
Simulation-Based Testing of Distributed Systems

Matthew J. Rutherford, Antonio Carzaniga, and Alexander L. Wolf

Department of Computer Science
University of Colorado at Boulder

Boulder, Colorado, 80309-0430 USA
{rutherfo,carzanig,alw}@cs.colorado.edu

University of Colorado
Department of Computer Science

Technical Report CU-CS-1004-06 January 2006

c© 2006 Matthew J. Rutherford, Antonio Carzaniga, and Alexander L. Wolf

ABSTRACT

Developers of distributed systems routinely construct discrete-event simulations to help them un-
derstand and evaluate the behavior of inter-component protocols. Typically written using an
imperative programming language, these simulations capture basic algorithmic functionality at
the same time as they focus attention on properties critical to distribution, including topology,
timing, bandwidth, and overall scalability. We ask the following question: Can simulations also
be used to help in the testing of distributed-system implementations? Because simulations amount
to specifications of intended behavior, the code of a simulation can be viewed as an operational,
albeit non-traditional, formal model. We claim that this kind of model, when used within a
specification-based testing regime, provides developers with the foundations of a powerful new
method for selecting effective test suites. The primary tool used in our method is a fault-based
analysis of the simulation code in which a set of mutants are generated using standard code-
mutation techniques. The analysis can be used to rate the effectiveness of a test suite, as well as
the criterion used to form it. We substantiate our claim through experiments performed on the
simulations and implementations of two different distributed systems.





1 Introduction

The use of discrete-event simulations in the design and development of distributed systems is widespread.
For example, they are used to understand network protocols [1], engineer distributed systems [20, 33], and
improve distributed algorithms [8]. They are appealing to developers because of their inherent efficiency
and scalability, and because their core abstractions of process and event map neatly to the component and
message concepts inherent to modern-day distributed systems.

Simulations are used to understand and evaluate the functionality and performance of complex inter-
component protocols and algorithms. Typically, they are written in an imperative programming language,
such as C++ or Java. Simulations allow the developer to capture basic algorithmic functionality at the same
time as they focus attention on topology, timing, bandwidth, overall scalability and other properties charac-
teristic of distribution. Simulations embody abstractions for the underlying mechanisms and environmental
conditions that affect these properties, providing parameters for exploring the functionality and performance
space. Unlike many other development artifacts, simulations seem to be used, and therefore well maintained,
throughout the development process, both as early design tools and as late evaluation tools.

Given the effort invested in the construction and maintenance of simulations, and the degree to which
developers trust in them, we wonder whether there are other uses to which they can be put, in particular
whether they can be used to increase the rigor with which distributed systems are tested. Toward that end,
we make the following observation: the code that implements a simulation of a distributed system is a formal
specification of the intended functional behavior of that system, one whose behavior is parameterized by a
well-defined set of controllable distribution properties in addition to normal inputs. As such, the simulation
code can be viewed as an operational, albeit non-traditional, formal model of the system.

Based on this observation, we make the following claim: simulations can be used within a specification-
based testing regime to provide developers of distributed systems with a method for selecting effective test
suites. The intuition leading to this claim is that, since the simulation code is a specification of intended
behavior, it can be used to analyze test suites to predict their effectiveness at detecting failures in the
implementation. The analysis takes particular advantage of the fact that the specification is executable, that
it amounts to program code, and that it makes visible the environmental phenomena (message sequences,
delays, throughput, etc.) of concern in distributed systems. We are assuming, of course, that the simulation
code is a correct specification.

Test suites are typically constructed with respect to adequacy criteria. Adequacy criteria are studied as
a means of organizing the testing activity, serving both as stopping conditions on testing and as measures
of progress toward that goal. To date, however, adequacy criteria have not been studied specifically in the
context of distributed systems.

At this point we are not concerned with inventing new criteria, but rather in helping the developer to
determine whether a given test suite is adequate for a given criterion. Further than that we are interested
in helping the developer to predict the relative effectiveness of adequate test suites—in other words, to
select the most effective adequate test suite. Going still further, because it is essentially impossible to
prove the universal effectiveness of an individual criterion, it is highly probable that different criteria will
be effective for different systems. This should be especially true of distributed systems, whose differences
are only exaggerated by the complicating factors of topology, timing, and the like. Therefore, we would
like to provide developers with a method for evaluating the relative effectiveness of competing criteria.
Discrete-event simulations provide a foundation for carrying out all these tasks.

We note that adequacy and effectiveness are separate, and separable, testing goals. The ultimate goal of
any testing strategy is, of course, effectiveness at causing bug-revealing failures in an implementation. On
the other hand, in a specification-based testing method, adequacy is defined in terms of the specification,
not the implementation; for example, one might define some form of coverage criterion for the syntactic
structures found in the specification. The question that must be answered, then, is whether the adequacy
criterion defined on the specification leads to effectiveness in testing the implementation.

The primary tool used in our method is a fault-based analysis of the simulation code. The basic idea
is to generate a set of mutants from the simulation code using standard code-mutation techniques [9].
Andrews et al. [3] showed the high fidelity of mutation-generated faults compared to real faults. Our method

1



relies on this result, using mutants in the role of faulty “implementations” against which the developer can
evaluate and predict effectiveness. The effectiveness of an individual test case is measured by executing it
on each mutant in turn (i.e., by running a simulation using each mutated version of the simulation code)
and counting how many mutants are killed. A test case fails for a given mutant and a kill is recorded if the
simulation enters an invalid state or does not terminate. A test suite is given an overall mutant score that
is computed as the percentage of mutants killed by its test cases.

It is important to recall that for a simulated distributed system, a test case consists of normal functional
input, plus input values for each of the simulated distribution and environmental parameters. Mutation of
the simulation code potentially affects how the specified system is seen to deal with any of these inputs. This
in turn is how we are able to specifically address the testing of distribution properties.

The goal of the work presented here is to substantiate our claim. To do so we have defined a simulation-
based testing method and explained how it can be used to aid the developer in carrying out a variety of
tasks of varying sophistication having to do with selecting effective test suites. In more concrete terms, we
also performed experiments on the simulations and faulty implementations of two distributed systems. For
purposes of these experiments, the adequacy criteria were drawn mainly from conventional testing strategies,
specifically block coverage, branch coverage, and all-uses coverage (all of which are viable, due to the use of
an imperative programming language for writing the specification), as well as from several input-partitioning
methods.

