
- 28 -

Experiences with the
Amoeba Distributed Operating System

Andrew S. Tanenbaum
Robbert van Renesse1

Hans van Staveren
Gregory J. Sharp

Dept. of Mathematics and Computer Science
Vrije Universiteit

De Boelelaan 1081
1081 HV Amsterdam, The Netherlands

Internet: ast@cs.vu.nl, cogito@cs.vu.nl, sater@cs.vu.nl, gregor@cs.vu.nl

Sape J. Mullender2

Jack Jansen
Guido van Rossum

Centrum voor Wiskunde en Informatica
Kruislaan 413

1098 SJ Amsterdam, The Netherlands
Internet: sape@cwi.nl, jack@cwi.nl, guido@cwi.nl

ABSTRACT

The Amoeba distributed operating system has been in development and use
for over eight years now. In this paper we describe the present system and our
experience with it—what we did right, but also what we did wrong.

Computing Reviews categories: C.2.4, D.4

Keywords: Operating systems, Distributed systems, Distributed operating sys-
tems, Computer networks, Experience

Descriptors: Network operating systems, Distributed applications, Distributed
systems, Measurements

General terms: Design, Experimentation, Performance

1. INTRODUCTION

The Amoeba project is a research effort aimed at understanding how to connect multiple
computers together in a seamless way (Mullender and Tanenbaum, 1986; Tanenbaum et al.,
1986; Tanenbaum and van Renesse, 1985). The basic idea is to provide the users with the
�����������������������������������

1. This research was supported in part by the Netherlands Organization for Scientific Research (N.W.O.) under grant 125-
30-10.



- 29 -

illusion of a single powerful timesharing system, when, in fact, the system is implemented on a
collection of machines, potentially distributed among several countries. This research has led to
the design and implementation of the Amoeba distributed operating system, which is being used
as a prototype and vehicle for further research. In this paper we will describe the current state of
the system (Amoeba 3.0), and tell some of the lessons we have learned designing and using it
over the past eight years. We will also discuss how this experience has influenced our plans for
the next version, Amoeba 4.0.

Amoeba was originally designed and implemented at the Vrije Universiteit in Amsterdam,
and is now being jointly developed there and at the Centre for Mathematics and Computer Sci-
ence, also in Amsterdam. The chief goal of this work is to build a distributed system that is tran-
sparent to the users. This concept can best be illustrated by contrasting it with a network operat-
ing system, in which each machine retains its own identity. With a network operating system,
each user logs into one specific machine, his home machine. When a program is started, it exe-
cutes on the home machine, unless the user gives an explicit command to run it elsewhere. Simi-
larly, files are local unless a remote file system is explicitly mounted or files are explicitly
copied. In short, the user is clearly aware that multiple independent computers exist, and must
deal with them explicitly.

In a transparent distributed system, in contrast, users effectively log into the system as a
whole, and not to any specific machine. When a program is run, the system, not the user,
decides the best place to run it. The user is not even aware of this choice. Finally, there is a sin-
gle, system wide file system. The files in a single directory may be located on different
machines possibly in different countries. There is no concept of file transfer, uploading or
downloading from servers, or mounting remote file systems. The fact that a file is remote is not
visible to the user at all.

The remainder of this paper will describe Amoeba and the lessons we have learned from
building it. In Section 2, we will give a technical overview of Amoeba as it currently stands.
Since Amoeba uses the client-server model, in Section 3 we will describe some of the more
important servers that have been implemented so far. This is followed by a description of how
wide-area networks are handled, in Section 4. In Section 5 we will discuss a number of applica-
tions that run on Amoeba. Measurements have shown Amoeba to be extremely fast, so in Sec-
tion 6 we will present some of these measurements. Finally, in Section 7, we will discuss the
successes and failures that we have encountered over the past 5 years, so that others may profit
from those ideas that have worked out well and avoid those that have not.

2. TECHNICAL OVERVIEW OF AMOEBA

Before describing the software, it is worth saying something about the system architecture
on which Amoeba runs.

� ���������������������������

2. The research at CWI was supported in part by a grant from Digital Equipment Corporation.



- 30 -

2.1. System Architecture

The Amoeba architecture consists of four principal components, as shown in Fig. 1. First
are the workstations, one per user, on which users can carry out editing and other tasks that
require fast interactive response. The workstations are all diskless, and are primarily used as
intelligent terminals that do window management, rather than as computers for running complex
user programs. We are currently using SUN-3s and VAXstations as workstations. In the next
generation of hardware we may use X-terminals.

Second are the pool processors, a group of CPUs that can be dynamically allocated as
needed, used, and then returned to the pool. For example, the make command might need to do
six compilations, so six processors could be taken out of the pool for the time necessary to do the
compilation and then returned. Alternatively, with a five-pass compiler, 5 x 6 = 30 processors
could be allocated for the six compilations, gaining even more speedup. Many applications, such
as heuristic search in AI applications (e.g., playing chess), use large numbers of pool processors
to do their computing. We currently have 48 single board VME-based computers using the
68020 and 68030 CPUs. We also have 10 VAX CPUs forming an additional processor pool.

Third are the specialized servers, such as directory servers, file servers, data base servers,
boot servers, and various other servers with specialized functions. Each server is dedicated to
performing a specific function. In some cases, there are multiple servers that provide the same
function, for example, as part of the replicated file system.

Fourth are the gateways, which are used to link Amoeba systems at different sites and dif-
ferent countries into a single, uniform system. The gateways isolate Amoeba from the peculiari-
ties of the protocols that must be used over the wide-area networks.

All the Amoeba machines run the same kernel, which primarily provides multithreaded
processes, communication services, and little else. The basic idea behind the kernel was to keep
it small, to enhance its reliability, and to allow as much as possible of the operating system to run
as user processes, providing for flexibility and experimentation.

2.2. Objects and Capabilities

Amoeba is an object-based system. The system can be viewed as a collection of objects, on
each of which there is a set of operations that can be performed. For a file object, for example,
typical operations are reading, writing, appending, and deleting. The list of allowed operations is
defined by the person who designs the object and who writes the code to implement it. Both
hardware and software objects exist.

Associated with each object is a capability (Dennis and Van Horn, 1966), a kind of ticket
or key that allows the holder of the capability to perform some (not necessarily all) operations on
that object. A user process might, for example, have a capability for a file that permitted it to
read the file, but not to modify it. Capabilities are protected cryptographically to prevent users
from tampering with them.



- 31 -

B: box wid 1.4i ht 2.2i "Processor Pool" at last box.n above L1: line right 1i with .start at last
box.nw + (0.2i, -0.5i) line up 0.3i with .start at 1/11 <L1.start, L1.end> line up 0.3i with .start at
2/11 <L1.start, L1.end> line up 0.3i with .start at 3/11 <L1.start, L1.end> line up 0.3i with .start
at 4/11 <L1.start, L1.end> line up 0.3i with .start at 5/11 <L1.start, L1.end> line up 0.3i with
with .start at 8/11 <L1.start, L1.end> line up 0.3i with .start at 9/11 <L1.start, L1.end> line up
0.3i with .start at 10/11 <L1.start, L1.end> L2: line right 1i with .start at L1.start - (0, 0.5i) line
up 0.3i with .start at 1/11 <L2.start, L2.end> line up 0.3i with .start at 2/11 <L2.start, L2.end>
line up 0.3i with .start at 3/11 <L2.start, L2.end> line up 0.3i with .start at 4/11 <L2.start,
L2.end> line up 0.3i with .start at 5/11 <L2.start, L2.end> line up 0.3i with .start at 6/11
<L2.start, L2.end> line up 0.3i with .start at 7/11 <L2.start, L2.end> line up 0.3i with .start at
8/11 <L2.start, L2.end> line up 0.3i with .start at 9/11 <L2.start, L2.end> line up 0.3i with .start
at 10/11 <L2.start, L2.end> L3: line right 1i with .start at L2.start - (0, 0.5i) line up 0.3i with
with .start at 3/11 <L3.start, L3.end> line up 0.3i with .start at 4/11 <L3.start, L3.end> line up
0.3i with .start at 5/11 <L3.start, L3.end> line up 0.3i with .start at 6/11 <L3.start, L3.end> line
up 0.3i with .start at 7/11 <L3.start, L3.end> line up 0.3i with .start at 8/11 <L3.start, L3.end>
line up 0.3i with .start at 9/11 <L3.start, L3.end> line up 0.3i with .start at 10/11 <L3.start,
L3.end> L4: line right 1i with .start at L3.start - (0, 0.5i) line up 0.3i with .start at 1/11
<L4.start, L4.end> line up 0.3i with .start at 2/11 <L4.start, L4.end> line up 0.3i with .start at
3/11 <L4.start, L4.end> line up 0.3i with .start at 4/11 <L4.start, L4.end> line up 0.3i with .start
at 5/11 <L4.start, L4.end> line up 0.3i with .start at 6/11 <L4.start, L4.end> line up 0.3i with
with .start at 9/11 <L4.start, L4.end> line up 0.3i with .start at 10/11 <L4.start, L4.end> line
right 0.3i at B.e move up 0.5i line down 1i arc to last line.end + (0.15i, -0.15i) rad 0.15i BOT-
TOM: line right 1.5i arc invis to last line.end + (0.15i, 0.15i) rad 0.15i line invis up 0.35i line up
0.15i RIGHT: line up 0.5i arc to last line.end - (0.15i, -0.15i) rad 0.15i TOP: line left 1.5i arc to
last line.end - (0.15i, 0.15i) rad 0.15i define workstation X line up 0.15i line right
0.15i line up 0.30i line left 0.15i line down 0.20i line left 0.15i line
down 0.10i line right 0.15i X move to TOP.end + (0.15i, 0) workstation move to
TOP.center workstation move to TOP.start - (0.15i, 0) workstation "Workstations" at TOP.center
+ (0, 0.45i) above oldwid=boxwid oldht=boxht boxwid = 0.3i boxht = 0.3i line down 0.15i at
BOTTOM.start + (0.15i, 0) box with .n at last line.end line down 0.15i at BOTTOM.center box
with .n at last line.end line down 0.15i at BOTTOM.end - (0.15i, 0) X: box with .n at last
line.end box invis "Specialized servers" "(file, data base, etc)" with .w at X.e + (0.6i, 0) line right
0.3i at RIGHT.start box arrow right 0.5i " WAN" ljust "Gateway" at last box.n above
boxwid=oldwid boxht=oldht

