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ABSTRACT 
 
 
 

Powered by the rapid advance of computer, network, and sensor/actuator technologies, 

distributed real-time systems that continually and autonomously control and react to the 

environment have been widely used. The combination of temporal requirements, 

concurrent environmental entities, and high reliability requirements, together with 

distributed processing make the software to control these systems extremely hard to 

design and difficult to verify.  

In this work, we developed a simulation-based software development methodology to 

manage the complexity of distributed real-time software. This methodology, based on 

discrete event system specification (DEVS), overcomes the “incoherence problem” 

between different design stages by emphasizing “model continuity” through the 

development process. Specifically, techniques have been developed so that the same 

control models that are designed can be tested and analyzed by simulation methods and 

then easily deployed to the distributed target system for execution. To improve the 

traditional software testing process where real-time embedded software needs to be 

hooked up with real sensor/actuators and placed in a physical environment for 

meaningful test and analysis, we developed a virtual test environment that allows 

software to be effectively tested and analyzed in a virtual environment, using virtual 

sensor/actuators. Within this environment, stepwise simulation methods have been 

developed so that different aspects, such as logic and temporal behaviors, of a real-time 

system can be tested and analyzed incrementally.  
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Based on this methodology, a simulation and testing environment for distributed 

autonomous robotic systems is developed. This environment has successfully supported 

the development and investigation of several distributed autonomous robotic systems. 

One of them is a “dynamic team formation” system in which mobile robots search for 

each other, and then form a team dynamically through self-organization. Another system 

is a scalable robot convoy system in which robots convoy and maintain a line formation 

in a coordinated way. 
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CHAPTER 1 

INTRODUCTION 

 
1.1 Real-Time Systems 

Fueled by Moore’s law of exponentially expanding computational and networking 

infrastructure, and the rapid advance of sensor and actuator technologies, real-time 

systems that continually and autonomously control and react to the environments have 

been widely used. These systems are most frequently found in telecommunications, 

aerospace, defense, and automatic control applications. Because of their wide 

applications as well as their distinct properties such as timeliness and dependability1, 

real-time systems begin to draw more and more research attention form both industrial 

developers and academic researchers. 

Many definitions exist for real-time systems. Different definitions may emphasize 

different aspects of the nature of a real-time system. The most common definitions 

emphasize the timeliness of a real-time system. For example, as defined in [Phi97], 

[Kri97]: a real-time system is one whose logical correctness is based on both the 

correctness of the outputs and their timeliness. Other definitions emphasize both 

timeliness and safety[Phi97]: A real-time system is a system that must satisfy explicit 

(bounded) response-time constraints or risk severe consequences, including failure. In 

the context of this dissertation, the definition provided by [Sha01] is used which 

emphasizes the interaction between a system and its environment: Real-time systems are 
                                                 
1 The term dependability is defined as the trustworthiness of a system such that reliance can justifiably be 
placed on the service it provides [Lap92]. 
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computer systems that monitor, respond to, or control, an external environment. This 

environment is connected to the computer system through sensors, actuators, and other 

input-output interfaces. 

Real time systems have existed ever since the inception of computers. While these 

systems in the past were mainly applied to process control and restricted by primitive 

hardware devices, today’s real-time systems exhibit complexity and scalability hundreds, 

if not thousands, times higher than before. These changes are mostly driven by the 

increasingly complex tasks that need to be accomplished and the increasingly challenging 

environments that need to be dealt with. Among them the most salient change would be 

that today’s real-time systems are more and more networked together to finish system-

wide tasks. As a result, distributed real-time systems are formed in which subcomponents 

of the systems, though are physically distributed, coordinate and cooperate together to 

finish common tasks. 

 

Generally speaking, characteristics of a typical modern real-time system include: 

• They are often geographically distributed;  

• They may contain very large and complex software components;  

• They must interact with concurrent real-world entities;  

• They may contain processing elements that are subject to the constraints of 

computation resources (such as memory, CPU, network speed), cost, size, etc.  
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The one common feature of all real-time software systems is timeliness, that is, the 

requirement to respond correctly to inputs within acceptable time intervals. This property 

characterizes a vast spectrum of different types of systems ranging from purely time-

driven to purely event-driven systems, from soft real-time systems to hard real-time 

systems, and so on. For these systems, a systematic time handling and time modeling 

approach will benefit both systems’ design and verification. It also follows from the very 

nature of most real-time applications that there is a stringent requirement for high 

reliability. This can be formulated as a need for dependability and safety. To give high 

levels of reliability requires fault-tolerant hardware and software, and demands effective 

test methods and techniques during systems’ development. Besides timeliness and 

reliability, real-time systems also have a concurrent event-driven nature, and are 

characterized by their continuous interaction with the environment; therefore they are 

sometimes called “reactive systems” [Ben91] [Hal93]. The combination of temporal 

requirements, limited resources, concurrent environmental entities and high reliability 

requirements (together with distributed processing) presents the system engineer with 

unique problems. Real-time systems are now recognized as a distinct discipline. It has its 

own body of knowledge and theoretical foundation.  

Real-time systems are often embedded, meaning that the computational system exists 

inside a larger system, with the purpose of helping that system to achieve its overall 

responsibilities. For this reason, real-time systems and embedded systems are usually 

referred together as real-time embedded systems. However, in the context of this 

dissertation, more emphasis is put on the “real-time” aspects of a system, while less 
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emphasis being put on the “embedded” aspects such as limited CPU, memory, and power 

resources. Specifically, the work of this dissertation focuses on a major category of real-

time systems that are characterized as complex, event-driven, and distributed. Such 

systems are most frequently encountered in telecommunications, aerospace, defense, and 

automatic control applications. The size and complexity of these systems demand a 

considerable development effort, typically involving large development teams, that is 

followed by an extended period of evolutionary growth [Sel98]. It is also important to 

point out that although the development of real-time systems involves work on both 

software and hardware, this dissertation mainly focuses on the software development of 

real-time systems. 

 

1.2 Research in Real-time Systems 

There has been tremendous research work under the umbrella of real-time systems. 

These research works cover different aspects of real-time systems, from low level 

hardware interfaces to system level design methodologies, from theoretic computation 

models to practical code generation and execution, etc. Figure 1.1 categorizes these 

research works into three layers (groups). From the bottom to the top, they are marked as 

Technologies, Models, and Methods respectively. This section gives a brief description of 

each of these research works. As the goal of this section is to provide a general picture for 

the research works of real-time systems, readers who are interested in any specific 

subjects are recommended to check the referred papers or books for more details. 
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Real Time Operating Systems and Middleware

• Finite state machine

• Petri net

• Process algebras

• Timed automata

• Timed Petri net

• Temporal logic

• System modeling and design

• Time analysis and performance guarantee

• Test and verification

• Fault tolerance and reliability

Technologies

Models

Methods

 

Figure 1.1: Research in real-time systems 

 
Included in the bottom layer are real-time operating systems and middleware. They 

represent the infrastructure technology, most driven by commercial industry developers, 

which has been developed to facilitate the execution and communication of real-time 

systems. The main goal of any real-time operating system is to provide fast, predictable 

and concurrent services such as fast response to interrupts and predictable scheduling 

algorithms to the programs running above it. These specialized operation systems are 

often stripped-down versions of traditional timesharing operating systems which are 

made appropriate for the real-time domain [Gho94]. An essential difference, due to the 

distinguished nature of the real-time applications, is that the external events and activities 

which must be delivered have a hard deadline. As such, fairness, guaranteed by the time-

slicing, is replaced by event-triggered (ET) or timer-triggered (TT) scheduling policies, 

which are better suited for coping with real-time [Tho00]. Other important features of 

real-time OS include scalable kernel structure and fault tolerance, etc. One of the main 

research efforts in real-time OS and middleware are real-time scheduling algorithms. 



 

 

20

Some of the most well known real-time scheduling algorithms are Rate Monotonic (RM) 

scheduling [Lei80], Earliest Deadline First (EDF) scheduling [Zha87], Minimum-Laxity-

First (MLF) scheduling [Der89] and Maximum-Urgency-First (MUF) scheduling [Ste91]. 

Included in the middle layer are computation models that are widely used in the 

design, analysis, and implementation of real-time software. Formal computation models 

for real-time systems have received growing attentions in the recent years. A formal 

model is an essential ingredient of a sound system-level design methodology because it 

makes it possible to capture the required functionality, verify the correctness of the 

functional specification and synthesize the specification tool-independently [Sgr00], 

[Mar01]. As timeliness is an important feature in real-time embedded systems, 

computation models can be characterized into two categories: model not considering time 

such as finite state machine, petri net, process algebra; model considering time such as 

timed automata, timed petri net, temporal logic. These computation models provide the 

basis to capture the behavior and structure of a system under development. Those models 

considering time also capture the timeliness feature of the system. They support time 

modeling explicitly so are naturally fitted into the real-time domain. The next section will 

discuss some of these computation models in more detail. 

Included in the top layer are methods (methodologies) proposed for real-time system 

development. These methods are further categorized into four groups: system modeling 

and design, time analysis and performance guarantee, test and verification, fault 

tolerance and reliability. The research work of system modeling and design focuses on 

providing systematic modeling methodologies and design tools (based on one or several 
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computation models) to facilitate modelers/designers to capture the properties of a system 

under development. For example, the real-time UML of Object Management Group 

(OMG), although still in its request for proposals (RFP) stage, seeks a standard way of 

modeling real-time systems using Unified Modeling Language (UML) [OMG1], 

[OMG2], [OMG3], [OMG4]. Besides the capabilities to model a system’s behavior and 

structure, most modeling languages for real-time systems also provide the capability for 

(explicitly or implicitly) time modeling.  

The research work of time analysis and performance guarantee focuses on the 

development of techniques to analyze and guarantee scheduled tasks to meet their 

deadlines. Specifically, time analysis refers to timing and schedulability analysis, 

meaning how to analyze the system to check if the timeliness and deadline requirement 

has been met. There has been a lot of research work in this area, especially for the hard 

real-time systems. Most of them are focus on the time driven systems. The timeliness 

requirements of such time-driven software then correspond to ensuring that given a set of 

tasks, on a given platform, all tasks can be executed at the specified rates, while meeting 

the deadlines. Some frequently used notions when conducting time analysis are worst-

case response time, end-to-end timing constraints. For event driven systems, not much 

work has been done because of the inherit unpredictability of the system state. However, 

[Sak99][Sak00] suggest that it is possible to do schedulability analysis for event-based 

system by defining concepts such as transaction, time critical path and priority event. 

While time analysis techniques analyze the schedulability of a system, performance 

guarantee focuses on the development of techniques to guarantee scheduled tasks to meet 
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their deadlines. Generally speaking, the variety of the nature of systems and their 

execution environments ask for various scheduling techniques that are most suitable to a 

specific system. For example, missing a deadline is unacceptable for hard real-time 

systems, but acceptable for soft real-time systems. Among the techniques for 

performance guarantee, QoS and imprecise computation [Nat95] are two techniques that 

gained a lot of research interest recently. 

The research work of test and verification focuses on the techniques and methods to 

test or verify the system under development. Typically, there are two main disciplines: 

formal methods and simulation based methods. Each of them has unique contributions to 

the verification effort. Formal methods, such as model checking, are mathematically 

based languages and techniques for specification and verification of complex software 

and hardware systems. The simulation-based methods verify the design by generating test 

input and running simulations to check if desired results are reached.  

The research work of fault tolerance and reliability focuses on the techniques for a 

system to handle abnormal situations. These techniques include the techniques to enable 

the system to continue its function, maybe in a degraded mode, under abnormal 

conditions; the techniques to enable a system to recover itself when part of the system has 

malfunctions, and the techniques to analyze or evaluate the reliability, available, or safety 

of the system under development [avi75, avi76]. 

While the purpose of Figure 1.1 is to characterize the related work into different 

groups, it doesn’t mean to separate the relationship between them, nor does it represent 

all the research work in real-time systems. In fact, the research work of real-time system 
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is so broad that it almost covers every aspect of the general theories of computing 

systems. These research efforts are interwoven together and complementary to each 

other. For example, a real-time operating system may apply concepts from finite state 

machine theory; a system modeling methodology might be heavily dependent on the 

underline RTOS support. 

 

1.3 Computation Models for Real-time Systems 

Computation models form the basis for any formal methodologies or processes. This 

section gives an informal description to several computation models. They are finite state 

machine, Petri nets, timed automate, and temporal logic. These models are chosen here 

because they are most relevant to the research work of this dissertation, which is based on 

the DEVS (Discrete Event System Specification) formalism. 

 

Finite State Machine 

Finite State Machines (FSM) [Gil62], also known as Finite State Automation (FSA), at 

their simplest, are models of the behaviors of a system or a complex object, with a limited 

number of defined conditions or modes, where mode transitions change with 

circumstance. Finite state machines consist of four main elements: 

• States which define behavior and may produce actions  

• State transitions which are movement from one state to another  

• Rules or conditions which must be met to allow a state transition  



 

 

24

• Input events which are either externally or internally generated, which may 

possibly trigger rules and lead to state transitions  

FSM is typically used as a type of control system where knowledge is represented in 

the states, and actions are constrained by rules. Like any rule-based systems, if all the 

antecedent(s) of a rule are true, then the rule is triggered. It is possible for multiple rules 

to be triggered, and in the area of reasoning systems, this is called a conflict set. There 

can only be one transition from the current state, so a consistent conflict resolution 

strategy is required to select only one of the triggered rules to fire and thus performing a 

state transition. This brings us to two main types of FSM. The original simple FSM is 

what’s known as deterministic, meaning that given an input and the current state, the state 

transition can be predicted. An extension on the concept at the opposite end is a non-

deterministic finite state machine. This is where given the current state; the state 

transition is not predictable. It may be the case that multiple inputs are received at various 

times, means the transition from the current state to another state cannot be known until 

the inputs are received (event driven).  

There are two main methods for handling where to generate the outputs for a finite 

state machine. They are called a Moore Machine and a Mealy Machine, named after their 

respective authors. A Moore Machine is a type of finite state machine where the outputs 

are generated as products of the states. A Mealy Machine, unlike a Moore Machine is a 

type of finite state machine where the outputs are generated as products of the transition 

between states. 
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Finite state machines is not a new technique, it has been around for a long time. There 

are a number of abstract modeling techniques that may help or spark understanding in the 

definition and design of a finite state machine, most come from the area of design or 

mathematics. 

• State Transition Diagram: also called a bubble diagram, shows the relationships 

between states and inputs that cause state transitions.  

• State-Action-Decision Diagram: simply a flow diagram with the addition of 

bubbles that show waiting for external inputs. 

• Statechart Diagrams: a form of UML notation used to show behavior of an 

individual object as a number of states, and transitions between those states 

[Bru00]. 

• Hierarchical Task Analysis (HTA): though it does not look at states, HTA is a 

task decomposition technique that looks at the way a task can be split into 

subtasks, and the order in which they are performed [Dix98] 

 

Petri Nets 

Petri nets, or place-transition nets, are classical models of concurrency, non-

determinism, and control flow, first proposed by Carl Adam Petri in 1962. A Petri net is a 

graphical and mathematical modeling tool. It consists of places, transitions, and arcs that 

connect them. Input arcs connect places with transitions, while output arcs start at a 

transition and end at a place. There are other types of arcs, e.g. inhibitor arcs. Places can 

contain tokens. The current state of the modeled system (the marking) is given by the 
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number (and type if the tokens are distinguishable) of tokens in each place. Transitions 

are active components. They model activities that can occur (the transition fires), thus 

changing the state of the system (the marking of the Petri net). Transitions are only 

allowed to fire if they are enabled, which means that all the preconditions for the activity 

must be fulfilled (there are enough tokens available in the input places). When the 

transition fires, it removes tokens from its input places and adds some at all of its output 

places. The number of tokens removed / added depends on the cardinality of each arc. 

Petri nets are a promising tool for describing and studying systems that are 

characterized as being concurrent, asynchronous, distributed, parallel, nondeterministic, 

and/or stochastic. As a graphical tool, Petri nets can be used as a visual-communication 

aid similar to flow charts, block diagrams, and networks. In addition, tokens are used in 

these nets to simulate the dynamic and concurrent activities of systems. As a 

mathematical tool, it is possible to set up state equations, algebraic equations, and other 

mathematical models governing the behavior of systems.  

The major weaknesses of Petri nets are: (1) to model the notion of time, it is not 

straightforward [Rem93]; (2) as the system size and complexity evolve, the state-space of 

the Petri net grows exponentially, which could become too difficult to manage both 

graphically and analytically; (3) control logic is hard-wired, i.e. inflexible to cope with 

system change. A lot of research has been carried out in order to tackle, in particular the 

first two weaknesses. For example, Timed Petri net was proposed to enrich the modeling 

power of ordinary Petri nets by incorporating the notion of time. Dealing with time in PN 

is accomplished by assigning time elapses to the transition, to the places, or even to the 
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tokens and arcs. An important research area to manage the complexity of system 

modeling using Petri nets is Petri net synthesis. The major idea behind the method is to 

build a complex model through systematically synthesizing some well-defined Petri-net 

modules. Researchers in this area endeavor to provide the theories and methodologies for 

preserving the system properties during net synthesis [Zho93]. 

 

Timed Automata 

A timed automaton is a finite automaton with a finite set of real-valued clocks. The 

clocks can be reset to 0 (independently of each other) with the transitions of the 

automaton, and keep track of the time elapsed since the last reset. The transitions of the 

automaton put certain constraints on the clock values: a transition may be taken only if 

the current values of the clocks satisfy the associated constraints. With this mechanism 

we can model timing properties such as “the channel delivers every message within 3  

to 5 time units of its receipt.” Timed automata can capture several interesting aspects of 

real-time systems: qualitative features such as liveness, fairness, and nondeterminism; 

and quantitative features such as periodicity, bounded response, and timing delays 

[Alu94]. 

Figure 1.2 gives an example of timed automaton. It has two states and two clocks x 

and y. Suppose it starts operating the configuration (p,0,0) (the two last coordinates 

denote the values of the clocks). Below we give a brief description of how this timed 

automaton works based on a run over a timed word (a, 3.2) Æ (c, 5.1) Æ (b, 8.2) …as 

shown in the diagram. When the automaton stays at p, the values of the clocks grow. At 
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time 3.2 (x=3.2; y=3.2), the condition y<4 (the guard of the transition from p to q) is 

satisfied and the automaton can move to q while firing action a and resetting x to 0. Thus 

the configuration of the automaton becomes (q, 0, 3.2). As time increases, at time 5.1, the 

automaton fires action c and reset the clock y to 0 (there is no guard, or the guard is 

always true, for this transition). As the automaton returns to state q, its new configuration 

after this transition is (q, 1.9, 0). Then at time 8.2, the condition x=5 (the guard of the 

transition from q to p) is satisfied and the automaton moves to p and fires action b. This 

makes the configuration of the automaton become (p, 5, 3.1). 

p q

y<4,  a,   x:=0

guard action reset

X=5,  b

c,   y:=0

x, y: clocks

p q

y<4,  a,   x:=0
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Figure 1.2. A Timed Automata Example 

 

Temporal Logic 

The term Temporal Logic [Pri57], [Pri67], [Pri69] has been broadly used to cover all 

approaches to the representation of temporal information within a logical framework. It is 

also more narrowly to refer specifically to the modal-logic type of approach introduced 

around 1960 by Arthur Prior under the name of Tense Logic and subsequently developed 
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further by logicians and computer scientists. Temporal logic is an extension of 

conventional (propositional) logic which incorporates special operators that cater for 

time. With Temporal Logic one can specify and verify how components, protocols, 

objects, modules, procedures and functions behave as time progresses. The specification 

is done with (Temporal) logic statements that make assertions about properties and 

relationships in the past, present, and the future.  

Classical temporal logics deal with time in a qualitative way, which makes them not 

suitable to deal with real-time systems. Qualitative properties like safeness, liveness and 

fairness can be investigated. To overcome this drawback, extensions were proposed 

where time is treated in a quantitative way [Fro95]. The different approaches are: (1) 

considering time as a derived concept, on the basis of the “next”-operator, which allows 

specifications to deal with a concrete time domain; (2) introduce an explicit clock 

variable to function; and (3) bounding the temporal operators. In these “real-time 

temporal logics”, quantitative properties like periodicity, real-time response (deadlines) 

and delays can be defined. 

Temporal Logics often find their application in the specification of real-time 

properties in model-checking verification. Often, they are also used as an engine to 

formulate and make deductive proofs in the formal verification of (timing) properties. As 

Temporal Logic represents temporal information within a logical framework, it allows 

formal and automated verification and checking. For example, temporal logic has been 

used to supplement Java Assertions for the purpose of testing [Eri]. 
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1.4 Real-time Software Development Methods 

Various real-time software development methodologies have been developed. 

Typically at the heart of a methodology lies the system modeling specification, which is 

based on one or more computation models. For example, the HW/SW co-design 

methodology described in [Tho00] uses the Multi-Thread Graph (MTG) model for 

system modeling; the Ptolemy II [Lee01], [Pto] method supports heterogeneous models 

such as discrete event, data flow, finite state machines and so on for system modeling; the 

Real-Time Object-Oriented TMO method [Kim97] uses the Time-triggered Message-

triggered Object (TMO) model for system modeling. Several other models and design 

methods for real-time systems have been surveyed by Gomaa [Gom93], [Gom00]. Based 

on the modeling specification, techniques to analyze, design, test, and synthesize the 

software are developed. Some methods, especially those that are commercially supported 

by industry companies, also provide highly integrated developing environment (IDE) and 

CAD tools. These environments and tools aim to automate the development process, thus 

greatly speeding up the development time.  

Ideally, a methodology should span across different abstraction levels, supporting the 

full path from system-level specification down to code implementation. For real-time 

systems, it is also desirable for the specification to support timeliness modeling explicitly 

and systematically. Other desired features of a specification include supporting 

modularity for model reuse; allowing implementation independent specification to 

enhance portability; incorporating formal model-based modeling to enable automated 

model checking and synthesis; etc. The current state of art is that most methods only 
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support some, not all, of these features. Below we use UML-RT2 as a case study example 

[Bia03] to see what kinds of features UML-RT supports. 

 

A Brief Introduction to UML-RT 

It is well known that UML [OMG5] has achieved a great popularity in software 

development. This is because UML is a semi-formal notation relatively easy to use and 

well supported by tools. Recently, the deficiencies of standard UML as a vehicle for 

complete specification and implementation of real-time embedded systems has led to a 

variety of competing and complementary proposals [Mar01]. One of the major attempts 

is the UML-RT profile, which derives from ObjectTime’s ROOM methodology [Sel94]. 

It is likely that OMG will include UML-RT features in the definition of UML 2.0. 

 

Figure 1.3: Capsule, port, and protocol in UML-RT 

 
UML-RT is an extension of UML that addresses real-time issues. It provides a 

formalism to handle active objects. An active object is called a Capsule in UML-RT and 

it communicates with other capsules through asynchronous messages, which are sent and 

received through Ports. A Port is defined by a Protocol that defines which messages can 

                                                 
2 The UML-RT is chosen here because it is directly related to the DEVS modeling approach which is the 
basis of this dissertation. As a matter of fact, the concepts in UML-RT: Capsule, Port, Connector directly 
correspond to the Model, Port, and Coupling in DEVS respectively. 
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be sent through a port (Out messages) and which messages a port accepts (In messages). 

Given a Protocol, its conjugate is always defined, by simply inverting the In and Out 

messages. This is shown in Figure 1.3. 

The State Diagrams associated to each capsule have the usual syntax and semantic as 

in plain UML, including the “run to completion” behavior [OMG5]. The only additional 

constraint is that any message (except internal  messages, which remain in the boundaries 

of the State Diagram) has always to be referred to a Port. As shown in Figure 1.4, 

capsules are connected through Connectors. A Connector binds two different Ports with 

compatible Protocols. A protocol is always compatible with its conjugate; a protocol to 

be compatible with another one has to accept as In messages a superset of the other 

protocol’s Out messages and has to send a subset of the messages accepted by the other 

protocol. 

 

Figure 1.4: Connector in UML-RT 

 
UML-RT mainly focuses on the concept of active component (the Capsule) and it 

doesn’t directly address real-time constraints. The concept of time can be found in 

standard UML-RT libraries –mainly thanks to the Timer class stereotype– but not directly 

in the modeling language. 
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UML-RT is implementation oriented: it is conceived to be used with a complete 

library in a language of choice, usually abstracting from the underneath platform. By 

embedding code fragments in transitions and states (as defined in plain UML) a UML-RT 

model can be directly translated to code (Rational Rose RealTime being the reference 

tool for generating working embedded distributed systems from UML-RT models). 

UML-RT is an effective notation for the design and implementation of systems. 

However, the application of UML-RT to the real-time domain is still suffering from 

several problems [Bia03]. First, UML-RT is not formally well defined. Very often real-

time applications are also safety-critical, and thus call for activities like the verification of 

properties (such as safety, utility, liveness, …), the simulation of the system, the 

generation of test cases, etc. It is very hard (if at all possible) to carry out such activities 

when the specifications are written in semi-formal notations like UML or UML-RT. 

Secondly, time issues (i.e., the representation of time and time constraints) are not treated 

at a native level: ad-hoc components (like timers) have to provide time-related 

information to the system. 

 

1.5 Simulation in System Development  

Simulation technologies have been widely used in industry to assist system 

development. It can offer significant savings in time and resources over system 

development; revolutionize traditional design evaluation methods and overcome a 

number of safety, environmental and security constraints.  
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Typically, simulation tools are used at two stages of system development: the analysis 

stage to support concept development, virtual prototyping, etc.; the test stage to provide 

test environments and test cases for system verification and evaluation. By applying 

simulation technology in the analysis stage, simulation-based design can highlight 

problems early enough in the product development process, where they may be addressed 

more cost-effectively. Engineers have also achieved a measure of success with 

simulation-based virtual prototyping. Many leading manufacturers, among them Boeing, 

Chrysler, and General Dynamics, have saved millions of dollars on fighter planes, 

automobiles, and submarines by replacing physical prototypes with computer mock-ups 

[Mic98]. Simulation-based test and verification enable automated test program and test 

cases generation, functional coverage and checking, etc. It has been widely used, 

although still in an ad-hoc way, by both hardware and software developers. For example, 

test generation techniques, tools, and solutions are widely recognized as the main means 

for hardware verification of complex designs. The approach of using simulation-based 

software design and implementation combined with hardware-in-the-loop simulation 

techniques greatly accelerate the embedded software development and integration 

processes. Effective use of these techniques results in a faster product development cycle, 

lower development costs, and higher overall product quality. 

 

Simulation Based Acquisition 

Simulation Based Acquisition (SBA) [SBA] is an acquisition process in which DoD 

and industry are enabled by robust, collaborative use of simulation technology that is 
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integrated across acquisition phases and programs. SBA is defined as the integrator of 

simulation tools and technology across acquisition functions and program phases. It 

advocates the usage of simulation across all the phases of a system’s development. 

Furthermore, it advocates using M&S as early as possible such as to start the 

development process with the training simulation/simulator as the virtual prototype and 

defer formal system operational requirements until the virtual prototype is built. This 

might be a new trend for large-scale complex system development. 

SBA envisions an integrated approach to the use of M&S in systems acquisition. The 

application of the simulation tools has been stove-piped in many cases as the tools 

available were designed for the immediate intended purpose and did not address other life 

cycle phases. An integrated set of simulation tools, across the phases, permits analyses to 

address the full implications of competing concepts including initial effectiveness 

analyses, man/machine interfaces, tactics, techniques and procedures on a combined arms 

battlefield, and analysis of concept implications to manufacturing, reliability and 

supportability. The philosophy of an early use of M&S, designed with the entire life cycle 

in mind, provides the benefit of reusing an expanding, validated, consistent, and up to 

date, and common M&S infrastructure. 

 

1.6 Challenges of Real-time Software Development 

Although the hardware capabilities for real-time systems have been improved greatly, 

the implementation of their functionalities has steadily shifted to the software. This is 

driven by the fact that software has much more flexibility to cope with system varieties 
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and requirement changes. Recent studies indicate that up to 60% of the development time 

of an embedded real-time system is spent in software coding [Mor96], [Pau96], [Pau97]. 

Clearly this is a sign showing the importance of real-time software development. 

However, it is also a sign indicating that the existing software development methods are 

insufficient to develop real-time systems. As a matter of fact, the lack of good design 

methods and support tools has made the software development for real-time systems a 

bottleneck, especially when a large number of subsystems and task synchronization are 

involved.  

The real-time software developer faces several unique challenges beyond those of 

classical software development. First, as mentioned before, real-time systems need to 

meet both timeliness and reliability requirements. These requirements add extra 

complexity to the software design and test. For example, for hard real-time systems, 

special test and analysis techniques have to be developed to test the correctness of the 

control model and to guarantee the system can meet deadlines under all conditions. 

Secondly, real-time systems usually operate in a real environment, which may be 

unknown during the design time or continuously evolve itself as time proceeds. Thus the 

software that controls these real-time systems should be able to deal with uncertainties, 

such as to dynamically configure itself to adapt to a changing environment. This also 

poses great challenges to effectively and thoroughly test the software under development. 

Besides these unique challenges, the rapid growth of real-time embedded systems brings 

two other factors into real-time software’s complexity. First, real-time systems are more 

and more networked together. It will not be unusual for hundreds of embedded 
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controllers, smart sensor and actuators work together to finish a common task. Thus, 

scalability is becoming a more and more important issue to deal with. Second, with their 

rapid growth, real-time systems are expected to carry out more and more complex 

functionalities. It has been foreseen that the new breed of real-time embedded systems, 

which have enough computational power and memory to carry out complex 

functionalities, will become dominant [Rob00]. In order to handle the complexity of these 

systems, much effort has to be put on system modeling, design, analysis, and verification 

techniques. These high level techniques are becoming essential, as distributed real-time 

systems become more and more pervasive and complex.  

To address the importance and complexity of real-time software development, 

various models and development methods have been proposed. However, so far none of 

them fits very well in supporting the design, test, and execution of real-time software 

from a systematic way. In studying the literature of current real-time software 

development methods, we notice the following common deficiencies: 

• In the software development lifecycle, different stages are disconnected to each 

other, thus resulting in inherent inconsistency among analysis, design, test, and 

implementation artifacts. For example, in the analysis stage for large-scale 

complex systems, mathematical models are usually built to analyze the control 

algorithms. However, these mathematical models are rarely effectively utilized by 

the design stage which uses modeling languages such as UML, and the 

implementation stage which uses programming languages such as C or Java. 

Because of this kind of model discontinuity, transformation from one model to 
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another is needed between different stages. This transformation is an error prone 

process. Furthermore, it makes it very difficult, if not impossible, to maintain a 

consistent view of the artifacts from different development stages.   

• Software test for distributed real-time systems is largely ad hoc and at a low level. 

Although control algorithms can be developed and tested in the analysis stage, 

once they are transformed into implementation codes, extensive test is still needed 

because of the discontinuity problem mentioned above. For this reason, a lot of 

tests are meaningful only after the actual code is generated, and in some cases, has 

to be conducted with the real hardware. This kind of low-level activities results in 

later detection of inconsistence with the system specification.  

• Despite there is continuous need for software to dynamically reconfigure itself in 

order to adapt to new situations or new environments, there is no effective and 

systematic way to design and analyze these kinds of self-adaptive software 

[Rob00]. As real-time systems usually operate in dynamic real environments, they 

tend to exhibit dynamic reconfiguration to change their structures and operation 

modes according to different situations. Thus it is desirable if a real-time software 

development method provides a systematic way to model dynamic 

reconfiguration of systems.  

• Scalability becomes a more and more important issue as real-time embedded 

systems increasingly networked together. To ensure scalability, component based 

technology [Ras01] and suitable software structures and physical topologies are 
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needed. Meanwhile, computer-based modeling and simulation (M&S) 

methodology is required since the scale of systems is well beyond what analytical 

tools alone can handle and there is limited ability to do controlled experiments. 