We used the comprehensive experimentation and analysis method introduced by Frankl and Weiss [13].
Their method involves sampling a large universe of test cases to randomly construct test suites that are
adequate with respect to different criteria. Statistical inference is then used to test hypotheses about the
relative fault-detecting ability of competing suites and criteria. To evaluate the different criteria, we employ
a technique introduced recently by Briand et al. [5], in which different testing strategies are simulated, once
the failure data for each test case has been collected.

The results of the experiments clearly show that even under the most simplistic usage scenario our method
performs significantly better than a random selection process for test suites. Moreover, we are able to show
that the method can successfully establish an effectiveness ranking among adequate test suites, as well as
among adequacy criteria themselves. This presents the developer with a powerful new tool for organizing
the testing activity and for tailoring it to the distributed system at hand.

In the next section we present our simulation-based testing method. In discussing the method, we take
the perspective of the developer of a distributed system and consider several ways that they might approach
the problem of testing their implementation. Section 3 reviews the experimental setup and subjects. The
details of the experiments, their results, and threats to validity are presented in Section 4. Section 5 reviews
related work. Section 6 concludes with a brief look at future work.

2 Simulation-Based Testing

As noted above, discrete-event simulations are commonly used during the design and development of dis-
tributed systems. Traditionally, simulations are used to help understand the behavior and performance of
complex systems. Here we are interested in using them to help guide testing.

Discrete-event simulations are organized around the abstractions of process and event. Briefly, processes
represent the dynamic entities in the system being simulated, while events are used by processes to exchange
information. When simulating distributed systems, processes are used to represent the core components of
the system, as well as environmental entities such as the underlying network or external systems. Events
represent messages exchanged by the components and can be thought of as generic structured data types.
Virtual time is advanced explicitly by processes to represent “processing time” and advanced implicitly when
events are scheduled to occur in the future. To run a simulation, processes are instantiated, initialized, and
connected into a particular configuration that is then executed.

As a brief example, consider a simple client/server system designed to operate in a network environment
with unreliable communication. The simulation of this system consists of three process types, Client, Server,
and Network, and two event types, Request and Response. The Network process is used as an intermediary

2



through which events between clients and servers are scheduled. Network latency is represented in the
simulation by having the Network process control the scheduling of event deliveries. The unreliable nature
of the network is represented by having the Network process randomly drop events by not scheduling them at
all. A given configuration might include four process instances: s:Server, c1:Client, c2:Client, and n:Network,
communicating using an arbitrary number of Request and Response events.

Clearly, the simulation code of this example system can be used to experiment with network latencies
and drop rates under different configurations, as a means to predict overall performance and to evaluate
scalability and other properties. But, how can the simulation code be used for testing?

2.1 Basic Concepts

Simulation-based testing is used within a simple and generic testing process. As a first step, the developer
assembles a test suite. As usual, a test suite is composed of test cases, each one consisting of an input
vector that includes direct inputs to the system, representing functional parameters, as well as inputs to the
environment, representing environmental conditions. Then, the developer determines whether the suite is
adequate, and if it is, they use it to test the implementation.

The simulation code plays the role of the specification in specification-based testing. Therefore, simulation
is used to decide the adequacy of the test suite. The process by which individual test cases are created or
generated is outside the scope of this paper. Similarly, we do not propose nor discuss any specific strategy
by which the developer might search the space of test suites to find an adequate one; our concern is with
the decision process, not the search process.

At a high level, the simulation-based testing method we propose rests on two ideas. The first idea is to
use the simulation code and simulation executions as a basis to formulate general-purpose and/or system-
specific test adequacy criteria. For example, a general-purpose criterion might call for statement coverage
of the simulation code of all non-environmental processes (Client and Server in the example above), or a
system-specific criterion might require that each event type be dropped at least once during a simulation
run. Once a criterion is defined, the developer can evaluate the adequacy of a test suite by running the test
cases in a suitably instrumented simulation.

This use of simulation requires that the developer define one or more adequacy criteria. However, the
developer may not have enough information to make this decision with confidence. This might be because no
good criteria are available or known, due to the lack of experience with a particular system, or because the
developer cannot decide which criteria to adopt out of a set of plausible candidates. Even when a criterion
has been selected, the developer might generate multiple adequate suites, and might want to predict their
relative effectiveness to maximize the overall effectiveness of the testing process.

Therefore, the second idea is to provide the developer with a general ranking mechanism to: (1) “boot-
strap” the testing process in the absence of a specific adequacy criterion; (2) guide the selection of the most
effective criterion for the system at hand; and (3) fine tune the selection of the most effective suite within
the set of adequate suites, given a chosen criterion. This ranking mechanism is also based on the simulation
code, and in particular it is derived from a fault-based analysis of the simulation code.

2.2 Fault-Based Analysis

In fault-based analysis, testing strategies such as adequacy criteria are compared by their ability to detect
fault classes. Fault classes are typically manifested as mutation operators that alter a correct specification
in well-defined ways to produce a set of incorrect versions of the specification. These incorrect versions, or
mutants, can be used to compare testing strategies.

For example, an implementation might have a fault that causes a particular state change to be missed,
where such state changes are represented as transitions in a finite-state specification. This missing transition
fault class is then represented in the specification domain by all specifications that can be obtained from
the original specification by removing one of the transitions. Testing strategies that are able to distinguish
the incorrect specifications from the correct one are said to cover that particular fault class. The underlying
assumption of fault-based analysis is that simple syntactic faults in a specification are representative of a

3



wide range of implementation faults that might arise in practice, so a testing strategy that covers a particular
fault class is expected to do well at finding this class of faults in an implementation. We discuss fault-based
testing in greater detail in Section 5.

A prerequisite of fault-based analysis is the existence of a set of mutation operators that can be applied
to the specification being analyzed. Simulations are typically coded in imperative programming languages
and are therefore well suited to the code-mutation operators developed in the context of mutation testing [9].
These operators make simple syntactic changes to code that may result in semantic differences.