Fig. 1. The Amoeba architecture.

Each user process owns some collection of capabilities, which together define the set of
objects it may access and the type of operations he may perform on each. Thus capabilities pro-
vide a unified mechanism for naming, accessing, and protecting objects. From the user’s per-
spective, the function of the operating system is to create an environment in which objects can be
created and manipulated in a protected way.



- 32 -

This object-based model visible to the users is implemented using remote procedure call
(Birrell and Nelson, 1984). Associated with each object is a server process that manages the
object. When a user process wants to perform an operation on an object, it sends a request mes-
sage to the server that manages the object. The message contains the capability for the object, a
specification of the operation to be performed, and any parameters the operation requires. The
user, known as the client , then blocks. After the server has performed the operation, it sends
back a reply message that unblocks the client. The combination of sending a request message,
blocking, and accepting a reply message forms the remote procedure call, which can be encapsu-
lated using stub routines, to make the entire remote operation look like a local procedure call
(although see Tanenbaum and van Renesse, 1988).

The structure of a capability is shown in Fig. 2. It is 128 bits long and contains four fields.
The first field is the server port , and is used to identify the (server) process that manages the
object. It is in effect a 48-bit random number chosen by the server.

boxht=0.5i A:box wid 2i "Server" "port" B:box wid 1i"Object" "number" C:box wid 0.5i
"Rights" "" D:box wid 2i"Check" "field" "48" at A.n above "24" at B.n above "8" at C.n above
"48" at D.n above

Fig. 2. A capability. The numbers are the current sizes in bits.

The second field is the object number , which is used by the server to identify which of its
objects is being addressed. Together, the server port and object number uniquely identify the
object on which the operation is to be performed.

The third field is the rights field, which contains a bit map telling which operations the
holder of the capability may perform. If all the bits are 1s, all operations are allowed. However,
if some of the bits are 0s, the holder of the capability may not perform the corresponding opera-
tions.

To prevent users from just turning all the 0 bits in the rights field into 1 bits, a crypto-
graphic protection scheme is used. When a server is asked to create an object, it picks an avail-
able slot in its internal tables, puts the information about the object in there along with a newly
generated 48-bit random number. The index into the table is put into the object number field of
the capability, the rights bits are all set to 1, and the newly-generated random number is put into
the check field of the capability. This is an owner capability , and can be used to perform all
operations on the object.

The owner can construct a new capability with a subset of the rights by turning off some of
the rights bits and then XOR-ing the rights field with the random number in the check field. The
result of this operation is then run through a (publicly-known) one-way function to produce a
new 48-bit number that is put in the check field of the new capability.

The key property required of the one-way function, f , is that given the original 48-bit
number, N (from the owner capability) and the unencrypted rights field, R , it is easy to compute
C = f(N XOR R), but given only C it is nearly impossible to find an argument to f that produces
the given C . Such functions are known (Evans et al., 1974).



- 33 -

When a capability arrives at a server, the server uses the object field to index into its tables
to locate the information about the object. It then checks to see if all the rights bits are on. If so,
the server knows that the capability is (or is claimed to be) an owner capability, so it just com-
pares the original random number in its table with the contents of the check field. If they agree,
the capability is considered valid and the desired operation is performed.

If some of the rights bits are 0, the server knows that it is dealing with a derived capability,
so it performs an XOR of the original random number in its table with the rights field of the
capability. This number is then run through the one-way function. If the output of the one-way
function agrees with the contents of the check field, the capability is deemed valid, and the
requested operation is performed if its rights bit is set to 1. Due to the fact that the one-way
function cannot be inverted, it is not possible for a user to ‘‘decrypt’’ a capability to get the origi-
nal random number in order to generate a false capability with more rights.

2.3. Remote Operations

The combination of a request from a client to a server and a reply from a server to a client
is called a remote operation . The request and reply messages consist of a header and a buffer.
Headers are 32 bytes, and buffers can be up to 30 kilobytes. A request header contains the capa-
bility of the object to be operated on, the operation code, and a limited area (8 bytes) for parame-
ters to the operation. For example, in a write operation on a file, the capability identifies the file,
the operation code is write, and the parameters specify the size of the data to be written, and the
offset in the file. The request buffer contains the data to be written. A reply header contains an
error code, a limited area for the result of the operation (8 bytes), and a capability field that can
be used to return a capability (e.g., as the result of the creation of an object, or of a directory
search operation).

The primitives for doing remote operations are listed below:

get� request(req-header, req-buffer, req-size)
put� reply(rep-header, rep-buffer, rep-size)
do� operation(req-header, req-buffer, req-size, rep-header, rep-buffer, rep-size)

When a server is prepared to accept requests from clients, it executes a get� request primi-
tive, which causes it to block. When a request message arrives, the server is unblocked and the
formal parameters of the call to get� request are filled in with information from the incoming
request. The server than performs the work and sends a reply using put� reply.

On the client side, to invoke a remote operation, a process uses do� operation. This action
causes the request message to be sent to the server. The request header contains the capability of
the object to be manipulated and various parameters relating to the operation. The caller is
blocked until the reply is received, at which time the three rep- parameters are filled in and a
status returned. The return status of do� operation can be one of three possibilities:

1. The request was delivered and has been executed.
2. The request was not delivered or executed (e.g., server was down).



- 34 -

3. The status is unknown.

The third case can arise when the request was sent (and possibly even acknowledged), but
no reply was forthcoming. This situation can arise if a server crashes part way through the
remote operation. Under all conditions of lost messages and crashed servers, Amoeba guaran-
tees that messages are delivered at most once. If status 3 is returned, it is up to the application or
run time system to do its own fault recovery.

2.4. Remote Procedure Calls

A remote procedure call actually consists of more than just the request/reply exchange
described above. The client has to place the capability, operation code, and parameters in the
request buffer, and on receiving the reply it has to unpack the results. The server has to check
the capability, extract the operation code, and parameters from the request and call the appropri-
ate procedure. The result of the procedure has to be placed in the reply buffer. Placing parame-
ters or results in a message buffer is called marshalling , and has a non-trivial cost. Different
data representations in client and server also have to be handled. All of these steps must be very
carefully designed and coded, lest they introduce unacceptable overhead.

To hide the marshalling and message passing from the users, Amoeba uses stub routines
(Birrell and Nelson, 1984). For example, one of the file system stubs might start with:

int read� file(file� cap, offset, nbytes, buffer)
capability � t *file� cap;
long offset;
long *nbytes;
char *buffer;

This call reads nbytes starting at offset from the file identified by file� cap into buffer. It returns
the number of bytes read or an error number. A hand-written stub for this code is simple to con-
struct: it will produce a request header containing file� cap, the operation code for read� file,
offset, and nbytes, and invoke the remote operation:

do� operation(req � header, NULL, 0, repader, buffer, nbytes);

Automatic generation of such a stub from the procedure header above is impossible. Some
essential information is missing. The author of the handwritten stub used several pieces of
derived information to do the job.

