
Matilda: A Distributed UML Virtual Machine for  
Model-Driven Software Development 

 
Manikya Madhu Babu Eadara, Adam Malinowski and Junichi Suzuki 

{em, akmalino, jxs}@cs.umb.edu 
Department of Computer Science 

University of Massachusetts, Boston 
 

Abstract. This paper describes a distributed UML virtual ma-
chine, called Matilda, which allows developers to design their 
applications as UML models and directly execute the models. 
Matilda accepts the UML models that developers define (class 
and sequence diagrams), validates them against the UML 
metamodel, constructs a Java abstract syntax tree (JAST) that 
corresponds to the user-defined models, and executes Java byte 
code generated from the JAST. The architecture of Matilda is 
designed as a pipeline (or sequence) of plugins. Different 
plugins implement different functionalities in Matilda, such as 
importing UML models, validating UML models and construct-
ing a JAST. The pipeline architecture allows Matilda to flexibly 
configure its structure and behavior by replacing a plugin with 
another one or changing the order of plugins. Also, Matilda’s 
pipeline can be distributed. Matilda can spread plugins over 
multiple hosts in the network and seamlessly connect them to 
form a pipeline. This improves Matilda’s performance by dis-
tributing its workload to different hosts. It also enables distrib-
uted model-driven development in which developers can build, 
transform, deploy and execute UML models at physically dis-
tributed places. This paper overviews Matilda’s architectural 
design and describes implementation details of its major plugins. 
Keywords: Model-driven development, UML virtual machine 
 

1. INTRODUCTION 
 
Software modeling is becoming a critical process in software 
development, and modeling technologies have matured to the 
point where they can offer significant leverage in all aspects of 
software development [1]. Models expressed in a well-defined 
notation are a cornerstone to understanding systems for enter-
prise-scale solutions [7]. The current state of this practice em-
ploys the Unified Modeling Language (UML) as the primary 
modeling notation. The UML models help software developers 
and system designers to structure and focus their thinking and 
develop a solution with out worrying about the implementation 
details [3]. However, the transformation from UML models to 
the final implementation is manually performed in many soft-
ware development projects by the programmers. UML models 
are given by the system architects and are interpreted by pro-
grammers, who write code to implement the models.  
 
The manual interpretation of the design artifacts, like UML 
models, to write code requires human intervention and has its 
disadvantages. Over time, with changes applied to the code and 
not to the UML models, it becomes difficult to trace the code 
back to its model. This results in semantic gap between code 
and the models. The manual interpretation of the model to write 
code is also time consuming and need to be repeated every time 
there is a change in the design to add or modify functionality. 
For example, a design change or additional functionality re-
quested by the user, late in the development process, will expo-
nentially increase the programming effort to implement the 

change in the code. This results in the longer turnaround time, 
and more expensive software development. 
  
Matilda uses the MDA approach to software development, 
which is a conceptual framework provided by OMG to express 
models, model relationships, and model-to-model transforma-
tions. With Matilda, a computationally complete UML model 
can be used to generate final code. A developer can focus on the 
structure and logical flow of the software under development 
and leave the implementation to Matilda. Using Matilda to de-
velop software will result in seamless mapping between UML 
models and the code that implements the model avoiding trace-
ability issues and semantic gaps between code and models. With 
this approach, by eliminating the manual interpretation of mod-
els to write code, we can have faster turn around time and less 
expensive software development. 
 
Matilda is a model-driven development platform that accepts 
the UML 2.0 class diagrams and sequence diagrams as input. 
The input model will be represented as XMI documents. The 
XMI is parsed to build in-memory UML models. The in-
memory models are then checked against the UML metamodels 
for syntax and semantic correctness. The UML models are also 
checked for computational completeness and conformance with 
UML Profiles applied to the models. The UML models are then 
mapped to the Abstract syntax tree from which the code is gen-
erated.  
 
Matilda uses the pipeline architecture and the functionality of 
the virtual machine like validation, code generation is provided 
by plug-ins. The pipeline architecture provides flexibility to add 
new plug-ins to support new functionality, for example, validat-
ing a new UML profile. The model validation, integration and 
code generation functions of the virtual machine takes lot of 
processing power for any non-trivial software development 
effort. The Matilda is designed to be distributed. The plug-ins 
that provides the functionality need not be all available on the 
design host and hence these functions can be distributed across 
the network host and balance the load. 
 
