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Classifying
Software-Based
Cache Coherence
Solutions

The authors propose
a classification for software

solutions to cache coherence
in shared-memory

multiprocessors and show
how it can be applied to

more completely understand
existing approaches and

explore possible alternatives.

hared-memory multiprocessor systems are efficient archi-
tectural support for applications with a high degree of data
sharing. Incorporating a shared cache memory helps close
the speed gap between the processors and main memory.
However, a shared cache does not address the problem of
access contention for both the interconnection network and

the memory modules. Private caches can be used to satisfy most memory
references locally, but they can cause the memory system to become in-
coherent (inconsistent). If several processors access the shared data, sev-
eral copies of shared data will exist in private cache memories. If one
processor changes the data, the other copies become stale and another
processor may mistakenly use them.
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This problem is at least two decades
old, and many hardware, software, and
hybrid solutions have been proposed.
Hardware approaches1 make the main-
tenance of coherence fully transparent
for all levels of software. This makes the
programming model very flexible but in-
creases hardware complexity. Software
approaches2 lift the transparency of the
problem above the operating system or
compiler, so hardware support is less
complex. Software approaches generally
restrict the programming model more
than hardware approaches, but these re-
strictions are natural and tend to make
programs more testable and robust.
Finally, software approaches can be more
efficient than hardware approaches in
some applications.3

Despite these important advantages,
software solutions have not been widely
addressed in the literature. For example,
we have not seen a broad, systematic, and
flexible classification, nor an exhaustive
survey. Existing surveys either focus on
hardware solutions; include software so-
lutions, but not in sufficient detail; or
concentrate on just a few, usually the au-
thors’ own, software solutions. Most ex-
isting classifications are not based on an
extensive list of criteria clearly distin-
guishing among existing solutions.

In this article we offer a classification
for software solutions that is based on 10
criteria. The first five are binary-choice
criteria, serving to roughly label the solu-
tion as either dynamic or static, for exam-

ple. The second five are multiple-choice
criteria offering more precise classifica-
tion, such as granularity of coherence ob-
jects: cache line, memory page, data seg-
ment, or flexible object. Classes derived
from each criterion are used as attribute
values of potential or existing approaches.

We also offer a formalization of this
classification that looks at solutions as
points in an abstract multidimensional
criteria space. Designers can use this
space to explore the utility of solutions
that do not yet exist and identify areas
that may warrant closer examination. 

We derived our classification from
one reported by Sang Lyul Min and Jean
Loup Baer.4 The Min-Baer classification
is based on five criteria (some of which
we also use) and encompasses a relatively
small number of existing solutions. We
believe our proposed criteria are broad
enough to create clear distinctions among
most existing software solutions.

LIMITATIONS OF EXISTING
CLASSIFICATIONS

One of the most cited definitions of
memory system coherence is this:5

A memory scheme is coherent if 
the value returned on a load
instruction is always the value
given by the latest store instruction
with the same address.

This definition allows that copies of

shared data contain stale values tem-
porarily and requires only that the values
be updated before they are read. The
ability to delay coherence enforcement
to the moment it is necessary decreases
the frequency of the coherence actions
and consequently the system overhead.
Most software solutions aim to provide
some mechanism for enforcing coher-
ence that incorporates this ability. The
boxed text “When Is a Memory System
Incoherent?” describes the necessary
conditions for incoherence.

Where this coherence mechanism
goes—in either hardware or software—
is the most common criterion used to
classify coherence solutions. This is not
an effective basis for classification,
however, because many solutions are
actually hybrids: Software coherence
protocols require some hardware sup-
port; hardware solutions can benefit
from compiler-level optimization.6

Here, we view a solution as software-
based if the basic coherence protocol
does not work without aid from a sys-
tem software layer.

A more effective view of solutions is
in terms of their aspects: dynamic/static,
centralized/distributed, communication-
based/communication-free, and scal-
able/nonscalable. In our classification for
software solutions, for example, we chose
as the first criterion dynamism (dynamic
or static). That is, if coherence actions
are planned at runtime, the solution 
is dynamic. All solutions implemented

WHEN IS A MEMORY SYSTEM INCOHERENT?

Assuming the main memory value of the shared variable is current, incoherence occurs when a value fetched from the cache
differs from the value in main memory. According to this definition, Alexander Veidenbaum1 gives a formal proof about the
necessary conditions for incoherence. 