In our fault-based analysis, we apply standard code-mutation operators to the simulation code, thereby
obtaining a set of faulty specifications. To evaluate a test suite, we run the all the test cases against all the
mutant simulations. For each run, one of several things may happen:

• the simulation terminates normally with reasonable results;

• the simulation terminates normally with unreasonable results;

• the simulation does not terminate; or

• the simulation is invalid and terminates abnormally.

In most mutation analyses, output from the original version is used as an oracle against which mutant output
is compared. In discrete-event simulations of distributed systems, this is not always possible because the
discrete-event core uses separate threads for executing each process and is therefore nondeterministic. In
practice, we use assertions and sanity checks in the simulation code to determine which results are considered
“reasonable”.

For all but the first situation listed above, the test case is recorded as having killed the mutant. The
mutant score of a test suite is computed as the percentage of all mutants killed by at least one test case in
the suite.

2.3 Method

We propose a method in which fault-based analysis of the simulation code and simulation-based adequacy
criteria are used, individually or in combination, to support the identification of effective test suites. We
describe this method through six different scenarios. In each scenario, we assume that the simulation code
is available.

No information. The first scenario is one where the developer has little or no experience with the system
under test. The developer is therefore unable to select any specific adequacy criterion and is looking
for any guidance as to how to evaluate test suites. In this case, we propose to use fault-based analysis.
The developer generates a number of test suites, obtains their mutant score, and picks the suite with
the highest mutant score.

Criteria based on input values. The developer chooses a criterion that depends exclusively on the input
vector. An example is a suite that is adequate if it covers the partitions of the input space. In this
case, the simulation code is of no use in evaluating adequacy, and the developer must do that through
other means. However, simulation-based testing can still contribute in this scenario by providing a
relative ranking of adequate suites based on mutant score. Notice that the first scenario, above, could
be seen as a special case of this scenario, where the “null” criterion is chosen.

Criteria based on environmental phenomena. The developer chooses a criterion that does not depend
on the simulation code, but that depends on observable events from the environment. For example,
the criterion could require that communication links be used up to their maximum capacity for more
than a given amount of time during the execution of at least one test. In this scenario, the simulation
can directly evaluate the adequacy of a test suite, but the developer must execute the test cases using
simulation code specifically instrumented to record events of interest. For the example criterion to be
applied to the client/server system, this would involve modifying the code of the Network process to
monitor and log link utilization.

4



Criteria based on the simulation code. The developer chooses a criterion defined over the simulation
code. In this case, too, the developer can use the simulation directly to evaluate the adequacy of a
test suite. As in the previous scenario, it is necessary to instrument the simulation code in order to
compute the adequacy. The difference in this case is that the instrumentation applies to the processes
that execute the simulation code. For example, for the statement-coverage criterion mentioned in
Section 2.1, this involves the insertion of instrumentation code to log the execution of each basic block.

Effectiveness of a single chosen criterion. The developer chooses a specific adequacy criterion, which
may be based on input, observable events, simulation code, or any combination thereof. However, the
developer notices that there is significant variability in the effectiveness of suites that are adequate for
that particular criterion. In this case, the simulation may be used in a first stage to identify a number
of adequate suites, and in a second stage to rank the individual suites through fault-based analysis.

Ranking candidate criteria. The developer wants to choose a criterion. However, for the particular
system under test, there exist many applicable criteria whose relative effectiveness is not known. Once
again, the developer can resort to fault-based analysis of the simulation code to rank the different
criteria. Specifically, the developer creates adequate suites for each one and then selects the suite with
the highest mutant score.

In summary, simulation can be used directly to evaluate the adequacy of a test suite with respect to
criteria based on the environment and on the simulation code. This requires running the test suite through
an instrumented simulation. In addition, the simulation can be used to improve the effectiveness of any
criterion, including the “null” criterion, and to inform the programmer in selecting a criterion. This is done
by means of a fault-based analysis of the simulation code. In Section 4, we experimentally evaluate the
benefits of these techniques.

In terms of cost, the test selection process we propose is advantageous because it only requires the
execution of simulations, and therefore avoids the cost of setting up the system under test over complex
distributed testbeds [35]. Specifically, deciding whether a test suite is adequate with respect to a given
criterion requires only one execution of the simulation for each test suite. Fault-based analysis is more
expensive, as it requires several simulation executions (one for each mutant) for each test suite.

3 Subject Systems

Our study uses simulations and implementations of two subject distributed systems realizing well-known
distributed algorithms. The first, GBN, is the “go-back-n” algorithm, which is used for reliably transferring
data over an unreliable communications layer. The second, LSR, is a link-state routing scheme that uses
Dijkstra’s algorithm in each component of a decentralized collection of routers to compute local message-
forwarding behavior.

Implementation of both systems were given as programming assignments in an introductory undergrad-
uate networking course taught at the University of Lugano. We used the assignment description provided
to students and the Kurose and Ross networking textbook [18] to create the simulations.

Student implementations of each system were used as candidate subjects for our experimental evaluation.
For GBN we also developed a Java-based implementation and created faulty versions using the MuJava
automatic mutation tool [21].

For the simulations we used the simjava discrete-event simulation engine.1 In the course of this work we
developed a thin layer over the discrete-event core that provides a more natural way to schedule and receive
events. This layer also includes a process implementing the behavior of a probabilistically unreliable network
that is used by both systems.

1http://www.dcs.ed.ac.uk/home/hase/simjava/

5



3.1 GBN

As described by Kurose and Ross, GBN involves two processes: a sender that outputs data packets and waits
for acknowledgments, and a receiver that waits for data packets and replies with acknowledgments. Both
processes maintain sequence number state to ensure data packets are received in the proper order. The sender
also maintains a sliding window of sent packets from which data can be retransmitted if acknowledgments
are not received within a certain time period. As an additional wrinkle, the assignment given to the students
required the sending window size to grow and shrink as dictated by the history of acknowledgment packets
received.

GBN is implemented within a simple client/server file transfer application. The client program is invoked
with the path to an existing file to be read and transferred, and the server program is provided the path to
a file to be created and populated with the received data.

3.1.1 Specification

The GBN simulation code consists of two event classes, ACK and DAT, which represent acknowledgments
and data packets, respectively. The Sender process represents the client program and implements the
functionality of a GBN sender. Similarly, Receiver implements the server side of the algorithm. All
together, the specification consists of approximately 125 non-comment, non-blank lines of Java code.