1. The buffer is used only to receive information from the file server; it is an output parame-
ter, and should not be sent to the server.

2. The maximum length of the buffer is given in the nbytes parameter. The actual length of
the buffer is the returned value if there is no error and zero otherwise.

3. File� cap is special; it defines the service that must carry out the remote operation.



- 35 -

4. The stub generator does not know what the server’s operation code for read� file is. This
requires extra information. But, to be fair, the human stub writer needs this extra informa-
tion too.

In order to be able to do automatic stub generation, the interfaces between client and
servers have to contain the information listed above, plus information about type representation
for all language/machine combinations used. In addition, the interface specifications have to
have an inheritance mechanism which allows a lower-level interface to be shared by several
other interfaces. The read� file operation, for instance, will be defined in a low-level interface
which is then inherited by all file-server interfaces, the terminal-server interface, and the
segment-server interface.

AIL (Amoeba Interface Language) is a language in which the extra information for the gen-
eration of efficient stubs can be specified, so that the AIL compiler can produce stub routines
automatically (van Rossum, 1989). The read� file operation could be part of an interface (called
class in AIL) whose definition could look something like

class simple � file� server [1000..1999] {
read� file(*, in unsigned offset, in out unsigned nbytes,

out char buffer[nbytes:NBYTES]);
write� file(*, . . . );

};

From this specification, AIL can generate the C client stub of the example above with the correct
marshalling code. The AIL specification tells AIL that the operation codes for the
simple � file� server can be allocated in the range 1000 to 1999; it tells which parameters are input
parameters to the server and which are output parameters from the server, and it tells that the
length of buffer is at most NBYTES (which may be a constant or a variable) and that the actual
length is nbytes.

The Bullet File Server, one of the file servers operational in Amoeba, inherits this interface,
making it part of the Bullet File Server interface:

class bullet � server [2000..2999] {
inherit simple � file� server;
creat� file(*, . . . );

};

AIL can do multiple inheritance so the Bullet server interface can inherit both the simple file
interface and a capability management interface, for instance, for restricting rights on capabili-
ties.

2.5. Threads

A process in Amoeba consists of one or more threads that run in parallel. All the threads of
a process share the same address space, but each one has a dedicated portion of that address
space for use as its private stack, and each one has its own program counter. From the



- 36 -

programmer’s point of view, each thread is like a traditional sequential process, except that the
threads of a process can communicate using shared memory. In addition, the threads can syn-
chronize with each other using semaphores.

The purpose of having multiple threads in a process is to increase performance through
parallelism, and still provide a reasonable semantic model to the programmer. For example, a
file server could be programmed as a process with multiple threads. When a request comes in, it
can be given to some thread to handle. That thread first checks an internal (software) cache to
see if the needed data are present. If not, it performs an RPC with a remote disk server to
acquire the data.

While waiting for the reply from the disk, the thread is blocked and will not be able to han-
dle any other requests. However, new requests can be given to other threads in the same process
to work on while the first thread is blocked. In this way, multiple requests can be handled simul-
taneously, while allowing each thread to work in a sequential way. The point of having all the
threads share a common address space is to make it possible for all of them to have direct access
to a common cache, something that is not possible if each thread is its own address space.

The scheduling of threads within a process is done by code within the process itself. When
a thread blocks, either because it has no work to do (i.e., on a get� request) or because it is wait-
ing for a remote reply (i.e., on a do� operation), the internal scheduler is called, the thread is
blocked, and a new thread can be run. Threads are not pre-empted, that is, the currently running
thread will not be stopped because it has run too long. This decision was made to avoid race
conditions. A thread need not worry that when it is halfway through updating some critical
shared table it will be suddenly stopped and some other thread will start up and try to use the
table. It is assumed that the threads in a process were all written by the same programmer and
are actively co-operating. That is why they are in the same process. Thus the interaction
between two threads in the same process is quite different than the interaction between two
threads in different processes, which may be hostile to one another and for which hardware
memory protection is required and used.

3. SERVERS

The Amoeba kernel, as described above, basically handles communication and some pro-
cess management, and little else. The kernel takes care of sending and receiving messages,
scheduling processes, and some low-level memory management. Everything else is done by
user processes. Even capability management is done entirely in user space, since the crypto-
graphic technique discussed earlier makes it virtually impossible for users to generate counterfeit
capabilities.

All of the remaining functions that are normally associated with a modern operating system
environment are performed by servers, which are just ordinary user processes. The file system,
for example, consists of a collection of user processes. Any user who is not happy with the stan-
dard file system is free to write and use his own. This situation can be contrasted with a system
like UNIX,† in which there is a single file system that all applications must use, no matter how
� ���������������������������

† UNIX is a trademark of Bell Laboratories.



- 37 -

inappropriate it may be. (Stonebraker, 1981) for example, discusses the numerous problems that
UNIX creates for database systems.

In the following sections we will discuss the Amoeba memory server, process server, dev-
ice servers, file server, directory server, and boot server as examples of typical Amoeba servers.
Many others exist as well.

3.1. The Memory Server

In many applications, processes need a way to create subprocesses. In UNIX, a subprocess
is created by the fork primitive, in which an exact copy of of the original process is made. This
process can then run for a while, attending to housekeeping activities, and then issue an exec
primitive to overwrite its core image with a new program.

In a distributed system, this model is not attractive. The idea of first building an exact copy
of the process, possibly remotely, and then throwing it away again shortly thereafter is ineffi-
cient. Consequently, Amoeba uses a different strategy. Each Amoeba machine runs a memory
server process, whose job is to manage memory. It offers primitives to allocate, free, read and
write chunks of memory called segments . These primitives, together with those of the Process
Server below, are used instead of UNIX’s fork and exec.

3.2. The Process Server

A typical scenario for creating a new process is as follows. The process wanting to create a
subprocess first does an RPC with the process server telling it that it wants to create a process,
specifying the information about the new process, such as machine requirements (e.g., is floating
point hardware needed, how much memory is required) and the name of the program to be run.
The process server then chooses a machine to run the new process on, based on its information
about system load, location of input data, and other relevant factors that might affect perfor-
mance.

Once the process server has made a choice, it contacts the memory server on the chosen
machine. It then asks the memory server to create segments for the text, data, and stack of the
new process, and possibly other segments, as needed. For each segment it creates, the memory
server returns a capability to the process server. The process server then uses these capabilities
to perform write operations, that is, to fill the segments with the initial code, data, and stack
values.

When all the segments have been loaded, the process server asks the memory server to exe-
cute a build-process operation, with the segment capabilities as the input parameters. The
memory server responds by returning a capability for a newly-minted process. The process
server can then issue an execute operation using this capability to start the new process going.
When the process terminates, it returns a status value to the process server.



- 38 -

3.3. The File Server

As far as the system is concerned, a file server is just another user process. Consequently, a
variety of file servers have been written for Amoeba in the course of its existence. The first one,
FUSS (Free University Storage System) (Mullender and Tanenbaum, 1985) was designed as an
experiment in managing concurrent access using optimistic concurrency control. The second
one was designed for UNIX emulation, and is currently heavily used. The third one, the bullet
server was designed for extremely high performance (van Renesse et al., 1988, 1989a, 1989b).
It is this one that we will describe below.

The decrease in the cost of disk and RAM memories over the past decade has allowed to
use a radically different design than is used in UNIX and most other operating systems. In par-
ticular, we have abandoned the idea of storing files as a collection of fixed size disk blocks. All
files are stored contiguously, both on the disk and in the server’s main memory. While this
design wastes some disk space and memory due to fragmentation overhead, we feel that the
enormous gain in performance (described in section 6) more than offsets the small extra cost of
having to buy, say, an 800 MB disk instead of a 500 MB diskin order to store 500 MB worth of
files.

The bullet[A server is an immutable file store, with as principal operations read-file and
create-file. (For garbage collection purposes there is also a delete-file operation.) When a pro-
cess issues a read-file request, the bullet server can transfer the entire file to the client in a single
RPC, unless it is larger than the maximum size (30K), in which case multiple RPCs are needed.
The client can then edit or otherwise modify the file locally. When it is finished, the client issues
a create-file RPC to make a new version. The old version remains intact until explicitly deleted
or garbage collected. Note that different versions of a file have different capabilities, so they can
co-exist, making it simple to implement source code control systems.

The files are stored contiguously on disk, and are cached in memory (currently 16 Mbytes).
When a requested file is not available in this memory, it is loaded from disk in a single large
DMA operation and stored contiguously in the cache. (Unlike conventional file systems, there
are no ‘‘blocks’’ used anywhere in the file system.) In the create-file operation one can request
the reply before the file is written to disk (for speed), or afterwards (to know that it has been suc-
cessfully written).

