Hidden Algebra and Concurrent Distributed Software
Joseph Goguen

University of California at San Diego
e-mail: goguen@cs.ucsd.edu

Introduction Cleverly designed software often fails to strictly satisfy its specifications, but instead satisfies them be-
haviorally, in the sense that they appear to be true under all possible experiments. Hidden algebra extends prior work on
abstract data types and algebraic specification [2, 6] to concurrent distributed systems, in a surprisingly simple way that also
handles nondeterminism, internal states, and more [4, 3]. Advantages of an algebraic approach include decidability results
in equational logic for problems that are undecidable for more expressive logics, and powerful algorithms like term rewriting
and unification, for implementing equational logic tools. Much work in formal methods has addressed code verification, but
since empirical studies show that little of software cost comes from coding errors, our approach focuses on behavioral speci-
fication and verification at the design level, thus avoiding the distracting complications of programming language semantics.

Theory Hidden algebra uses behavioral satisfaction, whereby equations appear to be satisfied under all possible experiments;
this forces a slight restriction of the inference rules for equational logic to preserve soundness. Our most significant results
are powerful coinduction proof rules, which can greatly reduce proof size compared with more classical methods [3, 9]. Term
rewriting has also been extended to hidden algebra, and integrated with coinduction [8], to support a high degree of proof
automation for behavioral properties, which in general may be first order sentences with equations as atoms. Hidden algebra
can be seen as a generalization of process algebra, transition systems, and coalgebra.

Practice The practical side of this project is developing a web-based distributed cooperative environment for behavioral
specification and verification, and applying it to concurrent distributed systems such as protocols. The main component is
Kumo, a proof assistant that facilitates browsing and understanding by publishing its proofs on the web, integrated with
explanations and background tutorials [1]. Kumo uses the BOBJ specification language, which extends OBJ3 [7, 2] with
behavioral features, and the Duck proof scripting language. There is also a database for managing projects, specs, proofs and
users. The distributed character of the system requires a coherence protocol, which has been verified with hidden algebra
[5]. Kumo is available for experimentation at http://www.cs.ucsd.edu/groups/tatami/kumodb.html; see also the Kumo
homepage, http://www.cs.ucsd.edu/groups/tatami/kumo/.

References

[1] Joseph Goguen, Kai Lin, Akira Mori, Grigore Rogu, and Akiyoshi Sato. Distributed cooperative formal methods tools.
In Michael Lowry, editor, Proceedings, Automated Software Engineering, pages 55—62. IEEE, 1997.

[2] Joseph Goguen and Grant Malcolm. Algebraic Semantics of Imperative Programs. MIT, 1996.

[3] Joseph Goguen and Grant Malcolm. Hidden coinduction: Behavioral correctness proofs for objects. Mathematical
Structures in Computer Science, 9(3):287-319, June 1999.

[4] Joseph Goguen and Grant Malcolm. A hidden agenda. Theoretical Computer Science, to appear. Also UCSD Dept.
Computer Science & Eng. Technical Report CS97-538, May 1997.

[5] Joseph Goguen and Grigore Rosu. A protocol for distributed cooperative work. In Gheorghe Stefanescu, editor, Proceed-
ings, FCT‘99, Workshop on Distributed Systems, pages 1-22. Elsevier, 1999. (Iasi, Romania). Also, Electronic Lecture
Notes in Theoretical Computer Science, Elsevier Volume 28, to appear 1999.

[6] Joseph Goguen, James Thatcher, and Eric Wagner. An initial algebra approach to the specification, correctness and
implementation of abstract data types. In Raymond Yeh, editor, Current Trends in Programming Methodology, IV, pages
80-149. Prentice-Hall, 1978.

[7] Joseph Goguen, Timothy Winkler, José Meseguer, Kokichi Futatsugi, and Jean-Pierre Jouannaud. Introducing OBJ. In
Joseph Goguen and Grant Malcolm, editors, Software Engineering with OBJ: Algebraic Specification in Action. Kluwer,
to appear. Also Technical Report SRI-CSL-88-9, August 1988, SRI International.

[8] Grigore Rosu. Behavioral coinductive rewriting. In Kokichi Futatsugi, Joseph Goguen, and José Meseguer, editors,
OBJ/CafeOBJ/Maude at Formal Methods '99, pages 179-196. Theta (Bucharest), 1999. Proceedings of a workshop in
Toulouse, 20 and 22 September 1999.

[9] Grigore Rosu and Joseph Goguen. Hidden congruent deduction. In Ricardo Caferra and Gernot Salzer, editors, Proceed-
ings, 1998 Workshop on First Order Theorem Proving, pages 213—-223. Technische Universitiat Wien, 1998. Full version
to appear, Lecture Notes in Artificial Intelligence, Springer, 1999.