We defined a single GBN simulation consisting of one server and one receiver. This simulation is param-
eterized by the following three values:

1. NumBytes: the number of bytes to be transferred, sampled uniformly between [1, 335760];

2. DropProb: the probability of a packet being dropped by the network, distributed uniformly in
[0.0, 0.20]; and

3. DupProb: the probability of a non-dropped packet being duplicated, distributed uniformly in
[0.0, 0.20].

NumBytes is passed directly to Sender and also used in an assertion within Receiver to check that the
proper number of bytes is actually received. DropProb and DupProb are used by the unreliable network
process to randomly drop and duplicate events. The network process delays all events by the same amount.

For GBN, the universe of test cases consists of 2500 randomly created tuples of the parameters above.

3.1.2 Implementations

Student implementations of GBN were coded in an average of 129 lines of C using a framework, itself
approximately 300 lines of C code, provided by the course instructor. This framework handles application-
level file I/O and the low-level socket API calls. The students were responsible for implementing the core
go-back-n algorithm within the constraints imposed by these layers.

Our stand-alone implementation, written in Java, uses the basic sockets facilities provided by the
java.net package and consists of 24 classes containing 565 lines of code.

The test harness randomly populates a temporary file with NumBytes bytes and starts an instance of
a simple UDP proxy that mediates packet exchange and drops and duplicates packets in the same way the
network process does in the simulation. The test fails if either program exits with an error, or if the file was
not duplicated faithfully.

3.2 LSR

A link-state routing scheme is one in which each router uses complete global knowledge about the network to
compute its forwarding tables. The LSR system described in the student programming assignment utilizes
Dijkstra’s algorithm to compute the least-cost paths between all nodes in the network. This information
is then distilled to construct the forwarding tables at each node. To reduce complexity, the assignment
statement stipulates that the underlying network does not delay or drop messages.

6



3.2.1 Specification

The LSR simulation code consists of three events, several supporting data structures, a class implementing
Dijkstra’s algorithm, a Router process type, and a Client process type to inject messages, for a total of
approximately 180 lines of Java code. A router takes as input a list of its direct neighbors and the costs of
the links to each of them.

Duo

4−Star

4−Mesh

3−Line 3−Cycle

4−Line 4−Cycle

Figure 1: LSR Topologies

We defined a single simulation of LSR, parameterized by the following values:

1. topology: an integer in the range [1,7] representing a particular arrangement of routers and costs
(Figure 1 shows each possibility graphically);

2. message count: the number of messages to be sent, a value in the range [0, 2n], where n is the number
of routers in the topology; and

3. message source and destination: for each message, the source router and destination router is
selected randomly from the range [1, n] with local messages allowed.

Hard coded into the simulation are the details of each topology, including statically computed shortest-path
costs for all router pairs. In the simulation, n routers are instantiated and arranged according to the specified

7



topology. Then, mc client instances (where mc is equal to the message count) are created and scheduled for
execution at regular intervals with the specified source and destination router. Each client publishes a short
text string. As each publication is propagated by a router, a path-cost member variable is updated with
the costs of the links traversed. When a router receives a publication to be delivered locally, it saves the
string and its total path cost. When the simulation terminates, assertions ensure that each router received
the expected number of publications, and that the path cost for each publication is also correct.

The universe for LSR consists of 7000 parameter tuples, 1000 for each topology, with the message count,
sources, and destinations selected randomly.

3.2.2 Implementations

Students were again provided with an application framework within which they implemented the algorithm.
On average, students implemented the LSR logic within 120 lines of Java and the framework itself is about 500
lines of code. In the course, this framework merely simulated the network interaction. For our experiments,
we reimplemented the framework to run over the network. This change required some of the supporting
classes written by students to be altered to implement the java.io.Serializable interface. This interface
defines no methods, so no algorithmic changes were made to any of the student implementations.

The test harness duplicates the functionality of the simulation setup code faithfully. A test fails if any
of the router or client programs terminates with an error code, or if a router does not receive the expected
messages.

4 Experiments

We now describe our experiments. First we discuss the criteria and metrics used in the experiments. Then
we describe the preparation step in which we gather the raw data. Finally, we describe the two experiments
we conducted to evaluate the fault-based analysis described in Section 2.2.

4.1 Adequacy Criteria

We consider white-box and input-partitioning criteria in our experiments. The white-box criteria are the
well-known all-blocks, all-branches, and all-uses coverages [14] applied to simulation code. Specifically, we
apply these criteria in aggregate to the entire simulation code base, excluding classes that are part of the
discrete-event simulation core and our API layer. We create adequate suites for these criteria by randomly
selecting test cases from the universe and including them if they improve the coverage value.

Input-partitioning criteria are defined with respect to the input domain of the simulations we defined for
each system. Once partitions are selected, we grow suites by randomly adding test cases that will cover a
previously uncovered partition. This does not result in minimal test suites, but we feel that it is a reasonable
approximation of the way in which a developer would try to accomplish this task without the aid of a
specialized tool.

The input-partitioning criteria we devised for GBN and LSR are:

• GBN IP-1: This criterion simply divides value ranges of each GBN parameter into four equally sized
partitions. A suite is adequate for this criterion when each partition is represented by at least one test
case value.

• GBN IP-2: This criterion divides the NumBytes value range into seven equally sized partitions. For
DropProb and DupProb, the value range [0,0.1) is split in half, while the range [0.1,0.2) is split into
four bins, thereby placing an emphasis on higher drop and duplication rates. Again, a test suite is
adequate for this criterion when each partition is accounted for. The underlying intuition here is that
higher drop and duplication rates make a test “harder”.

8



• LSR Pair-50: This criterion ensures that paths between pairs of routers are well represented by a
test suite. A test suite is adequate for this criterion if all topologies are represented and 50% of the
possible router pairs are accounted for.

• LSR Quartet: This criterion simply requires that all 4-router topologies in Figure 1 are represented.
The intuition behind this is that 4-router topologies are more complicated and therefore will make
better test scenarios.

