
Distributed Denial of Service:
Taxonomies of Attacks, Tools and Countermeasures

Stephen M. Specht
Electrical Engineering
Princeton University
Princeton, NJ 08544

stephen.specht@us.army.mil

Ruby B. Lee
Electrical Engineering
Princeton University
Princeton, NJ 08544
rblee@princeton.edu

Abstract

 Distributed Denial of Service (DDoS) attacks
have become a large problem for users of computer
systems connected to the Internet. DDoS attackers hijack
secondary victim systems using them to wage a
coordinated large-scale attack against primary victim
systems. As new countermeasures are developed to
prevent or mitigate DDoS attacks, attackers are constantly
developing new methods to circumvent these new
countermeasures.

 In this paper, we describe DDoS attack models
and propose taxonomies to characterize the scope of
DDoS attacks, the characteristics of the software attack
tools used, and the countermeasures available. These
taxonomies illustrate similarities and patterns in different
DDoS attacks and tools, to assist in the development of
more generalized solutions to countering DDoS attacks,
including new derivative attacks.

1 INTRODUCTION

 A Denial of Service (DoS) attack is an attack
with the purpose of preventing legitimate users from using
a specified network resource such as a website, web
service, or computer system [1]. A Distributed Denial of
Service (DDoS) attack is a coordinated attack on the
availability of services of a given target system or network
that is launched indirectly through many compromised
computing systems. The services under attack are those
of the “primary victim”, while the compromised systems
used to launch the attack are often called the “secondary
victims.” The use of secondary victims in a DDoS attack
provides the attacker with the ability to wage a much
larger and more disruptive attack while remaining
anonymous since the secondary victims actually perform
the attack making it more difficult for network forensics to
track down the real attacker.

 In February of 2000, one of the first major DDoS
attacks was waged against Yahoo.com, keeping it off the
Internet for about 2 hours, costing it lost advertising
revenue [2]. Recently, attackers used a series of DDoS

attacks against a variety of companies providing anti-spam
services [3]. These attacks caused many of them to shut
down their services.

 DDoS attacks are relatively new and not well
understood. This paper proposes taxonomies for
understanding different DDoS attacks, tools, and
countermeasures. We hope these taxonomies aid in
understanding the scope of DDoS attacks, leading to more
comprehensive solutions or countermeasures to cover both
known attacks and those that have not yet occurred. This
paper is also the first to characterize the setup and
installation techniques of DDoS attack architectures,
identifying both active and passive classes.

 In Section 2 we describe classes of DDoS attack
architectures. In Section 3 we present our taxonomy for
DDoS attacks. In Section 4 we present the software
characteristics for DDoS attack tools emphasizing how
these tools are setup on secondary victim systems. In
Section 5 we present a taxonomy of different DDoS
countermeasures. We conclude in Section 6.

2 DDoS ATTACK ARCHITECTURES

 Two types of DDoS attack networks have
emerged: the Agent-Handler model and the Internet Relay
Chat (IRC)-based model.

The Agent-Handler model of a DDoS attack
consists of clients, handlers, and agents (see Figure 1).
The client is where the attacker communicates with the
rest of the DDoS attack system. The handlers are software
packages located throughout the Internet that the
attacker’s client uses to communicate with the agents. The
agent software exists in compromised systems that will
eventually carry out the attack. The attacker
communicates with any number of handlers to identify
which agents are up and running, when to schedule
attacks, or when to upgrade agents. The owners and users
of the agent systems typically have no knowledge that
their system has been compromised and will be taking part
in a DDoS attack. Depending on how the attacker
configures the DDoS attack network, agents can be

 This work was supported in part by NSF CCR-0208946.
 Stephen Specht is now a Computer Engineer with the US Army Information Operations Division, Fort Monmouth, NJ.

Stephen M. Specht and Ruby B. Lee, Distributed Denial of Service: Taxonomies of Attacks, Tools, and Countermeasures. Proceedings
of the 17th International Conference on Parallel and Distributed Computing Systems, 2004 International Workshop on Security in
Parallel and Distributed Systems, pp. 543-550, September 2004

instructed to communicate with a single handler or
multiple handlers. Usually, attackers will try to place the
handler software on a compromised router or network
server that handles large volumes of traffic. This makes it
harder to identify messages between the client and handler
and between the handler and agents. In descriptions of
DDoS tools, the terms “handler” and “agents” are
sometimes replaced with “master” and “daemons”,
respectively.