When processor Pj (j = 1,2,...) fetches variable X, incoherence arises if 
♦ the value of X is present in the processor’s Pj cache, and 
♦ the new value of X is placed into main memory by processor Pk (k ≠ j,

k = 1,2,...), after processor Pj had accessed X last time. 
Detecting the necessary conditions of incoherence can be based on the

data dependency graph analysis. As Figure A indicates, incoherence will occur
if the following is satisfied:

♦ Pj executes instruction S1, which writes into or reads from X;
♦ another processor Pk (k ≠ j) executes instruction S2, which writes a new

value into X; and
♦ Pj executes instruction S3, which reads from X again.

REFERENCE
1. A. Veidenbaum, “A Compiler-Assisted Cache Coherence Solution for Multiprocessors,”

Proc. Int’l Conf. Parallel Processing, IEEE Comp. Soc. Press, Los Alamitos, Calif., 1986,
pp. 1029-1036.
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Figure A. Data dependency graph containing the
conditions of incoherence.
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on the operating system level belong to
this group. If the coherence actions are
planned at compile time, the solution is
static. All compiler solutions belong to
this group.

PROPOSED CLASSIFICATION

Tables 1A and 1B list the 10 criteria
on which we base our classification
scheme. Each criterion has two or more
classes. Although the table does not in-
clude it, we also have a wild-card class (*)
to designate that the criterion is irrele-
vant for that solution, or that there is in-
sufficient information in the literature to
classify the solution. This lets us consis-
tently classify schemes with a 10-element
tuple, in which each element represents
a criterion plus the appropriate class 
denoted by X:x (or X:* if the criterion is
irrelevant). The tenth element can con-
tain more than one class (denoted by
X:x/+y+.../) if the solution uses more than
one technique for detecting incoherence.
In the table we include examples from
the open literature for each class.

Our classification promotes a layered

understanding of the techniques being
evaluated because it has two levels of
characterization: coarse-grained (the 
binary-choice criteria) and fine-grained
(the multiple-choice criteria). However,
the classification is flat, not hierarchical.
This simplifies the “widening” of the cri-
teria set to accommodate new schemes.
Consequently, the criteria set we present
is not fully orthogonal, but we believe
this disadvantage is not crucial for most
practical applications.

CLASSIFYING EXISTING
SCHEMES

Our classification is suitable for both
understanding existing schemes and ex-
ploring new approaches. Here, we apply
it to existing software cache coherence
schemes. This list of schemes is not in-
tended as a detailed account, but as an
overview that gives some idea of how the
proposed classification captures a greater
depth of characteristics and thus promotes
understanding. Using the criteria and
classes in Table 1, we associate each
scheme with a 10-element tuple to show

where it falls in the proposed classification.

Static schemes. Static schemes rely 
predominantly on program analysis at
compile time. Analysis points to potential
causes of incoherence, and adds infor-
mation to the program to avoid fatal in-
coherence errors during the execution.
This additional information can include
marking of data or references and inser-
tion of special instructions. The analysis
and related actions eliminate the runtime
coherence traffic, making the static
schemes easy to scale up. On the down
side, static solutions potentially degrade
performance. Predicting incoherence
conditions at compile time is imprecise.
Consequently, coherence actions are
performed on a worst-case basis, and
many actions may be performed that are
actually not required for that scenario.

Most static schemes assume that the
parallel program can be expressed
through a leveled directed task graph, in
which nodes denote tasks, and edges de-
note intertask dependencies. Indeed,
such a graph is a natural presentation
model for numeric applications, a large
class of parallel programs. The pro-

TABLE 1A
PROPOSED CLASSIFICATION: COARSE-GRAINED CRITERIA

Criterion and Definition Classes and Examples Comments

Dynamism (D): Decisions about Static (s): c.mmp page marking, version control, Only schemes that require absolutely no com-
coherence actions are made at compile one-bit timestamps.  Dynamic (d): one-time pile-time analysis are considered dynamic.
time (static) or runtime (dynamic). identifiers, conditional invalidation, adaptive Schemes that make final invalidation decisions

cache management. at runtime, but also perform certain compile-
time analysis, are static.