When the bullet server is booted, the entire ‘‘i-node table’’ is read into memory in a single
disk operation and kept there while the server is running. When a file operation is requested, the
object number field in the capability is extracted, which is an index into this table. The entry
thus located gives the disk address as well as the cache address of the contiguous file (if present).
No disk access is needed to fetch the ‘‘i-node’’ and at most one disk access is needed to fetch the
file itself, if it is not in the cache. The simplicity of this design trades off some space for very
high performance. We will discuss the performance of this server in Section 6.



- 39 -

3.4. The Directory Server

The bullet server does not provide any naming services. To access a file, a process must
provide the relevant capability. Since working with 128-bit binary numbers is not convenient for
people, we have designed and implemented a directory server to manage names and capabilities.

The directory server manages multiple directories, each of which is a normal object.
Stripped down to its barest essentials, a directory maps ASCII strings onto a capabilities. A pro-
cess can present a string, such as a file name, to the directory server, and the directory server
returns the capability for that file. Using this capability, the process can then access the file.

In UNIX terms, when a file is opened, the capability is retrieved from the directory server
for use in subsequent read and write operations. After the capability has been fetched from the
directory server, subsequent RPCs go directly to the server that manages the object. The direc-
tory server is no longer involved.

It is important to realize that the directory server simply provides a mapping function. The
client provides a capability for a directory (in order to specify which directory to search) and a
string, and the directory server looks up the string in the specified directory and returns the capa-
bility associated with the string. The directory server has no knowledge of the kind of object that
the capability controls.

In particular, it can be a capability for another directory on the same or a different directory
server, a file, a mailbox, a database, a process capability, a segment capability, a capability for a
piece of hardware, or anything else. Furthermore, the capability may be for an object located on
the same machine, a different machine on the local network, or a capability for an object in a
foreign country. The nature and location of the object is completely arbitrary. Thus the objects
in a directory need not all be on the same disk, for example, as is the case in many systems that
support ‘‘remote mount’’ operations.

Since a directory may contain entries for other directories, it is possible to build up arbitrary
directory structures, including trees and graphs. As an optimization, it is possible to give the
directory server a complete path, and have it follow it as far as it can, returning a single capabil-
ity at the end.

Actually, directories are slightly more general than just simple mappings. It is commonly
the case that the owner of a file may want to have the right to perform all operations on it, but
may want to permit others read-only access. The directory server supports this idea by structur-
ing directories as a series of rows, one per object, as shown in Fig. 3

The first column gives the string (e.g., the file name). The second column gives the capa-
bility that goes with that string. The remaining columns each apply to one user class. For exam-
ple, one could set up a directory with different access rights for the owner, the owner’s group,
and others, as in UNIX, but other combinations are also possible.

The capability for a directory specifies the columns to which the holder has access as a bit
map in part of the rights field (e.g., 3 bits). Thus in the above example, the bits 001 might
specify access to only the Other column. In Sec. 2.2 we discussed how the rights bits are



- 40 -

�������������������������������������������������������������������������������������������������
Object name Capability Owner Group Other�������������������������������������������������������������������������������������������������

. cap1 11111 11000 10000�������������������������������������������������������������������������������������������������
games � dir cap2 11111 10000 10000�������������������������������������������������������������������������������������������������

paper.t cap3 11111 00000 00000�������������������������������������������������������������������������������������������������
prog.c cap4 11111 11100 10000�������������������������������������������������������������������������������������������������

�
�
�
�
�
�
�

�
�
�
�
�
�
�

�
�
�
�
�
�
�

�
�
�
�
�
�
�

�
�
�
�
�
�
�

�
�
�
�
�
�
�

Fig. 3. A directory with three user classes, four entries, and five rights.

protected from tampering by use of the check field.

To understand how the use of multiple columns works, let us consider a typical access. The
client provides a capability for a directory, a string, and a column. The string is looked up in the
directory to find the proper row. Next, the column is checked against the (singleton) bit map in
the rights field, to see which column should be used. Remember that the cryptographic scheme
described in Sec. 2.2 prevents users from modifying the bit map, hence accessing a forbidden
column.

Then the entry in the selected row and column is extracted. Conceptually this is just a
capability, with the proper rights bits turned on. However, to avoid having to store many capa-
bilities, few of which are ever used, an optimization is made, and the entry is just a bit map, b .
The directory server can then ask the server that manages the object to return a new capability
with only those rights in b . This new capability is returned to the user and also cached for future
use, to reduce calls to the server.

The directory server supports a number of operations on directory objects. These including
looking up capabilities, adding new rows to a directory, removing rows from directories, listing
directories, inquiring about the status of directories and objects, and deleting directories. There
is also provision for performing multiple operations in a single atomic action, to provide for fault
tolerance.

Furthermore, there is also support of handling replicated objects. The capability field in
Fig. 3 can actually hold a set of capabilities for multiple copies of each object. Thus when a pro-
cess looks up an object, it can retrieve the entire set of capabilities for all the copies. If one of
the objects is unavailable, the other ones can be tried. In addition, when a new object is installed
in a directory, an option is available to have the directory server itself request copies to be made,
and then store all the capabilities, thus freeing the user from this administration.

4. WIDE-AREA AMOEBA

Amoeba was designed with the idea that a collection of machines on a local network would
be able to communicate over a wide-area network with a similar collection of remote machines.
The key problem here is that wide-area networks are slow and unreliable, and furthermore use
protocols such as X.25, TCP/IP, and OSI, in any event, not RPC. The primary goal of the wide-
area networking in Amoeba has been to achieve transparency without sacrificing performance.



- 41 -

In particular, it is undesirable that the very fast local RPC be slowed down in any way due to the
existence of wide-area communication. We believe this goal has been achieved.

The Amoeba world is divided up into domains , each domain being an interconnected col-
lection of local area networks. The key aspect of a domain (e.g., a campus), is that broadcasts
done from any machine in the domain are received by all other machines in the domain, but not
by machines outside the domain.

The importance of broadcasting has to do with how ports are located in Amoeba. When a
process does an RPC with a port not previously used, the kernel broadcasts a locate message.
The server responds to this broadcast with its address, which is then used and also cached for
future RPCs.

This strategy is undesirable with a wide-area network. Although broadcast can be simu-
lated using a minimum spanning tree (Delal, 1977) it is expensive and inefficient. Furthermore,
not every service should be available worldwide. For example, a laser printer server on the third
floor of the physics building at a university in California may not be of much use to clients in
New York.

Both of these problems are dealt with by introducing the concept of publishing . When a
service wishes to be known and accessible outside its own domain, it contacts the Service for
Wide-Area Networks (SWAN) and asks that its port be published in some set of domains. The
SWAN publishes the port by doing RPCs with SWAN processes in each of those domains.

When a port is published in a domain, a new process called a server agent is created in that
domain. The process typically runs on the gateway machine, and does a get� request using the
remote server’s port. It is quiescent until its server is needed, at which time it comes to life and
performs an RPC with the server.

Now let us consider what happens when a process tries to locate a remote server whose port
has been published. The process’ kernel broadcasts a locate, which is received by the server
agent. The client agent then builds a message and hands it to a link process on the gateway
machine. The link process forwards it over the wide-area network to the server’s domain, where
it arrives at the gateway, causing a client agent process to be created. This client agent then
makes a normal RPC to the server. The set of processes involved here is shown in Fig. 4

C: box move G1: box line 1.5i "Wide-area network" below G2: box move S: box LAN1: line
boxwid+boxwid+movewid from C.sw - (0i, 0.5i) LAN2: line boxwid+boxwid+movewid from
G2.sw - (0i, 0.5i) line down 0.5i from C.s line down 0.5i from G1.s line down 0.5i from G2.s
line down 0.5i from S.s "Client" at C.n above "Gateway" at G1.n above "Gateway" at G2.n
above "Server" at S.n above "LAN 1" at LAN1.s + (boxwid + movewid/2, -0.1i) below "LAN 2"
at LAN2.s + (boxwid + movewid/2, -0.1i) below circle "C" at C.c radius boxht/5 circle "S" at S.c
radius boxht/5 circle "SA" at G1.c - (0.15i, 0) radius boxht/5 circle "L" at G1.c + (0.15i, 0) radius
boxht/5 circle "L" at G2.c - (0.15i, 0) radius boxht/5 circle "CA" at G2.c + (0.15i, 0) radius
boxht/5

Fig. 4. Wide-area communication in Amoeba involves six processes.



- 42 -

The beauty of this scheme is that it is completely transparent. Neither user processes nor
the kernel know which processes are local and which are remote. The communication between
the client and the server agent is completely local, using the normal RPC. Similarly, the com-
munication between the client agent and the server is also completely normal. Neither the client
nor the server knows that it is talking to a distant process.