The IRC-based DDoS attack architecture is
similar to the Agent-Handler model except that instead of
using a handler program installed on a network server, an
IRC (Internet Relay Chat) communication channel is used
to connect the client to the agents. An IRC channel
provides an attacker with additional benefits such as the
use of “legitimate” IRC ports for sending commands to
the agents [4]. This makes tracking the DDoS command
packets more difficult. Additionally, IRC servers tend to
have large volumes of traffic making it easier for the
attacker to hide his presence. Another advantage is that
the attacker does not need to maintain a list of the agents,
since he can log on to the IRC server and see a list of all
available agents [4]. The agent software installed in the
IRC network usually communicates to the IRC channel
and notifies the attacker when the agent is up and running.

 In an IRC-based DDoS attack architecture, the
agents are often referred to as “Zombie Bots” or “Bots”.

In both IRC-based and Agent-Handler DDoS attack
models, we refer to the agents as “secondary victims” or
“zombies”, and the target of the DDoS attack as the
“primary victim”. Well-designed agent software uses only
a small proportion of resources (memory and bandwidth)
so that the users of secondary-victim systems experience
minimal performance impact when their system
participates in a DDoS attack.

3 DDoS ATTACK TAXONOMY

There are a wide variety of DDoS attacks. We
propose a taxonomy of the main DDoS attack methods in
Figure 3. There are two main classes of DDoS attacks:
bandwidth depletion and resource depletion attacks. A
bandwidth depletion attack is designed to flood the victim
network with unwanted traffic that prevents legitimate
traffic from reaching the primary victim. A resource
depletion attack is an attack that is designed to tie up the
resources of a victim system making the victim unable to
process legitimate requests for service.

3.1 Bandwidth Depletion Attacks

Bandwidth depletion attacks can be characterized
as flood attacks and amplification attacks.

Flood Attacks. A flood attack involves
zombies sending large volumes of traffic to a victim
system, to congest the victim system’s network bandwidth
with IP traffic. The victim system slows down, crashes, or
suffers from saturated network bandwidth, preventing
access by legitimate users. Flood attacks have been
launched using both UDP (User Datagram Protocol) and
ICMP (Internet Control Message Protocol) packets.

In a UDP Flood attack, a large number of UDP
packets are sent to either random or specified ports on the
victim system. The victim system tries to process the
incoming data to determine which applications have
requested data. If the victim system is not running any
applications on the targeted port, it will send out an ICMP
packet to the sending system indicating a “destination port
unreachable” message [5].

 Often, the attacking DDoS tool will also spoof
the source IP address of the attacking packets. This helps
hide the identity of the secondary victims since return
packets from the victim system are not sent back to the
zombies, but to the spoofed addresses. UDP flood attacks
may also fill the bandwidth of connections located around
the victim system. This often impacts systems located near
the victim.

An ICMP flood attack occurs when the zombies
send large volumes of ICMP_ECHO_REPLY packets
(“ping”) to the victim system. These packets signal the
victim system to reply and the combination of traffic

Figure 2: DDoS IRC-Based Attack Model

A … A

 …Attacker Attacker Client

IRC

A … A

Victim

Agent

 …Attacker

H H H H

Client

Handler

A … A

Attacker

A … A A … A
Agent

Victim

Figure 1: DDOS Agent-Handler Attack Model

saturates the bandwidth of the victim’s network
connection [5]. During this attack, the source IP address of
the ICMP packet may also be spoofed.

Amplification Attacks. An amplification attack
involves the attacker or the zombies sending messages to a
broadcast IP address, using this to cause all systems in the
subnet reached by the broadcast address to send a reply to
the victim system. The broadcast IP address feature is
found on most routers; when a sending system specifies a
broadcast IP address as the destination address, the routers
replicate the packet and send it to all the IP addresses
within the broadcast address range. In this attack, the
broadcast IP address is used to amplify and reflect the
attack traffic, and thus reduce the victim system’s
bandwidth.