Selectivity (S): Explicit actions (such as Indiscriminate (i): cache on/off control. Selective schemes differ in the granularity of
invalidation) are applied without any Selective (s): fast selective invalidation, pro- data objects for which coherence is maintained.
spatial discrimination on the entire cache grammable cache, conditional invalidation. The granularity differences are reflected through
or selectively on a part of the cache. the granularity criterion (see Table 1B).

Restrictiveness (R): Coherence is Conservative (c): cache on/off control, one-time Restricting invalidations reduces cache misses.
maintained preventively (conservative) identifiers.  Restrictive (r): version control, condi- This criterion could result in a fine division with
or only when necessary (restrictive). tional invalidation. more than two classes. You could introduce a

“level of restrictiveness” measure (the ratio of
necessary coherence actions to total coherence 
actions performed, averaged over a number of
benchmark programs). If the scheme is abso-
lutely restrictive, this ratio is 1.

Adaptivity (A): The coherence protocol Fixed (f): one-time identifiers, version control. So far, the only software adaptive scheme in the
is fixed or adaptable to the characteristics Adaptive (a): adaptive cache management. open literature is adaptive cache management.
of the patterns of access to data objects. Thus, we need not introduce the finer measure

“level of adaptivity.”

Locality (L): The coherence protocol may Local (l): one-time identifiers, cache on/off This criterion extends the restrictiveness criterion
reduce misses strictly locally (interepoch re- control.  Global (g): version control, conditional and is irrelevant for very conservative schemes.
duction) or globally (intraepoch reduction). invalidation.

.
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gramming model for these applications
assumes that the program consists of par-
allel or serial loops (sequential code be-
tween consecutive loops could be viewed
as a serial loop with one iteration). If we
consider each task graph level as an
epoch associated with an iteration or a
whole loop, whether or not coherence
actions are needed in the epoch depends
on the type of loop. The most common
place for coherence enforcement is a
loop boundary. 

In a parallel DoAll loop, for example,
there is no data dependency between it-
erations, so they can execute in parallel.
Another processor cannot consume the
new version of the shared variable pro-
duced in the same loop. Thus, no coher-
ence actions are needed, and a temporary
incoherence of the memory system is al-
lowed until the end of the loop.

In a parallel DoAcross loop, on the
other hand, incoherence may arise be-
cause parallelization is possible (with ad-
ditional synchronization) and there is
data dependency among iterations. 

Finally, because only one processor
executes a serial loop (the structure of
data dependencies between iterations
disables any parallelization), incoherence
cannot arise inside the loop, and there is
no need for coherence actions.

C.mmp page marking. William Wulf and C.
G. Bell7 of Carnegie Mellon University
were among the first to note the prob-
lems arising from multiple values of
shared writeable variables existing con-
currently in the private caches of differ-
ent processors. Their method keeps the
writeable shared data out of the cache at
all times, allowing only the read-only

shared pages to be cached in the private
cache memories. This is particularly use-
ful for pages that contain shared instruc-
tions. Page marking uses a bit in the re-
location registers to mark pages as
cachable. This scheme is extremely con-
servative, making it relatively easy to im-
plement, but at the cost of considerably
lower processing power.8

This scheme is classified as (D:s,S:*,
R:c,A:f,L:*,G:p,B:p,P:*,U:*,C:r).

Ultracomputer program structure analysis. Allan
Gottlieb and coauthors,9,10 Jan Edler and
coauthors,11 and Kevin McAuliffe12 de-
scribe an approach for the Ultra-
computer multiprocessor developed at
New York University. The caching of
read-write shared data is temporarily
permitted during the safe execution
epochs. Safe epochs are defined as times

TABLE 1B
PROPOSED CLASSIFICATION: FINE-GRAINED CRITERIA

Criterion and Definition Classes and Examples Comments

Granularity (G): The size and structure Line (l): version control.  Page (p): c.mmp page This criterion extends the selectivity criterion.
of the coherence data object marking, one-time identifiers.  Segment (s): condi- It is irrelevant for fully indiscriminate schemes.

tional invalidation.  Flexible (f): RP3 flexible inval-
idation, adaptive cache management.

Blocking (B): The basic program block as Critical region (c): one-time identifiers, condi- The epoch class encompasses terms such as
a code unit for coherence protocol tional  invalidation.  Epoch (e): Ultracomputer “computational unit,” “loop,” “epoch,” and 

program structure analysis, cache on/off control, “task level,” which are essentially similar 
program analysis and reference marking, version coherence blocks.
control, timestamps.  Subroutine (s): program-
mable cache.  Program (p): c.mmp page marking.