 

1.7 Summary of Contributions 

Overall, the main contribution of this research is the development of a simulation-

based software development methodology [Hu02, Hu03a] to manage the complexity of 

distributed real-time software. This methodology, based on discrete event system 

specification (DEVS), overcomes the “incoherence problem” between different design 

stages by emphasizing “model continuity” through the development process. Specifically, 

techniques have been developed so that the same control models that are designed can be 

tested and analyzed by simulation methods and then easily deployed to the distributed 

target system for execution. To improve the traditional software testing process where 

real-time embedded software needs to be hooked up with real sensor/actuators and tested 

in a physical environment, a virtual test environment is developed that allows software to 

be effectively tested and analyzed in a virtual environment, using virtual sensor/actuators. 

Within this environment, stepwise simulation-based test methods have been developed so 

that different aspects, such as logic and temporal behaviors, of a real-time system can be 

tested and analyzed incrementally. 

Based on this methodology, a simulation and testing environment for distributed 

autonomous robotic systems is developed. This environment applies stepwise simulation-

based testing methods to test distributed autonomous robotic systems. In particular, the 
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work on “robot-in-the-loop” simulation allows real and virtual robots to work together for 

a meaningful system-wide test. For example, when developing a robotic system that 

includes hundreds of mini mobile robots, one or several real robots can be tested and 

experimented with other hundreds of virtual robots that are simulated on computers. With 

the help of this environment, several distributed robotic systems have been successfully 

developed and investigated. One of them is a “dynamic team formation” system [Hu03b] 

in which mobile robots search for each other, and then form a team dynamically through 

self-organization. 

To model systems’ dynamic reconfiguration, a feature exhibited by many real-time 

systems in order to adapt to the continuous changing environment, the variable structure 

modeling capability is exploited [Hu03c]. Operation boundaries for structure change 

operations have been defined so that the hierarchical modular property of models will not 

be violated during systems’ reconfiguration. This variable structure modeling capability 

has been implemented in the DEVSJAVA modeling and simulation environment. It is 

also well demonstrated by the “dynamic team formation” robotic example where robots 

establish connections dynamically. 

While real-time systems become more and more pervasive, the scale of these systems 

also increase rapidly. Using simulation-based methods to design and study these large-

scale systems, simulation performance plays a critical role. To improve simulation speed, 

a high performance simulation engine is developed for large-scale cellular DEVS models. 

This simulation engine makes use of the characteristics of large-scale cellular models by 

employing a special data structure so that the smallest tN and the imminent components 
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can be found efficiently. The speed up of this new simulation engine as compared to the 

standard coordinator has been demonstrated by several examples. 

 

1.8 Dissertation Organization 

The remaining of this dissertation is organized as follows: Chapter 2 discusses DEVS 

as a simulation-based design framework for real-time systems. Specifically, it introduces 

the DEVS and RTDEVS formalism and discusses how DEVS can be applied to model a 

real-time system’s structure, behavior and timeliness in a systematical way. Based on 

Chapter 2, Chapter 3 presents the “model continuity” methodology for distributed real-

time software development. It discusses the different stages for developing real-time 

software and illustrates in detail how stepwise simulation-based test methods can be 

applied to incrementally test the software under development. Chapter 4 focuses on the 

variable structure modeling capability. It presents the conceptual development of variable 

structure modeling in DEVS and describes how it can be implemented in the DEVSJAVA 

environment. In Chapter 5 and Chapter 6, two distributed autonomous robotic examples 

are presented to demonstrate the proposed the methodology. While Chapter 5 presents a 

system with two robots that establish connections dynamically using the variable 

structure modeling capability, Chapter 6 shows a scalable system that can essentially 

include any number of robots. Chapter 6 also illustrates how simulation-based methods 

can be applied to analyze/evaluate the performance of a system under development. In 

Chapter 7, the high performance simulation engine is presented. Examples and test data 

are given to demonstrate the speed up of this new simulation engine as compared to the 
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standard coordinator. Chapter 8 concludes this dissertation research and provides some 

future research directions.  
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CHAPTER 2 

DEVS FOR REAL-TIME SYSTEM DEVELOPMENT 

 

2.1 DEVS as a Simulation-based Design Framework 

A system is a set of related elements considered as a unity. System theory is a body of 

concepts and methods for the description, analysis and design of complex entities leading 

to some important generalizations about such entities. System theory has evolved a 

systematic approach to system design. This is based on first defining the system 

objectives, proceeding to the generation of a candidate design, analyzing and evaluating 

the candidate in terms of the objectives and then deciding either to implement the 

candidate or to return to an earlier stage to generate another candidate [Fin88]. As a 

system design approach, simulation-based system design employs a plan-generate-

evaluate process. The plan phase organizes all the models of design alternatives within 

the chosen system boundary and design objectives. The generate phase synthesizes a 

candidate design model intended to meet the set of design objectives. Finally, the 

evaluate phase evaluates behavior and/or performance of the generated model through 

simulation using an appropriate experimental frame derived from the design objectives. 

The overall design cycle repeats the generation and evaluation phases until an acceptable 

design is found [zei00]. 

The DEVS (Discrete Event System Specification) [zei76], [zei00] formalism is a 

formal modeling and simulation (M&S) framework based on generic dynamic systems 
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concepts.  DEVS is a mathematical formalism with well-defined concepts of coupling of 

components, hierarchical, modular model construction, support for discrete event 

approximation of continuous systems and an object-oriented substrate supporting 

repository reuse. DEVS has a well-defined concept of system modularity and component 

coupling to form composite models.  It enjoys the property of closure under coupling 

which justifies treating coupled models as components and enables hierarchical model 

composition constructs. Based on the classic DEVS formalism, RTDEVS [Hon97] 

formalism was developed for real-time system specification. The formalisms of DEVS 

and RT-DEVS are given in the next section. 

DEVS is not just a theoretical framework, as it has been operationalized to serve as a 

practical simulation and execution tool in a variety of implementations. A DEVS model 

can be simulated by a simulator and then executed in the DEVS runtime environment. 

Over years, DEVS’ simulation infrastructures have been implemented using various 

programming languages such as DEVSC++ [Zei96], DEVSJAVA [DEVJ], and over 

various middleware such as DEVS/CORBA [Kim99], and DEVS/HLA [zei99].  

Based on the simulation infrastructures and techniques that have been developed, 

DEVS has the ability to test and evaluate a model’s correctness as the model being 

iteratively refined on different abstraction levels. This allows early discovery of high-

level defects as well as a complete validation of the finalized model in detail. In DEVS, 

simulation-based test and evaluation is conducted within experimental frames. An 

experimental frame is a specification of the conditions under which the system is 

observed or experimented with. It typically has three types of components: generator, 
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which generates input segments to the system; acceptor, which monitors an experiment 

to see the desired experimental conditions are met; and transducer, which observes and 

analyzes the system output segments. With experimental frames, not only the correctness 

of a model can be tested and validated, but also the performance of the model, such as 

average response time, can also be measured by using a transducer. Moreover, different 

perspectives of the system can be captured through specialized experimental frames and 

tested in the various phases of development. 

To organize the family of alternative designs from which a candidate design can be 

selected, generated, and evaluated, the system entity structure (SES) [Roz90] can be used. 

The system entity structure formalism is a structural knowledge representation scheme 

that systematically organizes a family of possible structures of a system. Such a family 

characterizes decomposition, coupling, and taxonomic relationships among entities. SES 

makes it possible to automatically select the best design alternatives by automatically 

pruning the SES structure. 

The combination of systematical modeling capability, simulation-based design 

approach, experimental frame, and system entity structure makes DEVS a competitive 

candidate for developing real-time systems. With DEVS, a real-time system’s behavior, 

structure, and timeliness can be effectively modeled and then tested/evaluated by 

simulation methods. The behavior aspects of a system can be specified by DEVS Atomic 

models which have well defined state, state transition functions (external and internal), 

activity, time advance function, etc. The structure aspects of the system can be specified 

by DEVS Coupled models which allow hierarchical composition of models by coupling 
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input ports and output ports between models. With the time advance function, a DEVS 

model can specify time explicitly. This makes it possible to model and evaluate real time 

requirements in a systematic way. Furthermore, DEVS also has the capability to model 

dynamic reconfigurations of a real-time system. This variable structure modeling 

capability will be discussed further in Chapter 4. 

The rest of this chapter describes the basic concepts of DEVS and shows how it can be 

applied to real-time systems design. Notice that although a brief description of DEVS 

formalism is presented, readers are recommended to read [Zei76], [Zei00] for more 

information about the DEVS modeling and simulation framework. 

 

2.2 A Brief Review of DEVS Concepts 

Figure. 2.1 depicts the conceptual framework underlying the DEVS formalism [Zei76, 

Zei00]. The modeling and simulation enterprise concerns four basic objects:  

• the real system, in existence or proposed, which is regarded as fundamentally a 

source of data. 

• model, which is a set of instructions for generating data comparable to that observable 

in the real system.  The structure of the model is its set of instructions.  The behavior 

of the model is the set of all possible data that can be generated by faithfully executing 

the model instructions.   

• simulator, which exercises the model's instructions to actually generate its behavior. 

• experimental frame, which captures how the modeler’s objectives impact on model 

construction, experimentation and validation.  In DEVJAVA, experimental frames 
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are formulated as model objects in the same manner as the models that are of primary 

interest.  In this way, model/experimental frame pairs form coupled model objects 

with the same properties as other objects of this kind.  This uniform treatment yields 

immediate benefits in terms of modularity and system entity structure representation. 

 

The basic objects are related by two relations: 

• a modeling relation linking real system and model, defines  how  well the  model  

represents the system or entity being  modeled.  In general terms, a model can be 

considered valid if the data generated by the model agrees with the data produced by 

the real system in an experimental frame of interest.   

• a simulation  relation, linking model and simulator, represents  how faithfully  the  

simulator is  able  to  carry  out  the instructions of the model.   

 

 

Figure. 2.1. Basic Entities and Relations 

 
The basic data items produced by a system or model are time segments.  These time 

segments are mappings from intervals defined over a specified time base to values in the 

ranges of one or more variables.  An example of a data segment is shown in Figure. 2.2.   
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Figure. 2.2. Discrete event time segments. 

 
The structure of a model may be expressed in a mathematical language called a 

formalism.  The discrete event formalism focuses on the changes of variable values and 

generates time segments that are piecewise constant.  Thus an event is a change in a 

variable value that occurs instantaneously. 

In essence the formalism defines how to generate new values for variables and the 

times the new values should take effect. An important aspect of the DEVS formalism is 

that the time intervals between event occurrences are variable (in contrast to discrete time 

where the time step is generally a constant number). 

In the DEVS formalism, one must specify 1) basic models from which larger ones are 

built, and 2) how these models are connected together in hierarchical fashion.  

To specify modular discrete event models requires that we adopt a different view than 

that fostered by traditional simulation languages. As with modular specification in 

general, we must view a model as possessing input and output ports through which all 

interaction with the environment is mediated. In the discrete event case, events determine 
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the values appearing on such ports. More specifically, when external events, arising 

outside the model, are received on its input ports, the model description must determine 

how it responds to them. Also, internal events arising within the model, change its state, 

as well as manifesting themselves as events on the output ports, which in turn are to be 

transmitted to other model components.  

 

A basic model contains the following information:  

• the set of input ports through which external events are received,  

• the set of output ports through which external events are sent, 

• the set of state variables and parameters: two state variables are usually present,  “phase” 

and “sigma” (in the absence of external events the system stays in the current “phase” for 

the time given by “sigma”), 

• the time advance function which controls the timing of internal transitions – when the 

“sigma” state variable is present, this function just returns the value of “sigma”, 

• the internal transition function which specifies to which next state the system will transit 

after the time given by the time advance function has elapsed, 

• the external transition function which specifies how the system changes state when an 

input is received –  the effect is to place the system in a new “phase” and “sigma” thus 

scheduling it for a next internal transition; the next state is computed on the basis of the 

present state, the input port and value of the external event, and the time that has elapsed 

in the current state, 

• the confluent transition function which is applied when an input is received at the same 

time that an internal transition is to occur –  the default definition simply applies the 



 

 

50

internal transition function  before applying the external transition function to the 

resulting state, and 

• the output function which generates an external output just before an internal transition 

takes place. 

  

A Discrete Event System Specification (DEVS) is a structure  

M = <X, S, Y, δint, δext, δcon, λ, ta> 

where, 

  X :  set of external input events;  

  S :  set of sequential states;  

  Y :  set of outputs;  

  δint: S  →   S : internal transition function  

  δext : Q × Xb   →   S : external transition function  

  δcon: Q × Xb   →   S : confluent transition function  

Xb  is a set of bags over elements in X, 

  λ : S  →   Yb : output function generating external events at the output; 

  ta : S  → +
∞,0R : time advance function; 

  Q = { (s,e) | s ∈ S, 0 ≤ e ≤ ta(s) } is the set of total states where e is the   elapsed 

time since last state transition. 
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Figure. 2.3. Interpretation of the DEVS structure 

 
The interpretation of these elements is illustrated in Figure. 2.3.  At any time the 

system is in some state, s. If no external event occurs the system will stay in state s for 

time ta(s). Notice that ta(s) could be a real number and it can also take on the values 0 

and ∞. In the first case, the stay in state s is so short that no external events can intervene 

– we say that s is a transitory state. In the second case, the system will stay in s forever 

unless an external event interrupts its slumber. We say that s is a passive state in this 

case. When the resting time expires, i.e., when the elapsed time, e = ta(s), the system 

outputs the value, λ(s), and changes to state δint(s).  Note that output is only possible just 

before internal transitions.  

If an external event x ∈ Xb occurs before this expiration time, i.e., when the system is 

in total state (s, e) with e ≤ ta(s), the system changes to state δext(s,e,x). Thus the internal 

transition function dictates the system’s new state when no events have occurred since 

the last transition. While the external transition function dictates the system’s new state 



 

 

52

when an external event occurs – this state is determined by the input, x, the current state, 

s, and how long the system has been in this state, e, when the external event occurred.  In 

both cases, the system is then is some new state s′ with some new resting time, ta(s′) and 

the same story continues. 

Note that an external event x ∈Xb is a bag of elements of X. This means that one or 

more elements can appear on input ports at the same time. This capability is needed since 

Parallel DEVS allows many components to generate output and send these to input ports 

all at the same instant of time. 

The above explanation of the semantics (or meaning) of a DEVS model suggests, but 

does not fully describe, the operation of a simulator that would execute such models to 

generate their behavior.  Nevertheless, the behavior of a DEVS is well defined and can be 

depicted as we mentioned earlier in Figure. 2.2.  In that figure, the input trajectory is a 

series of events occurring at times such as t0 and t2. In between such event times may be 

those, such as t1, which are times of internal events. The latter are noticeable on the state 

trajectory, which is a step-like series of states, which change at external and internal 

events (second from top). The elapsed time trajectory is a saw-tooth pattern depicting the 

flow of time in an elapsed time clock that gets reset to 0 at every event. Finally, at the 

bottom, the output trajectory depicts the output events that are produced by the output 

function just before applying the internal transition function at internal events. 

Basic models may be coupled in the DEVS formalism to form a coupled model. A 

coupled model tells how to couple (connect) several component models together to form 

a new model. This latter model can itself be employed as a component in a larger coupled 
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model, thus giving rise to hierarchical construction.  

A coupled model is defined as follows: 

DN = <X, Y, D, {Mi}, {Ii}, {Zi,j}>  

where,  

 X : set of external input events;  

 Y : a set of outputs;  

 D : a set of components names;  

   for each i in D,  

       Mi is a component model 

       Ii is the set of influencees for i  

for each j in Ii,  

      Zi,j is the i-to-j output translation function 

A coupled model template captures the following information: 

� the set of components  

� for each component, its influencees  

� the set of input ports through which external events are received  

� the set of output ports through which external events are sent  

� the coupling specification consisting of:  

o the external input coupling (EIC) connects the input ports of the coupled 

to one or more of the input ports of the components 

o the external output coupling (EOC) connects the output ports of the 

components to one or more of the output ports of the coupled model 
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o internal coupling (IC) connects output ports of components to input ports 

of other components 

 
Real-Time DEVS Formalism 

Real-Time DEVS (RTDEVS) formalism extends the classic DEVS formalism in 

atomic DEVS models. The RTDEVS formalism for coupled models remains the same as 

the original. An atomic RTDEVS model, RTAM, is defined as follows: 

RTAM = < X, S, Y, δint, δext, δcon, λ, ta, A, ψ> 

where, 

 X, S, Y, δint, δext, δcon, λ: remains the same as conventional DEVS; 

 ta : S → +
∞,0I   :  time advance function, 

                   where +
∞,0I  is the non-negative integers with ∞ adjoined; 

 A : a set of activities with the constraints 

 ψ :  S → A : an activity mapping function 

 

In the classic DEVS formalism, simulation time advances only when a simulator calls 

the time advance function ta of the associated model. The time advance function ta in the 

RTDEVS formalism behaves the same as that in the classic DEVS formalism except that 

here the time is an integer, while in classis DEVS time is a real number. The time 

calculated by the time advance function also synchronized with the wall clock time. This 

is because a simulation clock in RTDEVS is no longer a virtual clock but a real-time 
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clock. An activity is an operation that takes a certain amount of time to complete the 

assigned task [Hon97]. This was adopted by [Hon97] to represent some time-consuming 

operations such as waiting for a message, processing a job, and so forth.  

 

2.3 Modeling a System’s Structure, Behavior, and Timeliness Using DEVS 

This section gives an informal introduction of using DEVS to model a real-time 

system’s structure, behavior, and timeliness. For each of them, a simple example with the 

corresponding DEVSJAVA code is given. 

The structure of a system identifies the entities that are to be modeled and the 

relationships between them (e.g., communication relationships, containment 

relationships). DEVS coupled models are used to model a system’s structure. 

Corresponding to a system with multiple subsystems, a DEVS coupled model contains 

several component models (DEVS atomic model or coupled model). Each model has its 

own input and output ports. DEVS couplings can be established between the output/input 

ports to enable inter-communications between models. Within this framework, a system 

that exhibits inter-communication relationship as well as hierarchical containment 

relationship between its entities can be naturally modeled using DEVS coupled model.  
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Figure. 2.4: A “leader-follower” system modeled by a DEVS coupled model 

 
Figure. 2.4 shows a “leader-follower” multi-agent system that is modeled using a 

DEVS coupled model. As can be seen, this hierarchical coupled model clearly models the 

hierarchical relationship between different components of the system. From the figure we 

can see that this system has two agents: a leader and a follower. They communicate 

directly with each other. The follower agent has sensors, controller, and actuators, among 

which the controller is further decomposed to several sub-components such as PID, 

bang-bang, etc. The DEVSJAVA code that describes the leader_follower coupled model 

is shown below. Note that in this code, the Follower itself is a coupled model, whose 

subcomponents are not shown in this code. 

public class leader_follower extends digraph{ 
public leader_follower ( ){ 

 Leader leader = new Leader(); 
 Follower follower = new Follower(); 
 add(leader); 
 add(follower); 
 addCoupling(leader, ”outputPort”, follower, “inputPort”); 
 addCoupling(follower, “outputPort”, leader, “inputPort”); 

} 
} 

 



 

 

57

One of the features exhibited by some real-time systems is that a system may 

dynamically reconfigure itself in order to adapt to the continuous changing environment. 

To model dynamic reconfiguration of a system, we developed the variable structure 

modeling capability. Specifically, four structure changing operations: 

addModel()/removeModel(), addCoupling()/removeCoupling() have been developed so 

that models and their couplings can be added/removed dynamically. More information for 

this variable structure modeling capability can be found in [Hu03c]. 

While the structure of a system is modeled by DEVS coupled models, the behavior of 

a system can be modeled by DEVS atomic models. A DEVS atomic model has well-

defined state, state transition functions (triggered by external or internal events), time 

advance function, output function, etc. From the design point of view, an atomic model 

can be viewed as a timed state machine. The transition from one state to another is 

triggered by external or internal events. The external event is an external message 

received from the model’s input ports; the internal event is a time out event generated 

internally. The model can generate output and send it out through its output ports.  

on,5 off, ∞

external input

external event Internal event

external input
time out

 
Figure. 2.5: Timed state diagram of a screen saver program 

 

Figure. 2.5 shows an example that exhibits the dynamic behavior of a simple screen 

saver program. This program has 5 seconds watching time, meaning the screen will be 
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turned off if there is no input from mouse or keyboard in 5 seconds. When the screen is 

off, any input from mouse or keyboard will turn it on; when the screen is on, any input 

will keep it on, while resetting the watching time starting from zero. 

The above behavior can be modeled by a DEVS atomic model with the following 

DEVSJAVA code. 

public class screen_saver extends atomic{ 
 …… 
public void initialize(){ 

      holdIn("on", 5);  // 5 seconds --- 5 minutes 
} 
public void  deltext(double e,message x){ 

Continue(e); 
 for (int i = 0; i < x.getLength(); i++) { 
     if (messageOnPort(x, "keyboard", i))  holdIn("on", 5); 
     if (messageOnPort(x, "mouse", i))  holdIn("on", 5); 
} 

} 
public void  deltint( ){ 

holdIn(“off”, INFINITE); 
} 
public message  out( ){ 

    message  m = new message(); 
    return m; 

} 
} 

 
Timeliness is an essential property of any real-time system. DEVS handles time 

explicitly by defining the time advance function in atomic models. Whenever an atomic 

model transits to a new state, its time advance function specifies how long the model will 

stay at that state. During this period of time, if there are external events, a model 

responses in its external transition function deltext(), which may change the model to a 

new state with a new time period; otherwise an “internal” time out event will be 

generated and the model responses it in its internal transition function deltint(). Figure. 

2.6 shows some time patterns that can be easily models in DEVS.  
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Figure. 2.6: Time patterns modeled in DEVS 

 

To give an example, the corresponding DEVSJAVA code for a Periodic model (with 

period equals to 10) is given below: 

public class periodic_model extends atomic{ 
double period = 10; 

…… 
public void initialize(){ 

      holdIn("active", period);  
} 
public void  deltext(double e,message x){ 

Continue(e); 
} 
public void  deltint( ){ 

holdIn("active", period); 
} 
public message  out( ){ 

    message  m = new message(); 
    return m; 

} 
} 

 
Based on these patterns, models with more advanced behaviors can be built. For 

example, by adding output message in the out(), the Periodic model is extended to a 

generator model which generates output periodically. It can be further extended to a more 

advanced generator with variable periods during different time segments. 
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2.4 Connect to the External Environment through DEVS activity 

A real-time system continuously interacts with an external environment through 

sensors, actuators, or other hardware interfaces. Sometimes, it also uses software 

packages from third-party vendors for special computation purpose. For example, a real-

time system may use an image-processing package to process images. To model these 

hardware or software interfaces in DEVS, DEVS activity has been developed through 

which a model can interact with its external environment.  

A DEVS activity is a thread that can essentially be any kinds of computation tasks. 

For example, in the context of real time systems, an activity could be hardware 

(sensor/actuators) interfaces, network proxies, special software computation packages, 

and so on. Each activity belongs to an atomic model, which decides when to start or kill 

the activity. An activity may or may not return result to the atomic model. If an activity 

returns result to the atomic model, the result will be put on a reserved input port (the 

"outputFromActivity" port) as an external event and then processed by the model’s 

external transition function. 

Figure 2.7 shows the relationship between a DEVS model, activity, and the external 

environment. Note that dependent on the context of the system, this external environment 

could be a real physical environment, a third-party software component, or any other 

entities that are outside the boundary of the DEVS model.  
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Figure 2.7: DEVS model, activity, and the external environment 

 
As shown by Figure 2.7, the DEVS activity acts as a bridge between DEVS models 

and the external environment. Specifically, a DEVS model can start an activity by calling 

holdIn() or startActivity() methods. The difference between them is that the second 

method only starts an activity, while the first one also changes the state and sigma of the 

model. For example, with the holdIn() method, a model can start an activity and in the 

meantime specify a time window to watch if a desired result returns. A model can stop an 

activity by calling activity’s kill() method. An activity returns computation result to the 

DEVS model by method returnTheResult(), which sends the result as a message to the 

DEVS model’s reserved input port outputFromActivity. This message, as an external 

event, triggers the model’s external transition function deltext(), which processes the 

message and gets the result from activity. 

 

2.5 Simulation and Execution of DEVS Models 
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Figure 2.8: Simulate/Execute DEVS model in centralized and distributed environment 

 
To simulate DEVS models, DEVS simulators are developed. While DEVS models 

model the structure, behavior, and timeliness of a system, DEVS simulators drive the 

execution of these models. The clear separation between DEVS models and simulators 

makes it possible for the same model to be simulated by different simulators appropriate 

to different design stages or different simulation environments. Figure. 2.8 shows the 

simulation of the same DEVS model (which has subcomponents M1, and M2) in a 

centralized and distributed environment. In centralized simulation, the model is simulated 

by a centralized simulator on a computer. In distributed simulation, subcomponents (M1 

and M2) of the model are deployed to different computers, although the couplings among 

them are still kept the same as those in centralized simulation. Each subcomponent is 

simulated by a distributed simulator. If a model sends a message to another model, saying 

M1 sends a message to M2, the message is actually passed across the network. Thus one 

of the important roles of a distributed simulator is to establish network connection and to 

enable distributed message passing between models3. Note that in distributed simulation 

                                                 
3 In the implementation of DEVSJAVA, a coordServer is used to establish communication between 
distributed executors. 
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or execution, the time for message passing between distributed models is significantly 

longer than that in centralized simulation or execution. This is because there exists 

network latency between two computers. 

Two approaches are available to apply a DEVS model to real execution. First, a 

model can be transformed into executable code based on the target executing platform. 

This is an approach adopted by most software development methods. It usually results in 

fast execution of the code. However, the compiler, which transforms the model into 

executable code and optimizes the code, is typically expensive to develop. On the other 

hand, a DEVS model itself can be viewed as an implementation and executed by a real-

time execution engine4. In this case, transformation is not needed and the model remains 

unchanged from the design stage to implementation stage. Although this approach may 

sacrifice execution speed dependent on the efficiency of the underline real-time execution 

engine, it brings several advantages. First, it easies the transfer of model between 

different execution platforms, between centralized execution and distributed execution. In 

fact, the model is kept unchanged and different execution engines are chosen for different 

execution environments. For example, in Figure 2.8, the same model can be executed in 

both centralized and distributed environments, by centralized and distributed executors 

respectively. Secondly, from the design point of view, as the model is kept unchanged, the 

designer works on the same set of models from design, to simulation-based test and 

finally to the execution. Different simulators and real-time executors can be chosen for 

the same model based on different stages of a development process. In the dissertation, 

                                                 
4 A real-time execution engine, also called executor, is a stripped-down version of a real-time simulator. 
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we call this second approach the “model execution” approach. This is the approach that 

we employed from simulation-based design to real execution of a model.  

 

Hierarchical Distributed Topology 

While a coupled model can be distributed to multiple computers for simulation or 

execution, its subcomponents (assuming the subcomponent is a coupled model too) can 

also be distributed on multiple computers. This results in a hierarchical distributed 

topology as shown in Figure 2.9.  

TiniTini

TiniTiniTiniTiniTiniTini

leader-follower system

leader
follower

sensors controller actuators

PCPC

PCPC

 

Figure 2.9: Hierarchical distributed simulation or execution topology 

 
In this example, the “leader-follower” system described in Figure 2.4 is simulated or 

executed in an environment with hierarchical distributed topology. Specifically, the two 

models leader and follower are distributed on two different computers. Furthermore, the 

three components of the follower model: sensors, controller, and actuators are distributed 

on different computers too. Note that the hierarchical structure of computers as shown in 

Figure 2.9 only reflects the logic topology between computers. It doesn’t mean the 
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actually physical topology (such as a bus topology) of computers. As this hierarchical 

distributed topology keeps the same structure as that of the model, it shares the same 

hierarchical modular properties possessed by the model. For example, the leader model 

only sees its peer model follower. It doesn’t know, and doesn’t care either, that the 

components of follower are actually distributed on three different computers.  

 

Model Mapping 

To help to deploy models to a distributed environment, a mapping process is needed. 

As shown in Figure 2.10, during the mapping process, the designer assigns models to 

computers for simulation or execution. The decision of choosing which computer for a 

specific model is dependent on the system requirements and the design considerations. 

For example, if a model needs to interact with a special hardware, it can only be assigned 

to the computers that are equipped with the required hardware.  

Cooperative Models

Distributed Nodes

Model
Mapping

Specification

DEVS Coupling

Network Connection

 

Figure 2.10: Model mapping 

 
To facilitate the mapping process, a prototype model mapping specification is 
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proposed and interpreted as below: 

<M, (S, St), (As, Ps ), (Am, Pm) > 

• M: M∈DEVS is a DEVS Coupled Model or Atomic Model 

• S: S ∈Simulator is a DEVS Simulator to simulate M 

• St :  St ∈{R+ , NULL} is the time scale of the simulator. St is NULL if S is a 

fast mode simulator 

• As is Server’s network address. As is NULL if M is the root Model 

• Ps is Server’s socket port. Ps is NULL if As is NULL. 

• Am is M’s network address. Am is NULL if M is a leaf Model 

• Pm is M’s socket port. Pm is NULL if Am is NULL. 
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CHAPTER 3 

A MODEL CONTINUITY SOFTWARE DEVELOPMENT 
METHODOLOGY 

 

3.1 Model Continuity in Software Development 

The wide acceptance of software engineering has made software development a 

process including analysis, design, implementation, test, and maintenance stages. At each 

stage, numerous methods and tools have been developed. Breaking a software 

development process into multiple stages improves the manageability and productivity of 

software development in general, as these stages break down the problem into smaller 

manageable pieces.  On the other hand, although these stages each focuses on its own 

problems, they belong to the same unified process and are not separated from each other. 

For example, it’s very common for a project to go back and forth among different stages 

to change or to refine the design. Thus one of the most challenging tasks for software 

development is to maintain coherence, or model continuity, among different development 

stages. This is becoming more important as today’s software systems become more and 

more complex. 

Model continuity refers to the ability to transition as much as possible of a model 

specification through the stages of a development process. It manages the complexity of 

software development by emphasizing “coherence” between different design stages, thus 

resulting in a more “fluent flow” along the development process. Unfortunately, existing 

frameworks tend to support only one phase of the development process. They do not 
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work together coherently, i.e., allowing the output of a framework used on one phase to 

be consumed by a different framework used in the next phase [Ger02],[Sch00],[Ran02]. 

This discontinuity between different development stages results in inherent inconsistency 

among design, test, and implementation artifacts. In reality, for example, most executing 

code is not derived by any formal means from the specification or design models. As a 

consequence, these design models very often become outdated and in most cases loose 

their value. The lack of model continuity also tends to lead to errors that are not caught 

until well into the implementation phase. Since the cost of redesign increases as the 

design moves through development stages, redesign is the most expensive when 

performed in implementation phase, thus making the incoherent methodology costly 

[Pre97]. The feature of model continuity becomes ever more important as software 

systems becomes more and more complex. For example, a distributed real-time system 

might include hundreds of computing nodes, smart sensors and actuators, and needs to 

fulfill very complex tasks in an uncertain or even hostile environment. Without the 

feature of model continuity, it’s very hard to design and test the software that controls 

these large-scale complex systems. 

This chapter presents a software development methodology that supports model 

continuity for distributed real-time software development. This methodology is based on 

the DEVS modeling and simulation framework [Zei76],[Zei00]. Corresponding to the 

general “Design—Test—Execute” development procedure, this approach provides a 

“Modeling—Simulation—Execution” process which includes several stages to develop 

real-time software. During these stages, model’s continuity is maintained because the 
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same control models that are designed will be tested by simulation methods and then 

deployed to the target system for execution. This approach increase system engineers’ 

confidence that the final system in operation is the system they wanted to design and will 

carry out the functions as tested by simulation methods. 

Ensuring consistency among different development stages has been a research issue 

in various areas. In software engineering, traceability, in the form of requirements 

traceability[Ram01] or design-code traceability [Ant00], has been advocated to ensure 

consistency among software artifacts of subsequent phases of the development cycle. 

Boyd [Boy93] shows how traceability can be achieved when designing reactive systems. 

