification in DynamicTAO is achieved using the service configurator pattern [4]. In

other words, reflection is mainly used to implement the service configurator pattern. Figure 11

illustrates the DynamicTAO reified structure. The DomainConfigurator, TAOConfigurator, and

ServantConfigurator are all realizations of service configurator pattern in DynamicTAO. A ser-

vice configurator in DyanimcTAO exports the DynamicConfigurator interface, which is a CORBA

IDL interface, defined also as the MOP for inspecting, adapting, loading, and unloading “com-

ponent implementations” dynamically. Component implementations are organized in categories

representing different aspects of the TAO ORB packaged as dynamically loadable libraries that can

be linked to the ORB at run time. We consider DynamicTAO as repeatedly-tunable middleware.
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Figure 11: DynamicTAO reified structure [84].

Stream-Oriented Middleware. Stream-oriented middleware provides a continuous data

streaming abstraction to the multimedia application developers. Video conferencing, Internet tele-

phony, and digital libraries are some examples of multimedia applications.

Researchers at Lancaster University have conducted several projects in multimedia middle-

ware [37, 46, 85, 86]. Blair et al. [37] have investigated the middleware implementation for mo-

bile multimedia applications which can be dynamically adapted in response to the environmental

changes in the context of Adapt project. In the OpenORB project [46], the successor of the Adapt

project, Blair et al. continued their investigation studying the role of computational reflection in

middleware. More recently, Blair et al. [85] designed OpenORB v2 that adds a component-based

design framework to the OpenORB reflective framework. OpenCOM [86] is the implementation

of OpenORB v2, designed for Microsoft COM systems. All above mentioned projects are greatly

influenced by the ITU-T/ISO RM-ODP [87], a meta standard for multimedia applications. Un-

like TAO [70] and DynamicTAO [45], none of Adapt, OpenORB, and OpenORB v2 projects are

CORBA compliant.

OpenORB uses reflection to provide dynamic adaptation. The implementation of the OpenORB

current reflective architecture is based on the reflection model illustrated in Figure 12. OpenORB

categorizes reflection into structural and behavioral reflection [84], a distinction first introduced

in [88]. Structural reflection is the ability of a system to inspect and modify its internal architec-

ture, and behavioral reflection is the ability of a system to inspect and modify its computation.

Structural reflection is modeled by the “architecture” and “interface” meta-models, and the behav-

ioral reflection is modeled by the “interception” and “resources” meta-models. The architecture

meta-model provides access to an object using its object graph. The interface meta-model pro-

vides access to the methods, associated attributes, and inheritance structure of each interface of

16



an object. The interception meta-model provides interception hooks for each interface of an object

including message arrival, dispatching, marshalling and unmarshalling interception hooks. The

resources meta-model provides access to available resources per address space and enables resource

reservation. Unlike DynamicTAO [45] that uses reflection mainly to implement the service config-

urator pattern, OpenORB provides an ORB wide reflection. Therefore, we consider OpenORB as

mutable middleware.

Meta-level

Base-level

Architecture
meta-object

Interface
meta-object

Interception
meta-object

Resource  meta-object
(per address space)

Base-level
component

Base-level
component

Figure 12: OpenORB reflection model [84].

OpenORB supports stream-oriented applications using “explicit binding,” as opposed to the

implicit binding provided in CORBA. In explicit binding, remote objects are bound explicitly by a

programmer. Figure 13 illustrates the result of an explicit binding in a live video application, which

represents the end-to-end communication path. Using the OpenORB reflection meta-model (in this

case only architecture meta-model), an MPEG encoder can be replaced by an H.263 encoder that

uses much lower bandwidth adapting the application to situation that network bandwidth available

is decreasing at run time.

Video
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MPEG
encoder

RTP
sender UDP/IP Binding MPEG

decoder
RTP

receiver

RTP Binding

Delay
buffer

Inserting a delay buffer 
object to counteract the 
effects of jitter.

H.263
encoder

An MPEG video 
encoder replacement.