This paper overviews Matilda’s design principles and architec-
tural design, and describes implementation details of major 
plugins. In order to present how developers use Matilda, this 
paper also show an example application developed with Matilda.  
 
The structure of this paper is organized as follows. Section 2 
describes the design principles of Matilda. Section 3 compares 
Matilda with related work. Sections 4 and 5 describe the archi-
tectural design and implementation of the Matilda. Section 6 
describes an example application developed with Matilda. 

 
 
 



2. DESIGN PRINCIPLES 
 
Flexible One of the foremost design principles of the Matilda is 
to be flexible to handle transformations of various types of 
models. Matilda is designed to be metamodel driven, means the 
changes in the input model will not affect the functionality as 
long as the model is verified against the metamodel. The meta-
model acts as the guide for the input models. Any model that is 
developed in compliance to the metamodel can be a valid input 
to Matilda. This gives flexibility to customize or extend the 
models instead of adhering to a strict set of model syntax. 
 
Modular and loosely coupled The functionality of Matilda is 
build into reusable components to enable maximum reuse. The 
functionality in Matilda naturally decomposes into independent 
steps of a sequence of model verifications and transformations. 
This facilitates developing the verification and transformation 
functionality as independent programming units. To enable the 
reuse of the individual components, each component must work 
independently with minimum dependence on the other compo-
nents.  This will facilitate the reuse of the component at any 
stage of the processing. The components are designed to be 
loosely coupled and modular to maximize reuse.  
 
Configurable The order of the plugins as well as the functional-
ity of the plugins must be configurable. This will enable us to 
build a broad range of model transformations. Because the indi-
vidual software components are loosely coupled and the soft-
ware components perform a well-defined function, the order of 
the components can be changed as required by the application at 
runtime. The individual programming units must have a stan-
dard interface to the system. This will enable us to focus on the 
new functionality, while developing the new components, with-
out worrying about the new component’s interface to the entire 
system. With a standard interface, new components can seam-
lessly integrate with the existing system and enables maximum 
reuse of the functionality.  
 
Transparently Distributed As the model transforms from PIM to 
ISM, we need to attach the platform specific details on the de-
ployment host to the models. The most common example is to 
generate the executable code multiple heterogeneous deploy-
ment hosts rather than the development host. This requires 
Matilda to be transparently distributed – means, each compo-
nent must perform its function, including accessing shared 
global state information, without the explicit knowledge of the 
whereabouts of the next software component. The underlying 
platform must support take care of marshalling the information 
between different hosts transparent to the participating compo-
nents. In programming terms, no infrastructure code in the func-
tionality components. 
 

3. RELATED WORK 
 
The xUML process involves the creation of executable UML 
models with the UML diagrams.  The xUML uses state charts 
and action semantics for behavioral modeling. UML diagrams 
are enriched with the action semantics-compliant Action Speci-
fication Language (ASL) for behavior modeling [3]. The action 
semantics extension to UML defines the underlying semantics 
of Actions, but does not define any particular surface language. 
The actual language is provided by the vendor of the xUML 
tool like iUML from Kennedy Carter. The semantics of the ASL 
are defined but the syntax of the language varies from vendor to 

vendor. This means that the designer has to learn the proprietary 
action specification language syntax every time she uses a new 
modeling tool. This involves a steep learning curve and will 
increase the development time. Another disadvantage of using 
xUML is there is no interoperability between two vendors of 
xUML. The xUML diagrams specified using one vendor’s lan-
guage cannot be interpreted without significant changes by the 
other vendor’s software. Matilda on the other hand is compliant 
with UML2.0 and uses the sequence diagrams for behavior 
modeling. The UML diagrams can be drawn using any UML2.0 
compliant tool and can be imported into Matilda for further 
processing. Furthermore, xUML tools are not designed to be 
distributed. The xUML tools cannot emit executable code to the 
deployment hosts directly. 
 