In hardware/software codesign, Janka et al. [Jan02] described a methodology that allows 

the specification stage and design stage to work together coherently when designing 

embedded real-time signal processing systems. While the preceding approaches use 

different artifacts in different stages, the approach presented in this chapter allows the 

same simulation models to be used in the design and implementation stages (the same 

simulation models become the software to control the system in real execution). The 

following research efforts are more closely related to this proposed approach by applying 

simulation-based design. Bagrodia and Shen [Bag91] describe an approach called 

MIDAS that supports the design of distributed systems via iterative refinement of a 

partially implemented design where some components exist as simulation models and 

others as operational subsystems. Gonzalez and Davis [Gon02] present a simulation and 

control tool that provides the capability to model as well as to control real-world systems. 

The work presented in this chapter extends the applicability of simulation-based design in 
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new significant directions: it is based on a formal modeling and simulation framework 

that supports variable structure modeling. Furthermore, it adopts stepwise simulation 

methods to allow the control model of a real-time system to be tested and analyzed 

incrementally. 

 

3.2 Modeling, Simulation, Execution, and Model Continuity 

In general, model continuity refers to the ability to transition as much as possible of a 

model specification through the stages of a development process. Specifically in the 

context of this dissertation, it means the control models of a distributed real-time system 

can be designed, analyzed, and tested in DEVS-based modeling and simulation 

frameworks, and then migrated with minimal additional effort to be executed in a 

distributed environment [Cho01], [Hu02], [Cho03]. Below we elaborate how this is 

achieved for non-distributed and distributed real-time systems respectively. 

 

3.2.1 Model Continuity for Non-Distributed Real-time Systems 

Real-time Systems are computer systems that monitor, respond to, or control, an 

external environment. This environment is connected to the computer system through 

sensors, actuators, and other input-output interfaces [Sha01].  A real-time system from 

this point of view consists of sensors, actuators and the real-time control and information-

processing unit. For simplicity, we call this last one the control unit. The sensors get 

inputs from the environment and feed them to the control unit. The actuators get 

commands from the control unit and perform corresponding actions to affect the 
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environment. The control unit processes the input from sensors and makes decisions 

based on its control logic. Depending on the complexity of the system, the control unit 

could have one component or it could have multiple subcomponents, which in turn may 

have their own sub-control components in a hierarchical way. 
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Figure 3.1: Modeling, Simulation and Execution of Non-distributed Real-time System 

 
Once we establish this view of a real-time system as shown in Figure 3.1(a), we can 

model it easily. In our approach, sensors and actuators are modeled as DEVS activities, 

which is a concept introduced by RT-DEVS for real-time system specification [Hon97]. 

A DEVS activity can be any kind of computer task. However, in this dissertation we only 

consider the sensor/actuator activities. The control unit is modeled as a control model that 

might has a set of subcomponents. These subcomponents are coupled together so they 

can communicate and cooperate. With this approach, the control model acts as the brain 

to process data and make decisions. It could be a simple atomic model or a complex 

hierarchical coupled model. Sensor/actuator activities act as hardware interfaces 
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providing a set of APIs for the control model to use. To give an example, let us consider 

the design of a mobile robot. A motor activity that drives the robot’s motors may be 

developed. Some typical functions for this motor activity could be move(), stop(), turn(), 

etc. How to define an activity and its APIs is dependent on how the designer delineates 

the “control model—activity” boundary. For example, we can model a sensor module that 

may have its own control logic as a sensor activity. Or we can include that part of logic 

into our control model and only model the sensor hardware as an activity. The clear 

separation between control model and activity’s functions makes it possible for the 

designer to focus on his design interest. In the context of real-time systems, the control 

logic is typically very complex, as the system usually operates in a dynamic, uncertain or 

even hostile environment. As such, the control model is the main interest of design and 

test. In our approach, simulation methods are applied to test the correctness and evaluate 

the performance of this model. The “continuity” of this model is emphasized during the 

whole process of the methodology, thus model continuity actually means this control 

model’s continuity. 

To test and analyze the control model using simulation methods, a virtual testing 

environment is developed. To build this virtual testing environment, we model the real 

physical environment as an environment model, which is a reflection of how the real 

environment affects or is affected by the system under design. Meanwhile, a “simulated” 

sensor/actuator hardware interface is also provided for the control model to interact with 

the environment model. This “simulated” sensor/actuator interface is implemented by the 

abstractActivity concept. In contrast to an activity, which drives real hardware and is 
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running in real execution, an abstractActivity imitates an activity’s interface/behavior and 

is only used during simulation. A sensor abstractActivity gets input from the environment 

model just as a sensor activity gets input from the real environment. An actuator 

abstractActivity does similar things as an actuator activity does too. Note that it is 

important for an activity and its abstractActivity to have the same interface functions, 

which are used by the control model in both simulation and real execution. By imposing 

this restriction, the control model can be kept unchanged in the transition from simulation 

to execution (it interacts with the environment model and real environment using the 

same interface functions). By this way, model continuity is supported. 

With all the models being developed as shown in Figure 3.1(b), different simulation 

strategies can be employed to test the control model. Meanwhile, different design 

alternatives and system configurations can be applied to experiment and exercise the 

system under design. In our approach, step-wise simulation methods have been 

developed so that a model can be simulated and tested incrementally before its real 

execution. During the simulation stage, if we find the simulated result is not correct, the 

model can be revised and then re-simulated. This “modeling-simulation-revising” cycle 

repeats until we are satisfied with the result or nothing more can be learned in the 

simulation stage. A more detailed description of how to use these simulation methods is 

given in section 3.3. 

After the model being tested through simulations, it is mapped (deployed) to the real 

hardware for execution as shown in Figure 3.1(c). For a non-distributed application, the 

mapping mainly is the “activity mapping” to associate the sensor/actuator activities to the 
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corresponding sensor/actuators hardware. For a distributed application, an extra “model 

mapping” is needed to map a set of cooperative models to a set of networked nodes. By 

associating the models and activities to their corresponding hardware, the system can be 

executed in a real environment. In execution, the control logic is governed by the control 

model, which has been tested in step-wise simulations. If the real environment has been 

modeled in adequate detail by the environment model, this control model will carry out 

the control logic during execution just the same as it did when simulated. In practice, one 

may not be able to capture every aspect of the real environment in the environment model 

in adequate detail, and there will be potential for design problems to surface in real 

execution. When this happens, re-iteration through the stages can be more easily achieved 

with the model continuity approach. 

 

3.2.2 Model Continuity for Distributed Real-time Systems 

A distributed real-time system consists of a set of subsystems. Each subsystem, like a 

stand-along system, has its own control and information processing unit and it interacts 

with the real environment through sensor/actuators. However, these subsystems are not 

“along”. They are physically connected by network, and they logically communicate to 

each other and cooperate to finish system wide tasks. Figure 3.2(a) shows a distributed 

real-time system example with three computing nodes (subsystems). Distributed real-time 

systems are much harder to be designed and tested because one subsystem’s behaviors 

may affect one or all of other subsystems. These subsystems influence each other not 

only by explicit communications, but also by implicit environment change as they all 
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share the same environment. For example, in Figure 3.2(a), if Node1 changes the 

environment through its actuators, this change will be seen by the sensors of Node2, thus 

affects Node2’s decision making. With this kind of influence property, it’s not practical 

to design and test each subsystem separately and then integrate them together. Instead, 

the system as a whole needs to be designed and tested together from the very beginning 

of the development. 
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Figure 3.2: Modeling, Simulation and Execution of Distributed Real-time System 

 
In our approach, a distributed real-time system is modeled as a coupled model that 

consists of several subcomponents. Each subcomponent is corresponding to a subsystem 

of the distributed real-time system. As described in section 3.2.1, these subsystems are 

also modeled as DEVS models, which consist of control models and sensor/actuator 

activities. The control model of each subsystem interacts with the real world through 

sensor/actuator activities. These subsystem models are coupled together (by connect one 

model’s output port to another model’s input port) so they can communicate. The 
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couplings among the models are corresponding to the communication connections among 

the subsystems in the real world.  

As shown in Figure 3.2(b), to test the models of distributed real-time systems, 

environment model and sensor/actuator abstractActivities are developed to provide a 

virtual testing environment. Again, abstractActivities should have the same interface 

functions as its corresponding activities so the model using them can be kept unchanged 

from simulation to execution. Different simulation methods can be employed to simulate 

and test the models incrementally. A more detailed description of simulation-based test 

and analysis will be given in section 3.3. Note that each subcomponent can also be 

tested/simulated independently because DEVS has a well-defined concept of system 

modularity. 

After the models are tested by simulation methods, they are mapped to the real 

hardware for execution. Similar to a stand-alone system, each subsystem needs to 

conduct an “activity mapping” to associate the sensor/actuator activities to the 

corresponding sensor/actuator hardware. In addition, as the models are actually executed 

on different computers, the “model mapping” is needed to map the models to their 

corresponding host computers. As shown in Figure 3.2(c), these computers are physically 

connected by the network and they execute the models that are logically coupled together 

by DEVS couplings. To govern this mapping, a prototype Model Mapping Specification 

as described in Chapter 2 have been developed, which will facilitate the mapping of 

models to their network nodes, while maintaining the couplings among them. As such, 

model continuity for distributed real-time systems means not only the control model of 
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each subsystem remains unchanged but also the couplings among the component models 

are maintained from the simulation to distributed execution.  

In real execution, the control model of each subsystem makes decisions based on its 

control logic. It interacts with the real environment through sensor/actuator activities. If a 

model sends out a message, based on the coupling, this message will be sent across the 

network and put on another model’s input port.  

 

3.3 Simulation-based Test for Real-time Systems 

3.3.1 A Virtual Test Environment 

Testing real-time software is a very challenging task. This is because real-time 

software interacts with a real environment through sensor/actuator hardware. 

Traditionally, the software has to be hooked up with the sensor/actuators and placed in 

the physical field for a meaningful test. This results in a very costly, time consuming, and 

inefficient process. To improve this process, we developed a virtual testing environment 

to allow real-time software to be tested in a virtual environment, using virtual 

sensor/actuators. Within this virtual testing environment, step-wise simulation methods 

have been developed to test and evaluate the software under development incrementally.  

This virtual testing environment consists of the environment model, abstractActivities, 

and the network delay model. The environment model imitates the execution 

environment of the system and abstractActivities act as abstract sensors or actuators. To 

simulate the network latency for distributed real-time systems, network delay models are 

developed so that a distributed real-time system can be tested by central simulation in a 
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more realistic way. Note that all these models can be modeled at different abstraction 

levels dependent on the test or analysis goals. To maintain model continuity, special 

implementation techniques, such as the same interface functions between an 

abstractActivity and its activity, are developed so that the control model can be easily 

migrated from simulation to execution.  

The core of this virtual testing environment are the stepwise simulation methods that 

have been developed to allow different aspects, such as the logic and temporal properties, 

of a system to be tested incrementally. Simulation technology is being increasingly 

recognized in industry as a useful means to assess the quality of design choices [Son01], 

[Sch02], [Wel01]. In our work, we view simulation in the following, three-fold 

perspective: a) as a means of verifying the functionality of the proposed solutions by 

executing the model’s dynamics, b) as a way of assessing how well performance 

requirements are met by the proposed design solution, and c) as an means of 

experimenting and exercising the system under design to have a better understanding of 

the system and reach a better solution for the problem. 

 

3.3.2 Incremental Simulation and Test for Non-Distributed Real-time System  

For a non-distributed real-time system, four different simulation steps can be applied 

to test the model under design. They are fast-mode simulation, real-time simulation, 

hardware-in-the-loop simulation, and real system test. As shown in Figure 3.3, these 

simulation methods apply different simulation configurations to test different aspects of 

the model under test. 



 

 

79

In fast-mode simulation, the control model is configured to interact with the 

environment model through sensor/actuator abstractActivities. These models stay in one 

computer and a DEVS fast-mode simulator is chosen to simulate them. As fast-mode 

simulation runs in logical time (not connected to a wall-clock), it generates simulation 

results as fast as it can. Based on these results, the designer can analyze the data to see if 

the system under test fulfills the logical behavior as desired. 
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Figure 3.3: Step-wise Simulations of Non- distributed Real-time System 

 
After fast-mode simulation, a real-time simulator is employed to run simulation in a 

“timely” fashion. This real-time simulator can take a timeScale factor, which determines 

how “fast” a real-time simulation will run as opposed to the wall clock time. For 

example, timeScale being 1 means the simulation will run at the same speed as wall 

clock; timeScale being 0.5 means the simulation will run twice as fast as the wall clock, 

and so on. By employing the real-time simulator with different timeScale factors, the 

speed of simulation can be controlled. Real-time simulation provides the flexibility to test 

and analyze a model “online”. For example, with real-time simulation, a GUI interface 
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can be developed to real-time display the system’s states and state transitions. This is 

usually infeasible for fast-mode simulation, unless all the history data are saved and then 

played back after the simulation. 

In fast-mode and real-time simulations, the model under test and the simulators reside 

in one computer. This computer is not the same computer as the one in which the model 

will actually be executed. It is known that for real-time embedded systems, the executing 

hardware can have significant impact on haw well a model’s functions can be carried out. 

For example, processor speed and memory capacity are two typical factors that can affect 

the performance of an execution. Thus, to make sure that the control model, having been 

tested in fast-mode and in real-time simulation, can also be executed correctly and 

efficiently in the real hardware, hardware-in-the-loop (HIL) simulation [Gom01], 

[Son01], [Wel01] is adopted. As shown in step 3 of Figure 3.3, in HIL simulation, the 

environment model is simulated by a DEVS real-time simulator on one computer. The 

control model under test is executed by a DEVS real-time execution engine on the real 

hardware. This DEVS real-time execution engine is a stripped-down version of DEVS 

real-time simulator. It provides a compact and high-performance runtime environment to 

execute DEVS models [Hu01]. In HIL simulation, the model under test interacts with the 

environment model through abstractActivities. These abstractActivities act as abstract 

sensors or actuators. Real sensors or actuators can also be included into HIL simulation 

by using sensor/actuator activities. The decision of which sensors/actuators will be real 

and which sensors/actuators will be abstract is dependent on the test engineer’s testing 

objectives. With different testing objectives, different combinations of real 
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sensors/actuators and abstract sensors/actuators can be chosen to conduct an exhaustive 

test of the control model. Notice that in HIL simulation, as the control model and 

environment model reside on different computers, a bi-directional connection must be 

established between the two computers. To serve this purpose, the LAN connection based 

on TCP/IP protocol is used because it is widely used in industry, can sustain high-speed 

data transfer, and very portable. This connection is taken care of by the DEVS real-time 

simulator and execution engine so it is transparent to the model. 

Once we passed hardware-in-the-loop simulation, we are ready to leave the 

simulation stages for real system test. As shown in step 4 of Figure 3.3, in real system 

test, DEVS real-time execution engine executes the control model. There is no 

environment model because the control model will interact with the real environment 

through sensor/actuator activities. Note this is also the same setup as that in final 

execution where the control model interacts with the real environment through 

sensor/actuator activities. 

One of the basic rules to conduct these stepwise simulation-based test methods is to 

put as much as possible of the test in the early steps. This is because the latter the step is, 

the more costly and time consuming it is to set up the test environment. Unfortunately, in 

reality most engineers start their test directly from step 4. 

 

3.3.3 Incremental Simulation and Test for Distributed Real-time Systems 

Distributed real-time systems are inherently complex because the functions of the 

systems are carried out by distributed computers over network. Four simulation-based 
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test steps have been developed to incrementally test these systems. These steps are central 

simulation, distributed simulation, hardware-in-the-loop simulation, and real system test. 

To help to understand these steps, an example system with two network computing nodes 

(two component models) is shown in Figure 3.4. 
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Figure 3.4: Simulation-based test of Distributed Real-time System 

 
The first step in the process is central simulation (step 1 of Figure 3.4). In central 

simulation, the two models and the environment model are all in one computer. The 

control models interact with the environment model through sensor/actuator 

abstractActivity. As will be further discussed later, special couplings between 

abstractAcitivity and the environment model are established to allow them to exchange 

messages. To model the network latency between the two models that are actually 

executed on different computers in real execution, network delay models are inserted into 
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the couplings between models. As the delay model holds on received messages for a 

period of delay time, messages sent from Model1 won’t reach Model2 immediately, thus 

the network latency is simulated. In central simulation, fast-mode simulator and real-time 

simulator can be chosen to simulate and test the models. As fast-mode simulation runs in 

logical time (not connected to a wall-clock), it generates simulation results as fast as it 

can. Based on these results, the designers can analyze the data to see if the system under 

test fulfills the dynamic behavior as desired. In real-time simulation, the simulation speed 

is synchronized with the wall-clock time. This provides designers the flexibility to trace 

the simulation trajectory in real time. For example, a graphic user interface can be 

developed to display the state changing of each model in real time.  

While in central simulation, network delay models are used to model the network 

latency between different subsystems, in distributed simulation, the control models are 

tested on the real network. As shown in step 2 of Figure 3.4, in distributed simulation, 

two models reside on two different computers. The environment model may reside on 

another computer or on the same computer with one of the models. The couplings 

between these computers remain the same, but happen across the network. All of these 

models are simulated by real time distributed simulators. These real time simulators take 

care of the underlying network synchronization/coordination and make it transparent to 

the models. The network delay models are no longer needed because the models are 

tested in a real network. Note that in step 2, distributed simulation has to run in a real-

time fashion. This is because part of the real physical world, the real network, is involved 

in this simulation-based test. 
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In distributed simulation, the real network is included so the system is simulated and 

tested over the real network. To further this test, real hardware on which the model will 

be executed can also be included into the simulation-based test. This is the hardware-in-

the-loop (HIL) simulation as shown in step 3 of Figure 3.4. In HIL simulation, one or 

more models can be deployed to their hardware to be simulated and tested. In the 

example of Figure 3.4, Model1 along with its real-time execution engine stay on the real 

hardware. Model2, the environment model, and their real-time simulators stay on other 

computers. These models still keep the same couplings. However, the model on the real 

hardware may use some or all of its sensors/actuators to interact with the real world. 

Similar to the description of section 3.3.2, different configurations can be applied to test 

different aspects of the model. Another valuable benefit of HIL simulation is that it 

allows a subsystem to be tested without waiting for all other subsystems to be completely 

built. This is because the HIL simulation still works within the virtual testing 

environment that may provide virtual subsystems. As a result, in HIL simulation, real and 

virtual subsystems can work together to conduct a meaningful system-wide test. To give 

an example let’s consider the design of a distributed robotic system that includes 

hundreds of mini mobile robots. With this HIL simulation approach, one or several real 

robots can be tested and experimented with other hundreds of virtual robots that are 

simulated on computers. A detailed example of how to set up this kind of “robot-in-the-

loop” simulation is given in Chapter 5. 

The final step is real system test, where all models are tested on the real hardware 

within the real environment. As shown in step 4 of Figure 3.4, DEVS real-time execution 
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engines execute the models and take care of the underlying network 

synchronization/coordination. The environment model is no longer needed as the system 

is tested in the real environment. This is also the same setup as that in real execution 

where all models interact with the real environment through sensor/actuator activities. 

 

3.4 The Development Process of the Methodology 

While the preceding sections present how model continuity can be achieved and how 

step-wise simulation-based test methods can be applied, this section describes the whole 

development process of the methodology. This process is useful to provide a map that 

guide designers to develop real-time software step-by-step. Figure 3.5 shows this process. 

The development process starts from an early system requirement analysis. Based on 

that, the first step is to identify the system and its external environment. This includes 

identify which part belonging to the system that need to be designed, and which part 

belonging to the external environment within which the system will operate. By clearly 

separating the system from its environment, the designers can go ahead to develop the 

environment model as shown by the yellow box in Figure 3.5. Note that the question of at 

what abstract level to model the environment is dependent on the test objectives, which 

come from the system requirement analysis and can be refined iteratively through the 

development process.  

For the system to be designed, the next step is to identify subsystems (non-distributed 

systems do not need this step). The goal of this step is to identify how many subsystems 

the system has, how these subsystems are connected to each other, and what kind of 
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network supports the communication between subsystems, etc. Based on this analysis, the 

designers can go ahead to develop the network delay models, which will be used in 

central simulation-based test.  
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Figure 3.5. Development Process of the Methodology 

 
For each subsystem, the next step is to define the control model boundary. This is 

because the methodology clearly separates the control model from the hardware 

interfaces (sensor/actuator interfaces). The control model is the one that will be 

maintained continuity from simulation-based design to real execution; the sensor/actuator 

interfaces are the interfaces between the control model and external environment. Once 
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the boundary of the control model is determined and the interface functions of 

sensors/actuators are defined, the designers can start to develop the control model. In the 

meantime, the designers can start to develop real and virtual sensors/actuators. The real 

sensors/actuators are the ones that drive the real hardware and will be used in real 

execution; the virtual sensors/actuators are the ones that imitate the behavior of real 

sensors/actuators and will be used in simulation-based test. To support model continuity, 

the interface functions of a real sensor/actuator and its corresponding virtual 

sensor/actuator should be the same. 

After the models for each subsystem are developed, the next step is to construct the 

system model by constructing models (control model and virtual sensors/actuators) for 

each subsystem and then adding couplings between these subsystems. This step needs to 

use the system structure information from the “identify subsystems” step. Then based on 

the system model, the environment model, and the network delay models that have been 

developed, the stepwise simulation-based test process is applied to test the models 

incrementally. This process includes four testing steps. 

The first testing step is central simulation where all models are simulated and tested 

on a central computer. The second testing step is distributed simulation where models of 

subsystems are deployed to different computers and simulated/tested in a distributed 

environment. Note that going from central simulation to distributed simulation, the 

network delay models are replaced by the real network. The third testing step is 

hardware-in-the-loop simulation where some of the subsystem models are deployed to 

the real target hardware and tested on the real target hardware. In hardware-in-the-loop 
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simulation, the model on the real target hardware may replace some of its virtual 

sensors/actuators with real sensors/actuators. The fourth testing step is real system test 

where all the models are deployed to their target hardware and tested in the real physical 

environment. In this case, the environment model is replaced by the real physical 

environment. A more detailed description of this stepwise simulation-based test process 

is given in section 3.3. 

At the end of each testing step, the designers may need to go back to the early steps to 

change the design or to refine the models.  So multiple iterations may be needed before 

reaching the final step, which is system in execution.  

 

3.5 abstractActivity 

3.5.1 activity and abstractActivity 

As mentioned in section 2.4, an activity can be any kind of computation tasks for real-

time execution. In the model continuity methodology, activities act as sensor/actuator 

interfaces that allow the control models to interact with the real environment. These 

sensor/actuator activities are only used in real execution. To allow the control models to 

be tested by simulation methods in a virtual testing environment, abstractActivities are 

developed. The basic idea of abstractActivity is to provide an interface so that the control 

model can interact with the environment model in simulation. To support model 

continuity, this interaction should be the same as that when the control model interacts 

with the real environment through activity in real execution. To make sure that a DEVS 

model can treat abstractActivity and activity in the same way, ActivityInterface is 
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developed to be implemented by both activity and abstractActivity. Below is this 

ActivityInterface: 

public interface ActivityInterface{ 
public void setActivitySimulator(CoupledSimulatorInterface sim); 
public String getName(); 
public void kill(); 
public void start(); 
public void returnTheResult(entity myresult); 

} 
 

A brief description of these methods is given below. For simplicity, below we use 

Activity to refer to both activity and abstractActivity. 

• Method setActivitySimulator(): set the atomic model’s simulator in Activity. 

• Method getName(): get the name of an Activity. 

• Method kill(): stop an Activity. 

• Method start(): start an Activity. 

• Method returnTheResult(): returns result to the DEVS model. 

With ActivityInterface, the relationship among the environment, the control model, 

activity, and abstractActivity is shown in Figure 3.6. 

DEVS Model

Real 
Environment

activity
(extends Thread)

outputFromActivity

holdIn (phase, sigma, Activity) 
startActivity (Activity) 
Activity.kill() 
Activity.userDefinedMethods()

returnTheResult (entity)
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activity
(extends Thread)

outputFromActivity

holdIn (phase, sigma, Activity) 
startActivity (Activity) 
Activity.kill() 
Activity.userDefinedMethods()

returnTheResult (entity)
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abstractActivity
(extends atomic)

outputFromActivity

holdIn (phase, sigma, Activity) 
startActivity (Activity) 
Activity.kill() 
Activity.userDefinedMethods()

returnTheResult (entity)

Environment
Model
…

DEVS couplings

DEVS Model

abstractActivity
(extends atomic)

outputFromActivity

holdIn (phase, sigma, Activity) 
startActivity (Activity) 
Activity.kill() 
Activity.userDefinedMethods()

returnTheResult (entity)

Environment
Model
…

DEVS couplings

 
 

(a) real execution          (b) simulation-based test 
 

Figure 3.6. Environment, models, activity, and abstractActivity 
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Figure 3.6 shows that both activity and abstractActivity have the same interfaces with 

the DEVS control model. Specifically, a DEVS model can start an Activity by calling 

holdIn() or startActivity() methods. It can stop an Activity by calling Activity’s kill() 

method. An Activity can return computation result to the DEVS model by calling method 

returnTheResult(). This method sends the result as a message to the DEVS model’s 

reserved input port outputFromActivity. This message, as an external event, triggers the 

model’s external transition function deltext(), which processes the message and gets the 

result from Activity. Besides these standard-defined methods, Figure 3.6 also shows that 

an activity can have user-defined methods, such as move(), stop(), etc. This is because an 

activity is a thread (not a DEVS model) that can have arbitrarily defined methods. These 

same user-defined methods should also be defined by the corresponding abstractActivity. 

In the current implementation, both an abstractActivity and the environment model 

are DEVS models. To allow interaction between abstractActivity and the Environment 

model, a method addActivityCoupling() is specially developed to add couplings between 

an abstractActivity and the Environment model so they can exchange messages. By 

calling this function, an abstractActivity establishes a “direct” communication channel 

with the Environment model so the message exchange between them does not interfere 

with the control models, which are the ones that need to be maintained with model 

continuity. To allow an abstractActivity to imitate the behavior of those user-defined 

methods that are defined by an activity, auxiliary functions sendInstantOutput() and 

putInstantInput() are developed. These two functions allow abstractActivity to generate 
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and pass DEVS messages to the Environment model. They provide the flexibility for an 

abstractActivity to imitate the behavior of its corresponding activity. 

Below we describe the implementation principles to support Activity and its auxiliary 

functions. The description is roughly divided into three groups: interfaces between an 

atomic model and its Activity; interfaces between abstractActivity and the Environment 

model; and how an abstractActivity implements an activity’s user-defined functions. 

 

3.5.2 Interfaces between an Atomic Model and Activity (activity/abstractActivity) 

An atomic model can start an Activity using two methods: startActivity(Activity) or 

holdIn(phase, sigma, Activity) as shown below: 

Activity a = new Activity(name); 
holdIn("wait",5, a);  // or startAtivity(a); 
 
 

The difference between holdIn() and startActivity() is that holdIn() changes the state 

and sigma of the atomic model while startActivity() doesn’t. Method holdIn() is typically 

used when a model starts an Activity and wants to monitor when or if the desired result 

returns. For example, if the model notices that the sigma elapses and Activity’s result 

doesn’t come, it may handle this situation as an exception so an “exception handling 

routine” is called to kill the Activity or to wait for longer time. Unlike holdIn(), method 

startActivity() allows an atomic model starts an Activity without interrupting its current 

state. Below shows how these two methods are implemented: 

    public void holdIn(String phase, double sigma, ActivityInterface a) { 
        this.phase = phase; 
        setSigma(sigma); 
        this.startActivity(a); 
    } 
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    public void startActivity(ActivityInterface a){ 
        this.a = a; 
        mySim.startActivity(a); 
    } 
 
 

As can be seen, the holdIn() method set the phase and sigma of the atomic model and 

then call startActivity(); the method startActivity() basically calls the startActivity() 

method of the corresponding simulator (coupledSimulator or coupledRTSimulator). 

Below shows this method of coupledRTSimulator: 

public void startActivity(ActivityInterface a){    // of  coupledRTSimulator 
  if(a instanceof activity){ 
    a.setActivitySimulator(this); 
    a.start(); 
  } 
  else if(a instanceof abstractActivity){ 
    ((atomic)myModel).addModel((abstractActivity)a); 
    a.setActivitySimulator(this); 
  } 
} 
 
 

The method first distinguishes if this is an activity, which is a thread, or an 

abstractActivity, which is an atomic model. If it is an activity, the method calls activity’s 

start() to start the thread (executing the run() function). If it is an abstractActivity, the 

method adds the abstractActivity (an atomic model) into the system by executing method 

addModel(). As will be described in the next chapter, this method creates a simulator for 

the added model and then initializes and starts the simulator. For both cases, Activity’s 

setActivitySimulator() is called so the  Activity has a reference to this simulator (denoted 

by modelSim). As will be described below, this reference is used by returnTheResult() to 

send result back to the atomic model. 

During simulation or execution, an atomic can stop an Activity by calling the kill() 

method. This is shown below: 
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public void kill(){  // of activity which is a thread 
interrupt(); 

} 
 
public void kill(){  // of abstractActivity which is an atomic model 

removeModel(getName()); 
} 
 
 

As mentioned before, an Activity can return the computation result to the atomic model 

by calling method returnTheResult(): 

public void returnTheResult(entity myresult) { 
  modelSim.returnResultFromActivity(myresult); 
} 

 
 

This method calls the simulator’s returnResultFromActivity() method and pass the 

result as a parameter: 

public void returnResultFromActivity(EntityInterface result) { 
    content c = new content("outputFromActivity",(entity)result); 
    putMessages(c); 
} 

 
 

Based on the result, method returnResultFromActivity() creates a message and put 

this message on the atomic model’s reserved input port “outputFromActivity”. The 

message will be handled by the model’s external transition function deltext(). A 

sample deltext() to handle the Activity event is given below: 

public void deltext(double e,message x){ 
…… 
if (messageOnPort(x,"outputFromActivity",i)){ 

    entity ent =  x.getValOnPort("outputFromActivity",i); 
    ……  // process the result 

} 
…… 

} 
 
 

3.5.3 Interfaces between abstractActivity and Environment Model 
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The Environment model is the major part of a virtual testing environment. It imitates 

how the real environment reacts to the input of the system under development. Because 

the environment model is developed for the purpose of test, it will not be included in real 

execution of the final system5. In current implementation, in order to avoid interference 

with the control models of the system, the environment model is only allowed to be 

added as an independent component of the system’s coupled model. For example, in 

Figure 3.7, Coupled is the system model; Coupled1 is the model that needs to be tested. 

In this example, the Environment model can only be added as a component of Coupled. It 

cannot be added as a component of Coupled1.  

coordinator 

coupledCoordinator1

Coupled

coupledCoordinator2

Environment
ModelAtomic1

abstractActivity

Coupled1

out

Coupled1_out

EnvOut

EnvIn

Coupled1_in in

coordinator 

coupledCoordinator1

Coupled

coupledCoordinator2

Environment
ModelAtomic1

abstractActivity

Coupled1

out

Coupled1_out

EnvOut

EnvIn

Coupled1_in in

 

Figure 3.7. “Hierarchical” coupling between abstractActivity and environment model 

 
While the Environment model always stays on the top level in the hierarchical tree of 

the system model, an abstractActivity that is started by an atomic model may be 

anywhere in the hierarchical coupled model. Thus a new auxiliary method 

                                                 
5 For more sophisticated examples, the system under development could have knowledge of its 
whereabouts and appropriate extension of the environment model could become a “real” component in the 
system 
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addActivityCoupling() is developed to allow adding couplings between an 

abstractActivity and the Environment model. Because we want to maintain the 

hierarchical property of the model, this new method adds the couplings between an 

abstractActivity and the Environment model in a hierarchical way. As a result, 

intermediate couplings are created in order to build the path from an abstractActivity to 

the Environment model. In the example of Figure 3.7, a path “out—Coupled1_out—

EnvIn” is built by method addActivityCoupling(“abstractActivity”, ”out”, 

”EnvironmentModel”,”EnvIn”); Similarly, addActivityCoupling(”EnvironmentModel”, 

”EnvOut”, “abstractActivity”, ”in”) builds a path “EnvOut—Coupled1_in—in” as 

shown in Figure 3.7. 