Of course, the two agents are well aware of what is going on, but they are automatically
generated as needed, and are not visible to users. The link processes are the only ones that know
about the details of the wide-area network. They talk to the agents using RPC, but to each other
using whatever protocol the wide-area network requires. The point of splitting off the agents
from the link processes is to completely isolate the technical details of the wide-area network in
one kind of process, and to make it easier to have multiway gateways, which would have one
type of link process for each wide-area network type to which the gateway is attached.

It is important to note that this design causes no performance degradation whatsoever for
local communication. An RPC between a client and a server on the same LAN proceeds at full
speed, with no relaying of any kind. Clearly there is some performance loss when a client is
talking to a server located on a distant network, but the limiting factor is invariably the
bandwidth of the wide-area network, so the extra overhead of having messages being relayed
several times is negligible.

Another useful aspect of this design is the management controls it allows. To start with,
services can only be published with the help of the SWAN server, which can check to see if the
system administration wants the port be to published. Another important control is the ability to
prevent certain processes (e.g., those owned by students) from accessing wide-area services,
since all such traffic must pass through the gateways, and various checks can be made there.
Finally, the gateways can do accounting, statistics gathering, and monitoring of the wide-area
network.

5. APPLICATIONS

Amoeba has been used to program a variety of applications. In this section we will describe
several of them, including UNIX emulation, parallel make, traveling salesman, and alpha-beta
search.

5.1. UNIX Emulation

One of the goals of Amoeba was to make it useful as a program development environment.
For such an environment, one needs editors, compilers, and numerous other standard software.
It was decided that the easiest way to obtain this software was to emulate UNIX and then to run
UNIX and MINIX (Tanenbaum, 1977) software on top of it.

The Amoeba 3.0 UNIX emulation was done mostly by a UNIX Version 7 compatible file
server (derived from the Minix file server). This file server accepted request messages asking
for system calls such as read and write, and carried them out, returning the results in reply mes-
sages. In addition, there is another server that handles those V7 system calls that do not relate to



- 43 -

the file system, such as fork and exec.

Using a special set of library procedures that do RPCs with these servers, it has been possi-
ble to construct an emulation of the UNIX system call interface that is good enough that about
100 of the most common utility programs have been ported to Amoeba. The Amoeba user can
now use most of the standard editors, compilers, file utilities and other programs in a way that
looks very much like UNIX, although in fact it is really Amoeba.

5.2. Parallel Make

As shown in Figure 1, the hardware on which Amoeba runs contains a processor pool with
several dozen 68020 and 68030 processors. One obvious application for these processors in a
UNIX environment is a parallel version of make (Feldman, 1985). The idea here is that when
make discovers that multiple compilations are needed, they are run in parallel on different pro-
cessors.

Although this idea sounds simple, there are several potential problems. For one, to make a
single target file, a sequence of several commands may have to be executed, and some of these
may use files created by earlier ones. The solution chosen is to let each command execute in
parallel, but block when it needs a file not yet available.

Other problems relate to technical limitations of the make program. For example, since it
expects commands to be run sequentially, rather than in parallel, it does not keep track of how
many processes it has forked off, which may exceed various system limits.

Finally, there are programs, such as yacc (Johnson, 1978) that write their output on fixed
name files, such as y.tab.c . When multiple yacc s are running in the same directory, they all
write to the same file, thus producing gibberish. All of these problems have been dealt with by
one means or another, as described in (Baalbergen, 1988).

The parallel compilations are directed by a new version of make , called pmake , based on
the UNIX one but with additional code to handle parallelism. The makefiles accepted by this
program are compatible with the standard one.

The performance of pmake depends strongly on the input. When making a program con-
sisting of many medium-sized files, considerable speedup can be achieved. However, when a
program has one large source file and many small ones, the total time can never be smaller than
the compilation time of the large one. Furthermore, the time required by pmake itself cannot be
neglected. All in all, a speedup of about a factor of 4 over sequential make has been observed in
practice on typical makefiles .

5.3. The Traveling Salesman Problem

In addition to various experiments with the UNIX software, we have also tried program-
ming some applications in parallel. Typical applications are the traveling salesman problem
(Lawler and Wood, 1966) and alpha-beta search (Marsland and Campbel, 1982) We briefly
describe these below. More details can be found in (van Renesse and Tanenbaum, 1987).



- 44 -

In the traveling salesman problem, the computer is given a starting location and a list of
cities to be visited. The idea is to find the shortest path that visits each city exactly once, and
then returns to the starting place. Using Amoeba we have programmed this application in paral-
lel by having one pool processor act as coordinator, and the rest as slaves.

Suppose, for example, that the starting place is London, and the cities to be visited include
New York, Sydney, Nairobi, and Tokyo. The coordinator might tell the first slave to investigate
all paths starting with London-New York, the second slave to investigate all paths starting with
London-Sydney, the third slave to investigate all paths starting with London-Nairobi, and so on.
All of these searches go on in parallel. When a slave is finished, it reports back to the coordina-
tor and gets a new assignment.

The algorithm can be applied recursively. For example, the first slave could allocate a pro-
cessor to investigate paths starting with London-New York-Sydney, another processor to investi-
gate London-New York-Nairobi, and so forth. At some point, of course, a cutoff is needed at
which a slave actually does the calculation itself and does not try to farm it out to other proces-
sors.

The performance of the algorithm can be greatly improved by keeping track of the best total
path found so far. A good initial path can be found by using the ‘‘closest city next’’ heuristic.
Whenever a slave is started up, it is given the length of the best total path so far. If it ever finds
itself working on a partial path that is longer than the best-known total path, it immediately stops
what it is doing, reports back failure, and asks for more work. Initial experiments have shown
that about 75 percent of the theoretical maximum speedup can be achieved using this algorithm,
the remaining 1/4 being lost to communication and other overhead. More recent results suggest
that this can be improved considerably.

5.4. Alpha-Beta Search

Another application that we have programmed in parallel using Amoeba is game playing
using the alpha-beta heuristic for pruning the search tree. The general idea is the same as for the
traveling salesman. When a processor is given a board to evaluate, it generates all the legal
moves possible starting at that board, and hands them off to others to evaluate in parallel.

The alpha-beta heuristic is commonly used in two-person, zero-sum games to prune the
search tree. A window of values is established, and positions that fall outside this window are
not examined because better moves are known to exist. In contrast to the traveling salesman
problem, in which much of the tree has to be searched, alpha-beta allows a much greater pruning
if the positions are evaluated in a well chosen order.

For example, on a single machine, we might have three legal moves A , B , and C at some
point. As a result of evaluating A we might discover that looking at its siblings in the tree, B
and C was pointless. In a parallel implementation, we would do all at once, and ultimately
waste the computing power devoted to B and C . The result is that much parallel searching is
wasted, and the net result is not that much better than a sequential algorithm on a single proces-
sor. Our experiments running Othello (Reversi) on Amoeba have shown that we were unable to



- 45 -

utilize more than 40 percent of the total processor capacity available, compared to 75 percent for
the traveling salesman problem. Work is in progress to improve this result.

6. PERFORMANCE

Amoeba was designed to be very fast. Measurements show that this goal has been
achieved. In this Section, we will present the results of some timing experiments we have done.
These measurements were performed on 16 MHz Motorola 68020 processors (Tadpole VME
boards) running Amoeba on the bare hardware (no UNIX), and for comparison purposes, on
SUN 3/50 workstations running SUN OS 3.5 UNIX to whose kernel the Amoeba driver was
added. All processors were connected over a 10 Mbps Ethernet using LANCE chip interfaces.
We measured the performance for three different configurations:

1. Two user processes running on Amoeba.
2. Two user processes running on SUN UNIX but using the Amoeba primitives.
3. Two user processes running on SUN UNIX and using SUN RPC.

The latter two were for comparison purposes only. We ran tests for the local case (both
processes on the same machine) and for the remote case (each process on a separate machine,
with communication over the Ethernet). In all cases communication was from process to pro-
cess, all of which were running in user mode outside the kernel.

For each configuration (pure Amoeba, Amoeba primitives on UNIX, SUN RPC on UNIX),
we tried to run three test cases: a 4-byte message (1 integer), an 8 Kbyte message, and a 30
Kbyte message. The 4-byte message test is typical for short control messages, the 8-Kbyte mes-
sage is typical for reading a medium-sized file from a remote file, and the 30-Kbyte test is the
maximum the current implementation of Amoeba can handle. Thus, in total we should have 9
cases (3 configurations and 3 sizes). However, the standard SUN RPC is limited to 8K, so we
have measurements for only eight of them.