 The attacker can send the broadcast message
directly, or use the agents to send the broadcast message
to increase the volume of attacking traffic. If the attacker
decides to send the broadcast message directly, this attack
provides the attacker with the ability to use the systems
within the broadcast network as zombies without needing
to infiltrate them or install any agent software.

A DDoS Smurf attack is an example of an
amplification attack where the attacker sends packets to a
network amplifier (a system supporting broadcast
addressing), with the return address spoofed to the
victim’s IP address. The attacking packets are typically
ICMP ECHO REQUESTs, which are packets (similar to a
“ping”) that request the receiver to generate an ICMP
ECHO REPLY packet [6]. The amplifier sends the ICMP
ECHO REQUEST packets to all of the systems within the
broadcast address range, and each of these systems will
return an ICMP ECHO REPLY to the target victim’s IP
address [7]. This type of attack amplifies the original packet
tens or hundreds of times.

Another example is the DDoS Fraggle attack, where
the attacker sends packets to a network amplifier, using
UDP ECHO packets [8]. There is a variation of the

Fraggle attack where the UDP ECHO packets are sent to
the port that supports character generation (chargen, port
19 in Unix systems), with the return address spoofed to
the victim’s echo service (echo, port 7 in Unix systems)
creating an infinite loop [9]. The UDP Fraggle packet will
target the character generator in the systems reached by
the broadcast address. These systems each generate a
character to send to the echo service in the victim system,
which will send an echo packet back to the character
generator, and the process repeats. This attack can
generate more bad traffic and cause more damage than a
Smurf attack.

3.2 Resource Depletion Attacks

DDoS resource depletion attacks involve the
attacker sending packets that misuse network protocol
communications or are malformed. Network resources are
tied up so that none are left for legitimate users.

Protocol Exploit Attacks. We give two
examples, one misusing the TCP SYN (Transfer Control
Protocol Synchronize) protocol, and the other misusing
the PUSH+ACK protocol.

In a DDoS TCP SYN attack, the attacker
instructs the zombies to send bogus TCP SYN requests to
a victim server in order to tie up the server’s processor
resources, and hence prevent the server from responding
to legitimate requests. The TCP SYN attack exploits the
three-way handshake between the sending system and the
receiving system by sending large volumes of TCP SYN
packets to the victim system with spoofed source IP
addresses, so the victim system responds to a non-
requesting system with the ACK+SYN. When a large
volume of SYN requests are being processed by a server
and none of the ACK+SYN responses are returned, the
server eventually runs out of processor and memory
resources, and is unable to respond to legitimate users.

In a PUSH + ACK attack, the attacking agents
send TCP packets with the PUSH and ACK bits set to

one. These triggers in the TCP packet
header instruct the victim system to
unload all data in the TCP buffer
(regardless of whether or not the buffer
is full) and send an acknowledgement
when complete. If this process is
repeated with multiple agents, the
receiving system cannot process the
large volume of incoming packets and
the victim system will crash.

Malformed Packet attacks.
A malformed packet attack is an attack
where the attacker instructs the zombies
to send incorrectly formed IP packets to
the victim system in order to crash it.

Figure 3: DDoS Attack Taxonomy
DDoS Attack

Bandwidth Depletion Resource Depletion

Flood Attack Protocol Exploit Attack Malformed Packet
Attack

Amplification Attack

UDP ICMP Smurf Fraggle TCP SYN PUSH + ACK

IP Address IP Packet OptionsRandom Port Same Port Direct Loop

There are at least two types of malformed packet attacks.
In an IP address attack, the packet contains the same
source and destination IP addresses. This can confuse the
operating system of the victim system and can cause the
victim system to crash. In an IP packet options attack, a
malformed packet may randomize the optional fields
within an IP packet and set all quality of service bits to
one so that the victim system must use additional
processing time to analyze the traffic. If this attack is
multiplied, it can exhaust the processing ability of the
victim system.

4 DDoS ATTACK TOOLS

DDoS attack tools include a number of common
software characteristics. Figure 4 shows some of these
common elements: how agents are setup, agent activation,
whether the communication is encrypted, and which
operating systems (OS) are supported.

4.1 DDoS Agent Setup

We classify the ways that attackers install
malicious DDoS agent code onto a secondary victim
system as either active or passive. Active DDoS agent
installation methods typically involve the attacker
scanning the network for systems with known
vulnerabilities, running scripts to break into the system,
and stealthily installing the DDoS agent software. In
passive DDoS installation methods, the secondary victim
unwittingly causes the DDoS agent software to be
installed by opening a corrupted file or visiting a
corrupted web-site.