The implementation of addActivityCoupling() is shown below:  

public void addActivityCoupling(String src, String p1, String dest, String p2){ 
    digraph P = (digraph)getParent(); 
    if(P!=null) P. addHierarchicalCoupling (src, p1, dest, p2); 
} 
 
 

This method first gets abstractActivity’s parent model (the Coupled1 model in the 

example of Figure 3.7), and then calls parent’s addHierarchicalCoupling() method which 

is shown below: 

public void addHierarchicalCoupling(String src, String p1, String dest, String p2){ 
    coordinator PCoord = getCoordinator(); 
    if(withName(src)!=null){    //this is the output coupling 
      if(withName(dest)!=null){ // we found the destination 
        addPair(new Pair(src,p1), new Pair(dest,p2));  // add the coupling to the coupled model 
        PCoord.addCoupling(src,p1,dest,p2);  // update simulator’s coupling information 
      } 
      else{  // doesn't find the destination, needs to go one layer upper 
        String myName = getName();   
        String myPort = src+"_"+p1; // output port = modelName + portName 
        addPair(new Pair(src,p1), new Pair(myName,myPort));  //add external output coupling 
        PCoord.addCoupling(src,p1,myName,myPort); 
        digraph P = (digraph)getParent(); 
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        if(P!=null) P.addHierarchicalCoupling(myName, myPort, dest, p2);  //recursively call 
      } 
    } 
    else if(withName(dest)!=null){  //this is the input coupling 
        String myName = getName(); 
        String myPort = dest+"_"+p2; // input port = modelName + portName 
        addPair(new Pair(myName,myPort), new Pair(dest,p2));  // add external input coupling 
        PCoord.addCoupling(myName,myPort,dest,p2); 
        digraph P = (digraph)getParent();  //go one layer upper 
        if(P!=null) P.addHierarchicalCoupling(src, p1, myName, myPort); 
    } 
    else System.out.println("the source or the destination of the coupling couldn't be found!"); 
} 
 
 

The addHierarchicalCoupling() method adds a coupling between two models in a 

hierarchical way. This method starts from the “bottom” model and goes up layer by layer 

until it finds the “top” model, which is the source or destination of the coupling. During 

this process, intermediate ports are created and couplings are added so a hierarchical path 

is formed. The method starts from the “bottom” model and first checks if this is an 

“output coupling” or an “input coupling”. An “output coupling” means the coupling is 

from this “bottom” model to other models; an “input coupling” means the coupling is 

from other models to this “bottom” model. If the source of the coupling is not null, this is 

an “output coupling”; otherwise if the destination of the coupling is not null, this is an 

“input coupling”; if both of them are null, the method prints out an error message. For the 

“output coupling” case, the method first checks if it can find the destination model on this 

level. If it finds the destination model, a coupling is established and the method 

terminates. Otherwise, the destination model is not on this level so the method goes to the 

upper levels to find it. Before it actually goes one level upper, the methods creates a new 

output port for the parent model and adds a coupling from the source model’s output port 

to the parent model’s output port (an external output coupling). Then it recursively calls 
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the parent model’s addHierarchicalCoupling() method until the destination model is 

found. As can be seen, this method dynamically establishes a path as it searches the 

destination model level by level. Similarly, for the “input coupling” case, external input 

couplings are dynamically established and the addHierarchicalCoupling() method is 

recursively called until the source model is found.  

 

3.5.4 Implementing activity’s User-defined Functions in abstractActivity 

An activity is a thread that can define its own functions, which can be called by the 

atomic model during execution. To support model continuity, an abstractActivity should 

have the same interface functions as those of activity. This means the abstractActivity 

also needs to implement those user-defined functions so in simulation an atomic model 

calls these functions (of abstractActivity), just like it calls them (of activity) in execution. 

Dependent on the complexity of those functions, different ways can be applied for the 

abstractActivity to implement them. For example, if a function is very simple and has no 

interaction with the real environment, the abstractActivity can have the function defined 

in the same way as that in activity. However, if a function of activity is complex or has 

interactions with the real environment, the same function of abstractActivity may also 

need to interact with the Environment model. As both abstractActivity and Environment 

model are DEVS models that deal with DEVS messages, two auxiliary methods are 

developed so that a function can generate and pass DEVS messages to these models. 

These two methods are sendInstantOutput(String outputPort, entity ent) and 

putInstantInput(String inputPort, entity ent). Method sendInstantOutput() puts a message 
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on abstractActivity’s output port. The message is then sent to the Environment model and 

thus triggers Environment model’s DeltFunc(). Method putInstantInput()  puts an instant 

message on abstractActivity’s input port, thus triggering its own deltext(). Below we use 

sendInstantOutput() as an example to see how it is implemented: 

public void sendInstantOutput(String outputPort, entity ent){ 
  content ct = makeContent(outputPort,ent); 
  if(mySim instanceof CoupledRTSimulatorInterface){ 
    message m = new message(); 
    m.add(ct); 
    ((coupledSimulator)mySim).setOutput(m); 
    mySim.sendMessages(); 
  } 
  else if(mySim instanceof CoupledSimulatorInterface) 
    ((coupledSimulator)mySim).sendInstantMessages(ct); 
} 
 
 

The method first checks if it is for real-time simulation or fast-mode simulation. If it is 

for real-time simulation, the method adds the message into the output message list and 

then calls simulator’s sendMessages() method. This method puts the message to the 

Environment model and notifies that there is external event so the corresponding models’ 

external transition functions are executed. If it is for fast-mode simulation, the 

coupledSimulator’s sendInstantMessages() is called. This method looks similar as below: 

(Note: the sendInstantMessages() method of coupledCoordinator is the same as this one). 

public void sendInstantMessages(ContentInterface c) { 
    ……  // create message based on c 
    Relation r = convertMsg(m);//comvert message  
    Iterator rit = r.iterator(); 
    while (rit.hasNext()){ 
       Pair p = (Pair)rit.next(); 
       content co = (content)p.getValue(); 
       Object ds = p.getKey(); 
       if(modelToSim.get(ds) instanceof coupledSimulator){  // the destination is found 
           coupledSimulator sim = (coupledSimulator)modelToSim.get(ds); 
           sim.putMessages(co); 
           sim.DeltFunc(new Double(getCurrentTime())); 
       } 
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       else if(modelToSim.get(ds) instanceof coupledCoordinator)  
           ……  // similar as the case of CoupledSimulatorInterface  
       else      // the message goes one level upper and is handeled by the parent 
       if(getParent() != null) ((coupledCoordinator)myParent).sendInstantMessages(co); 
    } 
} 
 
 

This method first tries to find the destination of the message. If it can’t find it, the 

method recursively call the parent simulator’s sendInstantMessages() methods. If the 

destination is found, the message is put to the destination model’s input message list and 

the destination simulator’s DeltFunc() is called so that the message is promptly handled.  

 

3.6 Network Delay Model and addCouplingWithDelay() 

Model 1 Model 2

Model coupling

Network connection

Computer 1 Computer 2

Model 1 Model 2

Model coupling
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Model 1 Model 2Delay
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Model coupling

Model 1 Model 2Delay
Model

Model coupling

 

(a) Execution of distributed coupled model (b) Central simulation of distributed coupled model 

Figure 3.8. The addCouplingWithDelay() method 

 
In the model continuity methodology, each component of a distributed real-time 

system is modeled as a DEVS model. The interactions between these distributed 

components are modeled as DEVS couplings, which are established by the method 

addCoupling(). In real execution, the models are mapped to network computers for 

execution and the couplings between models are kept. This is shown in Figure 3.8(a). 

Although a coupling in distributed execution is the same as that in central simulation, due 
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to the network latency, the time for a message to pass through this coupling is different. 

So to model the network latency, we have developed network delay models which hold 

any received messages for a period of delay time before the messages are sent out. These 

network delay models are used in central simulation to allow more authentic simulation-

based test. A new method addCouplingWithDelay() is implemented to automatically 

create and add a network delay model in the middle of a coupling path as shown in 

Figure 3.8(b). As the addCouplingWithDelay() method makes this process transparent to 

the user, it eases the transition of models from central simulation to distributed execution 

-- a user only needs to change the code from addCouplingWithDelay() to regular 

addCoupling(). This addCouplingWithDelay() is shown below. 

public void addCouplingWithDelay(IODevs src, String p1, IODevs dest, String p2, double delay){ 
   int UID = 0; // // find a unique ID for the DelayModel 
  componentIterator cit = getComponents().cIterator(); 
  while (cit.hasNext()){ 
    IOBasicDevs iod = cit.nextComponent(); 
    if((iod.getName()).startsWith("DelayModel_")) UID++; 
  } 
  delayModel dM = new delayModel("DelayModel_"+UID, delay); 
  add(dM); 
  addCoupling(src,p1, dM, "in"); 
  addCoupling(dM, "out", dest, p2); 
} 
 

This method takes one more parameter delay as compared to the regular 

addCoupling() method. It first creates a new delayModel with two parameters: model 

name and the delay time. As the addCouplingWithDelay() method may be called multiple 

times, multiple delayModel may be created. To make the names of these delayModels 

unique, a variable UID is used as part of the model name. Then the delayModel is added 
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into the system and couplings are added from the source to the delayModel, and then 

from the delayModel to the destination. 

The delay models are developed in such a way that any received messages will be held 

for a period of delay time (fixed or with arbitrary probability distributions) before they 

are sent out. For a delay model with fixed delay time, the messages will be sent out in 

exactly the same order as they are received. However, for a delay model with random 

distributed delay time, message may be sent out in a different order as they are received. 

We call the delay models that can preserve the order of messages order-preserved delay 

models. Network delay models typically are order-preserved delay models. 
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CHAPTER 4 

VARIABLE STRUCTURE MODELING 

 

4.1 System Evolutions and Adaptive Computing 

Although system evolution is a common phenomenon for ecologic systems, its 

analogy in the computer world, adaptive computing is a relatively new research area 

[Vil97]. The main thrust of this research area so far has been on 

programmable/configurable hardware. For example, the programmable gate array 

(FPGA) technology has matured producing very high-density gate arrays (~1 million 

gates) with lower configuration times. The promise of adaptive computing however 

extends far beyond that. An adaptive computing system should be able to adapt to 

changes in environment at runtime, without compromising the consistency of the system. 

To that effect the main challenge that needs to be addressed is dynamic reconfiguration, 

which refers to the ability of a system to reconfigure its software or hardware components 

dynamically. Dynamic reconfiguration systems have the potential of realizing efficient 

systems as well as providing adaptability to system’s changing requirements. Although 

both hardware and software components could be the ones to be reconfigured in a system 

evolution, this chapter mainly focuses on the reconfiguration of software components in 

the context of real-time systems.  

The ability of dynamic reconfiguration brings several advantages for real-time 

systems. a) As real-time systems usually operate in dynamic, continuous changing, and 
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even unpredictable environments, dynamic reconfiguration allow those systems to adapt 

to the changing environment by reconfigure themselves accordingly. b) Some real-time 

systems, such as telecommunication switches require on-line upgrades, because off-line 

upgrades result in unacceptable delays and increased cost. For these systems, dynamic 

reconfiguration allows them to extend, customize or upgrade the services without the 

need for system recompilation or reboot. c) Dynamic reconfiguration is an often-used 

technique for real-time systems to achieve fault tolerance. This is because a system can 

reconfigure itself when a failure happens. Finally, for most real-time systems that have 

limited computing resources such as memory and battery, dynamic reconfiguration 

provides the flexibility for a system to configure only the necessary components for 

system operation. As a matter of fact, this idea is widely applied by reconfigurable RTOS 

kernels. 

Motivated by these advantages, much research has been conducted to build 

middleware [Blair01, Kon01, DC00] and architectures [Dow01, Nee99, Gor02] that 

supports dynamic reconfiguration of software. Furthermore, research is also conducted to 

ensure these systems’ safety and consistency [Pal], [Che02]. Most of these research 

works are based on component-based technology. This is because a component is a 

nontrivial, nearly independent, and replaceable part of a system that fulfills a clear 

function in the context of a well-defined architecture [Bro98]. A component system is 

built by composition of individual components and establishing relationship among them. 

As each component holds a high degree of autonomy and has well defined interfaces, 

dynamic reconfiguration of components can be achieved during runtime.  



 

 

104

In general, there are six forms of reconfiguration of a component-based system 

[Che02]: addition of a component; removal of a component; addition of a connection 

between components; removal of a connection between components; update of a 

component; and migration of a component. The first four operations result in a structure 

change of the component-based system. The update of a component means a component 

is updated by a new version which might have totally different behavior or interfaces 

from the old one. This can be accomplished either by replacing the old version with a 

new one or by directly upgrading a component to a new version. Replacing a component 

involves the process of adding the new component and removing the old one, as can be 

realized by the addition and removal operations. The migration of a component actually 

implies two involved entities: a component and the location (physical or soft) of the 

component. 

As mentioned in Chapter 2, DEVS supports a hierarchical modular modeling 

approach, which makes it possible for DEVS models to reconfigure themselves by 

adding/removing models or their couplings dynamically. In fact, this is referred as the 

variable structure modeling capability [Bar97a,Bar94,Uhr93,Uhr01,Paw02] in DEVS 

based modeling and simulation environments. This chapter presents our recent work on 

variable structure modeling (including adding/removing DEVE models, couplings, and 

ports) and its implementation in the DEVSJAVA environment.  

 

4.2 Conceptual Development for Variable Structure in DEVS 



 

 

105

4.2.1 Variable Structure Modeling 

Variable structure models are the models that can dynamically change their model 

structure such as the inner components of the model and the connections between those 

components. Figure 4.1 gives an example that shows a simple process of structure 

change. In this example, the initial system has two components A and B. Then component 

C and the connection from C to B are added. After that component A is removed, 

resulting in a final system with two components C and B. Note that removal of a 

component will automatically remove all the connections related to that component.  

In DEVS-based modeling and simulation environments, DEVS models are the 

components and DEVS couplings are the connections. Thus variable structure in DEVS 

means DEVS models and couplings can be added or removed dynamically. 

Corresponding to the four operations of structure change, four methods are provided in a 

DEVS environment. They are addModel()/removeModel() to add/remove DEVS models; 

addCoupling()/removeCoupling() to add/remove DEVS couplings. Note that the 

addCoupouling() and removeCoupling() methods take four parameters: the source model, 

source model’s output port, the destination model, destination model’s input port. With 

these methods, the structure change process showed in Figure 4.1 can be realized as 

below: 

(1) addModel(C);  
(2) addCoupling(C, COutputPort, B, BInputPort);  
(3) removeModel(A); 
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Figure 4.1. A variable structure process 

 
Natural questions for variable structure systems arise concerning the authorization and 

timing of the structure changes. Generally speaking, there is no specific restriction on 

which component cannot initiate a structure change. However, because a DEVS coupled 

model does not have its own behavior, so an atomic model is needed to initiate a structure 

change. The initiation typically happens in the atomic model’s internal or external 

transition functions. This is reasonable because a structure change is usually triggered by 

situation changes, which are captured as events in DEVS and are handled by the external 

or internal transition functions. In this sense, the atomic model acts as a supervisor to 

monitor the conditions of interest. For the system showed in Figure 4.1, component B 

could be the one to monitor system’s situations and initiate the structure change. For 

example, it may monitor the input from A. If this input is less than a predefined value, it 

adds component C and the coupling from C to B. Then it monitors the input from C and if 

this input is greater than a predefined value, it removes A. 

 

4.2.2 Operation Boundaries 

Another important question for variable structure systems is how to determine the 

particular components that can be affected by a structure change operation. To answer 
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this question, we introduce the operation boundary concept and define it as the safe 

scope to conduct a meaningful operation. For example, in a distributed environment, a 

component can remove components on its local computer, but it is not allowed to remove 

components on remote computers. The latter violates the operation boundary of the 

remove operation in distributed environment. To support operations boundary in DEVS, 

models can maintain information on their locations in relation to the hierarchical structure 

of the overall coupled model. Components of the same coupled model, therefore 

belonging to the same parent, are called brothers. This approach is based on the structure 

knowledge maintenance concepts in [Zei89]. 

Thus the structure change operations also need to work within this hierarchical 

structure and to maintain this structure. Based on this, we define the operation boundaries 

of the four structure change operations as follows: 

• addModel(…): a model can only add components to its parent coupled model. 

• removeModel(…): a model can only remove itself and its brothers. 

• addCoupling(…): a model can only add couplings involving itself, its parent, and 

its brothers. 

• removeCoupling(…): a model can only remove couplings involving itself, its 

parent, and its brothers. 

These clearly defined operation boundaries make it easier for a user to check if an 

operation is legal or illegal. For example, it can be easily seen that a model can remove 

itself, but it cannot remove its parent. This approach differs from that formalized by 

Barros [Bar97b] who restricts the ability to initiate change to a central network executive. 
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We find that much greater flexibility, at minimal cost, is achieved by allowing any 

component in a coupled model (or network) to initiate changes within the operations 

boundary.  

Note that operations boundaries are defined in terms of model hierarchical structure 

independently of any distribution considerations. In distributed simulation, components 

reside on different computers and it is up to the distributed environment to ensure that the 

correct structure changes are carried out as prescribed by the structure modification 

commands. The distributed coupling change capability is supported by the DEVSJAVA 

environment. That is, couplings can be added or removed between models on different 

computers. It’s up to the DEVS simulators to determine whether the coupling change is 

local or involves other computers. However, remotely adding/removing models in 

DEVSJAVA is currently not supported6. 

 

4.2.3 Changing Port Interfaces 

Besides structure change, another reconfiguration feature is provided in DEVS to 

allow an atomic model to add/remove input or output ports dynamically. For this 

purpose, the addInport() and addOutport() are provided for an atomic model to add new 

input and output ports respectively; the removeInport() and removeOutport() are provided 

for an atomic model to remove existing input and output ports respectively. As input and 

output ports are the interfaces of DEVS models, changing ports of a model usually 

requires that model’s behavior also change accordingly. Thus, special attention has to be 
                                                 
6 Although it can be accomplished by sending a message to a remote simulator which then conducts the 
adding/removing operation locally, we have not completed the design details. 
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paid when adding/removing ports dynamically. The modeler has to ensure that if a model 

receives a new input (or output) port, the model has, or obtains, a corresponding way to 

handle the possible input received (or generated) on this port In order not to violate the 

autonomy property of a component, we define the operation boundary of 

adding/removing ports as a model can only add/remove ports of itself and its brothers. 

Thus, atomic models inside a coupled model have the capability to modify the interfaces 

of their brothers, though the functionality to handle messages at those interfaces should 

be there or should be provided in the modified models. Particular ways of 

accommodating new ports are known. For example, one can make ports adhere to a 

labeling scheme such as name+index which can be analyzed and interpreted. As a new 

feature of DEVS variable structure, more research is needed to answer questions such as 

how to provide a general mechanism to update a model’s external transition and output 

functions accordingly after the model’s input and output ports are added/removed 

dynamically. 

 

4.3 Examples of Variable structure 

To illustrate the role of variable structure, two examples are presented in this section. 

The first example illustrates the ability to employ variable structure to dynamically 

emulate the system entity structure (SES). The second one describes an advanced 

workflow model which dynamically reconfigures itself by adding/removing models and 

changing the interface of models.  
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4.3.1 Dynamically Emulate the System Entity Structure (SES) 

The System Entity Structure (SES) provides a way for specifying system 

composition[Zei90] with information about decomposition, coupling and taxonomy. It 

also provides a formal framework for representing the family of possible structures. From 

the design point of view, SES represents the design space with various possible design 

configurations. Thus the process of design/analysis is to prune SES, in other words, to 

search the best design configuration. For complex systems, the number of combination of 

different configurations is very large. Thus it is desirable to be able to emulate SES and 

automatically search the best design configuration. This section shows an example which 

demonstrates how this can be achieved by employing the variable structure capabilities.  

porcSpec linked to 
processor model’s
specializations

(a) SES of the System (b) Representation in DEVSJAVA

spec

proc DandC3 pipeLine

dec -- coupling

efpSES

ef ef

efpSES

coupling

proc

DandC3 pipeLine

processor

 

Figure 4.2: Dynamically Emulate the System Entity Structure (SES) 

 
This example system is efpSES as shown in Figure 4.2(a). It has two components: an 

experimental frame model ef and a processor model which has three specializations 

representing three design choices of the system. The specializations of the processor 

model include a single processor proc, a divide and conquer processor DandC3, and a 

pipeline processor pipeLine. To automatically simulate all these alternatives of the 
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processor model, efpSES employs an instance of class specEntity to control the 

successive substitution of alternatives. specEntity is a specialized entity developed to 

emulate the SES of a system. In this example, the user defines procSpec, a subclass of 

specEntity, and provides it with the first and subsequent specializations: proc, DandC3, 

and pipeLine. Then as shown in Figure 4.2(b), the user adds procSpec to the coupled 

model and tells it which component to control (the dash line in Figure 4.2(b) shows 

procSpec is linked to processor model’s specializations). Based on this information, 

during simulation the procSpec automatically replaces the processor model with different 

specializations until all of them are tested. Since the addition of local control components 

preserves hierarchical, modular structure, the hierarchical properties of the SES are 

automatically obtained. Moreover, this variable structure capability provides a general 

way to emulate the SES and automatically test all the alternatives of a system’s design 

space as described in [Cou99]. 

While the SES involves only replacement of components by alternatives, the approach 

can be further extended to allow a restructuring executive to observe the simulation and 

make decisions regarding the alternatives to employ based on prevailing conditions. Such 

restructuring is discussed in the following example. 

 

4.3.2 A Reconfigurable Workflow System 

A simple workflow prototype is referred to as GPT.7 This is a coupled model that is 

composed of a Generator, a Processor, and a Transducer. It is the simplest self-contained 

                                                 
7 See gpt.java in the SimpArc package of DEVSJAVA. 
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model that simulates three basic components of any workflow system. The generator 

generates jobs; the processor processes them, and the Transducer keeps track of the 

system state as a whole computing performance indexes such as system throughput (jobs 

processed per second) and average job turnaround time. In this section we describe a 

reconfigurable GPT system where Processor(s) can be dynamically added or removed 

and Generator and Transducer change their interfaces accordingly.  

As shown in Figure 4.3(a), this system starts with the basic GPT components: 

Generator, Proc1 and Transducer. Generator generates jobs and sends them out through 

out1 port coupled to the Proc1’s in port. Proc1 executes the job and sends the solved job 

to Transducer at solved1 port. Note that the Generator has input ports: add and addBank 

and the Transducer has output ports addModel and addProcBank coupled to the two 

Generator ports, respectively. This suggests that the system has the capability to add a 

processor and a processor Bank. 

              

(a)       (b) 

Figure 4.3: Stages of the Reconfigurable GPT System 

 

In this example, the Transducer makes decisions of when to add or remove 

processor(s). The Generator executes the addition or removal operations. Thus, if the 

Transducer notices Proc1 can’t handle all the generated jobs, it sends out a message to 
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the Generator, which then adds another processor Proc3. As shown in Figure 4.3(b). 

Proc3 is in a similar position as Proc1 in the system. Note that the interfaces of 

Generator and Transducer also change accordingly. Besides the Generator’s earlier 

output port out1, a new output port out3 has been added explicitly for Proc3. Similarly, 

the Transducer has added input port Solved3 to collect jobs processed by Proc3. Also, the 

Generator and Transducer are now outfitted with ports for removing processor (remove 

and removeModel port). This is a new functionality that has been added in this stage. The 

interface change of Generator and Transducer is a reflection of the system’s structure 

change. Initially there wasn’t any functionality to remove any model as there was no need 

of it. As new processors are added so is the corresponding functionality to remove them. 

A typical set of commands that were executed by the Generator after receiving the 

addition message from the Transducer is: 

mg = new modelProc("Proc"+index); // in this example, the value of index is 3 
addModel(mg); 
addOutport("Transducer","removeModel"); 
addInport("Generator","remove"); 
addOutport("Generator","out"+index); 
addInport("Transducer","solved"+index); 
addCoupling("Transducer","removeModel","Generator","remove"); 
addCoupling(getName(),"out"+index, ("Proc"+index,” in"); 
addCoupling(("Proc"+index,"out", "Transducer", "solved"+index); 

 

Notice that a labeling scheme is used as the Generator model adds output port 

out+index for the new processor. Similarly, the Transducer handles the jobs solved by the 

processor using input ports with name solved+index. This allows expressing the 

Transducer’s processing by parsing port names to obtain their role and index parts, 

independently of the number of processors. The Transducer retains its basic behavior 
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independent of the structure change by providing the code in advance to handle the 

messages coming on new ports. More flexible approaches may be obtained by providing 

schemas that can be accessed at run time to support desired interfaces, a subject for 

further research. 

In this example, after Proc3 is added, it can also be removed when the Transducer 

thinks Proc1 alone is enough to process all the generated jobs. To achieve this, the 

Transducer sends out a removal message using the removeModel port to the Generator. 

The Generator then removes Proc3 and the system goes back to the initial stage. 

Similarly, a processor Bank (a coupled model) which contains multiple processors can 

also be added and removed. 

From the above description, we can see that the system is able to expand itself, 

modify the interfaces of its components according to the structure change, and then 

shrink back to the original system. It displays a complete cycle of growth, from a basic 

functional level to an expanded system capable of high throughput and coming back to 

the initial state when its job (maximizing throughput) is done.  

 

4.4 Implementation of Variable Structure in DEVS 

The implementation of variable structure is based on the earlier development of 

DEVSJAVA modeling and simulation environment. So our discussion starts from a 

review of this environment, with emphasis on the hierarchical structure of DEVS models 

and simulators. Although a particular implementation environment is employed as basis, 
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the design is generic and can be employed in any hierarchical, modular DEVS 

environment.  

 

4.4.1 Hierarchical Structure of DEVS Models And Their Simulators 

In a DEVS modeling and simulation environment, there is a clear separation between 

models and their simulators. DEVS models are defined by the users to model the system 

under development. DEVS simulators are provided by the DEVS simulation environment 

to simulate or execute DEVS models. Corresponding to the hierarchical structure of a 

DEVS model, its simulators also form a hierarchical structure. Figure 4.4 gives an 

example which shows the relationship of a hierarchical coupled model and its 

corresponding simulators (the dash lines show the hierarchical relationship between 

simulators). This model has three components: Atomic3, Atomic4, and Coupled1, which 

has two sub-components: Atomic1 and Atomic2. The simulators manage the information 

of the hierarchical coupled model in a hierarchical way. On the very top level, there is a 

coordinator assigned to the coupled model. This coordinator is the parent of all its sub-

simulators, which have one to one relationship to the components of the coupled model. 

Following the hierarchical structure of the coupled model, there is a coupledSimulator 

assigned to each atomic model and a coupledCoordinator assigned to each coupled 

model. A coupledCoordinator acts as both a coordinator and a coupledSimulator. This is 

because it needs to communicate not only with its children (like a coordinator), but also 

with its parent and brothers (like a coupledSimulator).  
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Coordinator

CoupledCoordinator CoupledSimulator4
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CoupledSimulator3
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Figure 4.4: Relationship between models and their simulators (fast-mode simulation case) 

This hierarchical structure of models and simulators requires several data structures to 

keep information so that the system can be efficiently implemented. Figure 4.5 shows the 

related data structures managed by simulators and models. This figure also shows that the 

atomic class implements vairableStructureInterface, which defines the methods for 

adding/removing DEVS models, couplings, and ports. For simplicity, Figure 4.5 only 

shows the information related to the implementation of variable structure. 

devs simulator

coupledSimulator
couprel coupInfo
Function modelToSim

atomic

coupledCoordinator
ensembleSet simulators
couprel coupInfo
couprel extCoupInfo
Function modelToSim
Function internalModelTosim

digraph
ComponentsInterface components
couprel cp

1:1

1:1

variableStructureInterface

addCoupling()
removeCoupling()
addModel()
removeModel()
addInport()
addOutport()
removeInport()
removeOutport()

<<Interface>>

 

Figure 4.5: Methods and data structures used in variable structure implementation 
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First let’s see the data structures managed by DEVS coupled models as shown by the 

digraph class in Figure 4.5 (atomic models don’t need them). This is straightforward 

because coupled models need to keep track of their sub-components and the couplings 

among them. Thus, each coupled model has two variables as defined below: 

• ComponentsInterface components; 

• couprel cp; 

The data structure for simulators can be categorized into three categories to store three 

different types of information as shown below: 

• Children simulator info: ensembleSet simulators; 

• Model’s coupling info: couprel coupInfo, extCoupInfo; 

• Model-simulator mapping info: Function modelToSim, internalModelTosim; 

The first variable simulators is used by a coupledCoordinator (coupledSimulator 

doesn’t use it) to store its children simulators. For example in Figure 4.4, the simulators 

variable for coordinator has three instances: coupledCoordinator1, coupledSimulator3, 

and coupledSimulator4. The simulators variable for coupledCoordinator1 has two 

instances: coupledSimulator1, and coupledSimulator2. The second group of variables 

coupInfo and extCoupInfo are used by simulators to store models’ coupling information. 

Specifically, coupInfo stores the couplings which start from a model and ends to the 

model’s brothers or parent. extCoupInfo is used by coupledCoordinator 

(coupedSimulator doesn’t use it) to store the couplings which start from a model and ends 

to the model’s children models. Using coupledCoordinator1 in Figure 4.4 as an example, 

the coupInfo has one coupling instance which starts from Coupled1 and ends to Atomic3; 
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the extCoupInfo has two coupling instances. Both of them start from Coupled1 and end to 

Atomic1. The third group of variables modelToSim and internalModelTosim are used by 

simulators to store the model-simulator mapping information. Again, using 

coupledCoordinator1 in Figure 6 as an example, the modelToSim has three instances: 

(Coupled1,coupledCoordinator1), (Atomic3,coupledSimulator3), and (Atomic4,coupledSimulator4); the 

internalModelToSim has two instances: (Atomic1,coupledSimulator1), and (Atomic2, 

coupledSimulator2). 

Note that in this implementation, each model and simulator manages its own copy of 

information. This approach relieves central coordinator’s involvement in simulators’ 

local activities. For example, by keeping a local copy of the coupling information, a 

simulator can send its model’s output messages directly to the destination simulators. 

More information about this approach can be found in [Cho01,Cho03]. 

 

4.4.2 Add/Remove Coupling Dynamically 

Because DEVS models and simulators use coupling data structures to keep all the 

coupling information, the basic idea to implement this feature is to update those data 

structures. Below we use addCoupling() to show how it works. 

public void addCoupling(String src, String p1, String dest, String p2){ 
  digraph P = (digraph)getParent(); 
  P.addPair(new Pair(src,p1),new Pair(dest,p2)); //update its parent model's coupling info 
 coordinator PCoord = P.getCoordinator(); 
 PCoord.addCoupling(src,p1,dest,p2); // update the corresponding simulator's coupling info 

} 
 
 
The method first gets its parent which is a coupled model. Then it calls its parent’s 

addPair() method to update parent’s coupling information, the cp variable as described in 
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section 4.4.1. To update the coupling information of the affected simulators, the atomic 

model then calls the coordinator’s addCoupling() method. This method uses the source 

model’s name to find the corresponding simulator and then update that simulator’s 

coupling information, which is kept in the coupInfo or extCoupInfo variables. Note that 

for implementation convenience, the getParent() method is used. This method returns the 

parent model’s reference which was established during simulation’s construction stage. 

As this method is not accessible to the modelers, it doesn’t violate the hierarchical 

modular property of DEVS models.  

 

4.4.3 Add/Remove Model Dynamically  

Adding a model dynamically means not only a new model is added, but also a new 

simulator needs to be created and added into the system. Furthermore, the new simulator 

needs to be initialized and synchronized with the ongoing simulation system. The 

addModel() method is shown below: 

public void addModel(IODevs iod){ 
   digraph P = (digraph)getParent(); 
   P.add(iod); 
   coordinator PCoord = P.getCoordinator(); 
   PCoord.setNewSimulator((IOBasicDevs)iod); 
} 
 
 

This method first adds the model as a new component to its parent by calling the add() 

method (update parent’s components variable). Then it calls the coordinator’s 

setNewSimulator() method. Depending on the type of simulation, the coordinators to 

control the simulation are different. For decentralized real-time simulation, 

RTcoordinator is used; for centralized real-time simulation, RTCentralCoord is used; for 
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fast-mode simulation, the regular coordinator is used. While RTCentralCoord and 

coordinator implement the setNewSimulator() in the same way, RTcoordinator 

implements it in a different way. Below we describe these difference. 