The tools like Gen2J, Jamda and XDoclet take a code genera-
tion approach of taking a UML diagram to the source code di-
rectly. Although code generation is a requirement, it is not the 
only requirement. The code generators typically use proprietary 
templates as input in addition to the UML diagrams. The tem-
plates are specific to the code generator and do not capture the 
domain knowledge of the solution. Although many of the code 
generators claim to be complaint to MDA, they do not develop 
the use of metamodels and do not perform the model transfor-
mations. The code generators directly take the UML diagram to 
the executable/source code. This results in an inflexible archi-
tecture which need major changes to support new technologies. 
The code generators mostly use proprietary templates, which 
are difficult to understand and master. Unlike code generators, 
Matilda is metamodel driven and is flexible to change. Further 
none of the code generators actually use standardized methods 
for behavior modeling. Most of them actually generate stubs to 
be filled in by the programmers and can achieve up to a maxi-
mum of 85% automatic code generation. Matilda on the other 
hand follows a Model-Only approach and generates 100% of 
the code from the model – in a true MDA spirit. Matilda sets 
itself apart from the rest of the work primarily by the use if 
metamodels to verify the models and then by the use of model 
transformations in a platform independent way. Using meta-
model allows the change in the input models without changing 
the code that processes it. Another key difference is that none of 
the existing work is geared up for the development/deployment 
on distributed machines. Matilda is designed from ground up to 
be distributed. The functionality is segregated and the compo-
nents can communicate across development hosts, enabling 
teamwork during development and cross platform deployment 
after development. Matilda uses the sequence diagrams to de-
scribe the behavioral modeling instead of vendor specific action 
semantics and hence is more open for future extensions and 
integration with 3rd party code generators and code optimizers. 

 
4. ARCHITECTURAL DESIGN 

 
Matilda is based on the pipes and filters architecture pattern 
with the majority of the functionality being provided by the 
plugins/filters. The Pipes and Filters architectural pattern pro-
vides a structure for systems that process a stream of data[2]. 
Each processing step is encapsulated in a filter component. Data 
is passed through pipes between adjacent filters. Recombining 
filters allows to build families of related filters [2]. The pipeline 
design pattern is best suited when the system naturally decom-
poses into several independent steps and the requirements are 
likely to change. This architecture allows us to enhance the 



system by substituting new filters for existing ones or by re-
combining the steps into a different communication structure. 
 

 
Fig.1 Class Diagram of Matilda 

 
Filters/Plug-ins. The filters are the processing units of the pipe-
line [2]. A filter may enrich, refine, or transform its input data. 
In general, a transformation filter will enrich the model by com-
puting new information from the input model and adding it to 
the output model. It may refine the model by concentrating or 
extracting information from the input model and passing only 
that information to the output stream like to a code generator. It 
may transform the input data to a new form before passing it to 
the output stream, like converting the input model in XML to an 
internal UML tree. It may, of course, do some combination of 
enrichment, refinement, and transformation. A validation filter 
will verify the input model against the input metamodel. The 
plugins/filters in Matilda are designed to be passive i.e. the un-
derlying pipeline invokes the plugin based on the configuration 
rather than a plugin taking a proactive role and instantiating a 
processing action.  
 
Pipeline. The pipeline provides the framework for the operation 
of the filters. Different sources of input data exist and the pipe-
line takes care of routing the data between different filters. The 
pipeline has the information about the sequence of filters, the 
input and output data types of the pipelines. The key feature of 
the pipeline is that it is transparently distributed. This means 
that it’s the responsibility of the pipeline to transport data be-
tween the plugins, across hosts if necessary. This brings forth an 
important requirement of the underlying pipeline to expose its 
state and plugin information to the other pipelines. To enable a 

pipeline to access the remote plugins as if they are located lo-
cally requires that the remote pipeline has access to all the con-
figuration of the plugins, as the local pipeline has, and to pro-
vide an interface to the remote pipeline to access the plugin.  
 
Blackboard. The general assumption of pipeline is that if two 
steps are not adjacent, then they share any information. How-
ever, this assumption severely cripples the functionality in ac-
cessing the global data. Moreover, the output of one filter can-
not be routed to multiple filters. To overcome this design chal-
lenge, Matilda implements the black board in the pipeline. 
Black board keeps the global data that is common to the multi-
ple plugins. The black board acts as the messaging center be-
tween different plugins for exchanging state and configuration 
information. Another common draw back of conventional pipe-
line design pattern is lack of robust error handling since there is 
not global state information and often multiple asynchronous 
threads of execution exist in the system. This becomes more 
complicated when the plugins are distributed across different 
network hosts in a distributed pipeline. The black board ad-
dresses this by maintaining the state information of the plugins 
on the blackboard and allowing more concrete error handling. 
Further, transactional integrity of shared data becomes a key 
issue when dealing with the distributed systems. The black 
board is distributed and transitionally secure by design which is 
explained in more detail in the implementation section. 
 