Active Scanning. Before installing DDoS
software, attackers first run scanning tools, such as the
port scanner Nmap, to identify potential secondary victim
systems. Nmap allows attackers to select ranges of IP
addresses to scan. The tool will then proceed to search
the Internet for each of these IP addresses and return
information that each IP address is broadcasting such as
open TCP and UDP ports and the specific OS of the
scanned system [10]. An attacker selects secondary victim
targets from this list, targeting software and backdoor
vulnerabilities.

Once the attacker has scanned for a list of
vulnerable systems, he will need to exploit the
vulnerability to gain access to the secondary victim system
and install the DDoS agent code. There are many sources
on the Internet, such as the Common Vulnerabilities and
Exposures (CVE) organization, which publicly lists over
2,000 of the known vulnerabilities of different systems [11].
This information is available so network administrators
can make their systems more secure; however, it also
provides attackers with data about existing vulnerabilities.

A common software vulnerability is the buffer
overflow problem. A buffer is a continuous block of
memory (with a finite size) that serves as a temporary data
storage area within a computer. A buffer overflow is an
attack that sends more data into the buffer than the size of
the buffer. This causes the extra data to overwrite other
information adjacent to the buffer in the memory stack,
such as a procedure return address [13]. This can cause the
computer to return from a procedure call to malicious
code included in the data that overwrites the buffer. This

malicious code can be
used to start a program
of the attacker’s
choosing (such as a
DDoS Agent) or
provide access to the
victim’s computer so
that the attacker can
install the DDoS Agent
code.

An example of
a backdoor
vulnerability is a
Trojan horse program.
This is a program that
appears to perform a
useful function, but in
reality contains hidden
code that either
executes malicious acts
or provides a backdoor
for unauthorized access
to some privileged
system function [12].

Figure 4: DDoS Software Tools (Characteristics)

OS Supported

Solaris Windows Linux Unix

Lie &
Wait

Actively
Poll

DDoS Software
Tool

Agent
Activation

Method

Attack Network
Communication

Client-
Handler

Handler-
Agent

None

Handler
– Agent

IRC
Based

Yes,
Private or

Secret
Channel

No,
Public

Channel

No

Hide with
Rootkit

Buffer
Overflow

Trojan
Horse

Program

Active Scanning

Software/
Backdoor

Vulnerability

Agent Setup

Bugged
Website

Corrupted
File

Installation

Passive

Yes

Protocol

TCP UDP ICMP

Encryption

Trojan horse programs are installed on a victim’s system
by the attacker and allow the attacker to gain control of a
user’s computer without the user knowing. In the case of
a DDoS attack tool setup, Trojan horse programs already
installed on a victim system might be used by the attacker
to gain access to a secondary victim’s system allowing the
attacker to install the DDoS agent code.

Passive DDoS Agent Installation. Passive
methods typically involve the attacker sharing corrupt
files or building web sites that take advantage of known
vulnerabilities in a secondary victim’s web browser.

A corrupted file has malicious code embedded
within it. When the victim system tries to view or execute
this file, it will become infected with the malicious code.
One popular technique is for attackers to generate a text
file with the name of the binary executable code for a
DDoS agent embedded within it. They rename the text
file with a very long name with the .txt extension within
the name when the real extension is .exe. For instance, the
file might be newfile.txt_this_is_a_ddos_agent.exe. If
only the first few characters of the file are displayed to the
user, it will appear as if this file is a text file, not an
executable file. In this example, the newfile name would
need to be around 150 chars long so most windows
systems would not show the full file name [15]. As soon as
a user launches the file, his system will become infected
with the DDoS agent software. Corrupt files can be
exchanged in different ways such as IRC file sharing,
Gnutella networks, and by e-mailing corrupt files to
victims.