 

Add model in decentralized real-time Simulation 

RTcoordinator is used in decentralized real-time simulation. The setNewSimulator() 

method of RTcoordinator looks like below: 

public void setNewSimulator(IOBasicDevs iod){ 
    if(iod instanceof atomic){    //do a check on what model it is 
        coupledRTSimulator s = new coupledRTSimulator (iod); 
  internalModelTosim.put(iod.getName(),s); 
  simulators.add(s); 
        //update all simulators’ modToSim with the new internalModelTosim 
        Class [] classes = {ensembleBag.getTheClass("GenCol.Function")}; 
        Object [] args  = {internalModelTosim}; 
        simulators.tellAll("setModToSim",classes,args); 
        s.initialize(); 

s.simulate(numIter); 
    } 
    else if(iod instanceof digraph){ 
        coupledCoordinator s = new coupledCoordinator((Coupled) iod); 
        ……… // same as when the model is atomic 
    } 
} 
 
 

As can be seen, the method creates a new simulator based on the model type (atomic 

model or coupled model). It updates RTcoordiantor’s corresponding data structures such 

as internalModelToSim, and simulators. Then it calls simulators.tellAll("setModToSim", 

classes, args) and passes internalModelToSim as parameter to update all simulators’ 

modelToSim. Finally it initializes the created simulator and calls the s.simulate() to start 

that simulator. After these steps, the new simulator is created and started, and all other 
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simulators’ related data structures are updated. So the simulation can go ahead with the 

new added model. 

 
Add model in fast-mode simulation or centralized real-time simulation 

Although the basic idea of setNewSimulator() method in fast-mode simulation or 

centralized real-time simulation is the same as that in decentralized real-time simulation, 

that is to create and start a new simulator and to update other simulators’ data structures, 

the implementation of this method is a little bit different. Below we describe why we 

have to implement it in a different way. 

Fast-mode simulation or centralized real-time simulation is controlled by central 

coordinators, which control the simulation based on the simulation cycle. A typical 

simulation cycle looks like below: 

  while( (tN < DevsInterface.INFINITY) && (i<=num_iter) ) { 
    computeInputOutput(tN); 
    wrapDeltFunc(tN); 
    tL = tN; 
    tN = nextTN(); 
    i++; 
  } 
 
 
Within this cycle, the wrapDeltFunc() method triggers all imminent simulators to 

execute their external or internal transition functions. Specifically, the execution of 

simulators.tellAll("DeltFunc",classes,args) makes that happen. This is shown below: 

public void wrapDeltFunc(double time) { 
  sendDownMessages(); 
  Class [] classes  = {ensembleBag.getTheClass("java.lang.Double")}; 
  Object [] args  = {new Double(time)}; 
  simulators.tellAll("DeltFunc",classes,args); 
  input = new message(); 
  output = new message(); 
} 
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As mentioned in section 4.2, adding/removing models happen in an atomic model’s 

external or internal transition functions. Thus, the execution of 

simulators.tellAll("DeltFunc",classes,args) will cause models to be added or removed 

which implies the simulators data structure itself needs to be updated. To avoid 

confliction, we implement the setNewSimulator() method in a different way from that in 

decentralized real-time simulation so that the simulators data structure will not be 

updated directly. Below shows setNewSimulator() method in fast-mode simulation or 

centralized real-time simulation: 

public void setNewSimulator(IOBasicDevs iod){ 
    if(iod instanceof atomic){    //do a check on what model it is 
        coupledSimulators = new coupledSimulator (iod); 
  internalModelTosim.put(iod.getName(),s); 
  newSimulators.add(s); 
        s.initialize(getCurrentTime()); 
    } 
    else if(iod instanceof digraph){ 
        coupledCoordinator s = new coupledCoordinator((Coupled) iod); 
        ……… // same as when the model is atomic 
    } 
} 

 
 
A new data structure newSimulators is used to store the created simulator. To add the 

elements of newSimulators to the simulators data structure, a new method 

updateChangedSimulators() is implemented as shown below. Note that in order to 

synchronize with the current simulation time, the initialize() method as shown in the 

setNewSimulator() takes the parameter of getCurrentTime() which returns the current 

simulation time. 

public void updateChangedSimulators(){  // for variable structure capability 
  //check if there are added or removed simulators 
  Iterator nsit = newSimulators.iterator(); 
  Iterator dsit = deletedSimulators.iterator(); 
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  if(nsit.hasNext()||dsit.hasNext()){ 
      // need to update the simulators and download the internalModelTosim to simulators 
      while (nsit.hasNext()) simulators.add(nsit.next()); 
      while (dsit.hasNext()) simulators.remove(dsit.next()); 
      //download the new ModtoSim info to all the simulators 
      Class [] sclasses = {ensembleBag.getTheClass("GenCol.Function")}; 
      Object [] sargs  = {internalModelTosim}; 
      simulators.tellAll("setModToSim",sclasses,sargs); 
  } 
  // reset newSimulators and deletedSimulators to empty 
  newSimulators = new ensembleSet(); 
  deletedSimulators = new ensembleSet(); 
} 
 
 
This method checks if there are elements in newSimulators or deletedSimulators to 

update the simulators data structure (The deletedSimulatos is set when removing model 

dynamically. This is the similar, but reverse case of adding model dynamically). Then it 

calls simulators.tellAll("setModToSim",…) update all simulators’ modelToSim data structure. 

With this new method, the wrapDeltFunc() method is changed to execute 

updateChangedSimulators() method after simulators.tellAll(). It is shown below: 

public void wrapDeltFunc(double time) { 
  sendDownMessages(); 
  Class [] classes  = {ensembleBag.getTheClass("java.lang.Double")}; 
  Object [] args  = {new Double(time)}; 
  simulators.tellAll("DeltFunc",classes,args); 
  input = new message(); 
  output = new message(); 
  updateChangedSimulators(); 
} 
 
 
By calling the updateChangedSimulators() method, the coordinator updates the 

simulators and modelToSim data structures, thus the added model becomes eligible to 

participate in the subsequent simulation cycle, contributing to the determination of the 

global time of next event and able to receive inputs and generate outputs in the normal 
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manner. Further details on modification of the DEVS protocol needed for well-defined 

variable structure are given in [Zei97]. 

 
Remove model dynamically 

Reverse to what adding a model means, removing a model dynamically means to 

remove a model and its corresponding simulator(s) from the system. It also implies 

removing all the couplings related to that model from the system. Below is the 

removeModel() method. The method is basically the reverse of what addModel() does. It 

first removes the model from the parent model, then it calls 

coordinator/coupledCoordinator’s removeModel() method to remove the simulator of 

that model. One extra step here is the removeModelCoupling() method which removes all 

the couplings related to the model.  

 public void removeModel(String modelName){ 
   digraph P = (digraph)getParent(); 
   coordinator PCoord = P.getCoordinator(); 
   PCoord.removeModelCoupling(modelName); // remove the couplings of that model 
   IODevs iod = P.withName(modelName); 
   P.remove(iod); // remove the model 
   PCoord.removeModel(iod); // remove the simulator 
} 

 

4.4.4 Add/Remove Coupling in Distributed Environment 

Before we proceed to discuss how to implement the distributed coupling change 

capability, let’s see how distributed simulation is implemented. Figure 8 shows a 

distributed example with the same model as in Figure 4.6. In this example, the three 

components of the coupled model: Coupled1, Atomic3, and Atomic4 are distributed on 

three different computers. As can be seen, for each distributed component on a computer, 
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there is a client simulator assigned to it (CoupledSimulatorClient for atomic model; 

CoordinatorClient for coupled model). These clients connect to an CoordinatorServer, 

which may reside on another computer (The dashed circles mean different parts of the 

system reside on different computers). During initialization, the CoordinatorServer waits 

for connections from clients. For each client, the CoordinatorServer creates a 

SimulatorProxy to communicate with it. After all the connections are received, the 

CoordinatorServer establishes the modelToSim and coupInfo and download them to 

SimulatorProxies. As modelToSim and coupInfo are kept in SimulatorProxies (not in the 

client simulators), all messages sent between clients will be firstly passed to 

SimulatorProxies. For example in Figure 4.6, if Atomic4 sends a message to Coupled1, 

the message will first be sent to SimulatorProxy3. Based on the coupInfo and 

modelToSim, SimulatorProxy3 passes the message to SimulatorProxy1, which then sends 

the message to CoordinatorClient1 (Coupled1). 

CoordinatorServer 

Atomic4

SimulatorProxy2

Atomic3

coupledSimulator1 coupledSimulator2 

Atomic1 Atomic2

Coupled1

CoordinatorClient1 CoupledSimulatorClient2 CoupledSimulatorClient3

Coupled

SimulatorProxy3SimulatorProxy1

 

Figure 4.6: Models and their simulators in distributed simulation 
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As the coupling information of distributed models are kept in SimulatorProxies, so the 

basic idea of implementing distributed coupling change is to update those 

SimulatorProxies’ coupling information. To implement this, whenever an atomic model 

wants to add or remove a distributed coupling, the CoupledSimulatorClient for that 

atomic model generates a distributed coupling change request and sends it to the 

SimulatorProxy as shown below: 

public void addDistributedCoupling(String src, String p1, String dest, String p2){ 
   String dcc = Constants.addCouplingSymbol+":"+src+":"+p1+":"+dest+":"+p2; 
   client.sendMessageToServer(dcc); 
} 
 
 

On the SimulatorProxy’s side, the waitForMessageFromClient() method is modified 

so that it can handle the distributed coupling change request. This method is shown 

below: 

    protected void waitForMessageFromClient() { 
        String string = readMessageFromClient(); 
  //check to see if the message is a dynamic coupling change message 
        if(string.startsWith(Constants.addCouplingSymbol)|| 
            string.startsWith(Constants.removeCouplingSymbol))  
                DynamicCouplingStrReceived(string); 
        else{     // this is a regular DEVS message 
           …………  // process the message 
  } 
 } 
 
 

The method checks to see if the received string starts with addCouplingSymbol or 

removeCouplingSymbol. If that is true, the received string is a distributed coupling 

change request, so the DynamicCouplingStrReceived() is called. Otherwise, the received 

string is a regular DEVS message so the method processes it as usual. The 

DynamicCouplingStrReceived() method processes the string to get the source, the 
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source’s port, destination, and the destination’s port of the coupling. Then it call 

CoordinatorServer’s addCoupling() or removeCoupling() methods to update the coupling 

information of SimulatorProxies. 

 
4.4.5  Add/Remove Ports  

The operation of adding and removing ports dynamically is done by: 

• addInport(String modelName, String portName),  

• addOutport(String modelName, String port), 

• removeInport(String modelName, String port) 

• removeOutport(String modelName, String port) 

 

The functionality of modifying interfaces exists just at one horizontal level and is not 

present a level above (parent level) and a level below (brothers children). This restricts 

the ability of a model to alter the dynamics of the system to within its operations 

boundary. As mentioned above the four forms of adding/removing inports/outports take 

the modeName as a parameter referring to the destination model to which the change is 

desired. The functioning of these methods can be seen in the reconfigurable GPT model. 

Internally, they are implemented as: 

public void addInport(String modelName, String port){ 
digraph P = (digraph)getParent(); 

   IODevs iod = (IODevs)P.withName(modelName); 
   if (P != null){ 
    if (iod instanceof atomic) 
      iod.addInport(port); 
    else 
      ((digraph)iod).addInport(iod.getName(),port); 
   }  
} 
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The above function adds an input port to the model specified by the modelName. 

Inside the function the models is accessed through the common parent (as they are 

brothers) and if its an instance of atomic, then the port is added here directly, otherwise 

the corresponding function in the digraph model is called, which adds the port to this 

brother digraph. 

The mechanics of addOutport() is exactly same as that of addInport(). For the removal 

of ports, internally they are implemented in the same manner as the code described above 

except that the line iod.addInport(port); is replaced by the line iod.removeInport(port) 

where the variables have their usual meaning. Same thing happens in the case of 

removeOutport() which is implemented on the same lines with the change in the line 

mentioned above (iod.removeOutport(port)). 
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CHAPTER 5 

DISTRIBUTED AUTONOMOUS ROBOTIC SYSTEM – A 
DYNAMIC TEAM FORMATION EXAMPLE 

 

5.1 Distributed Autonomous Robotic Systems 

Distributed Autonomous Robotic Systems (DARS) have been proposed in the last 

decade in a variety of settings and applied in different tasks. Special attention has been 

given to DARS developed to operate in a dynamic environment, where uncertainty and 

unforeseen changes can happen due to the environment and other agents that are external 

to the system itself. In the work of this dissertation, we view distributed autonomous 

robotic systems as a particular form of distributed real-time systems, with the systems 

interacting with external environments governed by their control models.  

The field of DARS has gained growing research interests with a wide variety of topics 

being addressed. Surveys and summaries of the current state of the art for this field can 

be found in [Cao97, Par00, Ioc01]. For example, Parker [Par00] identifies eight primary 

research topics in multi-robot systems: Biological Inspiration; Communication; 

Architecture, Task planning, and Control; Localization, Mapping, and Exploration; 

Object transportation and manipulation; Motion coordination; Reconfigurable robotics; 

Learning. Iocchi [Ioc01] classifies the taxonomy of multi-robot systems into four levels 

of system structure characterization: Cooperation Level, Knowledge Level (Awareness), 

Coordination Level, and Organization Level (Centralization, or Distribution). Both 
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[Cao97] and [Par00] identify some open issues in DARS. These issues include defining 

metrics of various forms of cooperation, identifying characteristics of DARS, enabling 

effective human control, achieving scalability, etc.  

Although multiple robots potentially provide more robust and fault-tolerant services 

than a single robot, they also introduce extra software design and test complexity. First, 

unlike a single robot, the control schema of a distributed robotic system is distributed 

over multiple robots, thus making the cooperation and coordination among robots very 

important. Secondly, as a distributed robotic system interacts with the real world, the 

decision making of each robot not only needs to be logically correct but also needs to be 

timely in order to satisfy real time constraints. Moreover, with the advance of research 

and technology in this field, there is a continuous trend for distributed robotic systems to 

fulfill more complex tasks and scaled up to include more robots. All these factors make 

the software design and test for distributed robotic systems a challenging task, especially 

when a large number of mobile robots and task synchronization are involved. Systematic 

development methods and integrated development environments are needed to handle the 

design complexity of DARS [Par00, Wan97].  

This chapter describes our work of developing a “dynamic team formation” robotic 

system using the model continuity methodology presented in Chapter 3. The task of team 

formation belongs to the research area of pattern formation and formation maintenance, 

and is one of the challenging issues in DARS. Related work can be found to address 

different aspects of this topic. For example, [Bal98], [Bal00] address the problem of 

physical implementation and formation keeping; [Car02] addresses systems’ robustness 
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in dynamic environments; [kow01] focuses on architectures of coordination. While these 

works address different aspects of robot formation, they all presume that robots know 

each other’s existence before the systems are started. The system presented in this 

chapter, without this presumption, emphasizes the process of how two robots can form a 

team dynamically, starting from searching for each other, then establishing connections 

dynamically and finally conducting leader-follower march. Though this system only 

includes two robots at this time, with changes it can be scaled up to include more robots, 

where additional robots can be added into the team incrementally to form an indefinitely 

large convoy following the leader. The system demonstrates a dynamic structure process 

because the couplings between robots change dynamically during runtime. An integrated 

framework is particularly important to support the development of this kind of system, 

whose complexity would otherwise overwhelm the designers. 

 

5.2 Hardware Description of the ACIMS Robot 

 

Figure 5.1: The ACIMS Mobile Robot 
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Figure 5.1 shows the type of robot that is used for the team formation task. It is a car-

type mobile robot with wireless communication capability. The robot is built on a 20cm 

by 20cm Plexiglas base. The hardware of the robot has a three-layer structure, where each 

layer is responsible for different services [Pei02].  

At the bottom is the hardware interface layer, which includes the motor and sensor 

interface (MSI) board and all the sensors and actuators. The MSI board uses a 

PIC16F877 processor from Microchip. This processor has eight analog inputs and 

twenty-four digital input/outputs. The three types of sensors that are implemented on the 

robots are the whiskers, infrared range finders, and wheel encoders. There are four 

whisker sensors located at each corner of the robot. The whiskers are mounted directly to 

the chassis and indicate to the PIC that they have been tripped when they are displaced 

from their resting position by approximately one inch or more. The purpose of the 

whisker sensors is to detect close range collisions and to avoid damaging the robot or 

nearby object. There are four infrared sensors around the four sides of the robot. These 

infrared sensors can detect obstacles in the range of 10 to 60 cm in the direction of the 

sensor. The infrared sensors return to the PIC an analogue signal indicating the distance 

to the nearest obstacle. Wheel encoders are the third type of sensor used by the robot. 

There are two wheel encoders that are mounted to each wheel of the robot and photo-

reflectors mounted on the underside of each motor. The photo-reflectors bounce IR 

pulses off the wheel encoder disk and detect whether it sees black or white.  The encoders 

each return a digital signal to the MSI board, which can then be used to maintain equal 

motor speeds, and to detect the distance moved by each wheel. Thus, the position and 
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orientation of the robot can be determined using the so-called dead reckoning method. 

The robot uses two DC motors mounted beneath the center of the chassis, which 

implement a differential drive-train. This mounting configuration allows the robot to 

move freely in both the forward and reverse direction as well as being able to rotate about 

its center.  The shaft of each motor is connected to a three-stage planetary gear set which 

has an overall gear ratio of 80:1. 

The second layer of the robot is the processing layer, which mainly includes the Tiny 

Network Interface (TINI) processor. The TINI has 1MB of nonvolatile SRAM and an 

apparent maximum execution speed of 120 Mhz. It also supports a JavaTM-programmable 

runtime environment and has its own Linux-like platform, which hosts its own FTP and 

TELNET server.  

The third layer is the communication layer, including the 3Com Ethernet Client Bridge 

(ECB). This ECB is used by the TINI to connect to the wireless network over its Ethernet 

interface. The ECB operates on IEEE 802.11b wireless standard which allows it to 

communicate with most commercial access points. The ECB enables connectivity at the 

speed of 10Mbps, with a range of 150 feet from the robot to the access point, or from the 

robot to the next nearest robot.  

The power board distributes power received from the battery to each of the three main 

components of the robot: the TINI, the MSI, and the ECB.  Each of these components has 

its own voltage regulator that converts the voltage to around five volts. The battery 

supplies 3700 milliamp hours to the robot which under normal operation, the battery will 
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last two to three hours although the recommended operating time of the robot is two 

hours before having to be recharged. 

 

5.3 The Dynamic Team Formation Process 

This example consists two robots. It intends to show that connections between two 

robots can be established dynamically, and then communication and synchronization 

between them can be achieved. The development of this example demonstrates that a 

modeling and simulation framework, based on the DEVS formalism, can support model 

continuity and handle the development complexity for distributed robotic systems.  

In this example, two robots (Robot1 and Robot2) are put on a field with static objects 

such as walls, cabinets and boxes. The team formation process starts with both robots 

moving around and trying to find each other to establish a connection. (In our example, 

only Robot1 is initially set to moving; Robot2 is waiting). Both robots check their 

whisker sensors and infrared sensors regularly to see if there is any object around. At any 

time if a whisker sensor is tripped, the robot will react instantly by moving forward or 

backward in order to avoid collision or damage. Based on its infrared sensor data, a 

moving robot will turn around when it detects there are obstacles ahead. 

Initially, there is no direct connections between two robots. Both robots are connected 

to a Manager on a laptop. They regularly send their four-side distance data (from front, 

back, left and right infrared sensors) to the Manager. The Manager checks these distance 

data from two robots and see if there is any match between them. If there exists a match, 

for example, Robot1’s front distance data equals Robot2’s left distance data, this means 
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that Robot1 is possibly heading to Robot2’s left side. However, it’s also possible that both 

Robot1’s front sensor and Robot2’s left sensor are heading to some static objects. In order 

to check if two robots are really seeing each other, the Manager will stop both robots and 

then ask them to start a Dance process to recognize each other. Specifically, it asks one 

robot, saying Robot2, to move away. If the other robot, Robot1 in this case, notices that 

there is a distance change on its corresponding side, it will notify the Manager that it 

noticed a moving object. Otherwise it will notify the Manager that it didn’t notice any 

change. A negative answer from Robot1 means two robots are apart so they will continue 

their search. A positive answer means two robots are seeing each other (because we 

assume there are no other moving objects in the field). So the Manager will establish 

connections between them and ask them to organize into a team. 

Once connections are established, two robots will communicate directly to each other. 

First, they will line up to form a Leader-Follower relationship. Then they begin to march: 

one follows the other with the same movement. During the march, the Leader moves 

forward or turns around to avoid obstacles based on its infrared sensor data. The 

Follower is “blind” in the sense that it doesn’t use any data from its sensors. Instead, the 

Follower gets movement parameters from the Leader and moves the same way as the 

Leader. The movements of both robots are synchronized to each other. During the 

movement, if robots lose each other, they will inform the Manager and go back to the 

searching stage as initially started. 

 

5.4 Developing Models of the System 
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5.4.1 System Model and Dynamic Coupling Change 

From the above description, three basic components can be recognized in this system: 

the Manager that resides on a laptop (computer), robot1 and robot2 that reside on mobile 

robots. Figure 5.2 shows the model of this system. In this system, the Manager is an 

atomic model and each robot is a coupled model. The coupling of the system is as 

follows: (R1 stands for robot1; R2 stands for robot2 and man stands for Manager): 

addCoupling(R1, "distanceData", man, "Robot1Data"); 

addCoupling(R1, "report", man, "Robot1Report"); 

addCoupling(man, "Robot1Check", R1, "Check"); 

addCoupling(R2, "distanceData", man, "Robot2Data"); 

addCoupling(R2, "report", man, "Robot2Report"); 

addCoupling(man, "Robot2Check", R2, "Check"); 
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Figure 5.2: Model of Multi-Robot System 

 
As can be seen there is no coupling between robot1 and robot2. Each robot has output 

ports distanceData and report. These ports are coupled to Manager’s corresponding input 

ports. Meanwhile, the Manager has output ports coupled to each robot’s input port Check, 
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so that Manager can ask them to check if they are within-line-of-sight. The robots return 

the check result using the report port. Once the report messages returned from the robots 

are both positive, this means two robots are close and they see each other. In this case, the 

Manager changes the couplings of the system dynamically to establish direct connections 

between the two robots. Specifically in this example, the manager executes the following 

DEVSJAVA code: 

removeCoupling("Robot1", "distanceData", ”Manager”, "Robot1Data"); 

removeCoupling (”Manager”, "Robot1Check", "Robot1", "Check"); 

removeCoupling ("Robot2", "distanceData", ”Manager”, "Robot2Data"); 

removeCoupling (”Manager”, "Robot2Check", "Robot2", "Check"); 

addCoupling("Robot1", "readyOut", "Robot2", "readyIn"); 

addCoupling("Robot2", "readyOut", "Robot1", "readyIn"); 

 

Note that the addCoupling method is overloaded so it accepts strings to specify 

components in addition to object references. This feature makes it convenient for the 

modeler to keep track of models that have been added using string names. Explicit 

references can also be obtained from the parent coupled model by supplying the string 

names. This requires that all models be given unique names. After executing the 

DEVSJAVA code, bi-directional connections are established by coupling two robots’ 

Ready port to each other, so two robots can communicate directly. The distanceData and 

Check couplings between robots and Manager are removed because they are no longer 

needed during the process of robot march. The Report coupling remains so robots can 

still inform the Manager in case they lose each other. During the march, if two robots 
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lose each other, they send the “Lost Partner” message to Manager using the Report port. 

This will trigger the Manager to add and remove couplings among the components. As a 

result, the system goes back to the situation as it is initially started, where two robots 

move independently and try to find each other.  

 

5.4.2 Robot Model 

The model of each robot is built based on Rodney A. Brooks’ Subsumption 

Architecture. As pointed out in [Bro86], classical AI usually runs into problems of 

extensibility (software or hardware), robustness (software or hardware), integration of 

multiple sensor devices and achieving multiple competing goals. Brooks however 

decomposes the problem of building autonomous vehicles into layers of desired behavior 

or levels of competence, rather than a sequential, functional form. Within this setting, he 

introduced the idea of subsumption, that is, more complex layer not only depended on 

lower, more reactive layer, but could also influence their behavior. The resulting 

architecture was one that could simultaneously service multiple, potentially conflicting 

goals in a reactive fashion, giving precedence to high-priority goals. The architecture was 

further developed into the behavior language [Bro90]. The first three levels defined by 

Brooks are as follows:  

• Avoid contact with objects (whether the objects move or are stationary).  

• Wander aimlessly around without hitting things.  

• Explore the world by seeing places in the distance that look reachable and 

heading for them.  
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As can be seen each higher level contains as a subset each lower level of competence. 

The important part of this is that each layer of control can be built as a completely 

separate component and simply added to existing layers to achieve the overall level of 

competence.  

In our example, the Robots move around trying to find each other. They begin the 

Dance process if the Manager thinks they are close. And they begin to March after they 

establish direct connection and organize into a “Leader-Follower” team. As such, we 

model each Robot as a coupled DEVS model. There are four components inside this 

coupled model (Figure 5.3): 

• Avoid Model to avoid contact with objects.  

• Wander Model to move around without hitting things.  

• March Model to organize into a team and move in a “Leader-Follower” fashion. 

• Monitor Model to check if two robots really see each other and report to Manger. 
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Figure 5.3: Model of Robot 

 

To be more specific, in this example, the Avoid model always checks the whiskers to 

see if any of them has been tripped. If front whiskers are tripped, the Avoid model will 



 

 

140

issue a command instantly to ask robot to move backward. If back whiskers are tripped, 

the Avoid model will ask the robot to move forward. We treat the situation that whiskers 

are tripped as an emergent situation, so the robot is supposed to respond to this situation 

immediately. As such, the robot’s avoid movement has the highest priority. It can not be 

inhibited by other models. 

In normal situation, the robot is either wandering or marching, controlled by Wander 

model and March model respectively. The Wander model follows a “move-- 

moveComplete-- move” routine. Whenever a move is completed, the Wander model 

checks the distance data returned from robot’s four Infrared sensors. If the front distance 

(to any object) is greater than a pre-defined threshold, saying 40cm, the Wander model 

will ask the robot to move forward. Otherwise, it will ask the robot to turn right by 90 

degree.  

Just as the Wander model controls each robot to move independently, the March 

model controls the robot system to move in a synchronized fashion. First, the March 

model asks the robotic system to line up to form a “Leader-Follower” team. Then the 

Leader’s March model will check its infrared distance data, similar to the Wander model, 

and ask the robot to move forward if its front is clear and turn around otherwise. The 

Follower’s March model does not use any of its sensor data. Instead, it gets move 

parameters from the Leader and conducts the same movement as the leader. The 

movements between the Leader and the Follower are not independent. They are 

synchronized in the sense that a robot cannot conduct the next movement until it gets the 

“ready” message from the other robot.  
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To switch between wandering and marching, the Monitor model is developed to check 

the current situation such as if two robots really see each other or if they lose each other. 

In the wandering state, whenever the Manger thinks that two robots are possibly seeing 

each other, it will send a “check” message to the Monitor model. The Monitor model then 

inhibits both Wander and March so it takes control of the robot. Then it asks robot to 

conduct a “move and detect” dance to check if two robots really see each other. In this 

dance, the Leader’s Monitor model asks the robot to moves away and the Follower’s 

Monitor model checks the corresponding distance data to see if there is any change. If the 

corresponding data changes, it means the Follower saw a moving object so two robots are 

seeing each other. Then the Monitor model will inhibit the Wander and start the March. 

Otherwise, the Monitor model will inhibit the March and resume the Wander. During the 

process of marching, the Monitor model is responsible to monitor if two robots lose each 

other. If they do, the Monitor model reports to Manger, meanwhile it will inhibit March 

and start Wander. 

 

5.4.3 Hardware Interface activity 

Just as the Avoid, Wander, March and Monitor models are responsible for the control 

logic of each robot; the HWInterface Activity (as shown in Figure 5.3) is responsible for 

sensor/actuator hardware interfaces. This HWInterface Activity communicates to the 

motor and sensor interface (MSI) board through RS232 serial interface. It reads sensor 

data periodically and issues commands to drive the motors. It is also responsible to 

collect moveComplete messages from the MSI board and pass them to the control models. 
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To avoid unnecessary message passing, quantization is used so no message passing is 

needed if there is no change in the distance data. In this example, the Avoid model starts 

this HWInterface Activity. As a result, all move commands from Wander model and 

March model are sent to the Avoid model, which acts as a relay to pass these commands 

to the HWInterface Activity.  

The psuedo code of HWInterface Activity (the HWActivity class) is given below. In the 

code, RobotControl is the device driver class of the robot. Whenever HWActivity gets 

sensor data, it will call the returnTheResult() function, which puts the sensor data to 

Avoid model’s outputFromActivity port as an external message, thus triggering Avoid 

model’s external transition function (shown below). The function setMovePara is 

provided so that the Avoid model can call this function to drive the motors. 

public class HWActivity extends  activity implements RobotListener { 

   ……… 

      public void run() { 

          while (true) { 

              Whisker_Data = RobotControl.checkWhiskers(); 

              returnTheResult(Whisker_Data); 

              Distance_Data = RobotControl.getObsticalDistance(); 

              returnTheResult(Distance_Data); 

          } 

      } 

   ……… 

      public void setMovePara(String direction, int speed, int distance){ 

        if(direction.startsWith("forward")) RobotControl.moveForward(speed, distance); 
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        else if(direction.startsWith("backward")) RobotControl.moveBackward(speed, distance); 

        else if(direction.startsWith("rotatecc")) RobotControl.CCRotation(speed, distance); 

        else if(direction.startsWith("rotatecw")) RobotControl.CWRotation(speed, distance); 

      } 

   ……… 

} 

 

The psuedo code of Avoid model’s external transition function is as following:  

public void deltext(double e,message x){ 

   ……… 

    if (messageOnPort(x,"outputFromActivity",i)) { 

        sensorData = x.getValOnPort("outputFromActivity",i); 

   ……… 

        if (frontTripped)  HWA.setMovePara("backward",avoidSpeed,avoidDist); 

        else if (backTripped)   HWA.setMovePara("forward",avoidSpeed,avoidDist); 

    } 

    else if (messageOnPort(x,"move",i)) HWA.setMovePara( direction, speed, distance); 

   ……… 

} 

 

In the code, HWA is an instance of HWActivity. As can be seen, in its external 

transition function deltext(), the Avoid model processes the sensor data returned from 

HWActivity and will call HWActivity’s setMovePara() to move backward/forward if its 

front/back Whisker sensors are tripped. Meanwhile, if there is message on the move port 
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(sent from Wander model or March model), the Avoid model will call HWActivity’s 

setMovePara() to pass the move parameters. 

To start the HWActivity, the Avoid model initializes an instance of HWActivity and 

calls the startActivity() method in its initialize() function. This is shown below. 

HWActivity HWA; 

HWA = new HWActivity(); 

startActivity(HWA); 

 

5.4.4 Environment Model and abstractActivity 

Simulation methods are applied in this example to test the correctness and efficiency 

of the robot system. In order to simulate and test the system, a simulation and testing 

environment is developed. This environment includes the Environment model to reflect 

how the real environment affects or is affected by the robot system, and the HWInterface 

abstractActivity to imitate HWInterface Activity’s behavior and interface functions. 
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Figure 5.4: Environment Model 

 
The main function of the Environment model is to model the time for a robot’s 

movement. Meanwhile, the Environment model is also responsible to calculate the 

whisker sensor data and infrared sensor data and returns them to the control models 
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whenever a robot moves. As such, there are three components in the Environment model 

(Figure 5.4): TimeManager1, TimeManager2 and SpaceManager. TimeManager1 and 

TimeManager2 model how long it takes for Robot1 and Robot2 respectively to finish a 

movement. Based on the moving distance and moving speed, they calculate the moving 

time and then issue moveComplete messages after that period of time elapses. To model 

the system in a more realistic way, random numbers are used when calculating the 

moving time. Below is the formula for moving time calculation of Roboti (i=1,2). 