Data

Video
Render

control  interfaces RTP: Real-time transport protocol.

Figure 13: Open binding in OpenORB [89].

Squirrel [90,91] is QoS-oriented middleware specialized for distributed multimedia applications.

Squirrel uses the Infopipes abstraction [92] to support streaming data. The designers argue that
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CORBA stubs and skeletons generated from IDL interfaces follow a standard protocol (marshalling

and unmarshalling) that is not suitable for multimedia applications with different QoS requirements.

To solve this problem, Squirrel introduces smart proxies [91], which are service-specific stubs that

include adaptive code. A smart proxy for a specific application can be developed and shipped to

the client program statically (during compile time) or dynamically (during run time). Figure 14

illustrates dynamic smart proxy shipping in a live video application. We consider Squirrel at

the distribution layer because, similar to CORBA stubs, Squirrel uses smart proxies to hide the

interprocess communication details from application developers. We consider Squirrel as both

tunable and mutable middleware because of its ability to statically and dynamically load smart

proxies. However, Squirrel is not considered as repeatedly-tunable middleware because the tuning

occurs just once at the remote object binding time.

MetaSockets [53], developed at Michigan State University, also address the issue of adaptable

multimedia streams. MetaSockets are created from existing Java socket classes using Adaptive

Java, a reflective extension to Java, whose structure and behavior can be adapted dynamically in

response to external stimuli. As illustrated in Figure 15, MetaSockets provide a pipeline abstraction

similar to that of Squirrel [90]. However, the adaptation supported in MetaSockets are finer-grained

due to dynamic insertion and removal of filters instead of the whole pipeline as in Squirrel. A filter

is a Java class that can be developed by third parties and can be inserted into the MetaSocket

pipeline during run time to adapt the application behavior. Hence, we consider MetaSockets as

repeatedly-tunable middleware. Unlike Squirrel, the MetaSocket pipeline does not hide the socket

programming from application developers. As such, we place MetaSockets in the host-infrastructure

layer.

filter

feedback display
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source sink

file
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sensor MPEG

Smart Proxy
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Figure 14: Squirrel: dynamic shipping of a smart proxy [91].
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Figure 15: MetaSockets pipeline.

Reflection-Oriented Middleware. Reflection-oriented middleware supports QoS-oriented

applications using computational reflection as its primary focus. No specific consideration for

real-time and stream-oriented applications is provided by this type of middleware. Although Dy-
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namicTAO [45] and OpenORB [46] introduced before also employ computational reflection, but

their primary focus are on real-time and stream-oriented applications, respectively. Therefore, we

do not classify them in this category.

OpenCorba [48] is a CORBA compliant ORB that uses reflection to expose and modify some

internal characteristics of CORBA. OpenCorba is implemented in NeoClasstalk, a reflective lan-

guage based on Smalltalk [93]. OpenCorba reifies various properties of the ORB through ex-

plicit meta-classes. Figure 16 illustrates dynamic changing of the StandardClass class with the

BreakPoint+StandardClass class at run time. Unlike DynamicTAO [45] and OpenORB [46],

OpenCorba does not provide a global view of ORB, but similar to DynamicTAO preserves an

intact ORB core during tuning process. Hence, we consider OpenCorba as repeatedly-tunable

middleware. OpenCorba provides finer-grained adaptation than DynamicTAO and coarser-grained

adaptation than OpenORB: DynamicTAO supports per-ORB adaptation, OpenCorba supports

per-class adaptation, and OpenORB supports per-interface adaptation.

FlexiNet [47] is another CORBA compliant ORB implemented in Java that uses reflection to

provide dynamic adaptation. FlexiNet is designed as a set of components, which can be dynamically

assembled. Similar to DynamicTAO [45], FlexiNet provides coarse-grained ORB-wide adaptation.

FlexiNet can dynamically modify the underlying communication’s protocol stack through the re-

placement and insertion of layers. Similar to OpenORB [46], FlexiNet also provides fine-grained

per-interface adaptation, as depicted in Figure 17. In FlexiNet, replaceable meta-objects can inter-

cept requests in stubs and skeletons. These meta-objects realize channel configuration policies that

are used to adapt stubs and skeletons. We also consider FlexiNet as repeatedly-tunable middleware.