4.2 Metrics

We compare adequacy criteria based on their effectiveness (E). This is measured as the average proportion of
faults found by adequate test suites. Others have instead defined and measured effectiveness on a per-subject
basis as the proportion of adequate test suites that fail. Our metric is more appropriate for specification-
based testing, since it accounts for the breadth of a suite’s effectiveness. In other words, since adequacy is
measured with respect to coverage of the specification, an adequate test suite should perform well against any
implementation of the specification. Therefore, we consider a suite that finds three faulty implementations
to be three times as effective as a suite that finds just one.

To determine statistically significant effectiveness relationships, we apply hypothesis testing to each pair
of criteria and compute the p-value. The p-value can be interpreted as the smallest α-value at which the
null hypothesis would be rejected, where α is the probability of rejecting the null hypothesis when it in fact
holds.

For example, when determining if criterion A is more effective than criterion B, we propose a null
hypothesis (H0) and an alternative hypothesis (Ha):

H0 : A ≤ B

Ha : A > B

Where > means “more effective than”. Although we do not know the actual distribution of effectiveness
values, we take advantage of the central limit theorem of statistics [10] and assume that the distribution of
the normalized form of our test statistic (E) approximates a normal distribution. According to Devore [10],
we can use this theorem comfortably with sample sizes larger than 30. Therefore, we compute the z value for
this hypothesis and use the p-value formula for high-tailed hypothesis tests (i.e., when the rejection region
consists of high z values):

z =
ĒA − ĒB

σEA
/
√

n

p = 1− Φ(z)

where ĒA and ĒB are the average effectiveness values for criteria A and B respectively, σEA
is the sample

standard deviation of effectiveness values of A, n is the sample size and Φ is the standard normal cumulative
distribution function. Typically, with p-values less than 0.05 or 0.01, we reject H0 and conclude that A > B.

4.3 Preparation

As preparation for our experiments, we simulate each test case using the correct simulation code and all of
its mutants. We also execute each test case against each implementation under test (IUT). As described in
Section 3, the universes for GBN and LSR contain 2500 and 7000 test cases respectively.

We generate mutants of the simulation code by using all conventional mutation operators provided by
the MuJava tool [21]. This resulted in 488 mutants for GBN, and 59 for LSR. We attribute the disparity in
the number of mutants to the amount of integer arithmetic used in the GBN algorithm.

We simulate test cases against all mutants of the simulation code. This step is quite expensive, and we
mitigate this by aggressively excluding mutants with high failure rates. We identify these “pathological”

9



mutants by initially simulating a small sample of test cases against all mutants. Following this, mutants with
failure rates higher than 50% are excluded from further consideration. Eliminating these mutants is justified
because we measure the effectiveness of test suites, not test cases, and mutants with high failure rates are
killed by virtually all test suites with more than a few members. The same approach is used by others in
empirical studies [12] to focus attention on faults that are hard to detect. After this initial sampling, we
also examined the code of mutants with zero kills and eliminated any ones semantically equivalent to the
original code.

We also simulate each test case against the “golden” specification and collect coverage data.
Finally, we execute each test case against all implementations under test. For GBN, we started with 19

student implementations and 192 non-equivalent mutants of a Java implementation;2 for LSR we had 16
student implementations.

SUT IUT Failure %
stud07 0.28
stud06 0.32
stud08 0.40

GBN stud15 3.16
stud09 3.40
stud18 4.72
mutROR15 16.96
mutLOI35 17.00
stud07 5.04
stud16 5.15
stud03 5.21
stud08 7.70

LSR stud01 7.94
stud06 8.02
stud14 8.48
stud15 12.17
stud09 12.42

Table 1: Implementation Failure Rates

After executing an initial sampling of test cases for each IUT, we eliminated those having failure rates
higher than 20%. After executing all test cases, we also exclude correct implementations (i.e., those without
failures), leaving the set of subjects shown in Table 1.

Effectiveness values are obtained by simulating each criterion 200 times. Table 2 contains the average
size (n) and average effectiveness of each strategy for GBN and LSR. These data show that the mix of
input-partitioning and white-box criteria is quite natural.

4.4 Experiment 1

One of the claims we make in Section 2 is that using a fault-based analysis we can improve the effectiveness
of criteria. To justify this claim, we perform the following experiment for each criterion:

1. Choose M suites at random from the set of suites adequate for the criterion in question.

2. Select the suite with highest mutant score, and determine its effectiveness.
2On principle, we wanted to avoid using mutants as IUT, since we use the same operators to mutate simulation code. We

generated mutants of our GBN implementation only after determining that there were not enough student implementations
with appropriate failure rates.

10



n Ê

all-blocks 3.02 0.19
all-branches 4.12 0.22

GBN IP-1 6.92 0.29
all-uses 4.68 0.35
IP-2 11.35 0.38
all-blocks 1.60 0.46
all-uses 2.92 0.61

LSR all-branches 3.05 0.64
Quartet 8.15 0.84
Pair-50 17.08 0.89

Table 2: Criteria Effectiveness

We performed this process 100 times each with values of M ranging from two to eight and determined
the smallest M value at which the fault-based technique is statistically better than the baseline effectiveness
of the criterion (with α = 0.05).

TAC min-M
all-blocks 2
all-branches 2

GBN IP-1 2
all-uses –
IP-2 3
all-blocks 2
all-uses 2

LSR all-branches 3
Quartet 3
Pair-50 3

Table 3: Experiment 1 Data

Table 3 shows the results of these experiments. For nearly all of the criteria, the minimum multiplier
M is 3 or less, meaning that the tester starts to see significant improvement of effectiveness with only 2
additional adequate suites. We did find, however, for all-uses with GBN that there was no improvement,
even after analyzing seven additional adequate suites.

We also tested the opposite hypotheses, which is that the effectiveness drops when increasing the number
of suites considered, and this never occurred. Thus, we have shown that a tester sees significant improvement
at relatively small multipliers without any downside for nearly all criteria considered.

4.5 Experiment 2

The second experiment we conducted was aimed at evaluating our ability to use fault-based analysis to
determine the relative effectiveness of candidate adequacy criteria.

During our preparation phase, we created 200 adequate suites for each criterion and computed their
effectiveness values. These data are summarized in Table 2. For this experiment, we compute the mutant
scores of the same suites.