MovingTimei = MovingDistancei / MovingSpeedi + Randomi (i=1,2) 

(Note: Randomi is a random factor for Roboti) 

 
As TimeManager models robots’ moving time, the SpaceManager models robots’ 

moving space, which includes field shape and dimension, objects’ shape, position and 

dimension, and robots’ shape, position and dimension. Whenever the SpaceManager 

receives a moveComplete message from a TimeManager, it will update the corresponding 

robot’s position (x, y) and direction (angle). For simplicity, in this example we have 

ignored the dynamic process of a movement. Instead, we treat each movement as discrete 

event so the position and direction of a robot are updated discretely. We think this 

simplification is good enough to serve our simulation and testing purpose. 

Besides the Environment model, the simulation and testing environment also includes 

the HWInterface abstractActivity (the abstractHWActivity class), which act as an abstract 

sensor/actuator hardware interface to bridge between control models and the Environment 

model. This abstractHWActivity imitates the behavior and interface functions of the 

HWActivity, so the control model can treat it in simulation the same way as it treat the 
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HWActivity in real execution. Similar to the HWActivity, the abstractHWActivity 

regularly passes sensor data from the Environment model and provides the same interface 

function, setMoveParameters() to move the robot. Here is a code fragment: 

public class abstractHWActivity extends abstractActivity{  
   ……… 
  public void deltext(double e,message x){ 
   ……… 
    if (messageOnPort(x," sensorData ",i)) { 
        sensorData = x.getValOnPort("sensorData ",i); 

  returnTheResult(sensorData); 
    } 
  } 
   ……… 
public void setMoveParameters(String direction, int speed, int distance){ 

      moveParaString = direction +"_"+ speed +"_"+ distance; 
      sendOutput("move",new entity(moveParaString)); 

} 
   ……… 

         } 
 

In our implementation, an abstractActivity is actually an atomic model. As can be seen 

in its external transition function deltext(),abstractHWActivity handles the sensor data 

sent from the Environment model and then passes these sensor data to Avoid model. In 

the setMoveParmeters(), it passes move parameters to the Environment model by calling 

the sendOutput(). In order to do so, in its initialize() method, abstractHWActivity adds 

couplings between itself and the Environment model as shown below:  

addActivityCoupling (getName(),"move","Environment","move1"); 

addActivityCoupling ("Environment","sensorData1",getName(),"sensorData"); 

 

As mentioned in Chapter 3, the function addActivityCoupling () is specially designed 

to add couplings between an abstractActivity and the Environment model so they can 

exchange messages. Note that the deltext() of Avoid model remain the same because we 

maintain the same interface fucntions between HWActivity and abstractHWActivity. The 
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initialize() function of Avoid model is changed to initialize an instance of 

abstractHWActivity instead of HWActivity. This is shown below: 

abstractHWActivity HWA; 

HWA = new abstractHWActivity (); 

startActivity(HWA); 

 

5.5 Stepwise Simulations, Deployment, and Execution 

We applied four steps to incrementally simulate and test this example before we 

deploy the models to real hardware for execution. As shown in Figure 5.5, these steps are 

central simulation, distributed simulation, robot-in-the-loop simulation, and real system 

test. The following text describes these steps in detail, including how to setup and what is 

the role for each step. 

Distributed Simulators Distributed Simulators Distributed Simulators

Real RobotVirtual Robot Virtual ObstaclesComputerReal RobotVirtual Robot Virtual ObstaclesComputer

Step 1: Central Simulation

Central Simulators

Step 2: Distributed Simulation Step 3: Robot-in-the-loop Simulation

Step 4: Real System Test

 

Figure 5.5: Simulation-based test of the “team formation” system 
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5.5.1 Step 1: Central Simulation 

In central simulation, all the models, Robot1, Robot2 (including their 

abstractHWActivities) and Manager, along with the Environment model reside in a single 

computer. Network delay models are used to model the network latency between robot 

models and the Manager model. These delay models are automatically added by the 

addCouplingWithDelay() method. As such, the constructer function of the system model 

teamFormation is shown below (Note that this piece of code uses 2 seconds as network 

delay, which needs to be changed based on the real delay of a network): 

public teamFormation (String nm){ 
double delay = 2; // 2 seconds delay 
Environment env = new Environment("Env");   add(env);  //add the environment model 
 
Robot R1 = new Robot("Robot1");    add(R1);   // add robot1 
Robot R2 = new Robot("Robot2");   add(R2);  // add robot2 
Manager man = new Manager("Manager");   add(man);   //add manager 
 
addCouplingWithDelay (R1,"distanceData",man,"Robot1Data", delay); 
addCouplingWithDelay (R1,"confirmOut",man,"Robot1ConfirmIn", delay); 
addCouplingWithDelay (man,"Robot1Explore",R1,"organize", delay); 
addCouplingWithDelay (man,"confirmOut",R1,"confirm", delay); 
addCouplingWithDelay (R2,"distanceData",man,"Robot2Data", delay); 
addCouplingWithDelay (R2,"confirmOut",man,"Robot2ConfirmIn", delay); 
addCouplingWithDelay (man,"Robot2Explore",R2,"organize", delay); 
addCouplingWithDelay (man,"confirmOut",R2,"confirm", delay); 

} 
 
 
We first employ the fast-mode simulator to simulate and test this teamFormation 

model. Based on the simulation result, we can trace problems such as why robot do not 

see each other even they stay closely and to analyze system properties such as how often 

robots will lose each other, etc. After fast-mode simulation, real-time simulator is 

employed to run simulation in a “timely” fashion. Within real-time simulation, a Graphic 
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User Interface was developed to show how robots move and react to the environment in 

real-time. This makes it easy to detect if the system operates as desired. 

The psuedo codes to start the fast-mode simulation and real-time simulation are shown 

below respectively. 

//fast-mode simulation 
coordinator cs = new coordinator(new teamFormation ("teamFormation ") ); 
cs.initialize(); 
cs.simulate(); 
 
//real-time simulation 
RTcoordinator cs = new RTcoordinator(new teamFormation ("teamFormation ") ); 
cs.initialize(); 
cs.simulate(); 
 
 

5.5.2 Step 2: Distributed Simulation 

In distributed simulation, the three components of the system, Robot1, Robot2 and 

Manager, are distributed on three computers as shown in Figure 5.6, step 2. (Note that for 

clarity, the Manager model that resides on a wireless laptop is not shown in Figure 5.5). 

The Environment model, which is not shown in Figure 5.6 either, can stay on one of the 

three computers or on a different computer. As the real network is used, the network 

delay models are no longer needed. Thus the addCouplingWithDelay() functions of the 

teamFormation model are replaced  by addCoupling(). With these changes, the 

teamFormation model is shown below: 

public teamFormation (String nm){ 
Environment env = new Environment("Env");   add(env);  //add the environment model 
 
Robot R1 = new Robot("Robot1");    add(R1);   // add robot1 
Robot R2 = new Robot("Robot2");   add(R2);  // add robot2 
Manager man = new Manager("Manager");   add(man);   //add manager 
 
addCoupling(R1,"distanceData",man,"Robot1Data"); 
addCoupling(R1,"confirmOut",man,"Robot1ConfirmIn"); 
addCoupling(man,"Robot1Explore",R1,"organize"); 



 

 

150

addCoupling(man,"confirmOut",R1,"confirm"); 
addCoupling(R2,"distanceData",man,"Robot2Data"); 
addCoupling(R2,"confirmOut",man,"Robot2ConfirmIn"); 
addCoupling(man,"Robot2Explore",R2,"organize"); 
addCoupling(man,"confirmOut",R2,"confirm"); 

} 
 
 
Distributed real-time simulators are chosen to simulate and test the system in the 

distributed environment. As pointed out in Chapter 3, distributed simulation has to run in 

a real-time fashion. This is because part of the real physical world, the real network, is 

involved in this simulation-based test. In simulation, the two robots share the same virtual 

environment as depicted by the Environment model. So when Robot1 moves, Robot2, 

which on a different computer, will notice it. 

The psuedo codes to start the RTCoordinatorServer, and clients for Robot1, Robot2, 

Manager, and Environment model are shown below respectively. 

// start RTCoordinatorServer with port 7000, simulation iteration number =1000 
new RTCoordinatorServer(new TeamFormation("Team"),1000,7000); 
 
//Start RTCoordinatorClient for Robo1 to connect to the ServerAddress with port 7000 
new  RTCoordinatorClient(new Robot("Robot1"), ServerAddress, 7000); 
 
//Start RTCoordinatorClient for Robot2 to connect to the ServerAddress with port 7000 
new  RTCoordinatorClient(new Robot("Robot2"), ServerAddress, 7000); 
 
//Start RTCoupledSimulatorClient for Manger to connect to the ServerAddress with port 7000 
new  RTCoupledSimulatorClient(new Manager("Manager"), ServerAddress, 7000); 
 
//Start RTCoordinatorClient for Environment to connect to the ServerAddress with port 7000 
new  RTCoordinatorClient(new Environment("Environment"), ServerAddress, 7000); 
 

 

5.5.3 Step 3: Robot-in-the-loop Simulation 

In robot-in-the-loop simulation, one or both of the models Robot1 or Robot2 are 

downloaded to real robots (Figure 5.1). We note that there is no need to transform the 
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model code in this example because the TINI chip that used by the robots supports Java-

implemented DEVS real-time execution environment. Other models such as the 

Manager, and Environment models can reside on other networked computers and driven 

by the same DEVS distributed real-time simulator architecture. Depending on the desired 

configuration, the DEVS model resident on real robot may use robot’s sensor/actuator 

hardware (Activity) to interact with the real environment or use abstractActivity as virtual 

sensor/actuators to interact with the Environment model. This extra flexibility allows us 

to test the code within the TINI environment with both simulated and real hardware 

(although it is the same logical code as in earlier test situations, its execution time 

characteristics may be quite different, due to the TINI chip’s processing and memory 

limitations). 

Below we consider an experimental setup to see how robot-in-the-loop simulation can 

be achieved. In this experiment, model Robot1 is downloaded to a real robot robot1 and 

is executed by a real-time execution engine that run on the TINI chip; model Robot2, 

Manager and the Environment are simulated on computers, among them Robot2 uses 

abstractHWActivity to interact with the Environment model. We configure robot1 to use 

its real motors to move within a real physical world, and to use virtual whisker sensors 

and IR sensors to get sensor data from the Environment model. To serve this purpose, 

motorActivity and sensorAbstractActivity are developed. The motorActivity defines the 

setMovePara() method that drives the real robot’s motors; the sensorAbstractActivity 

combines the functions of virtual whisker sensors and virtual IR sensors. It gets the 

virtual sensor data from the Environment model and calls returnTheResult() to sends the 
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data to the Avoid model. The psuedo codes for these two classes are shown below 

respectively: 

public class motorActivity extends  activity implements RobotListener { 
   ……… 
      public void setMovePara(String direction, int speed, int distance){ 
        if(direction.startsWith("forward")) RobotControl.moveForward(speed, distance); 
        else if(direction.startsWith("backward")) RobotControl.moveBackward(speed, distance); 
        else if(direction.startsWith("rotatecc")) RobotControl.CCRotation(speed, distance); 
        else if(direction.startsWith("rotatecw")) RobotControl.CWRotation(speed, distance); 
      } 
   ……… 
} 
 

public class sensorAbstractActivity extends abstractActivity{  
   ……… 
  public void deltext(double e,message x){ 
   ……… 
    if (messageOnPort(x," sensorData ",i)) { 
        sensorData = x.getValOnPort("sensorData ",i); 

   returnTheResult(sensorData); 
    } 
  } 
   ……… 
} 
 
 

After defining the motorActivity and sensorAbstractActivity, the Avoid model can use 

them. Specifically, in its initialize() function, the Avoid model initializes an instance of 

motorActivity and an instance of sensorAbstractActivity. It then calls the startActivity() 

methods to start them. This is shown below. 

motorActivity motorA = new motorActivity (); 
startActivity(motorA); 
sensorAbstractActivity sensorA = new sensorAbstractActivity (); 
startActivity(sensorA); 
 

 
Then, the motorActivity and sensorAbstractActivity are used by the Avoid model’s 

external transition function deltext() as shown below: 

public void deltext(double e,message x){ 
   ……… 
    if (messageOnPort(x,"outputFromActivity",i)) { 
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        sensorData = x.getValOnPort("outputFromActivity",i); 
   ……… 
        if (frontTripped)  motorA.setMovePara("backward",avoidSpeed,avoidDist); 
        else if (backTripped)   motorA.setMovePara("forward",avoidSpeed,avoidDist); 
    } 
    else if (messageOnPort(x,"move",i)) motorA.setMovePara( direction, speed, distance); 
   ……… 
} 
 
 
As can be seen, the Avoid model processes the sensor data returned from virtual 

sensors sensorA. It calls motorA’s move() to move the real robot backward/forward if the 

(virtual) whiskers sensors are tripped. Meanwhile, if there is message on the move port 

(sent from Wander model or March model), the Avoid model calls motorA’s move() to 

move the real robot. This example shows that the Avoid model uses its virtual sensor 

interface sensorA to get sensor data from the virtual environment (the Environment 

model) and uses its real motor interface motorA to move the robot. As a result, the real 

robot robot1 moves in a physical field based the sensor data from a virtual environment. 

Within this virtual environment, robot1 can “see” virtual obstacles and other robots, such 

as Robot2, which are simulated on computers.  

The above experiment shows how robot-in-the-loop simulation is set up. In general, 

robot-in-the-loop simulation provides the flexibility to create test scenarios on computers 

to test how a control model works on a real robot. 

 

5.5.4 Step 4: Real System Test 

After passing these simulation-based tests, the next step is real system test, where all 

models are deployed to their target hardware and tested in a physical environment. In this 

example, models Robot1 and Robot2 are downloaded to the TINI chips on the respective 
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real robots while the Manager model is downloaded to a wireless laptop. For both robots, 

virtual sensor/actuator interfaces (abstractHWActivity) are replaced by real 

sensor/actuator interfaces (HWActivity). The Environment model is eliminated since the 

robots now tested in the real world. With these changes, the teamFormation model is 

shown below: 

public teamFormation (String nm){ 
Robot R1 = new Robot("Robot1");    add(R1);   // add robot1 
Robot R2 = new Robot("Robot2");   add(R2);  // add robot2 
Manager man = new Manager("Manager");   add(man);   //add manager 
 
addCoupling(R1,"distanceData",man,"Robot1Data"); 
addCoupling(R1,"confirmOut",man,"Robot1ConfirmIn"); 
addCoupling(man,"Robot1Explore",R1,"organize"); 
addCoupling(man,"confirmOut",R1,"confirm"); 
addCoupling(R2,"distanceData",man,"Robot2Data"); 
addCoupling(R2,"confirmOut",man,"Robot2ConfirmIn"); 
addCoupling(man,"Robot2Explore",R2,"organize"); 
addCoupling(man,"confirmOut",R2,"confirm"); 

} 
 
 

5.5.5 Deployment and Execution 

After passing these stepwise simulation-based tests, the final models are deployed to 

the hardware execution environment. The basic task of the deployment stage is to 

download models to their execution hardware. Same as configuration of real system test, 

Robot1 and Robot2 models are downloaded to real robots and the Manager model is 

downloaded to a wireless laptop. For both robots, real sensor/actuator interfaces 

(HWActivity) are used. The Environment model is not needed since the robots now 

operate in the real world. The final execution teamFormation model is the same as that in 

real system test.  
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Although at this time the deployment process is still not automated as we download 

each model to its execution hardware manually, a prototype type Model Mapping 

Specification as described in Chapter 2 is under development which intents to facilitate 

automated mapping of models to their execution hardware.  

During execution, the two robots and the laptop, along with a wireless access point 

form a wireless network and are controlled by the DEVS real-time execution engines. 

Robots move in a physical field and response to a real environment. Some results and 

discussion are given in the following section. 

 

5.6 Results and Discussion 

One of the important results we are interested in is to check if robots move in real 

execution in the same (similar) way as they are simulated in simulation-based test. For 

this purpose, we have recorded a movie [MOV] which shows the process of robots 

forming a team and then conducting “leader – follower” march during simulation and 

execution. Some pictures taken from that movie are shown below. Figure 5.6 shows the 

pictures captured in simulation stage; Figure 5.7 shows the pictures captured in real 

execution. 

         
             (1)                       (2)                (3) 
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             (4)                      (5)                  (6) 

         
            (7)                     (8)     (9) 

     
           (10)                           (11) 

Figure 5.6: Simulation of robots 

(1) Robots notice something. (2) Robot1 dances to move ahead. (3) Robot1 dances to move back. (4) “Yes, 

what I see is a robot!” Establish couplings dynamically then Robot1 turns to organize. (5) Robot1 marches 

ahead. (6) Robot2 marches ahead to follow. (7) Robot1 notices a wall ahead. (8) Robot1 turns to avoid. (9) 

Robot2 turns to follow. (10) Robot1 marches ahead. (11) Robot2 marches ahead to follow. 

 

         
               (1)                        (2)                       (3) 



 

 

157

         
               (4)                        (5)                       (6) 

         
                (7)                        (8)                       (9) 

     
                (10)                       (11) 

Figure 5.7: Execution of robots 

(1) Robots notice something. (2) Robot1 dances to move ahead. (3) Robot1 dances to move back. (4) “Yes, 

what I see is a robot!” Establish couplings dynamically then Robot1 turns to organize. (5) Robot1 marches 

ahead. (6) Robot2 marches ahead to follow. (7) Robot1 notices a wall ahead. (8) Robot1 turns to avoid. (9) 

Robot2 turns to follow. (10) Robot1 marches ahead. (11) Robot2 marches ahead to follow. 

 
As can be seen, this movie and the above pictures clearly demonstrate the continuity 

between the simulation and execution stages. We note that although the above example 

does not involve a complex environment setting, we expect this “continuity” will be 

preserved even in complex environments.  
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While the above system only includes two robots, more scalable systems with 

indefinite number of robots can be developed based on the same dynamic reconfiguration 

idea. Figure 5.8 shows an example with ten independent robots searching for each other, 

forming groups dynamically, and finally organizing into one large Leader-Follower team. 

During this process, couplings between models are added and removed, resulting in a 

variable structure system. The complexity and scalability of this kind of systems make a 

more persuasive case to apply the proposed model continuity methodology. 

 

Figure 5.8: A Scalable Dynamic Team Formation Example 

 
As mentioned before, the simulation-based test methods can not only test the 

correctness of control models, but also evaluate and analyze the performance of the 

system to be developed. For example, in the “team formation” example, the efficiency of 

different “search” schemas for robots to search each other before they organize into a 

team can be evaluated (We current employ a random search schema). A more detailed 

example of applying simulation-based analysis to evaluate system performance is given 

in the next chapter. 
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CHAPTER 6 

A SCALABLE ROBOTIC CONVOY SYSTEM 

 

6.1 A Description of the Robot Convoy System 

The robotic system presented in Chapter 5 has two robots. This chapter presents a 

robot convoy system that essentially can include any number of mobile robots. We 

developed this system intentionally to demonstrate the scalability of the proposed 

software development methodology and to illustrate how the complexity of this kind of a 

large-scale system can be handled by the simulation-based “model continuity” 

methodology. 

This robot convoy system consists of an indefinite number of robots, saying N robots 

(N>1). These robots are in a line formation before the convoy begins. In this line 

formation, the leader robot is followed by its immediate “back” robot. The ender robot 

follows its immediate “front” robot. All other intermediate robots are connected both to 

its immediate “front” and “back” robots. Thus robots in this system are only directly 

connected to its neighbors. There is no global coordination in the system, although a 

more advanced system can be developed to have both local and global coordination. The 

robot used in this system is the same as that described in Chapter 5 – it can move 

forward/backward and rotate about its center, and has whisker sensors and infrared 

sensors. 
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During the team convoy process, robots are required to keep the line formation and to 

synchronize their movement. Here synchronization means a robot cannot move forward if 

its “front” robot doesn’t move, and a robot has to wait if its “back” robot doesn’t catch 

up. This synchronization feature is necessary for robots to move in a coordinated way, 

especially when robots are heterogeneous and have different moving speeds. To 

guarantee synchronization, synchronization messages are passed between a robot and its 

neighbors. Meanwhile, to facilitate a robot to follow its “front” robot, the moving 

parameters of a “front” robot are passed back so that a robot can conduct the same 

movement as that of its “front” robot.  

During movement, if a robot’s whisker sensors are tripped, the robot instantly moves 

backward or forward to avoid the collision. Otherwise, in normal condition, the leader 

robot makes decisions to move forward or to turn around based on the distance data 

returned from its infrared sensors. If there is obstacle ahead, the leader robot turns 

around. Otherwise, it moves forward. All other robots conduct movement based on the 

moving parameters passed back from their direct “front” robots. Thus the leader robot’s 

movements are actually propagated backward robot by robot. For a perfect system in a 

perfect environment, this means each robot will follow exactly the same steps as the 

leader robot does. However, noise and variance exist in real executions. So if a robot 

simply “blindly” follows its “front” robot, eventually robots will lose each other and the 

system fails to keep the line formation. Thus to enhance the formation coherence of this 

convoy system, we have implemented an “adjust process”, which means a robot will 

adjust itself after every movement to make sure it still follows its “front” robot. Because 
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each robot knows the desired distance to its “front” robot, this “adjust process” uses the 

infrared sensor to check the distance after a movement and then makes necessary 

adjustment. Note that robots may head to different directions after some movements, so 

during the adjust process, a robot may need to turn an angle in order to find its “front” 

robot. This “adjust process” continues until a robot finds its “front” robot and adjusts 

itself to the right position/direction. Only after this process finishes can a robot send out 

its synchronization messages to its neighbors. In current implementation, due to the 

limited sensing capability, only infrared sensor data is used in this “adjust process”. This 

may not be enough in a complex environment because a robot may mistakably recognize 

an obstacle as a robot. For more advanced robots, other sensors, such as color sensors, 

may be used for a robot to track its “front” robot. 

 

6.2 Models of the Robot Convoy System 

6.2.1 System Model 

Based on the above description, the model of this scalable robotic convoy system is 

developed as shown below: 
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Figure 6.1. System Model of the Scalable Robotic System 

 
As can be seen, this system includes N robots, which are modeled as DEVS coupled 

models. Among them Robot1 is the leader; Robotn is the ender; others are intermediate 
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robots. For each intermediate robot model, there are two input ports: FReadyIn, 

BReadyIn and two output ports: FReadyOut, BReadyOut. For the leader and ender robots, 

only one input port and one output port are needed. These ports are used to send and/or 

receive synchronization messages between robots and to pass moving parameters from a 

“front” robot to the “back” robot. The couplings between robots are shown in Figure 6.1. 

Basically, a robot’s output port FReadyOut is coupled to its “front” robot’s input port 

BReadyIn; a robot’s output port BReadyOut is coupled to its “back” robot’s input port 

FRedayIn. Note that for simplicity, we have used the same output port BReadyOut of a 

robot to pass both synchronization messages and moving parameters to its “back” robot. 

The “back” robot is responsible to parse the content of the messages received on port 

FReadyIn and to distinguish between these two situations. 

The structure of this system has the advantage that this system is not limited to any 

specific number of robots. In fact, any number of robots can be included into the system, 

and there is no need to change robots’ model when the number of robots in the system 

changes. 

 
6.2.2 Robot Model 

As mentioned above, each robot is modeled as a DEVS coupled model. Similar to the 

Robot model described in Chapter 5, the robot model is built based on Brooks’ 

Subsumption Architecture and is shown below: 

From the figure we can see that there are two components in the Robot model: Avoid 

model and Convoy model. Both of them are DEVS atomic models. The HWInterface 

activity is a DEVS activity started by the Avoid model. This activity acts as the 
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sensor/actuator hardware interface. As it basically shares the same role as that of the 

activity described in Chapter 5, readers can refer to Chapter 5 for this activity’s function 

and implementation. In this example, because the HWInterface activity belongs to the 

Avoid model, Convoy model’s moving commands are first sent to the Avoid model and 

then passed to HWInterface activity to drive the motors. Similarly, a moveComplete 

message returned from hardware is first sent to Avoid model and then passed to Convoy 

model. 

Avoid

Convoy

HWInterface activity
move

FReadyOutFReadyIn

moveComplete

moveComplete move

BReadyIn BReadyOut

FReadyOut

BReadyOut

FReadyIn

BReadyIn

Avoid

Convoy

HWInterface activity
move

FReadyOutFReadyIn

moveComplete

moveComplete move

BReadyIn BReadyOut

FReadyOut

BReadyOut

FReadyIn

BReadyIn

 

Figure 6.2. Robot Model 

 
The Avoid model controls a robot to move away if the robot collides with anything. To 

be more specific, in this example, the Avoid model continually checks the whiskers to see 

if any of them has been tripped. If front whiskers are tripped, the Avoid model moves the 

robot backward. If back whiskers are tripped, the Avoid model moves the robot forward. 

We treat the situation that whiskers are tripped as a reactive situation, so the robot 

responds to this situation with the highest priority. This means the avoid behavior cannot 

be inhibited by other tasks. 
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The Convoy model is fully responsible to control a robot to convoy in the team. 

Specifically, it has two roles: to move a robot so that it won’t lose its “front” robot, and to 

synchronize with its neighbor robots so they convoy in a synchronized way. For the first 

role, the model issues moving commands either based on infrared sensor data or based on 

the moving parameters received from its “front” robot. The “adjust process” is conducted 

after every movement. The input port moveComplete and output port move are used for 

this role. A message received in the moveComplete port means that a movement is 

completed. This message also contains infrared sensor data which indicate how far the 

robot is from an obstacle. Based on this data, the robot can decide how to move for the 

next step. For the second role of the Convoy model, input ports FReadyIn, BReadyIn and 

output ports FReadyOut, BReadyOut are used to pass synchronization messages between 

robots. As mentioned above, for simplicity, port BReadyOut is used to pass both 

synchronization message and moving parameters to a “back” robot. 

In this system, robots can be categorized into three types: the leader robot that only has 

a “back” robot, the ender robot that only has a “front” robot, and the intermediate robots 

that have both “front” and “back” robots. The leader robot conducts movement based on 

the distance data returned from its infrared sensors. It doesn’t need to make adjust 

movement. The ender and intermediate robots conduct movement based on the moving 

parameters sent from their “front” robots. If they are not in a desired position/direction 

after a movement, adjust movements are needed. Figure 6.3 shows the state diagrams of 

these three types of robots respectively.  
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(a) State diagram of the leader robot’s Convoy model 
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(b) State diagram of the ender robot’s Convoy model 
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(c) State diagram of the intermediate robots’ Convoy models 

 
 

 

Figure 6.3. State charts of robots’ Convoy models 
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From the figure we can see that the Convoy models of all robots goes through a basic 

cycle “move— waitForSendReady— sendReady— waitForReady— move”. This cycle 

guarantees that robots move in a synchronized way. Below let us use an intermediate 

robot as an example to walk through this cycle (as shown by Figure 6.3(c)). Assuming 

the Convoy model of this robot starts with an initial state waitForReady. It then goes to 

the move state after both FReadyIn and BReadyIn messages are received from its “front” 

and “back” robots (this means both of them are ready so this robot can move). In the 

move state, the model issues a moving command and then goes to the waitForSendReady 

state to wait for the moveComlete message returned from the hardware. If the 

moveComplete message is received and there is no need to adjust, the model goes to the 

sendReady state to send ready messages to its “front” and “back” robots, and then retunes 

to the waitForReady state to complete a cycle. Notice the difference among the 

conditions for a leader, ender, and intermediate robot to go from waitForReady state to 

move state. The leader only waits for the BReadyIn message; the ender only waits for the 

FReadyIn message; while an intermediate robot waits for both BReadyIn and FReadyIn 

messages. 

Figure 6.3 shows that normally the Convoy model of a robot (leader, ender, or 

intermediate robots) goes from the move state to waitForSendReady state. However, if 

the current movement is a rotation, the model goes to the waitForNextMove state. This is 

because rotation only changes the direction of a robot. The robot still stays at the same 

location. In this case, if a robot goes to the waitForSendReady state instead of the 

waitForNextMove state, it will eventually issue a “ready” message to its “back” robot. 
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This means the back robot may move forward thus causing a collision because this robot 

still stays at the same location. To avoid collision, the model goes to the 

waitForNextMove state whenever the current movement is rotation. 

Figure 6.3 also shows that an adjust state exist for the ender or intermediate robots. 

For these robots, whenever they reach the waitForSendReady state, they will wait for the 

moveComplete message returned from hardware and check the distance data contained in 

that message to decide if adjustment is needed or not. As mentioned above, the “adjust 

process” is used to make sure a robot still follows its “front” robot. If adjustment is 

needed, the model goes to the adjust state and issues an adjustment moving command to 

ask the robot to adjust its position or direction. This process continues until no further 

adjustment is needed. To be more specific, after every movement, a robot checks the 

distance data returned from its front infrared sensor. If the robot sees its “front” robot (the 

distance data is not infinite) but the distance is too far or too close, the robot makes 

forward or backward adjusting movement. If the robot cannot see its “front” robot, the 

commands in the adjustQ (shown below) are executed consecutively so that the robot 

turns left and right (the “scan process”) in order to find its “front” robot. Notice at the end 

of the queue, the robot returns to its initial direction and then moves forward 20 units. 

After that the robot executes commands starting from the beginning of the queue again. 

This “scan, then move, then scan” adjustment process continues until the robot finds its 

“front” robot. The adjustQ is shown below: 

public void setAdjustQ(){ 
  adjustQ.add("rotatecc_"+convoySpeed+"_"+6); //turn left 18 degree 
  adjustQ.add("rotatecw_"+convoySpeed+"_"+12); //turn right 36 degree 
  adjustQ.add("rotatecc_"+convoySpeed+"_"+18); //turn left 54 degree 
  adjustQ.add("rotatecw_"+convoySpeed+"_"+24); //turn right 72 degree 
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  adjustQ.add("rotatecc_"+convoySpeed+"_"+30); //turn left 90 degree 
  adjustQ.add("rotatecw_"+convoySpeed+"_"+36); //turn right 108 degree 
  adjustQ.add("rotatecc_"+convoySpeed+"_"+42); //turn left 126 degree 
  adjustQ.add("rotatecw_"+convoySpeed+"_"+48); //turn right 144 degree 
  adjustQ.add("rotatecc_"+convoySpeed+"_"+54); //turn left 162 degree 
  adjustQ.add("rotatecw_"+convoySpeed+"_"+60); //turn right 180 degree 
  adjustQ.add("rotatecw_"+convoySpeed+"_"+50); //turn right 150 degree 
  adjustQ.add("rotatecc_"+convoySpeed+"_"+40); //turn left 120 degree 
  adjustQ.add("rotatecc_"+convoySpeed+"_"+40); //turn left 120 degree to return to initial direction 
  adjustQ.add("forward_"+convoySpeed+"_"+20); //forward 20 
} 
 

6.3 Test the System in a Virtual Testing Environment 

To build a virtual testing environment, the Environment model and HWInterface 

abstractActivity are developed. The HWInterface abstractActivity is used by a robot to 

imitate HWInterface activity’s behavior and interface functions. As it is basically the 

same as the one described in Chapter 5, readers can refer to Chapter 5 for more details 

about it. The Environment model is used to model robots’ movement time, and to return 

sensor data (whisker sensor and infrared sensor) to the control models whenever a robot 

moves. The model is shown below: 
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Figure 6.4 Environment Model 

 
As can be seen, the Environment model includes the TimeManager models and the 

SpaceManager model. For each robot, there is a TimeManager corresponding to it. This 
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TimeManager models the time for a robot to finish a movement. This time is calculated 

based on the move distance and move speed. To account for variability in the real 

motion, a random number generator provides a source of additive noise. As each robot 

has its own TimeManager, a group of heterogeneous robots with different moving 

characteristics can be easily modeled.  

 The SpaceManager models the experimental floor space, including the dimension, 

shape and location of the field and moving and/or static objects. In this example, the 

robots are mobile so the SpaceManager needs to keep track of their (x,y) positions and 

moving directions during simulation. It does so whenever receives a moveComplete 

message from TimeManager. Such tracking is needed to predict when robots are in the 

line-of-sight or whisker-based collision relationships and thereby to supply them with the 

correct sensor data. Note that, when transferred to reality, such tracking is not necessary 

since robots encounter sensory situations in “situated” fashion. Similarly, to account for 

variability in the real motion, a random number generator provides a source of additive 

noise. In this example we have ignored the dynamic processes of a movement as we treat 

each movement as an atomic action so the positions and directions of robots are updated 

discretely.  