Positioning (P): Position of instructions Entry/exit of critical region (e): one-time identi- This criterion considers only the special
to implement the coherence protocol fiers, conditional invalidation.  Loop boundary (b): coherence instructions (Invalidate, Flush,

cache on/off control, version control.  Source/sink Post, and so on). It does not include coherence
of data dependency (d): programmable cache. actions such as comparisons at each reference,
Interrupt procedure (i): coherence on which some schemes can do with special hard-
interrupt request. ware support.

Updating (U): The main memory is up- Write-through (t): version control.  Write-back (b): Hybrid schemes typically offer both write-
dated either during the write or later programmable cache, adaptive cache management. through for shared writeable data and write-back

Hybrid (h): one-time identifiers.  Alternative (a): for private and shared read-only data. Alternative
conditional invalidation. schemes offer either write-through or write-back.

Checking (C): Technique used to check Checking data type or reference type (r): c.mmp Some schemes include multiple techniques for
conditions of incoherence page marking, program analysis and reference detecting incoherence. Such schemes are classi-

marking, timestamps.   Program structure ana- fied according to the dominant technique. For
lysis (s): RP3 flexible invalidation, cache on/off completeness, we indicate the lesser techniques
control.  Data dependency analysis: (d): program- with slashes, for example c/+s+d+r/.
mable cache.  Bitwise information runtime 
comparison (b): fast selective invalidation, life-
span strategy, one-bit timestamps.  Version com-
parison (v): version control.  Generation com-
parison (g): generational approach.  Monitoring
interconnection network traffic (m): coherence
on interrupt request.

.
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when the data is either accessed exclu-
sively by one processor or only read by
multiple processors.

The Ultracomputer caches support
two instructions for software control.

The instructions are inserted into the
code at compile time. The Invalidate
(originally Release) instruction frees
one cache memory entry without copy-
ing the data into main memory, thus pre-
venting network traffic. The Post (orig-
inally Flush) instruction copies data
from the cache memory entry into the
main memory without invalidating the
entry. The main memory is updated
using the write-back policy10 (a later
paper11 proposes a combined approach:
write-back for private data and write-
through for shared data).

The read-write shared variables are
cachable only during the safe epochs. At
the end of a safe epoch, the variable must
be invalidated, and marked as non-
cachable. For data shared by a parent task
and its children, Post and Invalidate
are executed before the child tasks are
created. The variable that was private be-
fore now becomes shared and is marked
noncachable. After the parent task’s chil-
dren are completed, it can continue to
work with the same variable, treating it
as private, and therefore cachable. Also,
Post must be executed before a task
switch because the execution of the task
may migrate to another processor. Both
instructions can be performed on the
segment or whole cache level.

This scheme is less conservative than
the Wulf-Bell scheme. Still, it is not re-
strictive in the invalidation of shared
data. The scheme prevents unnecessary
misses only locally within epochs. The

coherence instructions are selective with
the segment-level granularity, but they
are slow because of the need to scan
through the cache directory.

This scheme is classified as (D:s,S:s,
R:c,A;f,L:l,G:s,B:e,P:b,U:h,C:s/+r/).

RP3 flexible invalidation. W.C. Brantley, K.
McAuliffe, and J. Weiss13 proposed an
approach similar to the Ultracomputer
scheme. They did the research at the IBM
T. J. Watson Research Center on the
IBM RP3 multiprocessor prototype.14

As with the Ultracomputer cache co-
herence scheme, the RP3 scheme per-
mits changing the cachability status of
shared variables between consecutive
epochs. It also introduces a volatility at-
tribute for temporarily cachable data.
The attribute enables a specific instruc-
tion for invalidating volatile data in many
segments or pages. It also supports sev-
eral other invalidation instructions aimed
at different objects: a cache line, a page,
a segment, all user space, or all supervi-
sor space. The cachability and volatility
attributes of each segment or page are
specified in an appropriate segment or
page descriptor. These attributes de-
scribe segment and page tables as well.
The caches are write-through, so the
main memory is always up to date.