Another passive DDoS agent installation
technique uses a bugged web site. A vulnerability found
on web browsers allows the attacker to create websites
with code or commands to trap a victim. When the
victim’s web browser views the web page or tries to
access content, the web page indirectly downloads or
installs malicious code (e.g., a DDoS agent). One example
of this type of attack exploits a bug in Microsoft’s Internet
Explorer (IE) versions 5.5 and 6.0. These versions of IE
contain ActiveX, a technology developed by Microsoft to
enable control within IE for viewing specific plug-in
applications embedded within website code by allowing
the IE web browser to automatically download client
binary code specified by the website being viewed [14].
Attackers use malicious code inserted into a web page to
take advantage of ActiveX and instead of downloading
legitimate client software, the attacker can set up ActiveX
to download hostile code, such as a DDoS agent.

Root kits are programs that are used by the
attacker after installation of handler or agent software to
remove log files and any other records that might indicate
that the attacker was using the system [16]. Attackers may
additionally use the root kit tools to create backdoors so
that they will be able to access the victim’s system in the

future [17]. Root kit tools are typically used when handler
software is installed since one handler can be critical for
the DDoS network to work and since handler programs
are usually installed within ISP or corporate networks
where the possibility of detection is higher.

4.2 Attack Network Communication

The DDoS agent-handler and handler-client
communication can be via TCP, UDP, and/or ICMP
protocols.

Some DDoS attack tools also make use of
encrypted communication within the DDoS attack
network. Agent-handler DDoS attacks might use
encrypted communications either between the client-
handlers and/or between the handlers-agents. IRC-based
DDoS attacks may use either a public, private, or secret
channel to communicate between the agents and the
handlers. Both private and secret IRC channels provide
encryption; private channels (not the data or users) appear
in the IRC server’s channel list but secret channels do not.

There are two key methods for DDoS agent
activation. In some DDoS tools, the agents actively poll
the handlers or IRC channel for instructions, whereas in
other DDoS tools, the agents will wait for communication
from either the handler or the IRC channel.

4.3 Operating Systems Supported

 DDoS attack tools are typically designed to be
compatible with different operating systems (OS). Any
OS system (such as Unix, Linux, Solaris, or Windows)
may have DDoS agent or handler code designed to work
on it. Typically, the handler code is designed to support
an OS that would be located on a server or workstation at
either a corporate or ISP site (i.e.Unix, Linux, or Solaris).
Agent code is usually designed for a Windows platform
since many attackers target residential Internet users with
DSL and cable modems (for higher attacking bandwidth)
and these users typically use Windows.

5 DDoS COUNTERMEAUSRES

The countermeasures proposed for preventing a
DDoS attack are currently partial solutions at best. There
is currently no comprehensive method to protect against
all known forms of DDoS attacks. Also, many derivative
DDoS attacks are continually being developed by
attackers to bypass each new countermeasure employed.
More research is needed, and the purpose for this paper is
to characterize the nature and scope of DDoS attacks and
tools to facilitate such research. We propose a
preliminary taxonomy of DDoS Countermeasures in
Figure 5.

 There are three categories of DDoS
countermeasures. First, preventing the setup of the DDoS
attack network, including preventing secondary victims
and detecting and neutralizing handlers. Second, dealing
with a DDoS attack while it is in progress, including
detecting or preventing, mitigating or stopping, and
deflecting the attack. Third, there is the post-attack
category involving network forensics.

5.1 Prevent Secondary Victims

One of the best methods to prevent DDoS attacks
is for the secondary victim systems to prevent themselves
from participating in the attack. This requires a
heightened awareness of security issues and prevention
techniques from all Internet users.

 To prevent secondary victims from becoming
infected with the DDoS agent software, these systems
must continually monitor their own security. They must
check to make sure that no agent programs have been
installed on their systems and make sure they are not
indirectly sending agent traffic into the network. Because
the Internet is so de-centralized, with so many different
hardware and software platforms, it is quite difficult for
users to implement the right protective measures such as
anti-Trojan software. To be successful, end users must
have the resources to afford protective measures and the
knowledge to choose the right protections. Additionally,
secondary victims must identify when they are
participating in a DDoS attack, and if so, they need to
know how to stop it. These tasks are daunting for the
average “web-surfer”.

 Recent work has proposed built-in mechanisms
in the core hardware and software of computing systems
that can provide defenses against malicious code insertion
through buffer overflow violations [18]. This can
significantly reduce the probability of a system being
compromised as a secondary victim for a DDoS attack.