With these models, step-wise simulation methods are applied to test the robot models. 

These step-wise simulation methods include central simulation (fast-mode and real-time), 

distributed simulation, hardware-in-the-loop simulation, and real system test. More 

description about how these simulation methods are conducted can be found in Chapter 3 

and Chapter 5. Note that in central simulation, to account for network latency between 
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distributed robots, we use addCouplingWithDelay() to add couplings between robots. 

This method automatically inserts network delay models on robots’ coupling paths. In 

distributed simulation or real execution, this method is replaced by the regular 

addCoupling() method. By applying the addCouplingWithDelay() method, the model 

shown in Figure 6.1 is transformed into the model as shown in Figure 6.5. In this figure, 

the models with label D are the inserted network delay models.  
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Figure 6.5. Using network delay model in central simulation 

 
 To facilitate users to see how robots move in real time, a graphic user interface is 

provided so that users can easily see how the changes of the control logic may affect a 

robot’s behavior. Figure 6.6 shows two sample pictures captured from the graphic user 

interface during a central real time simulation. In this example, 10 robots are included. 

   

(a)      (b) 
Figure 6.6: 10 robots in central real time simulation 
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After test, the Robot models are deployed to the corresponding robots and executed by 

DEVS real time execution engines. Using the robots as shown in Figure 6.7, we have 

successfully developed and demonstrated a system with three robots (the fourth robot 

doesn’t work well).  We expect this system can be easily scaled up to include more 

robots.  

 

 

Figure 6.7: Real robots for demonstration 

 

6.4 A Study of Formation Coherence 

One of the advantages of a simulation-based virtual testing environment is that not 

only the correctness of a robot model can be tested, but also the performance of a system 

can be evaluated, and different control schemas can be tested and experimented easily. 

Using this simulation-based testing environment, we have studied the formation 

coherence of this convoy system.  

As mentioned before, due to the variance in real execution, a robot will not move the 

same distance and direction as it is asked to move. Thus after a movement, a robot will 

not reach the same position and direction (angle) as the desired position and direction. 

The difference between a robot’s real position and its desired position is affected by the 

variance of movement in real execution, which is modeled by the noises in simulation. 
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On the other hand, even though variance exists, the system can still conduct the convoy 

with some level of formation coherence. This is because an “adjust process” has been 

implemented that allows robots to adjust their positions/directions based on the feedback 

from its infrared sensors. Apparently the level of formation coherence is affected by the 

noises. Thus one interesting problem of this convoy system is to evaluate the formation 

coherence under the condition of a given set of noise factors.  

To study this problem, we added noises in robots’ movement during simulation. 

Specifically, we define the distance noise factor as the ratio of the maximum distance 

variance divided by the desired distance a robot is supposed to move; and the angle noise 

factor as the maximum angle variance for each movement. For example, a distance noise 

factor being 0.2 means there will be maximum plus minus 0.1*MovingDist variance if a 

robot moves MovingDist unit; an angle noise factor being 10 means a robot will have the 

maximum plus minus 5 degrees variance from its desired direction. These noise factors 

allow us to run simulations in a realistic way. Figure 6.8 shows four robots’ moving trails 

in an example system with distance noise factor set to 0.16 and angle noise factor set to 4. 

In this example, robots were put in an empty rectangle field surrounded by walls. There is 

no other object within this field. For analytic purpose, we set robot0’s noise factor and 

angle factor to 0, so robot0 (the leader) always moves in a perfect way. This allows us to 

easily calculate other robots’ desired positions for each moving step.  
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Figure 6.8: Moving trails of robots during a simulation 

 
We define the formation coherence of this convoy system as the fidelity of robots’ real 

positions to their desired positions (the positions where robots are supposed to be in a 

perfect environment). For this purpose, we define error ei(t) as the distance error 

(between real position and desired position) of robot i at time t. The total error E(t) is the 

sum of ei(t) of all robots. This total error E(t) is an indicator for the convoy system’s 

formation coherence (a precise mathematic formula may be defined such as defining 

formation coherence C (t) = 1- E(t)/K, where K is a constant reflecting the designer’s 

expectation). Figure 6.9 shows each robot’s error and their total error for the example 

system in Figure 6.8. 

Our study shows that under the current control schema (passing moving parameters 

backward, and applying “adjust process” after every movement), the more “behind” a 

robot’s position is, the more distance error that robot will have. For example, Figure 

6.9(a) clearly shows that robot3 has more distance error than robot1. On the other hand, 

the study also shows that, for a system with limited number of robots and small noise 
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factors, the formation of this convoy system is “coherent” in the sense that the total 

distance error of robots is always kept within a boundary. This is also showed by Figure 

6.9(b) to some extend. 

To further study how different control schemas may affect this convoy system’s 

formation coherence, we designed several other schemas and applied them to the system. 

For example, we noticed that a robot would sometimes miss its direct “front” robot 

(because the robot is not in its line-of-sight) and “see” its “front” robot’s “front” robot. In 

that case, under the first control schema the robot will move aggressively ahead trying to 

catch that robot. This causes disorder situations between robots. To solve this problem, 

we revised the control logic of the first schema and designed a new schema. In this new 

schema, if a robot “sees” a “front” robot far away, it will first scan around to check if 

there is other robot nearby. If there is, that robot should be the “front” robot. This schema 

had been tested in the virtual testing environment and showed improvement in system’s 

formation coherence. Other schemas have also been tested and experimented. For 

example, we tested a schema in which a robot will pass not only its regular moving 

parameters but also its adjustment moving parameters to its “back” robots. This allows 

the “back” robot to predict its “front” robot’s position more precisely and thus being able 

to make according pre-adjustment. 
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Figure 6.9: Position errors of the robotic convoy system 

 

Using simulations to study the problem of formation coherence also gives us the 

insight that from the system design point of view, the formation coherence obtained via 

simulation can actually act as a criterion to help designers to design or to choose the 

sensor/actuators hardware of the system. For example, by running multiple simulations 

with different configurations, we detected that the system’s formation coherence is not 

sensitive to robots’ infrared sensor data (due to the “adjust process” after every 

movement). Even we added large noises into the infrared sensor data, the system can still 

conduct a “coherent” convoy (this is true for a system with a small number of robots). 

This feature that is obtained via simulation-based study implies that there is no need to 
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equip robots with advanced (thus costly) infrared sensors, because robots will conduct 

“coherent” convoy even with “bad” infrared sensor data.  

sensor noise

distance error
(formation coherence)

tolerance threshold

maximally acceptable
noise level determines 
sensor requirements  

Figure 6.10: Formation coherence as criteria for sensor capabilities obtained via simulation 

 
Following this idea, we can further use simulation to study the relationship between 

formation coherence and sensor’s noises, and then use formation coherence as a criteria 

to determine sensors’ requirements. This is shown in Figure 6.10. As shown in the figure, 

the error of formation coherence increases when the noise factor of sensors increases. As 

the error of formation coherence reaches the tolerance threshold (which is a design 

criteria provided by the users), this is the point where the maximum sensor noise level 

can be accepted. Thus with simulation-based study, we can use formation coherence of 

this convoy system as a criterion to determine sensors’ requirements. Similar study can 

also be conducted to determine actuators or other components of the system to be 

designed. 
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CHAPTER 7 

A HIGH PERFORMANCE SIMULATION ENGINE FOR 
LARGE-SCALE SYSTEMS 

 

7.1 Simulation of large-scale systems 

Today’s real-time embedded systems are more and more networked together to form 

large-scale networked systems. For example, the Warfighter Information Network (WIN) 

in DOD would include thousands or even tens of thousands communication devices to 

provides command, control, communications, computers, intelligence, surveillance and 

reconnaissance (C4ISR) support capabilities [FAS]. For this kind of large-scale systems, 

the multitude of proposed solutions at each software and hardware layer has led to 

explosions in possible design choices. The size of these systems makes experimentation 

and measurement prior to deployment impossible, yet the risk of deploying the new 

technologies in critical situations require assurance that they will work. To handle the 

scalability of these systems and to provide insights to help the designers make 

appropriate design choices, simulation technologies are frequently applied. 

Simulation-based study of large-scale systems requires high performance simulation 

environments. Usually parallel or distributed simulation technologies are applied to 

achieve this [Man03], [Lok99] [Par03]. In the meantime, there is also considerable 

research work to enhance the implementation of simulation environments to achieve 

performance improvement. One of such work is recently presented in [Ste03] that is 

based on the Joint MEASURE simulation environment developed at Lockheed Martin.  
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This chapter presents our work of a high performance simulation engine for large-

scale cellular models. The cellular automata paradigm defines a grid of cells using 

discrete variables for time, space and system states [Wol86]. The cells are updated 

according with a local rule function that uses a finite set of nearby cells (called the 

neighborhood of the cell). Cellular DEVS models have been developed to model and 

simulate various phenomena such as fire spreading [Muz02, Bit03], traffic control 

[Dav00], etc. 

This new simulation engine that we developed improves simulation performance for 

large-scale cellular models from two sources that are based on the qualities of cellular 

space models. First, based on the observation that usually only a small portion of cells in 

a cell-space model is active (performing state changing) at any given time, this new 

simulation engine considers only those active cells during simulation. This enhances 

simulation performance compared with simulations that are based on cellular automata in 

which all cells perform computations and message exchange at every time step. This is 

also the approach taken by [Ame01] and [Muz02]. Second, in a cell space model, the 

active cells are typically locally clustered. This is because cells are coupled to their 

neighbors so the state change of one cell will first directly affect its neighbors. Based on 

this observation, a new data structure that retains cells’ spatial information and thus takes 

advantage of the localized activities of cellular space models is developed to increase 

simulation performance. With this data structure, search of the active cells can be 

arbitrarily faster in cellular space models where the number of cells increases but the 

number of active cells remains the same.  
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The following chapter describes this new simulation engine and the data structure it 

employs. To set the stage, we first review the standard DEVS simulation protocol as 

implemented by the coordinator in DEVSJAVA [DEVJ]. Then we propose an improved 

simulation engine that is based on the standard coordinator. With this background, we 

proceed to describe the new simulation engine, oneDCoord as implemented in 

DEVSJAVA, and its minSelTree data structure. After that, we analyze the performance of 

these simulation engines. Finally, two examples are presented to demonstrate the 

performance improvement of the new simulation engine as compared to the standard 

coordinator.  

It is worthy to mention that although this simulation engine is developed for cellular 

space models, it can also be applied to other large-scale simulations such as the 

simulation of swarm intelligence that could include thousands of mini robots; or the 

simulation of distributed networks that contain a large number of network nodes.  

 

7.2 The Standard DEVS Simulation Protocol 

In a DEVS-based simulation environment such as DEVSJAVA, a coordinator is 

assigned to a coupled model and simulators are assigned to each component. Figure 7.1 

shows the simulation of a coupled model with three components. 

The simulation of DEVS models moves forward cyclically based on the time of next 

event, denoted by tN, which is updated by component models’ state transition functions. 

In the standard DEVS simulation protocol, the coordinator is responsible for stepping 

simulators through the cycle of activities as shown in Figure 7.1. Specifically in the 
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DEVSJAVA simulation environment, the simulation protocol in each simulation cycle 

looks similar as below: 

simulators.AskAll(“nextTN”) 
tN = compareAndFindTN(); 
simulators.tellAll("computeOut“,tN) 
simulators.tellAll("sendOut") 
simulators.tellAll("ApplyDelt“,tN) 
 

coordinator

simulator
tN

After each transition
tN = t + ta(), tL = t

simulator

Component

tN

tN.  tL

Coupled
Model

1   nextTN

2. outTN
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4 sendOut6  applyDelt

5. putOut
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tN.  tL

coordinator
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Component
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Figure 7.1: The Standard DEVS Simulation Protocol 

 
A detailed description of how the coordinator and simulators step through a simulation 

cycle is given below: 

1. Coordinator sends nextTN to request tN from each of the simulators. 

2. All the simulators reply with their tNs in the outTN message to the coordinator. 

The coordinator compares these tNs and finds the minimum. 

3. Coordinator sends to each simulator a computeOut message containing the global 

tN (the minimum of the tNs). Each simulator checks if it is imminent (its tN = 

global tN) and if so, computes the output message of its model. Otherwise an 

empty message is generated. 



 

 

181

4. Coordinator sends to each simulator a sendOut message. 

5. Based on the coupling specification, each simulator responses by putting its 

output message (if it is not empty) to the destination simulators. 

6. Coordinator sends to each simulator an applyDelt message containing the global 

tN. Each simulator reacts to the applyDelt message as below:   

• If it is imminent and its input message is empty, then it invokes its model’s 

internal transition function 

• If it is imminent and its input message is not empty, it invokes its model’s 

confluence transition function 

• If is not imminent and its input message is not empty, it invokes its model’s 

external transition function 

• If is not imminent and its input message is empty then nothing happens. 

 

This simulation protocol follows closely with the semantic of DEVS models. Thus it is 

easy to be understood and implemented. However, it tends to result in slow simulation 

speed for models that have a large number of components. This is because in every 

simulation cycle, all the simulators, no matter they are imminent or not, have to go 

through the simulation steps as described above. To overcome this shortcoming, an 

improved simulation engine can be proposed. This simulation engine uses a Heap data 

structure to sort and find imminents and then only those imminents are asked to go 

through the simulation cycle.  
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7.3 A Proposed Improved Simulation Engine 

This proposed simulation engine (not implemented by DEVSJAVA) implements a 

heap to keep track of the smallest tNs of its component simulators. During simulation, 

each active simulator removes and inserts its tN in the heap. So the smallest tN and 

imminents can be found from the root of the heap. 

Using a heap to keep track of the tNs and imminents, the simulation protocol of this 

proposed simulation engine in each simulation cycle is shown below: 

tN = Heap.getMin() 
imminents = Heap.getImms() 
imminents.tellAll("computeOut“,tN) 
imminents.tellAll("sendOut") 
imminents = imminents.addAll(influencees) 
imminents.tellAll("ApplyDelt“,tN) 
imminents.tellAll(“updateHeap”) 
 
 

In every simulation cycle, the simulation engine fist gets the smallest tN and the 

imminents from the heap. With the smallest tN and imminents in hand, the simulation 

engine then sends out the computeOut and sendOut messages to imminents. The sendOut 

message will trigger imminents to put their output messages to their destination 

simulators, which are called influences. The influences, like the imminents, need to 

execute their state transition functions. Thus before executing 

imminents.tellAll("ApplyDelt“,tN), the coordinator adds those influences into imminents 

by executing imminents = imminents.addAll(influencees). At the end of the iteration, the 

coordinator asks all imminents to update their newest tNs in the heap to prepare for the 

next simulation iteration. 
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Generally speaking, the update process where each active simulator removes and 

inserts its tN in the heap has computation complexity O(n*log2N) (n is the number of 

imminents in the simulation cycle; N is the total number of cells). For large-scale cellular 

models with small number of imminents (n<<N), this proposed simulation engine has 

computation complexity at the magnitude of log2N, thus resulting in considerable 

performance improvement. 

Based on this proposed simulation engine, a new simulation engine, the oneDCoord in 

DEVSJAVA environment, is developed. This new simulation engine not only keeps track 

of the imminents and asks only the imminents to go through a simulation cycle, but also 

implements a the minSelTree data structure to allow efficient search of the imminents. 

 

7.4 The New Simulation Engine and Its Data Structure 

7.4.1 The Simulation Protocol 

The simulation protocol of this new simulation engine is similar to the proposed 

simulation engine as described above. The only difference is that a new data structure 

minSelTree is developed to replaces the heap for keeping track of tNs and imminents. 

Below is the simulation protocol of this simulation engine. 

tN = minSelTree.getMin() 
imminents = minSelTree.getImms() 
imminents.tellAll("computeOut“,tN) 
imminents.tellAll("sendOut") 
imminents = imminents.addAll(influencees) 
imminents.tellAll("ApplyDelt“,tN) 
imminents.tellAll(“sendTNUp”) 
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As can be seen, in every simulation cycle, the new simulation engine first gets the 

smallest tN and imminents by executing minSelTree.getMin() and minSelTree.getImms() 

respectively. Then similar to the description above, only the imminents (and influences) 

go through the simulation cycle. The last step in the simulation cycle is to ask all 

imminents to send their newest tNs to the minSelTree so the information kept there is 

updated timely. This is to prepare for the next simulation iteration. 

 

7.4.2 The minSelTree Data Structure 

The minSelTree data structure is the essential part of this new simulation engine to 

keep track of tNs and imminents. It is a complete tree, which means each leaf node of this 

tree data structure has the same “distance” from the root. The minSelTree is constructed 

in such a way that for each cell in the model, there is a leaf node of minSelTree 

corresponding to it. To retain a cell’s spatial information in minSelTree, the cell’s ID is 

used as a reference to assign a leaf node to the cell. As adjacent cells have adjacent IDs, 

their corresponding minSelTree nodes will sit adjacently in the minSelTree too. The 

minSelTree is set up during initialization of the simulation based on the total number of 

cells and the base of the tree, which means the number of children of each internal node 

and is provided by the user. The formula below shows the relationship among the number 

of cells N, the base b and the height h (distance from leaf to the root) of the minSelTree.   

h = ceiling( logbN ) 

 
Figure 7.2 shows the relationship among the models, simulators, and the minSelTree 

data structure. Here we assume the model to be simulated is a one-dimension cellular 
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space model with n cells. These cells have IDs from 1 to n based on their positions in the 

cellular space. From Figure 7.2 we can see that for each cell, there is a simulator 

oneDSim assigned to it; for each simulator, there is a leaf node of minSelTree 

corresponding to it. Thus a cell, its simulator, and the minSelTree leaf node form one to 

one relationship to each other. Among them, the simulator has access to both the cell and 

the leaf node. Figure 7.2 also shows that the coordinator oneDCoord has access to the 

root node of minSelTree.  
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Figure 7.2. Model, simulator, and the minSelTree 
 
 

During simulation, a simulator oneDSim is responsible to drive the simulation of its 

cell model and to update the new tN to the corresponding leaf node of minSelTree. The 

leaf node then sends this tN up to its parent node, which compares this tN with the tNs of 

other children and selects the smallest ones to send up. This “send up” process continues 

until the root node is reached. Note that the information that is sent up includes not only 

the smallest tN, but also the references of those simulators which hold that tN. Because 

each node selects the smallest tN and the imminent simulators to send up, after this 
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recursive “send up” process ends, the root node has the global minimum of tNs and the 

references for all the imminent simulators. The coordinator oneDCoord can then access 

the root node of minSelTree and easily gets that information.  

To make this process feasible, each node of the minSelTree keeps track of its 

children’s tN and imminent simulators (A leaf node keeps track of its own tN and itself as 

the imminent simulator). Specifically, each node of minSelTree has a variable 

minEnvironment, which is a table storing information in the following format: 

(childName, Pair(imminents, tN ) ). The childName is the name of a child node. The tN is 

the child node’s tN and the imminents is a set containing the references for all the 

simulators holding that tN. The imminents and tN are encapsulated into a Pair. With this 

information stored in minEnvironment, a node can find its tN (the smallest tN among its 

children) and the references for the simulators holding that tN by executing the following 

whichMin() method: 

public Pair whichMin(){   // find the imminents and tN 
   double timeGranule = .000001; 

 ensembleSet imminents = new ensembleSet(); 
 double min = POSITIVE_INFINITY; 
 while(minEnvironment.hasNext()) { 

      Pair p = (Pair) minEnvironment.next(); //name, Pair 
      Pair pp = (Pair)p.getValue(); //imms, tN 
      double tN = pp.getValue();  // get tN 
      if (Math.abs(tN - min)< timeGranule) imminents.addAll((ensembleSet)pp.getKey()); 
      else if (tN < min){ 
       imminents = new ensembleSet(); 
       min = tN; 
       imminents.addAll((ensembleSet)pp.getKey()); 
      } 
   } 

 return new Pair(imminents, min); 
   } 
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This method compares all tNs stored in minEnvironment and selects the smallest one. 

In the meantime, it adds the simulators that hold the smallest tN into the imminents set. 

The method returns a new pair that contains the imminents and the smallest tN. Notice 

that a variable timeGranule is used to specify the smallest time unit in simulation. Events 

that happen inside the same timeGranule are considered happened at the same time. 

The information stored in minSelTree needs to be updated continuously when 

simulation proceeds. This is accomplished by executing imminents.tellAll(“sendTNUp”) 

at the end of each simulation iteration. This step asks all imminent simulators to update 

their new tNs to their corresponding leaf nodes. As mentioned before, the update of a new 

tN triggers a recursive “send up” process until the root node is reached. During this 

process, each node finds the smallest tN among its children (by executing the whichMin() 

method) and sends that information up.  

In a cellular space model, cells are coupled to their neighbors. Thus it’s typical that a 

cell and its neighbors change their states at the same time. For example, in Figure 7.2, 

cell ci-1, ci, and ci+1 may all change their states at the same time and have new tNs. If the 

leaf nodes for these cells send their tNs up independently, each of them will trigger a 

“send up” path to the root node Nroot. Apparently this is inefficient as these nodes actually 

share the same parent Np (because the cells are adjacent in the cellular space model). 

Thus the “send up” paths behind node Np can be combined into one path. By combining 

several “send up” paths into one path, the minSelTree nodes on that path only need to 

execute the whichMin() once instead of multiple times. Notice that this improvement 

actually shows how the new coordinator takes advantage of the fact that activities of 
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cellular models usually happen locally. Because the spatial information of cells is 

retained in minSelTree, a cell and its neighbors’ nodes will share the same parent in 

minSelTree. Thus their “send-up” paths can be bundled together, which results in 

performance improvement. The code listed below shows how a minSelTree node 

implements the sendUp() method.  

public void sendUp (String nm,Pair p){ 
  minEnvironment.setPair(nm,p); 
  receivedImmi++; 
  if(receivedImmi== expectedImmi){ 
      receivedImmi=0; //reset the value for the next cycle 
      expectedImmi =0; //reset the value for the next cycle 
      whichMin = whichMin(); 
      if (!root) parent.sendUp(myName,whichMin); 
  } 
} 

 
 

As can be seen, this sendUp() process is a recursive process. It continues until the root 

node is reached. When receiving an update from a child node, the method first updates 

the node’s minEnvironment variable. Then it increases receivedImmi and checks if 

receivedImmi equals expectedImmi. The two variables expectedImmi and receivedImmi 

are used to guarantee that only one “send up” path is invoked. Only when receivedImmi 

equals expectedImmi, which means the node has got all expected update from its 

children, does the method executes the whichMin() to find the smallest tN and then calls 

sendUp()to send this information up. The variable expectedImmi, meaning how many 

update a node expects from its children, is set by the informChange() method as shown 

below.  

public void  informChange(){ 
  if(expectedImmi ==0&&!root)  
   parent.informChange();  // inform change only once 
  expectedImmi ++; 
} 
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Whenever a cell changes its state and has a new tN, its simulator calls the 

corresponding leaf node’s informChange() method, which will increase the expectedImmi 

of that node. This method also makes sure that the parent’s informChange() method will 

only be called once. Using the system shown in Figure 7.2 as an example, if cell ci-1, ci, 

and ci+1 all change their states, the expectedImmi of node Np is 3; the expectedImmi of 

node Np’s parent node is 1 (assuming there are no other cells changing their states). 

 

7.4.3 Building minSelTree for two-dimension cellular space models 

The model given in Figure 7.2 is a one-dimension cellular space model. In a two-

dimension cellular space model, cells have neighbors not only along the x dimension but 

also along the y dimension as shown in Figure 7.3. 

B1 B2
……

…… ……

x

y

B1 B2
……

…… ……

x

y

 

Figure 7.3. A two-dimension cellular space model 

 
To construct minSelTree for a two-dimension cellular space model, one way is to 

assign consecutive IDs to all the cells row by row, thus treating the two-dimension 

cellular space model as a one-dimension model. However, this approach results in the 

situation that cells are clustered (having nearby IDs) in only one dimension. To take good 

advantage of localized activities of cellular models, it is desirable that cells are clustered 
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in two dimensions. Thus in our implementation, we assign cells’ IDs based on blocks as 

shown in Figure 7.3. All cells inside one block belong to one parent in the minSelTree. 

The resulting minSelTree is a little bit different from the one discussed before. In the tree 

for one-dimension cellular space models, each internal node of the tree has b children (b 

is the base of the tree). For the new minSelTree, it is the same situation except that the 

bottom nodes have BXs*BYs children (BXs and BYs denote the size of a block). Notice 

that the previous situation is actually a special case of this new one with BXs=base and 

BYs=1. 

 

7.5 Performance Analysis 

Compared to the original coordinator with the basic simulation protocol, there are two 

sources of speed up of the new simulation engines. One is the keeping track of imminents 

so only the imminent cells will be considered in every simulation cycle. The other is the 

efficient smallest tN search. Below we analyze the performance of these simulation 

engines by considering two extreme cases: only one cell is imminent in a simulation 

iteration, and all cells are imminent in a simulation iteration. For simplicity, we only 

consider the computation complexity of finding the smallest tN. Let us assume there are 

N cells in the cellular space model.  

For the coordinator with the basic simulation protocol, all simulators are asked to send 

their tNs to the coordinator. Then the coordinator compares and selects the minimum 

among these N tNs. Thus the computation complexity is O(N), which is independent of 

the number of imminent cells.  
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For the coordinator with heap implementation, each imminent simulator removes and 

inserts its tN in the heap. Then the smallest tN is found by getting the value of the top of 

the heap. If only one cell is imminent, only one simulator needs to updates its tN in the 

heap, which takes computation complexity O(log2N). If all cells are imminent, all 

simulators need to remove and insert their tNs in the heap, resulting in computation 

complexity O(N*log2N). 

For the new coordinator with minSelTree, the height of the tree h = ceil( logbN ) (b is 

the base of this tree). If only one cell is imminent, only one simulator will update its new 

tN on the leaf node of minSelTree. Thus only one “send-up” path, which has h nodes in 

the path, will be generated. Along this path, each node executes whichMin() method to 

compare and select the minimum tN among b children. This results in computation 

complexity O(h*b) = O( b* logbN ). If all cells are imminent, all simulators will update 

their new tNs on their leaf nodes of minSelTree. As a result, all nodes in the minSelTree 

will be involved in the “send up” process. On the other hand, even a node’s sendUp() 

method will be called multiple times, the whichMin() method will only be executed once. 

Assume the total number of nodes of minSelTree is T (exclude the leaves of the tree), 

then the computation complexity is O(T*b). For a complete tree with N leaves, T=(N-

1)/(b-1). This results in computation complexity O(T*b) = O( (N-1)*b/(b-1) ) = O(N). 

The above analysis shows that when all simulators are imminents, both the new 

simulation engine and the coordinator have computation complexity O(N), which is 

better than O(N*log2N`), the complexity of the proposed simulation engine. However, 

when only one simulator is imminent, the proposed simulation engine has computation 
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complexity O(log2N), which is close to the performance of the new simulation engine 

O(logbN) and better than the performance of coordinator. To further compare the new 

simulation engine with minSelTree and the proposed simulation engine with heap 

implementation, let’s consider another example. E.g., let N = b*b for a two-level 

minSelTree and let there be b imminent cells within one block (this means the leaf nodes 

of these cells share the same parent). Considering only the computation required by 

comparisons, the new coordinator takes 2b. And the heap implementation takes blog2N = 

blog2(b*b) = 2blog2b, while the old coordinator takes b*b. The utilization of localized 

activity is clear here: 2b vs 2blog2b. The extra log2b part is due to the full reordering 

that the heap implementation does for every replacement. 

 

7.6 Examples and Test Data 

This section describes the simulation of two examples to compare the simulation 

performance of the new simulation engine and the standard coordinator. The first 

example is a one-dimension cell-space model that models the phenomenon of diffusion. 

The second example is two-dimension cell-space model that models the phenomenon of 

fire spreading. For each example, a brief description of the model is given and then the 

simulation data of the two simulators is provided. 

 

7.6.1 Simulation of a Diffusion Model 

Diffusion is a common phenomenon that has been studied using simulation methods. 

In this example (the diffuse2ndOrdCellSpace model in DEVSJAVA environment), a heat 
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diffusion problem is modeled as a one-dimensional cell-space model with each cell 

coupled to its left and right neighbors (except the boundary cells). Each cell holds its 

current temperature and will gradually change to the desired temperature, which is 

defined as the average of the left and right cells’ temperatures. The speed of temperature 

change is determined by the difference between a cell’s desired temperature and its 

current one. For each cell, a quantum is provided so a cell will update itself and inform its 

neighbors only when the change of temperature reaches the quantum size. With this 

approach, each cell can calculate its time advance for the next update based on the 

quantum and the speed of temperature change.  

 
Table 7.1: Comparison of the two simulation engines when simulating a one-dimensional diffusion model 

number of cells 50 100 500 1000 

coordinator 29.592 54.448 272.712 542.721 

oneDCoord (base = 6) 7.221 7.24 8.222 8.432 

speedup  
(coordinator time/oneDCoord time) 4.098047 7.520442 33.16857 64.36444 
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Figure 7.4: Simulation time of coordinator and oneDcoord 

 
Table 7.1 shows the time (in seconds) of simulating this diffusion model with different 

number of cells using the standard coordinator and the new simulation engine 
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respectively. For each simulation running, the quantum is defined as 0.1, and the number 

of simulation iterations is 10000. The simulations were run on a laptop with Intel 

Pentium IV 1.7GHZ processor, 256M memory, and Windows 2000 OS. 

Table 7.1 clearly shows that the simulation speed of the new simulation engine is 

better than that of the coordinator. It also shows that as the number of cells increase, the 

simulation time of coordinator linearly increases too. However, the simulation time of 

oneDCoord only increases slightly (as shown in Figure 7.4). This is because in this 

example, the increase of cells does not affect the number of imminents in every 

simulation cycle. As a matter of fact, the number of imminents remains 1 or 2 in this 

example as the total number of cells increases. 

 

7.6.2 Simulation of a Fire Spreading Model 

This example describes a dynamic forest fire spread model, which is based on the 

work of [Bit03]. In this model, a forest is modeled as a two-dimensional cell-space 

composed of individual forest cells coupled together according to their relative physical 

geometric locations. Each cell is modeled in the same way as that of [Vas93], [Ame01]. 

Specifically, each cell has the following six states: unburned, burning, burned, unburned-

wet, burning-wet, and burned-wet. Conditions and rules are defined to govern the state 

transition of a cell. In the two-dimensional cell space model, each cell has eight neighbor 

cells N, NE, E, SE, S, SW, W, and NW except the boundary cells. Accordingly, for each 

cell, fixed fire spreading directions along these eight directions are defined. Fire spread in 

each cell is modeled using Rothermel’s [Rot72] stationary model. During simulation, the 
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behavior of a burning cell can be influenced by external inputs from neighboring cells as 

well as changes in weather conditions. In addition, uncertainty is incorporated in the 

model by allowing certain critical parameters to be sampled from arbitrary probability 

distributions during the simulation run. A detained description of this model can be found 

in [Bit03]. 

Table 7.2 shows the time (in seconds) of simulating the fire spread model with 

different number of cells using the standard coordinator and the new simulation engine 

respectively. For each simulation running, the number of simulation iterations is 7200.  

The simulations were run on a laptop with Intel Pentium IV 1.7GHZ processor, 256M 

memory, and Windows 2000 OS. Again, Table 2 clearly shows the advantage of the new 

simulation engine (with average speedup between 18 and 20 as shown in Table 7.2). 

Table 7.2: Comparison of the two simulation engines when simulating a two-dimensional fire spread model 

Number of cells 30x30 (900) 34x34 (1156) 40x40 (1600) 

coordinator 356.293 471.258 681.951 

oneDCoord (base = 6) 19.388 23.924 36.002 

speedup  
(coordinator time/oneDCoord time) 18.37699 19.69813 18.94203 
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CHAPTER 8 

CONCLUSION AND FUTURE WORKS 

 

8.1 Conclusions 

Powered by the rapid advance of computer, network, and sensor/actuator technologies, 

real-time embedded systems are more and more networked together and have 

increasingly complicated behavior and structures. The combination of temporal 

requirements, concurrent environmental entities, and high reliability requirements, 

together with distributed processing make the software to control these systems 

extremely hard to design and difficult to verify. As a result, the software development of 

these systems, which mainly focused on low-level coding and programming in the past, is 

being rapidly shifted to involve high-level modeling techniques and software design and 

verification methods.  