StandardClass

Breakpoint
+

StandardClass

meta level

class level

Account instance of
class change

Figure 16: Reflection in OpenCorba [48].
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Figure 17: FlexiNet architecture [47].

Aspect-Oriented Middleware. Aspect-oriented middleware supports QoS-oriented appli-

cations using aspect-oriented programming paradigm. Similar to reflection-oriented middleware,

aspect-oriented middleware provides no specific consideration for real-time and stream-oriented

applications.
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Researchers at BBN Technologies [66] have developed an adaptive framework for CORBA and

Java RMI applications that supports QoS using aspect-oriented programming paradigm. QuO

provides a high-level QoS abstraction at the common-services layer. Figure 18 illustrates QuO

components residing between the application and distribution ORB. QuO wraps CORBA stubs and

skeletons using functional delegates. As illustrated in Figure 18, the delegate intercepts outgoing

requests and incoming replies. The delegate consults the “contract,” using the premethod and

postmethod methods. The contract is part of the QuO kernel that is aware of acceptable QoS

regions and adapts the application behavior by modifying requests and replies according to the

current system status monitored by system condition objects. QuO provides a quality description

language (QDL) to write contracts that specifies QoS regions. The quogen utility can be used

to translate these contracts to high-level languages such as C++ and Java. In addition, QuO

provides an aspect-oriented structure description language (ASL) that enables developers to write

generic or application-specific aspects. Later, the quogen utility can be used to generate delegates

from CORBA object interfaces written in IDL, aspects written in ASL, and contracts written in

QDL. We consider QuO as customizable middleware because QuO adapts an application during

the application compile time using the quogen utility. The delegates in QuO are similar to the

statically shipped smart proxies in Squirrel [90]. However, delegates can also wrap skeletons on the

server side whereas smart proxies are only at the client side.

Figure 18: QuO architecture [94].

AspectIX [68] is another aspect-oriented middleware that is based on the fragmented (dis-

tributed) object model [95]. Figure 19(a) illustrates a distributed object that has four fragments

distributed over three programs over a network. A fragment is divided into a fixed interface and

a flexible implementation. A fragment implementation can be as simple as a CORBA stub or as

complicated as a smart fragment that can cache previous replies locally or change its behavior

using dynamically inserted aspects. Figure 19(b) shows how an AspectIX-aware application can
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dynamically inspect and adapt the set of aspects residing inside a fragment implementation. Fig-

ure 19(c) shows how a fragment implementation can be dynamically exchanged, transparent to

the application. Unlike QuO that weaves aspects into the application statically, AspectIX enables

“dynamic” weaving of aspects at run time. Hence, we consider AspectIX as repeatedly-tunable

middleware. Smart proxies in Squirrel [90] are similar to smart fragments in AspectIX. Similar

to MetaSockets [53], AspectIX can be repeatedly tuned in a finer-grained fashion than Squirrel.

Squirrel and MetaSockets, however, do not provide the aspect abstraction that AspectIX provides,

which is broader than the pipeline abstraction in Squirrel and filter abstraction in MetaSockets.

We place AspectIX at the distribution layer because of its distributed object model that hides the

interprocess communication from the developer.

fragment interface

fragment impl.

distributed object

address space

(a) Distributed object model.

set of aspects

specific configuration object

get_aspects()

get_aspect()

set_aspects()

set_aspect()

(b) Aspect configuration. (c) Fragment exchange.

Figure 19: AspectIX: an aspect-oriented middleware based on the distributed object model [68].

5.2 Dependable Middleware

Dependable middleware supports critical distributed applications, such as military command and

control and medical applications, that are required to be correctly operational. We further re-

fine dependable middleware into three categories: reliable communcation, fault-tolerant, and load-

balancer. Examples of each category are described in turn as follows.