In general, the cache coherence strat-
egy of the IBM RP3 scheme is still very
conservative. However, its selective in-
validation is more flexible than that in the
Ultracomputer approach because the
granularity of the invalidation can be var-
ied. This results in higher precision and
consequently a lower miss ratio.

This scheme is classified as (D:s,S:s,
R:c,A:f,L:l,G:f,B:e,P:b,U:t,C:s/+r/).

Cache on/off control. Alexander Veiden-
baum15 proposed a relatively simple pro-
tocol for cache coherence in the Cedar
multiprocessor at the University of
Illinois. The protocol assumes the pro-
gram structure is based on parallel/serial
loops, as described at the beginning of
this section. The compiler inserts coher-
ence-related instructions only at loop

boundaries and at subroutine call points.
The proposed instructions are

Invalidate (originally Flush), which
deletes the contents of the entire cache
(indiscriminate invalidation); Cache-
on, which forces all references to go
through the cache; and Cache-off,
which forces all references to bypass the
cache. The compiler analyzes program
structure and inserts the coherence in-
structions before, inside, or after the
loops, as well as before or after subrou-
tine calls.

In a DoAll loop, the cache can be en-
abled, so the protocol inserts Cache-on
and Invalidate after the DoAll state-
ment. In that way, each processor, at the
beginning of the iteration assigned to it,
enables its own cache and, as a preven-
tive measure, removes the old contents.
Generally, in a DoAcross loop the cache
should be disabled, so the protocol in-
serts a Cache-off after the DoAcross
statement. Specifically, the cache could
be enabled if an Invalidate is inserted
after the synchronizing wait-on-sema-
phore operation in the iteration that con-
tains the sink of data dependency. In a
DoSerial loop the cache can be enabled
because only one processor executes the
loop. If the cache is disabled before the
loop, the compiler must insert Cache-
on and Invalidate before the loop. 

After the DoEnd statement, the state
of cachability is restored to what it was
before the loop. If the cache is enabled
before a parallel loop, the compiler in-
serts Invalidate after the DoEnd state-
ment. It inserts a Cache-off before the
subroutine call. If the cache is enabled
before the call, it inserts Cache-on and
Invalidate after the call.

The basic algorithm includes no
analysis of individual references and data
dependencies. It disables and/or invali-
dates the entire cache. For example, the
caching of private and read-only shared
data is prohibited inside DoAcross
loops. Consequently, this scheme is very
conservative, its restrictiveness of inval-
idation is very low, and the invalidation
is indiscriminate. Nevertheless, this

Our classification
promotes a layered
understanding of
the techniques
being evaluated.

.
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scheme is very important as a baseline for
many subsequent schemes.

This scheme is classified as (D:s,
S:i,R:c,A:f,L:l,G:*,B:e,P:b,U:t,C:s).

Program analysis and reference marking. Roland
Lee, Pen-Chung Yew, and Duncan
Lawrie16,17 proposed a scheme based on
the static analysis of program structure
and marking of individual references.
They did their research at the University
of Illinois and embedded the algorithm
into Parafrase, a parallelizing Fortran
code restructurer.

The compiler analyzes the program
and segments it into a sequence of
epochs defined by parallel loops or se-
quential code segments between con-
secutive parallel loops. For each refer-
ence, it uses data dependence tests to
detect the data cachability status. All ref-
erences to a variable that multiple
processors access within an epoch are
marked as noncachable if at least one
processor writes to the variable. Refer-
ences marked as noncachable bypass the
cache at execution time and access the
main memory directly. At the end of
each epoch, the processor invalidates the
entire private cache. The write-back
caches are used.

This algorithm efficiently supports
intraepoch localities, localities of refer-
ences within a single epoch. However,
the cache is indiscriminately invali-
dated at the end of each epoch, which
ignores interepoch localities, localities
between epochs.

This scheme is classified as (D:s,S:i,
R:c,A:f,L:l,G:*,B:e,P:b,U:b,C:r/+s+d/).

Fast selective invalidation. Hoichi Cheong and
Veidenbaum18 describe a scheme based on
efficient invalidation. The invalidation ef-
fect depends on the characteristics of the
references. The speed of proposed invali-
dation is close to the speed of indiscrimi-
nate invalidation, but its selectivity implies
a better hit ratio. This research also orig-
inated from the University of Illinois.