5. IMPLEMENTATION. 
 

UML input models in Matilda are defined using UML2.0 class 
and sequence diagrams which is sufficient to describe both 
static and dynamic features for a subset of models.  Other types 
of diagrams (state, activity) are currently not supported in the 
UML-VM specification. Class diagram defines structure and 
sequence diagrams define dynamic behavior of a model. Map-
ping of UML-VM model to a Java model is as follows:  UML-
VM class diagram maps to Java type, member and method dec-
larations whereas the UML-VM sequence diagrams map to Java 
method implementations.  Due to these and other restrictions on 
accepted UML models, user models must satisfy a set of rules to 
pass the model validation process and to be allowed for subse-
quent translation to executable code.  UML-VM profile is speci-
fied in which a subset of UML2.0 for input models is defined, 
i.e. which elements are supported and understandable by the 
profile validator and which do not pass the validation.  The 
profile also specifies constraints imposed on UML elements and 
extensions to UML metamodel in form of stereotypes and tags. 
 
There are at least five major groups of plugins required in the 
UML-VM pipeline configuration to execute UML models:  (1) 
model loader plugins that read user-supplied models in given 
formats and convert them to internal structure recognizable by 
one or more subsequent plugins; (2) UML superstructure valida-
tor plugin to validate a model consistency according to the stan-
dard metamodel specification; (3) profile validation plugin that 
narrows down the pool of accepted models to be passed to the 
(4) executable code generation plugin that maps model to ex-
ecutable code or an intermediate language from which executa-
ble code can be generated, and (5)  execution plugin to initialize 
runtime environment and execute generated code.  Clearly, 
there is a unidirectional, synchronized data flow between subse-
quent plugins, and each plugin reads some data from the the 
black board (with an exception of the first plugin), processes it 
and may or may not place new data back on the common stor-



age space.  There also is possible (6) group of transformation 
plugins in the chain that can be specialized either in transform-
ing between two different serialization formats, between differ-
ent metamodels, or different intermediate languages.   
 

 
Fig.2 Process Diagram of Matilda 

 
Having transformation plugins ensuring compatibility between 
different metadata, one can realize that the chain of specialized 
modules in the pipeline can grow large in size as long as data 
required to read and write is available and compatible for every 
plugin and that they are executed in proper order.  Each group 
of plugins has specialized subgroups of plugins that can be in-
terchanged seamlessly given proper configuration.  There are 
different subgroups of specialized plugins possible for loading a 
model from different formats (XMI2.0, other versions of XMI, 
Rational, UML graphical tools not fully compliant with XMI), 
profile validation for different constraints and extensions 
(UMLVM, EJB, CORBA, C/C++, EAI, business process pro-
files), code generation plugins for different executables and 
environments (Java, .NET, i386, Solaris), or simulators.  Differ-
ent runtime plugins can also be substituted by debugger plugins.  
Although there is generally only one metamodel validation 
plugin in a single configuration, there can be many profile vali-
dation plugins connected in series for models with a higher 
features specialization.  However, by supporting complex mod-

els defined with use of additional profiles, code-generator 
plugin may need to be extended to support a new framework. 
 