Dependable Middleware

Fault-Tolerant MiddlewareReliable-Commu. Middleware Load-Balancer Middleware

Figure 20: Taxonomy of Dependable middleware.

Reliable Communication Middleware. Reliable communication middleware provides reli-

able communication services, residing at the host-infrastructure layer and directly atop the network

transport layer such as TCP, to support emerging application domains such as mobile computing,

highly available, and fault-tolerant systems.
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Miller et al. [73] at University of Wisconsin-Madison developed the reliable sockets (Rocks) that

protect socket-based applications from network failures. Specifically, Rocks address connection

failures in mobile computing using a hearbeat, reconfiguration, and reply mechanism. Examples of

connection failures addressed by Rocks include unexpected modem disconnections and IP address

change as a result of mobile device movements or DHCP lease expiration. Rocks resumes sessions

automatically after recovering from a period of disconnestion. As depicted in Figure 21, Rocks

employ an interception-based approach, using the “preloading” feature of the Linux loader [73],

that interposes the Rocks library between the application code and the kernel TCP socket. The

Rocks library exports the socket API, which is the same as the kernel socket API to be used

transparently by the application, and the Rocks enhanced API (RE-API) to be used by Rocks-

aware applications. Rocks monitor the TCP socket send and receive buffers and keep a copy of

in-flight packets to prevent data loss in the presence of connection failure. After reconnection,

Rocks first resends the packets in the in-flight buffers and then resumes the TCP socket to continue

its normal operation. By definition, Rocks reside at the host-infrastructure layer. We consider

Rocks as configurable middleware because the interposition of the Rocks library occurs during the

application startup time.

The reliable packets (Racks) [73], also developed by Miller et al., are alternative solution to Rocks

that solves the following problems introduced by Linux preloading feature. First, the preloading

feature depends on the dynamic linker while, for security reasons, dynamic linker is disabled on

“setuid” binaries (a binary that runs with extra privileges, but do not compromise security). Second,

system libraries may not correctly support preloading because they might have used static calls that

cannot be trapped using preloading. Finally, it is possible that other interposed libraries coexist

with the Rocks library. The ordering of the interposed libraries affects the correct functioning of

the Rocks library. As depicted in Figure 22, Racks are developed as a separate process (Rackd),

as opposed to Rocks that use an in-process approach. Instead of intercepting the socket calls

using the Rocks interposed library, Racks intercept and manipulates packets using a “packet filter”

approach [96], which is a kernel mechanism that enables user processes to select and intercept

outgoing and incoming packets. By definition, Racks reside at the common-services layer. We

consider Racks as configurable middleware because of the need to register a packet filter with the

kernel during the application startup time.

We noticed that all the fault-tolerant middleware projects that we studied from the literature

(discussed next) provide fault-tolerance using service replication. All these projects provide consis-
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Figure 21: Rocks architecture [73]. Figure 22: Racks architecture [73].

Fault-Tolerant Approaches in Middleware

Service ORB-InterceptionIntegration ReflectionOS-Interception

Figure 23: Different approaches to fault-tolerance in middleware.

tency among the service replicas using a reliable group communications service. Isis [97], Horus [98],

Ensemble [99], Totem [100], and Coyote [101] provide such reliable group communications services.

For similarity, we only describe Ensemble here. The Ensemble framework [99] from Cornell Univer-

sity supports protocol graphs constructed from fine-grained components. The framework supports

QoS monitoring by inserting detectors in the protocol graph. These detectors can trigger dynamic

adaptation by distributing a new protocol-graph specification to all involved participants using

a reconfiguration protocol. We consider Ensemble as repeatedly-tunable middleware. Ensemble

naturally resides at the host-infrastructure layer.

Fault-Tolerant Middleware. Fault-tolerant middleware enables applications to continue

operating in the presence of faults using service replication. To keep the replicas consistent, fault

tolerance middleware benefits from the reliable group communications services described before.

As shown in Figure 23, we identified five different approaches to fault-tolerance in middleware:

integration, service, interception, service+interception, and reflection. The first three categories

were identified before by Narasimhan et. al [102] and the last two are introduced by the author.