The basic scheme considers a cache
with one word per line. Each cache word

is supplied with a change bit. When set,
this bit indicates that the word is poten-
tially stale. Arbitrary access to a cache
word resets its change bit. The
Invalidate instruction sets the change
bits of all words in the cache in one cycle.
Consequently, invalidation is as fast as
indiscriminate invalidation. The com-
piler inserts the Invalidate instruc-
tions at the loop boundaries.15 A clear bit
is also associated with each cache word.
A Clear instruction sets clear bits of all
cache words to provide an empty cache at
the beginning of a subroutine.

Read references that can be guaran-
teed not to fetch a stale data copy are
marked as cache-read (for example,
references to data that are read-only
within the analyzed subroutine, refer-
ences to read-write data coming before
the first write to the same data, or refer-
ences that together with all preceding
writes lie within an epoch). Unsafe read
references (such as those after the epoch
containing some writes to the data, if
there is at least one read of the data be-
fore the epoch) are marked as memory-
read. A cache miss is forced if a mem-
ory-read reference accesses the word
with a set change bit. The scheme as-
sumes the use of write-through caches.

This approach has several benefits.
First, invalidation has no effect on cache-
read references; that is, invalidation is se-
lective. Second, when a variable is read
more than once within a single iteration
of a DoAll loop, although all reads could
be marked as memory-reads, the invali-
dation will affect the first read only. This
effectively supports intraepoch localities.
Also, some interepoch localities are sup-
ported, for example, when read refer-
ences belong to different epochs and pre-
cede the first write. However, the
approach still inserts Invalidate in-
structions into the code conservatively.

This scheme is classified as (D:s,S:s,
R:c,A:f,L:g,G:l,B:e,P:b,U:t,C:b/+s+r+d/).

Programmable cache. Ron Cytron, Steve
Karlovsky, and McAuliffe19 proposed a
solution that is based on a detailed static

analysis of a program’s data dependen-
cies. The authors were with the IBM T.J.
Watson Research Center and the
University of Illinois when they pub-
lished their work.

The special instructions proposed for
cache management are Post (copies the
value of the cache data into the main
memory), Invalidate (destroys the
cache data copy), and Flush (performs
a combination of the previous two in-
structions). The approach assumes the
use of a write-back cache with one word
per line. The authors propose the fol-
lowing algorithm for inserting intro-
duced instructions into the code: 

♦ Insert Post(X) after a write into a
shared variable X if the write is a source
of the crossing flow dependency (if the
sink of the dependency is a read that can
be executed on another processor). Also,
if X is live after the procedure under
analysis, insert the instruction Post(X)
after the last write to X within the same
procedure.

♦ Insert Invalidate(X) before the
sink of the crossing flow dependency if
the source of the analyzed flow depen-
dency acts as a sink in at least one output
dependency or antidependency. Also, if
a variable X has been defined before
entry into the procedure, insert
Invalidate(X) before the first read-
ing of the variable X in the procedure. 

♦ Insert Flush after the source of the
flow dependency, substituting Post and
Invalidate if the substitution does not
cause an unnecessary miss. 

Additionally, the compiler marks each
variable in the global address space as

This method is
suitable for both
understanding
existing schemes 
and exploring
new approaches.
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cachable (read-only shared data and pri-
vate data), temporarily cachable (general
read-write shared data), or noncachable
(read-write shared data accessed only
after invalidation).

This scheme greatly restricts invali-

dations within a procedure because both
the program structure and data depen-
dency analyses are used to maintain co-
herence. However, unnecessary inter-
procedural invalidations still occur.

This scheme is classified as (D:s,S:s,
R:r,A:f,L:g,G:l,B:s,P:d,U:b,C:d/+s+r/).

Version control. Cheong and Veiden-
baum20 describe a scheme that improves
on their fast selective invalidation
scheme. The version control scheme,
also developed at the University of
Illinois, is based on the static analysis of
the parallel program tasking structure
and a dynamic control of the variable ver-
sion using appropriate hardware support.

The approach centers on the notion
that whenever a write is made to a shared
variable, a new version of its contents is
defined. Each processor locally maintains
global information about the current ver-
sion of each shared variable (scalar or
vector) using a current version number.
When passing over a task-level bound-
ary (for example, after exiting from a
DoAll loop), processors execute the in-
structions (inserted by the compiler) for
incrementing the current version num-
ber for all variables being written (re-

gardless of which task wrote them) at the
previous task level. 