In the current version of UML-VM there are five main plugins 
in configuration to provide execution of a subset of UML mod-
els as stand-alone, single-threaded Java console applications.  
The first plugin, ModelLoader, reads UML2.0 model serialized 
to XMI2.0 format that can be previously exported from a UML 
modeling tool (currently only Eclipse UML2 editor which is the 
lowest-level UML modeling approach), and it uses an internal 
XMI parser embedded in EMF to create a UML resource repre-
senting the UML model. The UML resource is conveniently 
accessible using open-source EMF UML2 API to query and 
operate on the UML model.  If model serialization conforms to 
XMI2.0 and all profiles applied to the model are accessible 
within specified profile path, the model is successfully loaded.  
The loader plugin then places the UML2 model extracted from 
the resource in the black board storage to be available to other 
plugins.  At this stage, the model is already an instantiated UML 
model, whether it is valid or not. The next plugin in the UML-
VM pipeline, UmlMetamodelValidator, is the standard UML2.0 
Superstructure [4] validator plugin.  Because structural valida-
tion has already been implemented in EMF UML2 project, this 
plugin is essentially a wrapper over UML2Validator class, 
which is being invoked on every element of the metamodel 
instance and its parent meta-class.  Result of validation deter-
mines if next plugin is to be executed; if the validation fails, the 
structural inconsistencies are logged and the pipeline stops.  
UmlMetamodelValidator does not alter the model in any way 
and it does not put any new data to the black board, it simply 
determines whether model is a valid instance of UML2.0 meta-
model. The next, third, plugin in series is UmlvmProfileValida-
tor that checks if the model, in addition to being a valid 
UML2.0 model,  is also an acceptable UML-VM model, as 
specified in the UML-VM Profile. The most important reason 
behind this validation step is to determine whether the model is 
ready for processing by the fourth plugin in series that maps 
UML-VM model to Java model.  Profile validation is achieved 
by traversing the model structure with an extended version of 
UML2 validator that implements both structural and semantic 
validation features of extended UML-VM metamodel.  The 
plugin actually consist of three sub-plugins; one for class dia-
gram, one for sequence diagram and one for integration of both, 
leaving space for supporting additional UML diagrams in the 
future. Similarly to the previous plugin, the profile validator 
does not generate any new data; it queries the model in a read-
only manner, logs potential inconsistencies and/or allows for 
execution of the next plugin. 

Model Loader 

UML Meta Model 
Validator 

UMLVM Profile 
Sequence Diagram 
Validator 

XMI 

UMLVM Profile 
Class Diagram 
Validator 

UMLVM Profile 
Integrated Diagram 
Validator 

Class Diagram to 
JAST Mapper 

Sequence Diagram 
to JAST Mapper 

JAST Validator 

Java Executor 

UML 
Model 

JAST 

Byte 
Code 

Verified 
UML 
Model 

 
 
 
 
 
 
 
 
UML to AST Mapping 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Black board 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
UMLVM Profile Validation 

 
The fourth major plugin configured in the pipeline is the code 
generation plugin.  It generates executable Java byte-code indi-
rectly; first by mapping a valid UML-VM model instance to an 
instance of Java metamodel, an abstract Java syntax tree (JAST) 
instance, then by generating executable code from the JAST 
instance.  During the first step, UML model elements are be-
coming JAST node instances according to defined mapping 
rules.  One UML element maps to many JAST nodes.  Some 
mappings can be performed directly, for others parsing of Java 
expressions contained within UML model elements is required.  
During the mapping step, a syntactically correct JAST tree is 
instantiated using JAST API.  Also, UML to JAST mappings 
are recorded in a data structure that can be latterly used by a 
model debugger for a reverse lookup.  The mapping plugin 
actually consists of two sub-plugins:  ClassDiagramToJast-



Mapper and SequenceDiagramToJastMapper, for the two types 
of diagrams.  The former creates a new JAST with type (class 
and interface) declarations, member field and method declara-
tions, and then it outputs a compilation unit for each type decla-
ration.  There are also stub method definitions created which are 
filled with blocks containing only the proper return statement.  
The latter module, SequenceDiagramToJastMapper, reads from 
black board previously created compilation units that are up-
dated with method definitions mapped from each sequence dia-
gram.   If a sequence diagram for a given method does not exist, 
the JAST node for a method definition is left off just with a 
method body having a proper return statement.  The reason for 
this approach is to be able to generate byte-code for the model 
and debug it before user completes all sequence diagrams.  
When the complete JAST representing user model is created, 
the second part of code-generation plugin (JastValidator) per-
forms two traversals; first for JAST semantic analysis and sec-
ond to generate Java byte-code and output class files.  JastVali-
dator is essentially a Java compiler back-end.  Finally, the last 
plugin in the pipeline configuration, JavaExecuter, first reads-in 
the user model again to determine which class is executable 
(properly stereotyped), sets up the execution environment 
(JVM), feeds in class files and the model execution proceeds. 
 

6. AN EXAMPLE APPLICATION 
 
Calculator model implemented in UML2.0 uses applied UML-
VM profile and is a representative example for UML Virtual 
Machine executable model.  Arithmetic expression is passed to 
the executable at runtime and result of calculation is printed out 
to console.  The input arithmetic expression is given in reverse 
Polish notation.  Summation, difference, division, multiplication 
and factorial operations are supported.  Calculator uses object-
oriented semantics and complies with the UML-VM profile, for 
it is a solid test case model for the UML Virtual Machine. 