Another strategy is for network service providers
and network administrators to add dynamic pricing to
network usage, to encourage secondary victims to become
more active in preventing themselves from becoming part
of a DDoS attack. If providers chose to charge differently
for the use of different resources, they would be better
able to identify legitimate users. This system would make
it easier to prevent attackers from entering the network [19].
Additionally, secondary victims who might be charged for
accessing the Internet may become more conscious of the
traffic they send into the network and hence may do a
better job of policing themselves to verify that they are not
participating in a DDoS attack.

5.2 Detect and Neutralize Handlers

An important method for stopping DDoS attacks
is to detect and neutralize handlers. One technique is to
study the communication protocols and traffic patterns
between handlers and clients or handlers and agents, in
order to identify network nodes that might be infected
with handler code. Since there are far fewer DDoS
handlers deployed than agents, shutting down a few
handlers can render multiple agents useless thereby
neutralizing a DDoS attack.

5.3 Detect or Prevent Potential Attacks

To detect or prevent a potential DDoS attack that
is being launched, egress filtering and MIB (Management
Information Base) statistics can be used.

Egress filtering refers to the scanning of IP
packet headers leaving a network and checking to see if
they meet certain criteria. If the packets pass the criteria,
they are routed outside of the sub-network from which
they originated. Otherwise, the packets will not be sent.
Since DDoS attacks often use spoofed IP addresses, there
is a good probability that the source addresses of DDoS
attack packets will not represent the source address of a
valid user on a specific sub-network. If the network
administrator places a firewall in the sub-network to filter

out any traffic
without an
originating IP
address from the
subnet, many
DDoS packets
with spoofed IP
addresses will be
discarded.

Another
method being
studied to
identify when a
DDoS attack is
occurring uses

Figure 5: DDoS Countermeasures

DDoS Countermeasures

Detect and
Neutralize Handlers

Detect/Prevent
Secondary Victims

Detect/Prevent
Potential Attacks

Mitigate/Stop
Attacks

Deflect Attacks Post-Attack
Forensics

Individual Users Network Service
Providers

Egress
Filtering

MIB
Statistics

Install Software
Patches

Built-in
Defenses

Dynamic
Pricing

Honeypots
Load

Balancing
Throttling Drop

Requests
Traffic
Pattern

Analysis

Packet
Traceback

Event
Logs

Shadow Real
Network Resources

Study
Attack

the MIB statistics from routers. Router MIB data includes
parameters that indicate different packet and routing
statistics. Identifying statistical patterns in different
parameters during a DDoS attack [20] looks promising for
possibly mapping ICMP, UDP, and TCP packet statistical
abnormalities to specific DDoS attacks. Work in this area
could provide methods for identifying when a DDoS
attack is happening and how to adjust network parameters
to compensate for the attacking traffic.

5.4 Mitigating the Effects of DDoS Attacks

Load balancing can improve both normal
performance as well as mitigate a DDoS attack. Network
providers can increase bandwidth on critical connections
to prevent them from going down in an attack.
Additionally, providers can replicate servers and provide
additional failsafe protection if some go down during a
DDoS attack.

Throttling is another technique proposed to
prevent servers from going down. The Max-min Fair
server-centric router throttle method[21] sets up routers that
access a server with logic to adjust (throttle) incoming
traffic to levels that will be safe for the server to process.
This can prevent flood damage to servers. Additionally,
this method can be extended to throttle DDoS attacking
traffic versus legitimate user traffic for better results. This
method is still in the experimental stage, however similar
techniques to throttling are being implemented by network
operators. The difficulty with implementing throttling is
that it is hard to decipher legitimate traffic from malicious
traffic.

5.5 Deflect Attacks

Honeypots are systems intentionally set up with
limited security to be an enticement for an attacker’s
attack. Honeypots serve to deflect attacks from hitting the
systems they are protecting as well as serving as a means
for gaining information about attackers by storing a record
of their activity and learning what types of attacks and
software tools the attacker is using. Current research
discusses the use of honeypots that mimic all aspects of a
legitimate network (such as web servers, mail servers,
clients, etc.) in order to attract potential DDoS attackers
[22]. The goal of this type of honeypot is to lure an attacker
to install either handler or agent code within the honeypot,
thereby allowing the honeypot owner to track the handler
or agent behavior and better understand how to defend
against future DDoS installation attacks.