The authors propose extending each
cache line with a birth version number
field. After a read miss and the loading of
the variable into cache, the cache con-
troller assigns the current version num-
ber value to the birth version number
field. At each cache write, the controller
updates the birth version number to the
incremented current version number
(the number of the next version). At each
access to a shared data item in cache, the
controller compares the current and
birth version numbers. If the birth ver-
sion number is smaller, the data item in
the cache is stale, and a miss is forced.

The version control scheme is based
on the local maintenance of global in-
formation for a shared data version. The
scheme demonstrates a better per-
formance than the previous two
schemes15,18 because it respects the tem-
poral locality of references over the task-
level boundary. As a consequence, the hit
ratio increases. However, this benefit
comes at the cost of relatively complex
hardware support.

This scheme is classified as (D:s,S:s,
R:r,A:f,L:g,G:l,B:e,P:b,U:a,C:v/+s/).

Timestamps. Min and Baer21,4 of the
University of Washington proposed a
scheme similar to the version control
scheme, but did so independently of
Cheong and Veidenbaum. In the time-
stamps scheme, each shared data struc-
ture is assigned a counter that is incre-
mented at the end of each epoch in
which the data structure can be modi-
fied. Each cache word is assigned a time-
stamp, which is set to (counter + 1) when
the word is modified. At the access to
cache memory, a word is valid if the
value of the timestamp is equal to or
greater than the value of the corre-
sponding counter. The counter corre-
sponds to the version control scheme’s
current version number; the timestamp,
to the birth version number; and the
timestamps’ epoch, to the version con-
trol scheme’s task level.

The primary difference between the
two approaches (timestamps and version
control) is that timestamps has a so-
phisticated algorithm for reference
marking, which better supports the lo-
calities between dependent tasks in a
DoAcross loop.

This scheme is classified as (D:s,S:s,
R:r,A:f,L:g,G:l,B:e,P:b,U:t,C:v/+s+r/).

Life-span strategy. Cheong, a coauthor of
the fast selective invalidation scheme,
went on to improve this scheme. The
new scheme,22 in a basic one-level ver-
sion, better supports the temporal local-
ity of shared variables over consecutive
epochs. The tradeoff is one additional bit
per cache coherence unit and a few ad-
ditional instructions.

Starting from the support for the fast
selective invalidation scheme, Cheong
proposes adding a stale bit to each cache
line, and renaming memory-read to
memory-read-reset-stale. Each
access to the shared variable (memory-
read-reset-stale or write) resets
the stale bit, indicating the validity of
the variable within the subsequent
epoch. Invalidate simply copies the
stale bit into the change bit, and then
sets all stale bits.

Cheong also proposes an extension
for an n-level life-span strategy that is
based on the use of multiple stale bits.
Another extension supports the paral-
lelism of DoAcross loops (with addi-
tional instructions memory-read and
write-set-stale).

The baseline algorithm of this scheme
exploits localities between two consecu-
tive epochs. Consequently, this scheme
exploits more localities than the fast se-
lective invalidation strategy, but less than
the version control or timestamp
schemes. The life-span strategy scheme
needs one more bit per cache line, rela-
tive to the fast selective invalidation
scheme, but unlike the version control or
timestamps strategies, it does not need
version counters.

This scheme is classified as (D:s,S:s,
R:r,A:f,L:g,G:l,B:e,P:b,U:t,C:b/+s+r+d/).

Dynamic software
solutions are
similar to hardware
solutions: they
maintain the
coherence of
private caches
entirely at runtime.

.
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Generational approach. Tzi-cker Chiueh23

improves on the control of shared-data
versions, using a leveled task graph to
keep track of task generations instead of
separately managing each variable ver-
sion. He performed this work at the State
University of New York at Stony Brook.

The scheme extends each cache line
with a valid generation number field. To
indicate the current generation number of
tasks, it adds a register to each processor
register set. At the end of each task that
writes to a shared variable, the compiler
inserts an instruction to set the appro-
priate valid generation number field to
the number of the generation, during
which a task will be writing into the given
variable; thus, the field indicates the last
generation number until the appropriate
shared variable is considered valid. 

When a task is scheduled to a proces-
sor, it initializes the current generation
number register of that processor to indi-
cate the current generation of tasks. An ac-
cess to a shared variable is treated as a hit
if the appropriate valid generation num-
ber field contains a value greater than or
equal to the current generation number.