 
Class Diagram.  Class diagram is essential for UML modelers 
to communicate the model structure and is a required diagram 
for UML Virtual Machine to create model structure and name-
space referred to by other diagrams integrated into the model.  
UML-VM class diagram is largely as defined by UML Meta-
model specification, with some minor restrictions.  A subset of 
EJB Profile for UML and UML-VM profile is applied to the 
model to impose those restrictions and provide additional in-
formation. 

 
Fig.3. Class diagram of Calculator example 

The class diagram for the calculator example is shown above.  
The calculator model has a central Calculator class with an 
execution entry (denoted by stereotype <<UMLVMexecu-
table>> and a main method) to which input arithmetic expres-
sion is passed.  Other type declarations within this class diagram 
are: Tokenizer class, Token interface, Operand to encapsulate a 
double value, abstract Operator and its five subclasses for cal-
culating different arithmetic operations: PlusOperation, Minu-
sOperation, MultiplyOperation, DivideOperation and Factoria-
lOperation.  Besides local variables and imported types, all 
member variables and methods referred to in the model are 
declared in the class diagram. UML attributes and associations 
are mapped to Java member variables.  UML operations are 
mapped to method declarations with bodies containing only 
appropriate return statement.  Typed names (classes, interfaces, 
attribute types, methods types) used in the diagram that are not 
defined in the package are fully qualified names. A subset of 
EJB extensions is applied to the model.  For example 
<<JavaInterface>> stereotype may be used to denote that in-
terface can include constant declarations (as opposed to UML 
interface). 
  
Sequence Diagram. Due to higher complexity of dynamic 
model features, sequence diagram has more rules and restric-
tions than the class diagram.  There can be many sequence dia-
grams in a model for which they define dynamic behavior – one 
for each method declaration.  
The example of UML-VM sequence diagram below shows im-
plementation of getNextToken() interaction declared in Token-
izer class for the calculator model.  Interaction taking place is 
invoked by Calculator object (caller); the calling object is not 
given in the sequence diagram because potentially there may be 
many different callers to one diagram.  In preceding interaction, 
first, the Calculator object initiates Tokenizer by passing arith-
metic expression to it and Calculator makes subsequent calls to 
Tokenizer:getNextToken() inside a loop fragment, requesting 
processed tokens.  The interaction results in tokens being re-
turned that are either Operator or Operand instances.   Token-
izer keeps track of the next token string to be processed.  If the 
current token string is successfully recognized as an Operator 
by having a hash entry in operators map, the corresponding 
Operator is returned, for example FactorialOperator matching 
“!” string.  If lookup is not successful, the token is assumed to 
be an Operand and it is parsed to a double value.  The double 
value is then wrapped inside a new Operand object, and the 
token is returned back to the caller. 

 
Fig.4. Sequence diagram of Calculator example 



 
UML-VM diagrams are used in generic form, i.e. a sequence 
diagram for a particular interaction defines all possible alterna-
tives for a scenario [12].  There are UML 2.0 elements that aid 
modeling of complete execution flow, such as alt, opt and loop 
fragments together with guard expressions.  The diagram shown 
contains all possible alternatives for getNextToken() operation 
and branching occurs inside opt and alt fragments.  There is 
maximum only one sequence diagram allowed for an operation 
declared in class diagram.  Name in the sd diagram frame pen-
tagon denotes the owning class (Tokenizer) and operation name 
with signature (getNextToken():Token) for which the interaction 
diagram is drawn.  Tokenizer object lifeline shown at the upper 
left corner of the interaction frame is an instance of the class for 
which the diagram is modeled.  Tokenizer is the only active 
object in the diagram at all times:  on the diagram only interac-
tions between Tokenizer and other objects are present and there 
are no outgoing messages from other object lifelines.  Messages 
from other object lifelines are only allowed in a sequence dia-
gram for that particular object.   
 
The actual diagram interaction starts and ends with formal gates 
which are interface for entry (getNextToken() synchronous mes-
sage) and exit points (reply message returning nextToken) to 
other interacting diagrams (callers).  There may be more than 
one exit point because return from diagram may vary depending 
on a scenario and control flow may differ. 
 