5.6 Post-Attack Forensics

If traffic pattern data is stored during a DDoS
attack, this data can be analyzed post-attack to look for
specific characteristics within the attacking traffic. This
characteristic data can be used for updating load balancing

and throttling countermeasures to increase their efficiency
and protection ability. Additionally, DDoS attack traffic
patterns can help network administrators develop new
filtering techniques for preventing DDoS attack traffic
from entering or leaving their networks.

To help identify the attackers, packet traceback
techniques are proposed [23]. The concept involves tracing
Internet traffic back to it’s source (rather than that of a
spoofed source IP address). This technique helps to
identify the attacker. Additionally, when the attacker
sends different types of attacking traffic, this method
assists in providing the victim system with information
that might help develop filters to block the attack.

 A model for developing a Network Traffic
Tracking System that would identify and track user traffic
throughout a network has been proposed [24]. This model
can be very successful within a closed network
environment where internal client systems can be fully
managed by a central network administrator who can track
individual end-user actions. This method begins to break
down over widely distributed networks [24].

Network administrators can also keep event logs
of the DDoS attack information in order to do a forensic
analysis and to assist law enforcement in the event the
attacker does severe damage. Using Honeypots and other
network equipment such as firewalls, packet sniffers, and
server logs, providers can store all the events that
occurred during the setup and execution of the attack.
This allows network administrators to discover what type
of DDoS attack (or combination of attacks) was used.

6 CONCLUSION

DDoS attacks make a networked system or
service unavailable to legitimate users. These attacks are
an annoyance at a minimum, or can be seriously damaging
if a critical system is the primary victim. Loss of network
resources causes economic loss, work delays, and loss of
communication between network users. Solutions must be
developed to prevent these DDoS attacks.

We have proposed taxonomies of DDoS attacks,
tools, and countermeasures in this paper to help scope the
DDoS problem and to facilitate more comprehensive
solutions. More detailed descriptions and DDoS examples
are available in [25]. There are many DDoS attack tools
available to attackers. These tools are easy to implement
and can have disastrous effects. There are methods of
preventing these attacks from succeeding, however, many
of these are still being developed and evaluated. It is
essential, that as the Internet and Internet usage expand,
more comprehensive solutions and countermeasures to
DDoS attacks be developed, verified, and implemented.

7 REFERENCES

[1] David Karig and Ruby Lee, “Remote Denial of Service
Attacks and Countermeasures,” Princeton University
Department of Electrical Engineering Technical Report CE-
L2001-002, Oct 2001.

[2] “Yahoo on Trail of Site Hackers”, Wired.com, Feb 8, 2000.
http://www.wired.com/news/business/0,1367,34221,00.html (15
May 2003).

[3] Brunker, Mike. “Spam Block Lists Bombed to Oblivion”.
MSNBC.COM 24 Sept 2003.
http://www.msnbc.msn.com/id/3088113/ (Jul 5, 2004).

[4] Kevin J. Houle. “Trends in Denial of Service Attack
Technology”. CERT Coordination Center, Carnegie Mellon
Software Engineering Institute. Oct 2001.
www.nanog.org/mtg-0110/ppt/houle.ppt. (14 Mar 2003).

[5] Paul J. Criscuolo. “Distributed Denial of Service Trin00,
Tribe Flood Network, Tribe Flood Network 2000, And
Stacheldraht CIAC-2319”. Department of Energy Computer
Incident Advisory Capability (CIAC), UCRL-ID-136939, Rev.
1., Lawrence Livermore National Laboratory, Feb 14, 2000.

[6] TFreak. “smurf.c”, www.phreak.org. Oct 1997.
www.phreak.org/archives/exploits/denial/smurf.c (6 May 2003).

[7] Federal Computer Incident Response Center (FedCIRC),
“Defense Tactics for Distributed Denial of Service Attacks”.
Washington, DC, 2000.

[8] TFreak. “fraggle.c”, www.phreak.org. www.phreak.org/
archives/exploits/denial/fraggle.c (6 May 2003).

[9] Martin, Michael J., “Router Expert: Smurf/Fraggle Attack
Defense Using SACLS”, Networking Tips and Newsletters,
www.searchnetwork.techtarget.com. Oct 2002.
http://searchnetworking.techtarget.com/tip/1,289483,sid7_gci85
6112,00.html (6 May 2003).