In Fig. 5 we give the delay and the bandwidth of these eight cases, both for local processes
(same machine) and remote processes (different machines). The delay is the time as seen from
the client, running as a user process, between the calling of and returning from the RPC primi-
tive. The bandwidth is the number of data bytes per second that the client receives from the
server, excluding headers. The measurements were done for both local RPCs, where the client
and server processes were running on the same processor, and for truly remote RPCs.

The interesting comparisons in these tables are the comparisons of pure Amoeba and pure
SUN UNIX both for short communications, where delay is critical, and long ones, where
bandwidth is the issue. A 4-byte Amoeba RPC takes 1.4 msec, vs. 12.2 msec for SUN RPC.
Similarly, for 8 Kbyte RPCs, the Amoeba bandwidth is 625 Kbytes/sec, vs. only 202 Kbytes for
the SUN RPC. The conclusion is that Amoeba’s delay is 9 times better and its throughput is 3
times better. (For the record, we should note that the Amoeba 68020s ran at 16 MHz vs. 15
MHz for the SUNs, but this only changes the results slightly.)



- 46 -

Delay (msec) Bandwidth (Kbytes/sec)

case 1 case 2 case 3 case 1 case 2 case 3

(4 bytes) (8 Kb) (30 Kb) (4 bytes) (8 Kb) (30 Kb)
����������������������������������������������������������� �����������������������������������������������������������

pure Amoeba local 0.8 2.5 7.1 5.0 3277 4255
����������������������������������������������������������� �����������������������������������������������������������

pure Amoeba remote 1.4 13.1 44.0 2.9 625 677
��������������������������������� ����������������������������������������������������������� �����������������������������������������������������������

UNIX driver local 4.5 10.0 32.0 0.9 819 938
����������������������������������������������������������� �����������������������������������������������������������

UNIX driver remote 7.0 36.4 134.0 0.6 225 224
��������������������������������� ����������������������������������������������������������� �����������������������������������������������������������

SUN RPC local 10.4 23.6 imposs. 0.4 347 imposs.
����������������������������������������������������������� �����������������������������������������������������������

SUN RPC remote 12.2 40.6 imposs. 0.3 202 imposs.��
�
�
�
�
�
�
�
�
�
�
�
�

�����������������������������������������������������������
��
�
�
�
�
�
�
�
�
�
�
�
�

��
�
�
�
�
�
�
�
�
�
�
�
�

��
�
�
�
�
�
�
�
�
�
�
�
�

��
�
�
�
�
�
�
�
�
�
�
�
�

�����������������������������������������������������������
��
�
�
�
�
�
�
�
�
�
�
�
�

��
�
�
�
�
�
�
�
�
�
�
�
�

��
�
�
�
�
�
�
�
�
�
�
�
�

(a) (b)

Fig. 5. RPC between user processes in three common cases for three different systems. Local
RPCs are RPCs where the client and server are running on the same processor. (a) Delay in
msec. (b) Bandwidth in Kbytes/sec. The UNIX driver implements Amoeba RPCs and Amoeba
protocol under SUN UNIX.

While the SUN is obviously not the only system of interest, its widespread use and excel-
lent performance makes it a convenient benchmark. We have looked in the literature for perfor-
mance figures from other distributed systems and have asked many other researchers, and to the
best of our knowledge, no other operating system has a lower RPC delay or higher bandwidth on
this class of hardware. In particular, our tests measure delay and throughput from user process
to user process (not kernel to kernel) and do not involve any tricks or special cases.

Noteworthy are the performance of the V-system (Cheriton, 1988) and the Firefly RPC
(Burrows and Schroeder, 1987), V because it was also designed for high performance, and the
Firefly because it is a multiprocessor. For V we find that delay for null RPCs is 2.54 msec
(Cheriton, 1988) (vs. 1.4 msec for Amoeba), and that the bandwidth for 8 Kbyte RPCs is 460
Kbytes/sec (vs. 625 Kbytes/sec for Amoeba). For larger requests (up to 16 Kbytes), the data rate
increases to 550 Kbytes/sec (vs. 644 Kbytes/sec for Amoeba). All of these figures represent a
performance considerably worse than that of Amoeba, despite the fact that the V measurements
were made on substantially faster hardware, namely SUN 3/75s (vs. SUN 3/50s for Amoeba).

The Firefly is an experimental multi-processor under development at DEC SRC. A Firefly
contains five MicroVax CPUs, each of which has about half the computing power of the SUN
3/50, but which collectively have much more. The null RPC time has been clocked at 2.66 msec.
The bandwidth for one client and one server is 228 Kbytes/sec. Using four threads in the client,
the bandwidth can be increased to 582 Kbytes/sec. To be able to achieve this good performance,
the RPC subsystem has been carefully coded in VAX assembly language. In contrast, the
Amoeba RPC code is written entirely in C, with no assembly code. Carefully recoding it in
assembler would no doubt give a considerable gain in performance.



- 47 -

Like Amoeba itself, the bullet server was designed for extremely high performance. Below
we present some measurements of what has been achieved. Figure 6 gives the performance of
the bullet server for tests made with files of 1 Kbyte, 16 Kbytes, and 1 Mbyte. In the first
column the delay and bandwidth for read operations is shown. Note that the test file will be
completely in memory, and no disk access is necessary. In the second column a create and a
delete operation together is measured, and the file is written to two disks (to provide fault toler-
ance and stable storage). Note that both operations involve disk requests. Moreover, the create
operation has to generate a capability, which involves costly operations such as generating a ran-
dom number and encrypting it using a one-way function based on DES. These operations alone
account for a significant amount of time.

Delay (msec) Bandwidth (Kbytes/sec)

File Size READ CREATE+DEL READ CREATE+DEL
� ������������������������������������������������������������� � �������������������������������������������������������������

1 Kbyte 3 130 341 7
� ������������������������������������������������������������� � �������������������������������������������������������������

16 Kbyte 25 168 650 98
� ������������������������������������������������������������� � �������������������������������������������������������������

1 Mbyte 1550 4160 677 379�
�
�
�
�
�
�

� �������������������������������������������������������������
�
�
�
�
�
�
�

�
�
�
�
�
�
�

�
�
�
�
�
�
�

� �������������������������������������������������������������
�
�
�
�
�
�
�

�
�
�
�
�
�
�

(a) (b)

Fig. 6. Performance of the Bullet file server for read operations, and create and delete operations
together. (a) Delay in msec. (b) Bandwidth in Kbytes/sec.

To compare this with the SUN NFS file system, we have measured reading and creating
files on a SUN 3/50 using a remote SUN 3/180 file server (using 16.7 MHz 68020s and SUN OS
3.5), equipped with a 3 Mbyte buffer cache. The measurements were made on an idle system.
To disable local caching on the SUN 3/50, we have locked the file using the SUN UNIX lockf
primitive. The read test consists of an lseek followed by a read system call. The write test con-
sists of consecutively executing creat , write , and close . The SUN NFS file server uses a write-
through cache, but writes the file to one disk only. The results are depicted in Fig. 7.

Delay (msec) Bandwidth (Kbytes/sec)

File Size READ CREATE READ CREATE
� ����������������������������������������������������� � �����������������������������������������������������

1 Kbyte 10 97 98 11
� ����������������������������������������������������� � �����������������������������������������������������

16 Kbyte 47 191 349 86
� ����������������������������������������������������� � �����������������������������������������������������

1 Mbyte 3345 15,850 313 66�
�
�
�
�
�
�

� �����������������������������������������������������
�
�
�
�
�
�
�

�
�
�
�
�
�
�

�
�
�
�
�
�
�

� �����������������������������������������������������
�
�
�
�
�
�
�

�
�
�
�
�
�
�

(a) (b)

Fig. 7. Performance of the SUN NFS file server for read and create operations. (a) Delay in
msec. (b) Bandwidth in Kbytes/sec.



- 48 -

Observe that reading and creating 1 Mbyte files result in lower bandwidths than reading
and creating 16 Kbyte files. The Bullet file server’s performance for read operations is two to
three times better than the SUN NFS file server. For create operations, the Bullet file server has
a constant overhead for producing and encrypting capabilities. For small files we therefore
observe a lower bandwidth than for SUN NFS. Although the Bullet file server replicates its files
on two disks, for writing large files, the bandwidth is nevertheless four times that of SUN NFS.

7. EVALUATION

In this section we will take a critical look at Amoeba and its evolution and point out some
aspects that we consider successful and others that we consider less successful. In areas where
Amoeba 3.0 was found wanting, we have made improvements in Amoeba 4.0, which is currently
under development. These improvements are discussed below.

One area where little improvement is needed is portability. Amoeba started out on the
680x0 CPUs, and has been easily moved to the VAX, NS 32016 and Intel 80386. The Amoeba
RPC protocol also has been implemented as part of MINIX V1.3, and as such is in widespread
use around the world.