Examples of each approach are described in turn as follows.

Electra [103] from Softwired and Orbix+Isis [104] from IONA Technology and Isis Dis-

tributed Systems are two CORBA compliant ORBs that provide fault-tolerance by integrating

object replication mechanism inside their ORBs. As depicted in Figure 24, adapter objects are used

23



Multicast
Messages

Modified CORBA ORB

Adaptor Objects

Reliable Multicast

Platform

Application 
Object

Figure 24: The integration approach [102].

Multicast
Messages

Platform

Application 
Object

Reliable
Object
Service

CORBA ORB

DII/DSI

Figure 25: The service approach [102].

to enable the modified ORB to use the services provided by the reliable multicast. Orbix+Isis uses

Isis [97] and Electra can use either Horus [98] or Isis [97] as their reliable multicast service. The

integration approach is transparent to the application code, but requires both sides of application

to use the same modified ORB. Naturally, Electra and Orbix+Isis reside at the distribution layer.

We consider Electra and Orbix+Isis as configurable middleware because they can be configured

during the application startup time.

Object Group Services (OGS) [105], developed by Pascal Felber, provides a CORBA object

service [77] that supports fault tolerance for CORBA applications. As depicted in Figure 25, the

OGS object uses CORBA DSI and DII interfaces [77] to receive requests from the client object.

The OGS object then uses its fault-tolerant protocol to communicate with the service replicas. It

then returns the reply to the application object. This approach is transparent to the ORB but

is not transparent to the application objects. By definition, OGS resides at the common-services

layer. We consider OGS as configurable middleware because of the need to associate the OGS

objects to application objects during the application startup time.

The Eternal system [106] from UCSB and Eternal Systems, illustrated in Figure 26, provides

fault-tolerance using an interception approach. Eternal intercepts system requests originated from

unmodified CORBA ORBs (or Java Virtual Machines) targeted for the kernel TCP/IP protocol

stack using the operating system user-level extensions [107]. Eternal captures the system calls using

the “/proc/pid” file in Unix systems. For the reliable multicast service, Eternal uses Totem [100].

This approach is transparent to both the application and ORB. We place Eternal at the host-

infrastructure layer, atop Totem. We consider Eternal as configurable middleware because of the

configuration that occurs during the application startup time to set up the monitoring and capturing

of system calls.

Interoperable Replication Logic (IRL) [74, 108], developed by Baldoni et al., and fault-tolerant
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service (FTS) [109], developed by Friedman et al., are two middleware examples that provide

fault tolerance using both the service and interception techniques. IRL and FTS both use CORBA

request portable interceptors [77] to intercept requests (requests, replies, and exceptions). Figure 27

illustrates the IRL basic architecture. The client request portable interceptor forwards request to

the local proxy that provides a fault-tolerant service again using object replication. By definition,

IRL and FTS reside at the common-services layer. We consider IRL and FTS as configurable

middleware because they both require to introduce an ORBInitializer class to the application

ORB during the application startup time (to register their specific request portable interceptors

with the application ORB).
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Figure 26: The Eternal architecture [79].
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Figure 27: The IRL basic architecture [108].

Finally, the FRIENDS system [51], developed by Fabre et al., provides a meta-level architec-

ture including libraries of meta objects for fault-tolerance, secure-communication, and group-based

distributed applications. FRIENDS enables non-functional mechanisms to be implemented at the

meta level. Reflection is recursively used to address various non-functional requirements: fault

tolerance using several replication strategies, security using ciphering and authentication protocols,

and communication using atomic multicast protocols. Figure 28 shows the multi-level implementa-

tion of the client-server protocol using fault-tolerant, security, and communication meta objects. A

specialized MOP is developed in FRIENDS using open compilers [51], which enables intercepting

the interactions between CORBA objects. Using this MOP, FRIENDS provides fault-tolerance

replicas as CORBA objects (or meta objects). By definition, FRIENDS resides at the common-

services layer. We consider FRIENDS as repeatedly-tunable middleware.