[10] “Nmap Stealth Port Scanner Introduction”, Insecure.org.
August 2002. http://www.insecure.org/nmap/. (8 Apr 2003).
[11] “CVE (version 20020625)”, Common Vulnerabilities and
Exposures. Mar 27, 2002. http://cve.mitre.org/cve/. (9 Apr
2003).

[12] Colon E. Pelaez and John Bowles, “Computer Viruses”,
System Theory, 1991, Twenty-Third Southeastern Symposium,
pp. 513-517, Mar 1999.

[13] Crispin Cowan, Perry Wagle, Calton Pu, Steve Beattie, and
Jonathan Walpole, “Buffer Overflows: Attacks and Defenses for
the Vulnerability of the Decade”, DARPA Information
Survivability Conference and Exposition, 2000. Vol. 2, pp. 119-
129, 2000.

[14] Microsoft. “How to Write Active X Controls for Microsoft
Windows CE2.1”, Microsoft Corporation. Jun 1999.
http://msdn.microsoft.com/library/default.asp?url=/library/en-
us/dnce21/html/activexce.asp. (5 Apr 2003).

[15] Dancho Danchev. “The Complete Windows Trojans
Paper”, BCVG Network Security. Oct 22, 2002.
http://www.ebcvg.com/articles.php?id=91. (9 Apr 2003).

[16] David Dittrich. “The DoS Project’s “trinoo” Distributed
Denial of Service Attack Tool”. University of Washington, Oct
21, 1999. http://staff.washington.edu/dittrich/misc/
trinoo.analysis.txt (8 Apr 2003).

[17] Alex Noordergraff. “How Hackers Do It: Tricks, Tools,
and Techniques”, Sun BluePrints™ OnLine. Part No.: 816-
4816-10, Revision 1.0. May 2002. http://www.sun.com/
solutions/blueprints/0502/816-4816-10.pdf. (8 Apr 2003).

[18] Ruby Lee, David Karig, Patrick McGregor and Zhijie Shi,
“Enlisting Hardware Architecture to Thwart Malicious Code
Injection”, Proceedings of the International Conference on
Security in Pervasive Computing (SPC-2003), LNCS 2802, pp.
237-252, Springer Verlag, March 2003.

[19] David Mankins, Rajesh Krishnan, Ceilyn Boyd, John Zao,
and Michael Frentz, “Mitigating Distributed Denial of Service
Attacks with Dynamic Resource Pricing”, Computer Security
Applications Conference, 2001. ACSAC 2001. Proceedings 17th

Annual, pp. 411-421, 2001.

[20] Joao B. D. Cabrera, Lundy Lewis, Xinzhou Qin, Wenke
Lee, Ravi K. Prasanth, B. Ravichandran, and Ramon K. Mehra,
“Proactive Detection of Distributed Denial of Service Attacks
Using MIB Traffic Variables – A Feasibility Study”, Integrated
Network Management Proceedings, pp. 609-622, 2001.

[21] David K. Yau, John C. S. Lui, and Feng Liang, “Defending
Against Distributed Denial of Service Attacks with Max-min
Fair Server-centric Router Throttles”, Quality of Service, 2002
Tenth IEEE International Workshop, pp. 35-44, 2002.

[22] Nathalie Weiler. “Honeypots for Distributed Denial of
Service”, Enabling Technologies: Infrastructure for
Collaborative Enterprises, 2002. WET ICE 2002. Proceedings.
Eleventh IEEE International Workshops, 2002. pp. 109-114.

[23] Vern Paxon, “An Analysis of Using Reflectors for
Distributed Denial of Service Attacks”, ACM SIGCOMM
Computer Communication Review, Vol. 31, Iss. 3, Jul 2001.

[24] Thomas E. Daniels and Eugene H. Spafford, “Network
Traffic Tracking Systems: Folly in the Large?”, Proceedings of
the 2000 Workshop on New Security Paradigms, Feb. 2001.

[25] Stephen Specht and Ruby Lee, “Distributed Denial of
Service: Taxonomies of Networks, Attacks, Tools, and
Countermeasures,” Princeton University Department of
Electrical Engineering Technical Report CE-L2003-03, May
2003