The messages exchanged between the objects in the diagram are 
either synchronous, reply or create messages.  Synchronous 
message shows a call being made and parameters being passed, 
for example get(curTokStr) call to operators object.  Reply 
message, expected for every synchronous message, shows an 
optional assignment to a variable, for example the assignment to 
nextToken.  Create message points to a new object lifeline by 
specifying type of object created, parameters passed to con-
structor and assignment to a variable, for example, creation of 
new Operand object and its assignment to nextToken.  Java 
rules normally apply within assignments in message calls (se-
mantically represented by UML OpaqueExpression).  The main 
difference with Java call statement is that name of object is not 
given in the message because the given message end specifies 
the object interacted with to which the message is sent.  Other 
difference is interaction with arrays.  Accessing an element in 
expression array is performed as a synchronous call denoted 
with <<UMLVMarrayelement>> stereotype and an array index 
property tag as it is shown in the diagram on the top of the opt 
fragment. 
 
Due to limitations of sequence diagrams to modeling interac-
tions between objects, it is hard to show a change of state within 
the active object.  For this purpose, expression notes are at-
tached to the active object lifeline.  Semantically, such note is 
really a body of UML OpaqueExpression associated with the 
stereotyped message because messages and their ends impose 
the order of execution on a lifeline.  Both ends of the <<UM-
LVMexpression>> message must be contained on the same 
lifeline, belonging to the active object.  The notes bodies may 
contain one or more Java expressions.   An illustrative example 
is an expression note attached to Tokenizer lifeline at the bottom 
of opt fragment, which contains a postfix expression increment-
ing value of curToken member variable by one. 
Sequence diagram may refer to member variables and methods 
declared in the class diagram.  It is possible to declare and de-

fine local variables within diagram with a limited scope either 
inside notes attached to frame or fragment (such as Token 
nextToken declaration), or within a reply (such as String cur-
Tok) or create (such as Double value) message arrows that nor-
mally carry assignments to returned values.  As member vari-
ables, any local variables declared inside a sequence diagram 
are also required to have a fully qualified type name if they are 
defined in external package.  Scope of local variable is limited 
to the innermost fragment, or sd frame. 
 

7. CONCLUSION 
 
The paradigm of model driven architecture has triggered a ra-
dial change in the way see the development process. The essen-
tial change is that models are no more used only as mere docu-
mentation for programmers, but they can be directly used to 
drive tools. By expressing the software primarily as a model, 
instead of code, we can solve the hard problem of adapting the 
software to the changes in the underlying platform. In this paper, 
we had attempted to define an open framework for achieving 
model driven development and laid out some of the main design 
challenges, and we feel that the area contains exciting chal-
lenges for future work, some of which we attempted to outline. 
 

8. ACKNOWLEDGEMENT 
 
The work by Manikya Madhu Babu Eadara and Junichi Suzuki 
are supported by OGIS International, Inc. and Electric Power 
Development Co., Ltd. The authors would like to thank Anu 
Lall, Murtaza Qureshi and Kathiresan Solaiappan for their con-
tributions to implement Matilda. 
 

REFERENCES 
 
[1] S. Mellor and M. Balcer, Executable UML: A foundation for Model 
Driven Architecture, Addison-Wesley, May, 2002. 
[2] A. Vermeulen, G. Beged-Dov, P. Thompson, “The Pipeline Design 
Pattern,”  In Proc. of OOPSLA Workshop on Design Patterns for Con-
current, Parallel and Distributed Object-Oriented Systems, Oct. 1995. 
[3] C. Raistrick, P. Francis, J. Wright, C. Carter and I. Wilkie, Model 
Driven Architecture with Executable UML, Cambridge University Press, 
March, 2004. 
[4] Object Management Group, UML2.0 Super Structure Specification, 
http://www.omg.org/cgi-bin/doc?ptc/2004-10-02, October, 2004. 
[5] H.  Eriksson, M. Penker, B. Lyons and D. Fado, UML 2 Toolkit, 
Wiley, October, 2003. 
[6] D. Frankel, Model Driven Architecture: Applying MDA to Enter-
prise Computing. Wiley Publishing, January, 2003.  
[7]C. Marshall, Enterprise Modeling with UML, Addison-Wesley, No-
vember, 1999.  
[8]J. Bézivin, “From Object Composition to Model Transformation with 
the MDA,” In Proc. of TOOLS USA 39, August, 2001 
[9] J. Greenfield, UML Profile for EJB, Java Community Process, 
http://www.jcp.org/jsr/detail/26.jsp, May, 2001. 