Load-Balancer Middleware. Load-balancer middleware enables distributed applications to

continue operation even in the presence of high load. TAO load balancing (TAO-LB) [72], developed

by Schmidt et al., adds load balancing to TAO [70]. TAO-LB employs an adaptive on-demand

architecture, which works as follows. First, a client receives a handle to the load balancer instead of
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Figure 28: FRIENDS architecture [51].

the target object. Next, using CORBA standard LOCATION FORWARD mechanism [77], the load

balancer redirects the initial client request to the appropriate target object replica. The CORBA

client continues using the new object reference (obtained as part of the LOCATION FORWARD

message) to communicate with this replica directly until it is either done or redirected again. An

adaptive load balancer that forwards requests on demand can monitor the load on each replica

continuously. Using this load information and the policies specified by the application, the load

balancer can determine whether the load is distributed equally. When the load becomes unbalanced,

the load balancer can communicate with the replica ORBs and ask them to redirect their clients

back to the load balancer. The load balancer can then redirect the clients to less loaded replicas.

Similar to IRL [74] and FTS [109], TAO-LB uses CORBA portable interceptors [77] to provide

transparent load balancing to both applications and ORBs. By definition, TAO-LB resides at the

common-services layer. We consider TAO-LB as configurable middleware because of the need to

register its interceptors during the application startup time.

5.3 Embedded Middleware

Recent advances in portable computing devices have given rise to the need for embedded middle-

ware, which supports applications that require small footprints and are limited in their available

resources, especially memory. We group embedded middleware into two classes: minimum and

swappable. Examples of each category are described in turn as follows.

Embedded Middleware

Minimum Middleware Swappable Middleware

Figure 29: Taxonomy of Embedded middleware.

Minimum Middleware. Minimum middleware provides a minimum footprint middleware

that can be used either by a specific domain of applications or just by one specific application.

The former has a minimum core with a fixed API that enables adding optional feature to the
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minimum core. The latter, however, does not have a minimum core, hence, only the required

features constitutes the middleware.

PersonalJava [110] and EmbeddedJava [76] constitute a minimum Java that reimplements the

full set of Java APIs in order to fit into smaller devices with limited memory. PersonalJava is

designed for “web-connected” devices such as set-top boxes, smart phones, and hand-held devices

like PDAs. As depicted in Figure 30, a minimum standard core is required on every PersonalJava-

enabled device to enable the web functionality. Unlike PersonalJava, EmbeddedJava enables auto-

matic creation of customized APIs relative to the requirements of one application, as opposed to

one application domain, which results in smaller footprints. As such, EmbeddedJava enables Java

applications on very limited memory embedded devices, including industrial controllers, process

controllers, and scientific instruments. Every EmbeddedJava application may include different set

of classes since there is no required core functionality for all embedded devices as depicted in Fig-

ure 31. We place both PersonalJava and EmbeddedJava at the host-infrastructure layer because

they support heterogeneous platforms. We consider both PersonalJava and EmbeddedJava as cus-

tomizable middleware because they produce minimum applications during the application compile

time.

Figure 30: PersonalJava architecture [110]. Figure 31: EmbeddedJava architecture [76].

Orbix/E [111] from IONA Technology is a light-weight and high-performance CORBA ORB

designed for embedded devices. The size of an Orbix/E can be as small as 100KB for client and

150KB for server programs. We consider Orbix/E as customizable middleware because it allows a

developer to generate customized versions of Orbix/E. We also consider Orbix/E as configurable

middleware because of its ability to parse configuration files during the application startup time,

for example, to load optional pluggable protocols. Similar to PersonalJava (and unlike Emebedded-

Java), Orbix/E requires a minimum fixed core functionality. Orbix/E resides at the distribution
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layer.