7.1. Objects and Capabilities

On the whole, the basic ideas of an object-based system has worked well. It has given us a
framework which makes it easy to think about the system. When new objects or services are
proposed, we have a clear model to deal with and specific questions to answer. In particular, for
each new service, we must decide what objects will be supported and what operations will be
permitted on these objects. This structuring technique has been valuable on many occasions.

The use of capabilities for naming and protecting objects has also been a success. By using
cryptographically protected capabilities, we have a unique system-wide fixed length name for
each object, yielding a high degree of transparency. Thus it is simple to implement a basic direc-
tory as a set of (ASCII string, capability) pairs. As a result, a directory may contain names for
many kinds of objects, located all over the world and windows can be written on by any process
holding the appropriate capability, no matter where it is. We feel this model is conceptually both
simpler and more flexible than models using remote mounting and symbolic links such as SUN’s
NFS. Furthermore, it can be implemented just as efficiently.

We are also satisfied with the low-level user primitives. In effect there are only three prin-
cipal system calls, get� request, put� reply, and do� operation, each easy to understand. All com-
munication is based on these primitives, which are much simpler than, for example the socket
interface in Berkeley UNIX, with its myriad of system calls, parameters, and options.

Amoeba 4.0 uses 256-bit capabilites, rather than the 128-bit capabilities of Amoeba 3.0.
The larger Check field is more secure against attack, and other security aspects have also been
tightened, including the addition of secure, encrypted communication between client and server.
Also, the larger capabilities now have room for a location hint which can be exploited by the
SWAN servers for locating objects in the wide-area network. Third, all the fields of the new



- 49 -

256-bit capability are now all aligned at 32-bit boundaries which potentially may give better per-
formance.

7.2. Remote Procedure Call

For the most part, RPC communication is satisfactory, but sometimes it gives problems
(Tanenbaum and van Renesse, 1988). In particular, RPC is inherently master-slave and point-
to-point. Sometimes both of these issues lead to problems. In a UNIX pipeline, such as:

pic file | eqn | tbl | troff >outfile

for example, there is no inherent master-slave relationship, and it is not at all obvious if data
movement between the elements of the pipeline should be read driven or write driven. We are
still experimenting with various approaches here.

RPC is also point-to-point, which gives problems in parallel applications like the traveling
salesman problem. When a process discovers a path that is better than the best known current
path, what it really wants to do is send a multicast message to a large number of processes to
inform all of them immediately. At present this is impossible, and must either be simulated with
multiple RPCs or designed around.

Amoeba 4.0 fully supports broadcasting and multicasting, integrated into the RPC mechan-
ism. In addition to the usual unicast ports , Amoeba 4.0 also supports multicast ports . A mes-
sage sent to a multicast port is delivered to all of them, or at least an attempt is made. A higher-
level protocol has been devised to implement 100% reliable multicasting with very low over-
head. This protocol will be the subject of a forthcoming paper.

7.3. Memory and Process Management

Probably the worst mistake in the design of the Amoeba 3.0 process management mechan-
isms was the decision to have threads run to completion, that is, not be pre-emptable. The idea
was that once a thread starting using some critical table, it would not be interrupted by another
thread in the same cluster until it logically blocked. This scheme seemed simple to understand,
and it was certainly easy to program.

Problems arose because programmers did not have a very good concept of when a process
blocked. For example, to debug some code in a critical region, a programmer might add some
print statements in the middle of the critical region code. These print statements might call
library procedures that performed RPCs with a remote terminal server. While blocked waiting
for the acknowledgement, a thread could be interrupted, and another thread could access the crit-
ical region, wreaking havoc. Thus the sanctity of the critical region could be destroyed by put-
ting in print statements. Needless to say, this property was very confusing to naive program-
mers. In Amoeba 4.0 a more explicit mechanism has been introduced for guarding critical
region code.

The run-to-completion semantics of thread scheduling in Amoeba 3.0 also prevents a mul-
tiprocessor implementation from exploiting parallelism and shared memory by allocating



- 50 -

different threads in one process to different processors. Amoeba 4.0 threads can be run in paral-
lel. No promises are made by the scheduler about allowing a thread to run until it blocks before
another thread is scheduled. Threads sharing resources must explicitly synchronize using the
semaphores or mutexes that Amoeba 4.0 provides for the purpose.

For Amoeba 4.0, we have thoroughly redesigned process-management and memory-
management mechanisms. Under the Amoeba 3.0 regime, when a process started a new process
(on a different machine, usually), it had to fetch the code from the file system and send it to the
new process’ host machine. Code would thus typically get copied over the network twice. In
Amoeba 3.0, there were virtually no facilities for debugging active processes and we considered
the control that processes had over their address space insufficient.

The Amoeba 4.0 process-management and memory-management mechanisms were
designed to make process creation, migration, checkpointing and debugging all simple opera-
tions. Two key notions form the basis of these mechanisms. The first is a data structure, called
process descriptor, which describes the state of an active process. The second is the memory
segment, an object consisting of an array of bytes in memory with a capability that can be read
and written like a file and that can also form part of a process’ address space by being mapped
into it.

The idea of a process descriptor is that it describes a process in limbo, a process just before
it starts to run, or a process being migrated from one machine to another, or a process suspended
while being debugged. A process descriptor has four components. The first describes the
requirements for the system where the process must run: the class of machines, which instruction
set, minimum available memory, use of special instructions such as floating point, and several
more. The second component describes the layout of the address space: number of segments
and, for each segment, the size, the virtual address, how it is mapped (e.g., read only, read-write,
code/data space), and the capability of a file or segment containing the contents of the segment.
The third component describes the state of each thread of control: stack pointer, stack top and
bottom, program counter, processor status word, and registers. Threads can be blocked on cer-
tain system calls (e.g., get� request, acquire � semaphore); this can also be described. The fourth
component is a list of ports for which the process is a server. This list is helpful to the kernel
when it comes to buffering incoming requests and replying to port-locate operations.

In Amoeba 4.0, to create a process, one needs to do the following.

1. Get the process descriptor for the binary from the file system (command interpreters can
cache process descriptors for efficiency).

2. Create a local segment or a file and initialize it to the initial environment of the new pro-
cess. The environment consists of a set of named capabilities (a primitive directory, as it
were), and the arguments to the process (in Unix terms, argc and argv; for Unix processes,
one also adds the environment variables).

3. Modify the process descriptor to make the first segment the environment segment just
created.



- 51 -

4. Send the process descriptor to the new process’ host.

The host then allocates memory for local segments, reads the remote segments into the
local ones, initializes the required number of threads and starts the process.

To stop a process, one can send it a signal. The process is then stopped and a process
descriptor is made which is then sent to the process’ owner for debugging. The owner can
examine the process, modify it and resume its execution, or kill it. Similar mechanisms are used
for checkpointing or migration.

The new memory-management mechanisms allow code caching in pool processors. They
also give processes more control over the management of their address space because they can
map segments into it or out of it. In particular, the mechanism allows the implementation of
memory-mapped file i/o, shared libraries, and dynamic linking.

The new process-management mechanism allows migration, checkpointing and debugging,
code caching and process images need to be copied over the network only once at most.

Using the Amoeba 4.0 process-management facilities, we plan to implement algorithms for
code caching on the pool processors in conjunction with services that attempt to place processes
on pool processors in such a way as to minimize process-startup times. Also, we intend to
implement shared libraries and dynamic linking.

7.4. File System

One area of the system which we think has been eminently successful is the design of the
file server and directory server. We have separated out two distinct parts, the bullet server,
which just handles storage, and the directory server, which handles naming and protection. The
bullet server design allows it to be extremely fast, while the directory server design gives a flexi-
ble protection scheme and also supports file replication in a simple and easy to understand way.
The key element here is the fact that files are immutable, so they can be replicated at will, and
copies regenerated if necessary.

The entire replication process takes place in the background (lazy replication), and is
entirely automatic, thus not bothering the user at all. We regard the file system as the most inno-
vative part of the Amoeba 3.0 design, combining extremely high performance with reliability,
robustness, and ease of use. We have no plans to change it.

7.5. Internetworking

We are also happy with the way wide-area networking has been handled, using server
agents, client agents, and the SWAN. In particular, the fact that the existence of wide-area net-
working does not affect the protocols or performance of local RPCs at all is crucial. Many other
designs (e.g., TCP/IP, OSI) start out with the wide-area case, and then use this locally as well.
This choice results in significantly lower performance on a LAN than the Amoeba design, and
no better performance over wide-area networks.