In this dissertation we have developed a simulation-based software development 

methodology to manage the complexity of developing distributed real-time software. 

This methodology, based on the discrete event system specification (DEVS), overcomes 

the “incoherence problem” between the design and implementation stages by 

emphasizing “model continuity” through the development process. Specifically, the 

methodology allows the same designed control models to be tested and analyzed by 

simulation methods and then easily deployed to the distributed target system for 

execution. To achieve this, we clearly separate a system’s sensor/actuators interfaces 
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from its control model, which is the main design and test interest. During the process, 

virtual sensors/actuators are developed for simulation-based test, and then replaced by 

real sensors/actuators during real system execution. By restricting virtual 

sensors/actuators to sharing the same interface functions with their corresponding real 

sensors/actuators, the continuity of the control models is supported from simulation-

based design to real system execution. 

The methodology employs simulation-based methods to test the software under 

development. Specifically, to improve the traditional software testing process where real-

time embedded software needs to be hooked up with real sensor/actuators and placed in a 

physical environment for system-level test and analysis, we developed a virtual testing 

environment that allows software to be effectively simulated and tested in a virtual 

environment, using virtual sensor/actuators. Within this environment, we developed a 

stepwise simulation-based test process so that different aspects of a real-time software 

system can be tested and analyzed incrementally. 

One important aspect of developing real-time software is to capture a system’s 

behavior, structure, and timeliness in an effective way. Our research shows that DEVS 

models, which are based on formal systems theory, provide a natural and effective way to 

model distributed real-time systems’ structure, dynamic behavior, and timeliness. For 

real-time systems, activity has been developed to allow models to interact with an 

external environment. Furthermore, variable structure modeling capability is developed 

and implemented so that dynamic reconfiguration of real-time systems can be modeled 

naturally. Within this DEVS modeling, simulation, and real-time execution framework, 



 

 

198

models can be developed, simulated/tested by simulation methods, and then executed in a 

distributed environment.  

Based on the proposed methodology, we have developed a design and test 

environment for distributed autonomous robotic systems, which form an interesting class 

of real-time systems. In particular, our work on “robot-in-the-loop” simulation allows 

real and virtual subsystems to work together for a meaningful system-wide test. For 

example, when developing a robotic system that includes hundreds of mini mobile robots, 

one or several real robots can be tested and experimented with other hundreds of virtual 

robots that are simulated on computers. With the help of this environment, we have 

successfully developed and investigated several distributed robotic systems. One of them 

is a “dynamic team formation” system in which mobile robots search for each other, and 

then form a team dynamically through self-organization. Another system is a scalable 

robot convoy system in which robots convoy and maintain a line formation in a 

coordinated way.  

Another issue that arises when applying simulation methods to study and test large-

scale real-time systems is the performance of the underline simulation engine. By 

studying this problem in the context of cellular space models, we developed a new 

simulation engine. Compared to the standard coordinator, this simulation engine 

speedups the simulation from two sources. First, it only considers the active cells during 

simulation. This is based on the observation that usually only a small number of cells are 

active (performing state changing) at any given time, even though the total number of 

cells may be very large. Second, it implements a data structure that allows efficient 
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search of the active cells which can be arbitrarily faster in cellular space models where 

the number of cells increases but the number of active cells remains the same. 

Performance analysis and two examples are provided in the dissertation to demonstrate 

the efficiency of the new simulation engine. 

 

8.2 Future Work 

This research has established a framework for distributed real-time software 

development. In the meantime, it also opens up several future research directions. Some 

of these directions are listed below. 

First, while the current research has mainly focused on the continuity from simulation-

based design to real software execution, it does not specifically address the problem of 

how to start from a system’s requirements in a methodological way and then go to the 

design stage, where DEVS models are developed. This can be enhanced by integrating 

techniques from object-oriented development such as UML use case analysis, sequence 

diagrams, etc. A more interesting work would be to integrate these techniques, together 

with systems theory concepts that DEVS supports, into the model continuity process that 

we have developed. The importance of having a systems theory-based design process has 

been documented in [Pau03], [Pre01]. For example, [Pre01] presented a system-centered 

use cases-driven design approach. Integrating these systems concepts such as system 

specification at different abstraction levels, hierarchical decomposition, system-centered 

use cases, etc. into software design holds the potential to reach more systematic and 

effective design approaches for complex software-intensive systems. 
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Another future research that will benefit system test is to conduct further research on 

the simulation-based virtual testing environment. For example, our current research has 

adopted hardware-in-the-loop simulation as a test step. While hardware-in-the-loop 

simulation focuses on including a piece of hardware into a testing loop, this idea can be 

further extended to the system level to form system-in-the-loop simulation (such as robot-

in-the-loop simulation), which allow a real system to interact with a virtual environment 

that is simulated by computers. In fact, our work on the virtual testing environment and 

stepwise simulation-based methods has obscured the boundary between a real system and 

the virtual environment. This kind of seamless integration of a real system an a virtual 

environment will find more and more future applications as simulation technologies 

advance. 

Following the direction of system test, more research can be conducted for simulation-

based test. We know that for simulation-based test, the quality of input test data is very 

important. A good set of test data should provide a complete functional coverage of the 

system. Thus one of a future research topic is to study automatic test case generation. For 

example, given the state-space of a model, how to generate test cases automatically for 

simulation-based test. This may also imply that there is a need to integrate simulation-

based test methods with formal methods such as model checking, etc. 

From the robotic application point of view, our current work on distributed robotic 

design and test can be extended into a more advanced integrated development 

environment where a generic repository of models for robot control, robot hardware, and 

the real physical world can be used for specifying autonomous mobile robots. This 
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developing environment should include an advanced world model that allows virtual 

environment to be dynamically generated for simulation. Furthermore, it should support 

the development of robotic systems at all development phases. For example, it may 

support non-embodied simulation for the purpose of analysis and prototyping; embodied 

sensor-based simulation for the purpose of design and control logic test; and “robot-in-

the-loop” simulation for the purpose of real system test. 

Finally, for dynamic reconfiguration of software systems, we have developed variable 

structure modeling capability. Future research can be conducted to study dynamic 

reconfiguration in a more general view, and especially, to investigate how software 

reconfiguration may affect system dependability and reliability. 

 

 

 

 

 

 

 

 

 

 

 

 



 

 

202

REFERENCES 

 

[Alu94] R. Alur and D.L. Dill, A theory of timed automata, Theoretical Computer 
Science 126, 183-235, 1994 

[Ame01] J. Ameghino, A. Tróccoli, G. Wainer. "Models of Complex Physical Systems 
using Cell-DEVS", Proceedings of the Annual Simulation Symposium, Seattle, 
Washington, 2001. 

[Ant00] G. Antoniol, B. Caprile, A. Potrich, P. Tonella, “Design-code traceability for 
object-oriented systems”. Annals of Software Engineering vol. 9: 35-58 (2000) 

[Avi75]  Avizienis A., Fault Tolerance and Fault Intolerance: Complementary Approaches to Reliable 
Computing, ACM SIGPLAN Notices, Vol. 10, No. 6, pp. 458-464, June 1975 

[Avi76]  Avizienis A., Fault tolerant systems, IEEE Transactions on Computers, Vol. C-25, No.12, pp. 
1304-1312, 1976 

[Bag91] R. L. Bagrodia, C. Shen, “MIDAS: integrated design and simulation of distributed systems”, 
Software Engineering, IEEE Transactions on, Volume: 17 , Issue: 10 , Oct. 1991 

[Bal00] Balch, T.; Hybinette, M.: Social potentials for scalable multi-robot formations. 
Robotics and Automation, 2000. Proceedings. ICRA '00. IEEE International 
Conference on , Volume: 1 , 2000 Page(s): 73 -80 vol.1 

[Bal98] Balch, T.; Arkin, R.C.: Behavior-based formation control for multirobot teams. 
Robotics and Automation, IEEE Transactions on, Volume: 14 Issue: 6, Dec. 
1998 Page(s): 926 -939 

[Bar94] Barros, F.J.; Mendes, M.T.; Zeigler, B.P., "Variable DEVS-variable structure 
modeling formalism: an adaptive computer architecture application". 
'Distributed Interactive Simulation Environments'., Proceedings of the Fifth 
Annual Conference on , 7-9 Dec 1994 Page(s): 185 -191 

[Bar97a] Barros, F.J. and B.P. Zeigler, "Adaptive Queueing: A Case Study Using 
Dynamic Structure DEVS". International Trans. in Oper. Res., 1997. Vol. 4, No. 
2, pp 87-98 

[Bar97b] Barros. F.J. "Modeling Formalisms for Dynamic Structure Systems". ACM 
Transactions on Modeling and Computer Simulation, Vol. 7, No. 4, 501-515, 
1997 

[Ben91] Benveniste, A.; Berry, G.; The synchronous approach to reactive and real-time 
systems Proceedings of the IEEE , Volume: 79 Issue: 9 , Sept. 1991 

[Bit03] Bithika Khargharia1, Salim Hariri1, Manish Parashar2, Lewis Ntaimo1, Byoung 
uk Kim, vGrid: A Framework For Building Autonomic Applications, 
Proceedings of the International Workshop on Challenges of Large Applications 
in Distributed Environments (CLADE'03) 



 

 

203

[Blair01] Gordon Blair et Al., "The Design and Implementation of Open ORB v2", DS 
Online Vol. 2, No. 6 2001. 

[Boy93] J. L. Boyd, Designing reactive systems for strong traceability, Carleton 
University, Ottawa, Ont., Canada, 1993 

[Bro86]  R. A. Brooks (1986) "A Robust Layered Control System For A Mobile Robot", 
IEEE Journal Of Robotics And Automation, RA-2, April. pp. 14-23, March 
1986 

[Bro90]  R. A. Brooks (1990) "The Behavior Language; User's Guide", M. I. T. Artificial 
Intelligence Laboratory, AI Memo 1227, April. 

[Bro98] Brown, A.W.; Wallnau, K.C.;"The current state of CBSE", IEEE Software , 
Volume: 15 Issue: 5, Sep/Oct 1998 Page(s): 37 -46 

[Bru00] B. Bruegge & a. H. Dutoit, Object-Oriented Software Engineering - Conquering 
Complex and Changing Systems, Prentice Hall, 2000 

[Cao97] Cao, Y. U., A. S.  Fukunaga, and A. B. Kahng, Cooperative Mobile Robotics: 
Antecedents and Directions, Autonomous Robots 4(1): 7-27, 1997  

[Car02] Carpin, S.; Parker, L.E.: Cooperative leader following in a distributed multi-
robot system. Robotics and Automation, 2002. Proceedings. ICRA '02. IEEE 
International Conference on , Volume: 3 , 2002 Page(s): 2994 -3001  

[Che02] Chen, X., "Dependence management for dynamic reconfiguration of 
component-based distributed systems", Automated Software Engineering, 2002. 
Proceedings. ASE 2002. 17th IEEE  

[Cho01] Y. K. Cho, "RTDEVS/CORBA: A Distributed Object Computing Environment 
For Simulation-Based Design Of Real-Time Discrete Event Systems." Ph.D. 
thesis, University of Arizona, Tucson, AZ 2001  

[Cho03] Y. K. Cho, X. Hu, and B. P. Zeigler: The RTDEVS/CORBA Environment for 
Simulation-Based Design Of Distributed Real-Time Systems, Simulation: 
Transactions of The Society for Modeling and Simulation International, 2003, 
Volume 79, Number 4  

[Cou99] Couretas, J., B. P. Zeigler, U. Patel, "Automatic Generation of System Entity 
Structure Alternatives: Application to Initial Manufacturing Facility Design." 
Transactions of the SCS, 1999,16(4), pp. 173-185.  

[Dav00]] A. Davidson, G. Wainer. "Specifying truck movement in traffic models using 
Cell-DEVS". In Proceedings of the 33rd Anual Symposium on Computer 
Simulation. Washington, D.C. U.S.A. 2000  

[Der89] Michael L. Dertouzos and Aloysius K. Mok. Multiprocessor on line scheduling 
of hard real time tasks, IEEE Transactions on Software Engineering, 
15(12):1497-1506, December 1989  

[DEVJ] DEVS-Java Reference Guide, www.acims.arizona.edu  



 

 

204

[Dix98] A. Dix, J. Finlay, G. Abowd, R. Beale, Human-Computer Interaction 2nd 
Edition, Prentice Hall, 1998  

[Dow00] Jim Dowling and Vinny Cahill, "Building a Dynamically Reconfigurable 
minimumCORBA Platform with Components, Connectors and Language-Level 
Support", In IFIP/ACM Middleware'2000 Workshop on Reflective Middleware, 
New York, USA, April 2000.  

[Dow01] Jim Dowling and Vinny Cahill, Dynamic Software Evolution and The K-
Component Model, Workshop on Software Evolution, OOPSLA 2001 

[Eri] Eric E. Allen, Diagnosing Java code: Assertions and temporal logic in Java 
programming http://www-106.ibm.com/developerworks/java/ 

[FAS] Warfighter Information Network-Tactical (WIN-T): 
http://www.fas.org/man/dod-101/sys/land/win-t.htm 

[Fin88] Finkelstein, L.; Land, F.; Carson, E.R.; Westcott, J.H., Systems theory and 
systems engineering, Science, Measurement and Technology, IEE Proceedings 
A , Volume: 135 Issue: 6 , July 1988 

[Fro95] J. Frossl, J. Gerlach and T. Kropf. - An efficient algorithm for real-time 
symbolic model checking. Pros. Europ. Design & test Conf. (ED&TC'95), 
1995, pp. 15-20 

[Ger02] E. Gery, D. Harel, and E. Palachi, Rhapsody, "A Complete Life-Cycle Model-
Based Development System", Integrated Formal Methods, Third International 
Conference, IFM 2002 

[Gho94] K. Ghosh, B. Mukherjee, K. Schwan, "A Survey of Real-Time Operating 
Systems", Technical report, Atlanta, Georgia 30332-0280, College of 
Computing, Georgia Institute of Technology,1994 

[Gil62] Gill, Arthur, Introduction to the theory of finite-state machines, New York, 
McGraw-Hill 1962 

[Gom00] Hassan Gomaa, Designing Concurrent, Distributed, and Real-Time Applications 
with Uml, Addison-Wesley Longman Publishing Co. 2000 

[Gom01] M. Gomez., "Hardware-in-the-Loop Simulation", Embedded Systems 
Programming, December, 2001 

[Gom93] Hassan Gomaa, Software Design Methods for Concurrent and Real-Time 
Systems, Addison-Wesley Longman Publishing Co. 1993 

[Gon02] F. G. Gonzalez, W. J. Davis, “A New Simulation Tool for the Modeling and 
Control of Distributed Systems”,  SIMULATION: Transactions of the Society 
for Modeling and Simulation International, Volume 78, Number 9, 2002 

[Gor02] J. Gorinsek, S. Van Baelen, Y. Berbers and K. De Vlaminck, EMPRESS: 
Component Based Evolution for Embedded Systems, ECOOP 2002 Workshop 
on Unanticipated Software Evolution (USE2002), G. Kniesel, P. Costanza, M. 



 

 

205

Dimitriev (eds.) Malaga, Spain, June 2002 

[Hal93]  N.Halbwachs. - Synchronous Programming of Reactive Systems. - IMAG 
Institute, Grenaoble, France, Kluwer Academic Publishers, 1993, The Kluwer 
international series in engineering and computer science. 

[Hon97] J.S. Hong, and T.G. Kim, "Real-time Discrete Event System Specification 
Formalism for Seamless Real-time Software Development," Discrete Event 
Dynamic Systems: Theory and Applications, vol. 7, pp.355-375, 1997. 

[Hu01] X. Hu, B.P. Zeigler, J. Couretas. "DEVS-On -A-Chip: Implementing DEVS In 
Real-Time Java On A Tiny Internet Interface For Scalable Factory Automation", 
IEEE International Conference on Systems, Man, And Cybernetics, October, 
2001  

[Hu02] X. Hu, and B. P. Zeigler: An Integrated Modeling and Simulation Methodology 
for Intelligent Systems Design and Testing. Performance Metrics for Intelligent 
Systems Workshop, August, 2002 

[Hu03a] X. Hu, and B.P. Zeigler, " Model Continuity in the Design of Dynamic 
Distributed Real-Time Systems", submitted to IEEE Transactions On Systems, 
Man And Cybernetics- Part A: Systems And Humans 

[Hu03b] X. Hu, and B. P. Zeigler: Model Continuity to Support Software Development 
for Distributed Robotic Systems: A Team Formation Example, accepted in June 
2003, Journal of Intelligent & Robotic Systems, Theory & Application  

[Hu03c] X. Hu, B. P. Zeigler, and S. Mittal, "Variable Structure in DEVS Component-
based Modeling and Simulation", accepted and to be published, Simulation: 
Transactions of The Society for Modeling and Simulation International, 
November 2003  

[Ioc01] Luca Iocchi, Daniele Nardi, Massimiliano Salerno, Reactivity and Deliberation: 
a survey on Multi-robot systems, Lecture Notes in Computer Science, Volume 
2103, Springer-Verlag Heidelberg, 2001  

[Jan02] R. S. Janka, L. M. Wills, L. B. Baumstark, “Virtual Benchmarking and Model 
Continuity in Prototyping Embedded Multiprocessor Signal Processing 
Systems”, IEEE Transactions on Software Engineering, September 2002 (Vol. 
28, No. 9) 

[Kim97] Kim, K.H., "Object Structures for Real-Time Systems and Simulators", IEEE 
Computer, August 1997, pp.62-70  

[Kim99] D. Kim, S.J. Buckley, and B.P. Zeigler. "Distributed Supply Chain Simulation in 
a DEVS/CORBA Execution Environment," in Proceeding of WSC. Phoenix, 
Arizona, 1999  

[Kon01] Fabio Kon, Tomonori Yamane, Christopher K. Hess, Roy H. Campbell and M. 
Dennis Mickunas, "Dynamic Resource Management and Automatic 
Configuration of Distributed Component Systems", USENIX COOTS'2001.  



 

 

206

[Kow01] Kowalczyk, W.: Multi-robot coordination. Robot Motion and Control, 2001 
Proceedings of the Second International Workshop on, 2001 Page(s): 219 -223  

[Kri97] C.M. Krishna and K.G. Shin, Real-time systems, McGraw-Hill, New York, 
1997.  

[Lap92]  Laprie J.C. (ed.), Dependability: Basic Concepts and Terminology, Dependable 
Computing and Fault-Tolerant Systems Series, Vol. 5, Springer Verlag, 1992  

[Lee01] Edward A. Lee, etc.  OVERVIEW OF THE PTOLEMY PROJECT MARCH 6, 
2001 Technical Memorandum UCB/ERL M01/11  

[Lei80] D. W. Leinbaugh  Guaranteed response time in a hard real time environment. 
IEEE Transactions on Software Engineering, January 1980 

[Lok99] Lokesh Bajaj, Mineo Takai, Rajat Ahuja, and Rajive Bagrodia. Simulation of 
large-scale heterogeneous communication systems. In Proceedings of IEEE 
Military Communications Conference (MILCOM '99), November 1999  

[Man03] M. Mathure, V. Jonnalagadda, J. Zalewski, A Heterogeeneous Architecture and 
Testbed for Simulation of Large-Scale Real-Time Systems, 7th IEEE Int'l 
Symposium on Distributed Simulation and Real-Time Applications, 2003 
  

[Mar01] Martin, G.; Lavagno, L.; Louis-Guerin, J., Embedded UML: a merger of real-
time UML and co-design, Hardware/Software Codesign, 2001. CODES 2001. 
Proceedings of the Ninth International Symposium on , 25-27 April 2001  

[Mic98] Michael Puttré, Simulation-based design puts the virtual world to work Design 
News  February 16, 1998   

[Mor96] J. Morse and S. Hargrave, The increasing importance of software. Electronic 
Design, Vol. 44 (1), Jan. 1996 

[MOV] http://www.acims.arizona.edu/PROJECTS/MultiRobot.mpg 

[Muz02] Muzy, A., G. Wainer, E. Innocenti, A. and Aiello, J.F. Santucci. "Comparing 
simulation methods for fire spreading across a fuel bed", In Proceedings of 
AIS'2002, Lisbon, Portugal.  

[Nat95] Natarajan, Swaminathan, Imprecise and approximate computation, Kluwer 
international series in engineering and computer science Kluwer Academic 
Publishers, 1995 

[Nee99] Sandeep Neema, Ted Bapty, Jason Scott, Adaptive Computing and Run-time 
Reconfiguration, 1999 

[OMG1] OMG web site URL: http://www.omg.org/ 

[OMG2] OMG Request for Proposal: UML 2.0 Superstructure RFP, OMG document: 
ad/2000-08-09 

[OMG3] OMG Request for Proposal: Action Semantics for the UML RFP, OMG 



 

 

207

document: ad/98-11-01 

[OMG4] OMG Request for Proposal: UML profile for Scheduling, Performance and 
Time, OMG document: ad/99-03-13 

[OMG5] OMG Unified Modeling Language Specification, Version 1.4. 
http://www.omg.org. 

[Pal01] N Noël De Palma, Philippe Laumay and Luc Bellissard. Ensuring Dynamic 
Reconfiguration Consistency. Sixth International Workshop on Component-
Oriented Programming (WCOP 2001) at ECOOP 2001, Budapest (Hungary), 
2001 

[Par00] Parker, L. E.: Current State of the Art in Distributed Autonomous Mobile 
Robots. In L. E. Parker, G. Beker, J. Barhen (Eds.), Distributed Autonomous 
Robotics Systems 4, pp.3-12, Springer, 2000 

[Par03] Sunwoo Park, "Hierarchical Model Partitioning for Distributed Simulation of 
Hierarchical and Modular DEVS Models", Ph. D. Dissertation, Univ. of 
Arizona, May 2003. 

[Pau03] Paul K. Davis and Robert H. Anderson, Improving the Composability of 
Department of Defense Models and Simulations", report for Defense Modeling 
and Simulation Office, 2003 

[Pau96] P. Paulin, M. Cornero, C. Liem, F. Nacabal, C. Donawa, S. Sutarwala, T. May 
and C. Valderrama, Trends in embedded systems technology. 
Hardware/software co-design, 1996 

[Pau97] P. Paulin, C. Liem, M. Cornero, F. Nacabal, and G. Coossens, Embedded 
software in real-time signal processing systems: Application and architectural 
trends, Proc. of IEEE, vol. 85(3), Mar. 1997, pp. 419-435 

[Paw02] Pawletta T., B. Lampe, "A DEVS-Based Approach for Modeling and Simulation 
of Hybrid Variable Strucature Systems", Lecture Notes in Control and 
Information Sciences, No. 279, Springer Pub. 2002, pp. 107-129. 

[Pei02] Peipelman. J., N. Alvarez, K. Galinet, R. Olmos.: 498 A & B Technical Report. 
Department of Electrical and Computer Engineering, University of Arizona, 
2002 

[Phi97] Phillip A. Laplante, Real-time systems: Design and Analysis, 2nd Ed. IEEE 
Press, Piscataway, NJ, 1997. 

[Pra01] H. Praehofer, “Towards a systems methodology for object-oriented software 
analysis”, Discrete Event Modeling and Simulation Technologies: A Tapestry of 
Systems and AI-Based Theories and Methodologies, Springer, 2001 

[Pre97] R.S. Pressman, Software Engineering: A Practitioner's Approach, fourth ed. 
New York: McGraw-Hill, 1997. 

[Pri57] Prior, A. N., 1957, Time and Modality, Oxford: Clarendon Press.  



 

 

208

[Pri67] Prior, A. N., 1967, Past, Present and Future, Oxford: Clarendon Press.  

[Pri69] Prior, A. N., 1969, Papers on Time and Tense, Oxford: Clarendon Press. 

[Pto] http://ptolemy.eecs.berkeley.edu/ 

[Ram01] B. Ramesh, M. Jarke, “Toward reference models for requirements traceability”, 
Software Engineering, IEEE Transactions on , Volume: 27, Issue: 1 , Jan. 2001 

[Ran02] Randall S. Janka, Linda M. Wills, Lewis B. Baumstark, Jr., Virtual 
Benchmarking and Model Continuity in Prototyping Embedded Multiprocessor 
Signal Processing Systems, IEEE Transactions on Software Engineering, 
September 2002 (Vol. 28, No. 9) 

[Ras01] Rastofer, U.; Bellosa, F., Component-based software engineering for distributed 
embedded real-time systems, Software, IEE Proceedings, Volume: 148 Issue: 3, 
June 2001 

[Rem93] REMBOLD, U., B.O. NNAJI, A. STORR, Computer Integrated 
Manufacturingand Engineering, Addison-Wesley Publishing Company, 
Wokingham, England, 1993. 

[Rob00] Paul Robertson, Robert Laddaga, and Howie Shrobe, "Introduction: the first 
international workshop on self-adaptive software", Lecture Notes in Computer 
Science, 2000, pp. 1-10 

[Rot72] Rothermel, R., "A mathematical model for predicting fire spread in wildland 
fuels". Research Paper INT-115. Ogden, UT: U.S. Department of Agriculture, 
Forest Service, Intermountain Forest and Range Experiment Station, 1972 

[Roz90] Rozenblit, J. W., J. Hu, B.P. Zeigler, and T.G.Kim, "Knowledge-Based Design 
and Simulation Environment (KBDSE): Foundational Concepts and 
Implementation," J. Operations Research Society 41(6), 475-489, 1990 

[Sak00] M. Saksena and P. Karvelas, Designing for Schedulability: Integrating 
Schedulability Analysis with Object-Oriented Design, In Proceedings, 12th 
Euromicro Conference on Real-Time Systems, June 2000. 

[Sak99] M. Saksena and Y. Wang., Scheduling Fixed-Priority Tasks with Preemption 
Threshold, In Proceedings, IEEE International Conference on Real-Time 
Computing Systems and Applications, December 1999. 

[SBA] U.S. Navy simulation-based acquisition website: 
http://www.ntsc.navy.mil/Resources/Library/Acqguide/sba.htm 

[Sch00] W. Schulte, "Why Doesn't Anyone Use Formal Methods?", Integrated Formal 
Methods, Second International Conference, IFM 2000 

[Sch02] Schulz, S.; Buchenrieder, K.J.; Rozenblit, J.W.: Multilevel testing for design 
verification of embedded systems. IEEE Design & Test of Computers Volume: 
19 Issue: 2 , March-April 2002 



 

 

209

[Sel94] B. Selic, G. Gullekson, P. T. Ward. Real-Time Object-Oriented Modeling. Wiley. 
1994. 

[Sel98] Bran Selic, Using UML for Modeling Complex Real-time Systems, white paper, 
March 11, 1998 

[Sgr00] Sgroi, M.; Lavagno, L.; Sangiovanni-Vincentelli, A., "Formal models for 
embedded system design", Design & Test of Computers, IEEE , Volume: 17 
Issue: 2 , April-June 2000  

[Sha01] Slan C. Shaw: Real-time Systems and Software, 2001, John Wiley & Sons 

[Sha01] Slan C. Shaw: Real-time Systems and Software, 2001, John Wiley & Sons 

[Son01] Feijun Song; Folleco, A.; An, E.: High fidelity hardware-in-the-loop simulation 
development for an autonomous underwater vehicle. OCEANS, 2001. 
MTS/IEEE Conference and Exhibition,  Volume: 1 , 2001 

[Ste03] Steven B. Hall, Shankar M. Venkatesan, Donald B. Wood, "A Faster 
Implementation of DEVS in the Joint MEASURE Simulation Environment", in 
Proc. of Summer Computer Simulation Conference, Montreal,  July 2003. 

[Ste91] D. B. Stewart and P. K. Khosla, Real time scheduling of sensor based control 
systems, In Eighth IEEE Workshop on Real-Time Operating Systems and 
Software, May 1991 

[Tho00] Filip Thoen and Francky Catthoor, "Modeling, Verification, and Exploration of 
task-level concurrency in real-time embedded systems. Kluwer Academic 
Publishers, 2000, pp.46 

[Uhr01] Uhrmacher, A.M., "Dynamic Structures in Modeling and Simulation - A 
Reflective Approach". ACM Transactions on Modeling and Simulation, Vol.11. 
No.2 , p. 206-232, April 2001. 

[Uhr93] Uhrmacher, A.M. "Variable Structure Models: Autonomy and Control - Answers 
from Two Different Modeling Approaches". Proc. AI, Simulation, and Planning 
in High Autonomy Systems. IEEE Computer Society Press, 1993, 133-139 

[Vas93] Vasconcelos, J. M, Modeling Spatial Dynamic Ecological Processes with 
DEVS-Scheme and Geographical Information Systems, Ph.D. Dissertation, 
Dept. of Renewable and Natural Resources, University of Arizona, Tucson, 
U.S.A., 1993 

[Vie03] Vieri Del Bianco, Luigi Lavazza, Marco Mauri, et al., "Towards UML-based 
formal specifications of component based real-time software" pp. 118 - 134 
Lecture Notes in Computer Science  Publisher: Springer-Verlag Heidelberg 
Volume: Volume 2621 / 2003  

[Vil97] J. Villasenor, W. H. Mangione-Smith, "Configurable Computing," Scientific 
American, pp.66-71, June 1997. 

[Wan97] Wang. J.: Methodology and design principles for a generic simulation platform 



 

 

210

for distributed robotic system experimentation and development. Systems, Man, 
and Cybernetics, 1997. Computational Cybernetics and Simulation., 1997 IEEE 
International Conference on , Volume: 2, 1997 Page(s): 1245 -1250 vol.2  

[Wel01] Wells, R.B.; Fisher, J.; Ying Zhou; Johnson, B.K.; Kyte, M.: Hardware and 
software considerations for implementing hardware-in-the-loop traffic 
simulation. Industrial Electronics Society, 2001. IECON '01. The 27th Annual 
Conference of the IEEE , Volume: 3 , 2001 

[Wol86] S. Wolfram, Theory and Applications of Cellular Automata, World Scientific, 
Singapore, 1986 

[Zei00] Zeigler, B.P., T.G. Kim, and H. Praehofer.: Theory of Modeling and Simulation. 
2 ed. 2000, New York, NY: Academic Press 

[Zei76] Zeigler, B.P., Theory of Modelling and Simulation, Wiley, N.Y., 1976 

[Zei89] Zeigler, B. P. Concepts for distributed knowledge maintenance in variable 
structure models. In Modelling and Simulation Methodology - Knowledge 
Systems Paradigm,B. Zeigler, M. Elzas, and T. Oeren, Eds. Elsevier North-
Holland, Inc., Amsterdam, The Netherlands, pp.45-54, 1989. 

[Zei90] Zeigler, B.P. 1990. Object-Oriented Simulation with Hierarchical, Modular 
Models: Intelligent Agents and Endomorphic Systems. Academic Press. 

[Zei96] Bernard P. Zeigler, Yoonkeon Moon, Doohwan Kim, Jeong Geun Kim: DEVS-
C++: A High Performance Modelling and Simulation Environment. HICSS (1) 
1996: 350-359 

[Zei97] Zeigler, B.P., H. Sarjoughian, and W. Au. "Object-Oriented DEVS", Proc. 
Enabling Technology for Simulation Science, SPIE AeoroSense 97. 1997. 
Orlando, FL. 

[Zei99] Zeigler, B.P., H.S. Sarjoughian, "Support for Hierarchical Modular Component-
based Model Construction in DEVS/HLA", Simulation Interoperability 
Workshop, March, Orlando, FL., 1999. 

[Zha87] Wei Zhao, Krithi Ramamritham, and J. A. Stankovic, Preemptive scheduling 
under time and resource constraints, IEEE Transactions on Computers, C-
36(8):949-960, August 1987 

[Zho93] Zhou, MengChu, and Frank DiCesare, Petri Net Synthesis for Discrete Event 
Control of Manufacturing Systems, Kluwer Academic Publishers, Boston, 1993 