Swappable Middleware. Swappable middleware enables optional portions of middleware to

swap in and out conserving the amount of memory used for the middleware. Universal Interoperable

Core (UIC) [50] is the successor of LegORB [49] both developed at UIUC. UIC, in addition to

the small footprint provided in LegORB, can adopt one or more personalities such as CORBA,

Java RMI, and DCOM for interoperability purposes. Figure 32 illustrates the interaction between

the UIC core and its personalities. UIC personalities can be either customized statically during

the application compile time, or tuned dynamically using late composition of components during

run time. UIC minimum ORB core runs uninterruptedly while ORB strategies and servants are

dynamically updated. We consider UIC as both customizable and repeatedly-tunable middleware.

A UIC client-side ORB for PalmOS can be as small as 16KB. UIC exploits customizable adaptation

for the rare and expensive changes during compile time, and exploits repeatedly-tunable adaptation

for the frequent and inexpensive changes during run time. Using UIC, the same server objects can

interoperate with different personalities without modifying their implementations. UIC naturally

resides at the distribution layer.

ZEN [60], developed by Schmidt et al., is a TAO successor implemented in Java and Real-Time

Java [112] that provides a micro-ORB architecture, as illustrated in Figure 33. ZEN identifies

several major ORB services, such as object adapters and transport protocols, that can be moved

out of the micro-ORB kernel. The virtual component pattern [5] is employed to make each service

dynamically pluggable. Each ORB service itself is decomposed into smaller pluggable components

that can be loaded into the ORB at run time only when required. Because of this feature, we con-

sider ZEN as repeatedly-tunable middleware. ZEN also employs profiling and reflection techniques

to monitor and inspect the optimized configuration found during the application tuning phase. The

optimized configuration is written into a configuration file that can be used for next runs of the

application. ZEN parses the configuration file during the application startup time and cofigures

the middleware accordingly. Therefore, ZEN can also be considered as configurable middleware.

ZEN naturally resides at the distribution layer.

6 The Big Picture

In this section, the three-dimensional taxonomy, introduced in Section 4, is mapped into three two-

dimensional tables that provide a higher-level view of the detailed discussions provided in Section 5
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Figure 32: The UIC personalities [50]. Figure 33: The ZEN architecture [60].

to better understand the adaptive middleware research status.

Tables 1 shows the adaptive middleware projects categorized with respect to the middleware

layers and application domain. As this table shows, we were not able to find research projects in

the domain-services layer (except the Boeing Bold Stroke [75], for which we could not find detailed

documentation). This table also shows that in the embedded middleware research, the trend is

toward all-in-one solutions (as opposed to layered approaches) because of the memory footprint

limitation.

Table 1: Adaptive middleware examples categorized by middleware layers and application domain.

Middleware Application Domain
Layers QoS-Enabled Dependable Embedded

Domain-Services

Common- QuO OGS, IRL, FTS,
Services TAO-LB, Racks

TAO, CIAO, Orbix, OpenORB, FRIENDS, UIC,
Distribution Squirrel, DynamicTAO, Electra, ZEN,

FlexiNET, OpenCorba, AspectIX Orbix+Isis Orbix/E

Host-Infra. ACE, Eternal, Isis, Horus, PersonalJava
MetaSockets Ensemble, Totem, Rocks EmbeddedJava

Table 2 categorizes the adaptive middleware projects using the middleware layers and adaptation

type. This table shows that adaptive middleware research has exploited both static and dynamic

adaptations. Mutable middleware has received the least attention, probably because there is still

need for safe adaptation research such as [113, 114] to mature. Safe adaptation can harness the

dangerous power of dynamic adaptation provided by mutable middleware. Table 2 also shows that
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the trend is toward hybrid solutions to adaptation.

Table 2: Adaptive middleware categorized by middleware layers and adaptation type.

Middleware Adaptation Type
Layers Static Dynamic

Customizable Configurable Tunable Mutable

Domain-
Services

Common- QuO OGS, IRL, FTS, FRIENDS
Services TAO-LB, Racks

Squirrel*, TAO*, CIAO, Orbix, TAO*, DynamicTAO, UIC*, OpenORB
Distribution UIC*, Electra, Orbix+Isis, Squirrel*, OpenCorba,

Orbix/E* Orbix/E*, ZEN* FlexiNet, AspectIX, ZEN*

Host-Infra. PersonalJava Eternal, Horus, ACE, MetaSockets,
EmbeddedJava Isis, Totem, Rocks Ensemble

*: hybrid adaptation.