- 52 -

One configuration that was not adequately dealt with in Amoeba 3.0 is a system consisting
of a large number of local area networks interconnected by many bridges and gateways.
Although Amoeba 3.0 works on these systems, its performance is poor, partly due to the way
port location and message handling is done. In Amoeba 4.0, we have designed and implemented
a completely new low-level protocol called the Fast Local Internet Protocol (FLIP), that will
greatly improve the performance in complex internets. Among other features, entire messages
are now acknowledged instead of individual packets, greatly reducing the number of interrupts
that must be processed. Port location is also done more efficiently, and a single server agent can
now listen to an arbitrary number of ports, enormously reducing the number of quiescent server
agents required in large systems.

7.6. UNIX Emulation

The Amoeba 3.0 UNIX emulation primarily consists of having borrowed the MINIX file
server. This was a quick and dirty solution, but it means that Amoeba 3.0 UNIX programs can-
not use the bullet server.

In Amoeba 4.0, a more complete UNIX emulation is done through a library of procedures
that emulate the UNIX system calls by making calls to the bullet server, directory server, etc.
This library, called ajax , has made it possible to port a large number of the standard UNIX utility
programs to Amoeba using the normal Amoeba file system.

7.7. Parallel Applications

Although Amoeba was originally conceived as a system for distributed computing, the
existence of the processor pool with 40 or so 680x0 CPUs close together has made it quite suit-
able for parallel computing as well. That is, we have become much more interested in using the
processor pool to achieve large speedups on a single problem. To program these parallel appli-
cations, we are currently engaged in implementing a language called Orca (Bal and Tanenbaum,
1988).

Orca is based on the concept of globally shared objects. Programmers can define opera-
tions on shared objects, and the compiler and run time system take care of all the details of mak-
ing sure they are carried out correctly. This scheme gives the programmer to ability to atomi-
cally read and write shared objects that are physically distributed among a collection of machines
without having to deal with any of the complexity of the physical distribution. All the details of
the physical distribution are completely hidden from the programmer. Initial results indicate that
almost linear speedup can be achieved on some problems.

7.8. Performance

Performance, in general, has been a major success story. The minimum RPC time for
Amoeba is 1.4 msec between two user-space processes on 16 MHz 68020s, and interprocess
throughput is nearly 700 kilobytes per second. The file system lets us read and write files at the
same rate.



- 53 -

7.9. User Interface

Amoeba 3.0 has a homebrew window system. In Amoeba 4.0, the X window system will
replace the current window system which was designed before X existed. Although the current
system is faster than X, many users will no doubt prefer X, since so much software exists for it
and X is becoming something of a de facto standard.

7.10. Security

An intruder capable of tapping the network on which Amoeba runs can discover capabili-
ties and do considerable damage. In a production environment some form of link encryption is
needed to guarantee better security. Although some thought has been given to a security
mechanism (Tanenbaum et al., 1986), it was not implemented in Amoeba 3.0.

Two security systems have been designed and implemented in Amoeba 4.0. The first ver-
sion can only be used in fairly friendly environments where the network and operating system
kernels can be assumed secure. This version uses one-way ciphers and, with caching of
argument/result pairs, can be made to run virtually as fast as the current Amoeba. The other ver-
sion makes no assumptions about the security of the underlying network or the operating system.
Like MIT’s Kerberos (Steiner et al., 1988) it uses a trusted authentication server for key esta-
blishement and encrypts all network traffic.

We intend to install both versions and investigate the effects on performance of the system.
We are researching the problems of authentication in very large systems spanning multiple
organizations and national boundaries.

8. CONCLUSION

The Amoeba project has clealy demonstrated that it is possible to build an efficient, high-
performance distributed operating system on current hardware. The object-based nature of the
system, and the use of capabilities provides a unifying theme that holds the various pieces
together. By making the kernel as small as possible, most of the key features are implemented as
user processes, which means that the system can evolve gradually as needs change and we learn
more about distributed computing.

Amoeba has been operating satisfactorily for several years now, both locally and to a lim-
ited extent over a wide-area network. Its design is clean and its performance is excellent. By
and large we are satisfied with the results to date. Nevertheless, no operating system is ever fin-
ished, so we are continually working to improve it.

9. REFERENCES

Baalbergen, E.H. Design and Implementation of Parallel Make, Computing Systems 1., (Spring
1988), pp. 135-158.

Bal, H.E., Renesse, R. van, and Tanenbaum, A.S. Implementing Distributed Algorithms using



- 54 -

Remote Procedure Call, Proc. National Computer Conference , AFIPS, 1987. pp. 499-505.

Bal, H.E., and Tanenbaum, A.S. Distributed Programming with Shared Data, IEEE Conf. on
Computer Languages , IEEE, 1988, pp. 82-91.

Birrell, A.D., and Nelson, B.J. Implementing Remote Procedure Calls, ACM Trans. Comput.
Systems 2, (Feb. 1984) pp. 39-59.

Burrows, M., and Schroeder, M.D. Performance of Firefly RPC, internal paper DEC SRC, Palo
Alto, Cal., Nov. 1987.

Cheriton, D.R. The V Distributed System, Commun. ACM 31, (March 1988), pp. 314-333.

Dalal, Y.K. Broadcast Protocols in Packet Switched Computer Networks, Ph. D. Thesis, Stan-
ford Univ., 1977.

Dennis, J., and Van Horn, E. Programming Semantics for Multiprogrammed Computation,
Commun. ACM 9, (March 1966), pp. 143-155.

Evans, A., Kantrowitz, W., and Weiss, E. A User Authentication Scheme Not Requiring
Secrecy in the Computer, Commun. ACM 17, (Aug. 1974), pp. 437-442.

Feldman, S.I. Make—A Program for Maintaining Computer Programs, Software—Practice and
Experience 9, (April 1979) pp. 255-265.

Johnson, S.C. Yacc Yet Another Compiler Compiler, Bell Labs Technical Report, Bell Labs,
Murray Hill, NJ, 1978.

Lawler, E.L., and Wood, D.E. Branch and Bound Methods A Survey, Operations Research 14,
(July 1966), pp. 699-719.

Marsland, T.A., and Campbell, M. Parallel Search of Strongly Ordered Game Trees, Computing
Surveys 14, (Dec. 1982) pp. 533-551.

Mullender, S.J., and Tanenbaum, A.S. The Design of a Capability-Based Distributed Operating
System, Computer Journal 29, (Aug. 1986), pp. 289-299.

Mullender, S.J., and Tanenbaum, A.S. A Distributed File Service Based on Optimistic Con-
currency Control, Proc. Tenth Symp. Oper. Syst. Prin. , 1985, pp. 51-62.

Renesse, R. van, Tanenbaum, A.S., and Wilschut, A The Design of a High-Performance File
Server Proc. Ninth Int’l Conf. on Distr. Comp. Systems , IEEE, 1989a, pp. 22-27.



- 55 -

Renesse, R. van, Staveren, H. van, and Tanenbaum, A.S. Performance of the Amoeba Distri-
buted Operating System, Software—Practice and Experience 19, (March 1989b) pp. 223-
234.

Renesse, R. van, Staveren, H. van, and Tanenbaum, A.S. Performance of the World’s Fastest
Distributed Operating System, Operating Systems Review 22, (Oct. 1988), pp. 25-34.

Renesse, R. van, and Tanenbaum, A.S. Voting with Ghosts, Proc. Eighth Int’l Conf. on Distr.
Comp. Systems , IEEE, 1988, pp. 456-461.

Renesse, R. van, Tanenbaum, A.S., Staveren, H. van, and Hall, J. Connecting RPC-Based Dis-
tributed Systems Using Wide-Area Networks, Proc. Seventh Int’l Conf. on Distr. Comp.
Systems , IEEE, 1987, pp. 28-34.

Steiner, J.G., Neuman, C., and Schiller, J.I. Kerberos An Authentication Service for Open Net-
work Systems, Proceedings of the Usenix Winter Conference , USENIX Assoc., 1988, pp.
191-201.

Stonebraker, M. Operating System Su pport for Database Management, Commun. ACM 24,
(July 1981), pp. 412-418.

Tanenbaum, A.S.A UNIX Clone with Source Code for Operating Systems Courses, Operating
Syst. Rev. 21, (Jan. 1987), pp. 20-29.

Tanenbaum, A.S., Mullender, S.J., and Renesse, R., van Using Sparse Capabilities in a Distri-
buted Operating System Proc. Sixth International Conf. on Distr. Computer Systems , IEEE,
1986.

Tanenbaum, A.S., and Renesse, R. van A Critique of the Remote Procedure Call Paradigm Proc.
Euteco ’88 1988, pp. 775-783.

Tanenbaum, A.S., and Renesse, R. van Distributed Operating Systems, Computing Surveys 17,
(Dec. 1985) pp. 419-470.