Using these data we perform hypothesis testing on each pair of criteria to determine the ranking of
criteria both with the actual effectiveness values, and with the mutant scores.

11



IP-1

all-blocks

all-branches

IP-2

all-uses

Figure 2: GBN TAC Relationships

Pair-50

Quartet

all-blocks

all-branches

all-uses

Figure 3: LSR TAC Relationships

12



Figures 2 and 3 depict all statistically significant relationships with p-values less than 0.05. For example,
Figure 3 indicates that Pair-50 has a consistently higher mutant score than Quartet, which is itself higher
than all-branches and all-uses, etc. Our experiments show that the same exact relations between criteria
hold when the criteria are applied to the implementations. Since the graphs are identical, we do not report
them in the paper. Instead, we report the p-value computed for each relation using the mutant score and
the effectiveness, respectively.

Hypothesis m. p-value e. p-value
IP-1>all-blocks < 0.001 < 0.001
IP-1>all-branches < 0.001 < 0.001
IP-2>all-uses < 0.001 0.004
all-branches>all-blocks < 0.001 0.002
all-uses>all-blocks < 0.001 < 0.001
IP-2>all-blocks < 0.001 < 0.001
all-uses>all-branches < 0.001 < 0.001
IP-2>all-branches < 0.001 < 0.001
IP-2>IP-1 < 0.001 < 0.001
all-uses>IP-1 < 0.001 < 0.001

Table 4: GBN Criteria p-values

Hypothesis m. p-value e. p-value
Quartet>all-blocks < 0.001 < 0.001
Pair-50>all-blocks < 0.001 < 0.001
all-branches>all-uses < 0.001 0.01
all-branches>all-blocks < 0.001 < 0.001
Quartet>all-uses < 0.001 < 0.001
all-uses>all-blocks < 0.001 < 0.001
Pair-50>Quartet 0.02 < 0.001
Pair-50>all-uses < 0.001 < 0.001
Quartet>all-branches < 0.001 < 0.001
Pair-50>all-branches < 0.001 < 0.001

Table 5: LSR Criteria p-values

Tables 4 and 5 show the computed p-values for GBN and LSR, respectively. The hypothesized relation
between the criteria are listed in the first column. For each relation, the second column reports the p-
values for the mutant score (simulation) while the third column reports the p-values for the effectiveness
(implementation). Notice that the correspondence is virtually exact with p-values all lower than 0.02.

4.6 Threats to Validity

While we feel confident that the experimental method we used in conducting this research is sound and that
the results are valid, we highlight potential threats to our conclusions.

The chief threat to the construct validity of our approach is in the definition of effectiveness that we
adopt. We assume that a specification-based testing technique is most effective when it is able to identify a
broad range of faulty implementations, others might see this differently. For example, implementation failure
rates could be used to include the relative difficulty of finding bugs in the effectiveness score.

13



The main internal threat is that our experiments validate our claims because the simulation code mimics
the structure of implementation code closer than it would in practice. This is not likely, considering that
the simulations were created by the first author who had no contact with the students or the materials they
were presented with before receiving the implementations that make up the bulk of the empirical subjects.

Finally, as the scope of our empirical study is limited to 17 implementations of two systems it is difficult
to argue that our results are externally valid. However, we view this work as a necessary first step in
establishing the utility of simulation-based testing for distributed systems and in particular our fault-based
analyses, at this point we make no claims about its broad applicability. More work is required to understand
the conditions under which our techniques are applicable and effective, but it seems clear that it is both
applicable and effective on the systems described here.

5 Related Work

In this section we discuss the relation of our work to other research efforts. First, we summarize existing
specification-based testing techniques with an emphasis on those that are applicable to distributed systems.
Next, we place our work in the context of existing fault-based techniques.

5.1 Specification-Based Testing

The work of Richardson, O’Malley, and Tittle [29] is generally accepted as the beginning of research into
formal specification-based testing techniques. Earlier, interface-based techniques, such as random testing
and the category-partition method [26], are also based on specifications, though not necessarily formal
ones. In general, the appeal of specification-based testing is that tests can be constructed to check that an
implementation does what it is required to do, rather than what programmers want it to do. However, these
techniques are viewed as complementing implementation-based techniques, not replacing them.

There have been a number of studies of general-purpose specification-based testing techniques, including
the work of Chang and Richardson [6, 7] on using a function-level assertion-based language to guide testing.
Offutt and Liu [24] describe the generation of test data from a higher-level, object-oriented specification
notation. Offutt et al. [25] describe the use of generic state-based specifications (e.g., UML and statecharts)
for system-level testing. Harder et al. [15] describe the operational difference technique, which uses dynam-
ically generated abstractions of program properties to aid in test selection. While these general-purpose
techniques certainly can be applied to low-level testing of distributed systems, our focus is on system-level
testing. Thus, we concentrate on higher-level specifications used in the areas of communication protocols
and software architecture.

In protocol testing, each side of a two-party interaction is represented by a finite state machine (FSM)
specification. Surveys by Bochmann and Petrenko [4] and Lai [19] describe many of the algorithms that have
been developed to generate test sequences for FSM specifications. These algorithms can be classified by the
guarantees they provide with respect to different fault models (effectiveness), and by the length of sequences
they create (cost). Fault models differ in the set of mutation operators they allow (e.g., output faults only)
and in assumptions they make about implementation errors (e.g., by bounding the number of states that are
possible in an implementation). Once abstract test sequences have been chosen using these algorithms, the
test suite is adapted for a particular implementation and executed to demonstrate conformance.

The chief problem with these techniques is the limited expressivity of the FSM formalism. Extended
FSMs, which are FSMs with minor state variables used in guard conditions and updated during state
transitions, are used to represent protocol behavior more accurately, but as pointed out by Bochmann and
Petrenko, these extensions are not handled by basic FSM techniques. The greater expressiveness of discrete-
event simulations compared to FSM models could be what attracts practitioners to simulations.