Table 3 shows the supporting paradigms employed by each adaptive middleware project. This

table shows that computational reflection and software design patterns have been relatively more

studied in the adaptive middleware research than aspect-oriented programming and component-

based design. This table also shows that there are relatively less academic research projects on

DCOM than on CORBA and Java RMI.

7 Conclusion

In this survey paper, a well-established taxonomy of traditional middleware was reintroduced.

Among transactional, message-oriented, procedural, and object-oriented middleware categories, we

focused on the object-oriented middleware, which is the basis for most adaptive middleware ap-

proaches discussed in this paper. Object-oriented paradigm provides limited support for adaptation

in middleware. We identified four major paradigms, in addition to the object-oriented paradigm,

that are critical to adaptive middleware research: computational reflection, component-based de-

sign, aspect-oriented programming, and software design patterns. We proposed a three-dimensional

taxonomy of adaptive middleware to categorize different efforts for supporting adaptation in dis-

tributed applications using adaptive middleware. Finally, all the adaptive middleware projects

discussed in this paper were put together in the big picture to provide a better understanding of

the adaptive middleware research status.
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Table 3: Paradigms used in each adaptive middleware project.

Adaptive Middleware Ref CBD AOP SDP Compliance

ACE
√

TAO
√

C
Real-Time DynamicTAO

√ √
C

CIAO
√ √

C
Orbix

√ √
C

OpenORB
√ √

QoS-Enabled Stream- OpenORB v2
√ √

D
Middleware Oriented Squirrel

√ √
C

MetaSockets
√ √ √ √

Reflection- FlexiNET
√ √

C
Oriented OpenCorba

√
C

Aspect- QuO
√ √

C, R
Oriented AspectIX

√
C, R

Isis
Horus

Reliable Ensemble
Communication Totem

Rocks
Racks

Dependable Electra C
Middleware Orbix+Isis

√ √
C

Fault- OGS
√

C
Tolerant Eternal

√
C, R

IRL
√ √

C
FTS

√ √
C

FRIENDS
√

C
Load-Balancer TAO-LB

√ √
C

Orbix/E
√ √

C
Embedded Minimum PersonalJava

√
R

Middleware EmbeddedJava
√

R
Swappable UIC

√ √ √
C, R, D

ZEN
√ √ √

C

Ref: computational reflection. CBD: component-based design. AOP: aspect-oriented programming.
SDP: software design patterns. C: CORBA compliant. R: Java RMI compliant. D: DCOM
compliant.

Adaptive middleware is still an ongoing research that requires more work in the following

areas. First, domain-specific middleware services requires serious attention. Several projects have

successfully provided common-services in middleware. To enable reuse and separation of concern

in each specific application-domain, however, domain-specific middleware services should also be

widely available. Second, mutable middleware provides a powerful and at the same time dangerous
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dynamic adaptation that are more likely than other types of adaptive middleware to turn an

application into something totally different and unexpected. To benefit from mutable middleware,

we should harness its power by techniques such as safe adaptation. Third, applying overlapping

adaptations to a distributed application may cause inconsistency in the application. This is the

same problem as feature interaction problem in pattern recognition that needs to be addressed in

adaptive middleware also. Finally, we realized that there is no one adaptive middleware solution

that can adapt all distributed applications. Finding an optimized adaptive middleware solution

using current state-of-the-practice adaptive middleware approaches is not an easy task. A developer

needs to know all available middleware approaches and should spend a lot of time and money to

find the optimized solution. Developing tools, techniques and high-level paradigms that assist a

developer in this tedious process is a useful research area that promotes development of adaptive

software.

Further Information. A number of related papers and technical reports of the Soft-

ware Engineering and Network Systems Laboratory can be found at the following URL:

http://www.cse.msu.edu/sens.
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