More recently, software architectures have been studied as a means to describe and understand large,
complex systems [27]. A number of researchers have studied the use of software architectures for testing.
Richardson and Wolf [31] propose several architecture-based adequacy criteria based on the Chemical Ab-
stract Machine model. Rice and Seidman [28] describe the ASDL architecture language and its toolset, and

14



discuss its use in guiding integration testing. Jin and Offutt [16] define five general architecture-based testing
criteria and applied them to the Wright ADL. Muccini et al. [22] describe a comprehensive study of soft-
ware architectures for implementation testing. Their technique relies on Labeled Transition System (LTS)
specifications of dynamic behavior. They propose a method of abstracting simpler, abstract LTS (ALTS)
from the monolithic global LTS in order to focus attention on interactions that are particularly relevant to
testing. Coverage criteria are then defined with respect to these ALTS, and architectural tests are created
to satisfy them. Finally, architectural tests are refined into implementation tests and executed against the
implementation.

The main difference between our work and the approaches above is the nature of the specifications being
used. Simulations are encoded in languages that are more expressive than FSMs, allowing more details of the
system to be included in the analysis. Conversely, simulations operate at a lower level of abstraction than
software architecture descriptions and use an imperative style to express functional behavior. Finally, and
most importantly for distributed systems, simulations deal with such things as time and network behavior
explicitly.

5.2 Fault-Based Testing

In fault-based testing, models of likely or potential faults are used to guide the testing process. The best-
known fault-based testing technique is probably mutation testing [9]. In mutation testing, the engineer
applies mutation operators [23] to the source code to systematically create a set of programs that are
different from the original version by a few statements. A mutation-adequate test suite is one that is able
to “kill” all of the non-equivalent mutants.

Mutation testing is based on two complementary theories [9]. The competent programmer hypothesis
states that an incorrect program will differ by only a few statements from a correct one; intuitively, this
means that in realistic situations a program is close to being correct. The coupling effect states that tests
that are effective at killing synthetic mutants will also be effective at finding naturally occurring faults in an
implementation. In our work we use a standard set of mutation operators for Java as implemented by the
MuJava tool [21]. However, we do not use the generated mutants for mutation testing, but rather we use
them to measure other adequacy criteria.

Mutation testing is usually described in the context of implementation testing, but more recently re-
searchers have proposed the application of mutation testing to specifications by defining mutation operators
for statecharts [11] and Estelle specifications [32]. This work differs from ours in that their goal is specifica-
tion testing, while ours is specification-based implementation testing. The mutation operators proposed in
those papers could certainly be used to measure the effectiveness of test suites or testing techniques, but we
know of no results in this area.

In closely related work, Ammann and Black [2] use a specification-based mutant score to measure the
effectiveness of test suites. Their method employs a model checker and mutations of temporal logic speci-
fications to generate test cases. They use this metric to compare the effectiveness of test suites developed
using different techniques. This work differs from ours in two important ways: (1) their specification must
be appropriate for model checking, namely it must be a finite-state description and the properties to check
must be expressed in temporal logic, while our specification is a discrete-event simulation, and (2) their
focus is solely on the comparison of candidate test suites, while ours also includes the comparison of testing
criteria.

Finally, fault-based testing has been studied extensively with respect to specifications in the form of
boolean expressions. In this context, a number of specification-based testing techniques have been experi-
mentally evaluated [30, 36]. Recently, a fault-class hierarchy has been determined analytically and used to
explain some of the earlier experimental results [17, 34]. We are targeting a more expressive specification
method whose fault classes (mutation operators) are not amenable to a general analytical comparison.

15



6 Conclusion

The work described in this paper makes two main contributions to the field of testing. First, we identify the
potential for using discrete-event simulations in the specification-based testing of distributed systems and
propose a concrete process for doing so. Second, we leverage the executable nature of these specifications in a
novel fault-based analysis method and identify several ways in which the method can be useful to developers
of distributed systems. Our approach is validated by an initial empirical study of two distributed systems.

In the future, we plan to continue our work with simulation-based testing by estimating test execution
time using the virtual time derived from the simulations. This should provide a useful measure of cost,
which can be factored into the prediction of effectiveness. We also plan to investigate ways in which the
simulations can be used as advanced oracles. Finally, we will be looking into ways in which the fault-based
analysis method can be used to determine relationships between regions of the input space and effectiveness,
leading to new kinds of adequacy criteria for testing distributed systems.

Acknowledgments

The work reported here was supported in part by the National Science Foundation and Army Research Office
under agreement numbers ANI-0240412 and DAAD19-01-1-0484.

16



References

[1] Mark Allman and Aaron Falk. On the effective evaluation of tcp. SIGCOMM Comput. Commun. Rev.,
29(5):59–70, 1999.

[2] Paul E. Ammann and Paul E. Black. A specification-based coverage metric to evaluate test sets.
International Journal of Reliability, Quality and Safety Engineering, 8(4):275–299, 2001.

[3] J.H. Andrews, L.C. Briand, and Y. Labiche. Is mutation an appropriate tool for testing experiments? In
Proceedings of the 27th International Conference on Software Engineering (ICSE) 2005, pages 402–411,
St. Louis, MO, USA, May 2005.

[4] Gregor Bochmann and Alexandre Petrenko. Protocol testing: review of methods and relevance for
software testing. In Proceedings of the 1994 ACM SIGSOFT International Symposium on Software
Testing and Analysis, pages 109–124. ACM Press, 1994.

[5] L. C. Briand, Y. Labiche, and Y. Wang. Using simulation to empirically investigate test coverage
criteria based on statechart. In ICSE ’04: Proceedings of the 26th International Conference on Software
Engineering, pages 86–95. IEEE Computer Society, 2004.

[6] Juei Chang and Debra J. Richardson. Structural specification-based testing: automated support and
experimental evaluation. In Proceedings of the 7th European Software Engineering Conference/7th ACM
SIGSOFT International Symposium on Foundations of Software Engineering, pages 285–302. Springer-
Verlag, 1999.

[7] Juei Chang, Debra J. Richardson, and Sriram Sankar. Structural specification-based testing with ADL.
In Proceedings of the 1996 ACM SIGSOFT International Symposium on Software Testing and Analysis,
pages 62–70. ACM Press, 1996.

[8] Ian Clarke, Scott G. Miller, Theodore W. Hong, Oskar Sandberg, and Brandon Wiley. Protecting free
expression online with freenet. IEEE Internet Computing, 6(1):40–49, 2002.

[9] R. A. DeMillo, R.J. Lipton, and F.G. Sayward. Hints on test data selection: Help for the practicing
programmer. IEEE Computer, 11(4):34–41, April 1978.

[10] Jay L. Devore. Probability and Statistics for Engineering and the Sciences. Brooks/Cole, 4th edition,
1995.

[11] Sandra Camargo Pinto Ferraz Fabbri, Jose Carlos Maldonado, Tatiana Sugeta, and Paulo Cesar Masiero.
Mutation testing applied to validate specifications based on statecharts. In ISSRE ’99: Proceedings of
the 10th International Symposium on Software Reliability Engineering, page 210, Washington, DC, USA,
1999. IEEE Computer Society.

[12] Phyllis Frankl and Oleg Iakounenko. Further empirical studies of test effectiveness. In SIGSOFT
’98/FSE-6: Proceedings of the 6th ACM SIGSOFT International Symposium on Foundations of Software
Engineering, pages 153–162, New York, NY, USA, 1998. ACM Press.

[13] Phyllis Frankl and Stewart Weiss. An experimental comparison of the effectiveness of branch testing
and data flow testing. IEEE Transactions on Software Engineering, 19(8):774–787, August 1993.

[14] Phyllis Frankl and Elaine Weyuker. An applicable family of data flow testing criteria. IEEE Transactions
on Software Engineering, 14(10):1483–1498, 1988.

[15] Michael Harder, Jeff Mellen, and Michael D. Ernst. Improving test suites via operational abstraction. In
Proceedings of the 25th International Conference on Software Engineering, pages 60–71. IEEE Computer
Society, 2003.

17



[16] Zhenyi Jin and Jeff Offutt. Deriving tests from software architectures. In The Twelfth IEEE Interna-
tional Symposium on Software Reliability Engineering (ISSRE ’01), pages 308–313, November 2001.

[17] D. Richard Kuhn. Fault classes and error detection capability of specification-based testing. ACM
Transactions on Software Engineering Methodology, 8(4):411–424, 1999.

[18] James F. Kurose and Keith W. Ross. Computer Networking: A Top-Down Approach Featuring the
Internet. Pearson Benjamin Cummings, 2004.

[19] R. Lai. A survey of communication protocol testing. Journal of Systems and Software, 62(1):21–46,
2002.

[20] C. Liu and P. Cao. Maintaining strong cache consistency in the world-wide web. In ICDCS ’97: Pro-
ceedings of the 17th International Conference on Distributed Computing Systems (ICDCS ’97), page 12,
Washington, DC, USA, 1997. IEEE Computer Society.

[21] Yu-Seung Ma, Jeff Offutt, and Yong-Rae Kwon. Mujava : An automated class mutation system. Journal
of Software Testing, Verification and Reliability, 15(2):97–133, 2005.

[22] H. Muccini, A. Bertolino, and P. Inverardi. Using software architecture for code testing. IEEE Trans-
actions on Software Engineering, 30(3):160–171, March 2004.

[23] A. Jefferson Offutt, Ammei Lee, Gregg Rothermel, Roland H. Untch, and Christian Zapf. An ex-
perimental determination of sufficient mutant operators. ACM Transactions on Software Engineering
Methodology, 5(2):99–118, 1996.

[24] A. Jefferson Offutt and Shaoying Liu. Generating test data from SOFL specifications. Journal of
Systems and Software, 49(1):49–62, 1999.

[25] Jeff Offutt, Shaoying Liu, Aynur Abdurazik, and Paul Ammann. Generating test data from state-based
specifications. Journal of Software Testing, Verification and Reliability, 13(1):25–53, March 2003.

[26] T. J. Ostrand and M. J. Balcer. The category-partition method for specifying and generating fuctional
tests. Communications of the ACM, 31(6):676–686, 1988.

[27] Dewayne E. Perry and Alexander L. Wolf. Foundations for the study of software architecture. SIGSOFT
Software Engineering Notes, 17(4):40–52, 1992.

[28] Michael D. Rice and Stephen B. Seidman. An approach to architectural analysis and testing. In
Proceedings of the 3rd International Workshop on Software Architecture, pages 121–123. ACM Press,
1998.

[29] D. Richardson, O. O’Malley, and C. Tittle. Approaches to specification-based testing. In Proceedings of
the ACM SIGSOFT ’89 Third Symposium on Software Testing, Analysis, and Verification, pages 86–96.
ACM Press, 1989.

[30] Debra Richardson and Margaret Thompson. An analysis of test data selection criteria using the relay
model of fault detection. IEEE Transactions on Software Engineering, 19(6):533–553, 1993.

[31] Debra J. Richardson and Alexander L. Wolf. Software testing at the architectural level. In Joint Proceed-
ings of the Second International Software Architecture Workshop (ISAW-2) and International Workshop
on Multiple Perspectives in Software Development (Viewpoints ’96) on SIGSOFT ’96 Workshops, pages
68–71. ACM Press, 1996.

[32] Simone Do Rocio Senger De Souza, Jose Carlos Maldonado, Sandra Camargo Pinto Ferraz Fabbri, and
Wanderley Lopes De Souza. Mutation testing applied to estelle specifications. Software Quality Control,
8(4):285–301, 1999.

18



[33] Ion Stoica, Robert Morris, David Liben-Nowell, David R. Karger, M. Frans Kaashoek, Frank Dabek, and
Hari Balakrishnan. Chord: a scalable peer-to-peer lookup protocol for internet applications. IEEE/ACM
Trans. Netw., 11(1):17–32, 2003.

[34] Tatsuhiro Tsuchiya and Tohru Kikuno. On fault classes and error detection capability of specification-
based testing. ACM Transactions on Software Engineering Methodology, 11(1):58–62, 2002.

[35] Yanyan Wang, Matthew J. Rutherford, Antonio Carzaniga, and Alexander L. Wolf. Automating ex-
perimentation on distributed testbeds. In Proceedings of 20th IEEE/ACM International Conference on
Automated Software Engineering, pages 164–173, Long Beach, CA, November 2005.

[36] E. Weyuker, T. Goradia, and A. Singh. Automatically generating test data from a boolean specification.
IEEE Transactions on Software Engineering, 20(5):353–363, 1994.

19