This approach has simpler hardware
support than the version control and
timestamps schemes. Instead of having a
local table for each processor to keep in-
formation on the global current version
of each shared variable, it requires only
one additional register (for the current
generation number). Additionally, the
generational approach naturally over-
comes some inherent problems of the
version control scheme, such as
DoAcross loop handling or the ineffi-
ciency of conditional writes.

This scheme is classified as (D:s,S:s,
R:r,A:f,L:g,G:l,B:e,P:b,U:t,C:g/+s+r/).

One-bit timestamps. Ervan Darnell and
Ken Kennedy24 of Rice University de-
scribe a scheme that is based on time-
stamps but is implemented using only
one additional bit per cache line. The ap-
proach exploits the validity of cached
shared data immediately after the epoch
within which it was locally accessed.

An epoch bit is associated with each
cache line to flag any arbitrary access to
the cache line during the current epoch.
All epoch bits are reset at each epoch
boundary. The compiler inserts Inval-
idate instructions at the end of each
epoch (before resetting the epoch bits).
Invalidation can be related to the whole
array conservatively or to only the parts
that have been written during the cur-
rent epoch. At runtime, these instruc-
tions actually invalidate only the cache
lines that have not been accessed during
the epoch. Thus, Invalidate in effect
copies the epoch bit to the valid bit.

This scheme involves considerably
simpler hardware support than the time-
stamps and version control schemes—
each cache line grows by only one bit (the
epoch bit) and no additional bits are re-
quired in instructions or private mem-
ory. The scheme also achieves at least the
same and frequently a better (as simula-
tion studies show) hit ratio than the time-
stamps scheme. Although the range of
supported localities is limited to consec-
utive epochs, most shared data references
are resolved in the cache.

This scheme is classified as (D:s,S:s,
R:r,A:f,L:g,G:l,B:e,P:b,U:*,C:b/+s/).

Dynamic solutions. Dynamic software
solutions are similar to hardware solu-
tions in that they maintain the coherence
of private caches entirely at runtime.
Because they are implemented in the op-
erating system’s kernel, they do not con-
tribute to compiler complexity. Inco-
herence conditions are detected at
execution time, so dynamic approaches
reduce preventive (unnecessary) actions.
On the down side, they are difficult to
apply when parallelism is expressed via
parallel loops. This makes them ill-suited
for numeric applications, which are based
primarily on a programming model char-
acterized by parallel loops. On the other
hand, dynamic solutions offer a natural
solution for concurrent applications
based on a programming model charac-
terized by heterogeneous threads com-
municating via data-sharing mechanisms

such as critical regions or monitors.

One-time identifiers. Alan Smith25 describes
a dynamic solution that is entirely em-
bedded in the operating-system-level op-
erations for critical region handling. He
conducted this research at the University
of California at Berkeley.

Smith proposed that each translation
lookaside buffer entry and each line in
the processor cache be expanded with the
one-time identifier field that temporarily
uniquely marks a shared data page.
When a processor loads a new transla-
tion lookaside buffer entry, the scheme
places a new and unique value from a spe-
cial incrementing register into the one-
time identifier field. When the proces-
sor accesses an address from the shared
page for the first time, it loads the line
into the cache from the main memory
and copies the value of the one-time
identifier field from the translation
lookaside buffer entry to the one-time
identifier field in the cache line.

All subsequent accesses to this vari-
able check the one-time identifier field
in the cache for a match with the one-
time identifier field in the translation
lookaside buffer. If a match occurs, the
access is treated as a hit. After exiting

from a critical region, the processor ex-
ecutes the instructions that invalidate all
translation lookaside buffer entries of the
pages that belong to the shared data
being protected by the just-exited critical
region. At the next access to the shared
data, the processor loads the corre-

Dynamic solutions
are implemented
in the operating
system’s kernel,
so they do not
contribute to
compiler complexity.
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sponding translation lookaside buffer
entry again, and obtains a new value for
the one-time identifier field.

Smith also proposes using the write-
through approach for shared data and the
write-back approach for private data.

The advantage of the one-time iden-
tifier scheme is the resulting complete
decentralization, similar to most static
schemes (but not most hardware
schemes). Coherence is maintained at
each processor autonomously without
communication with other processors.
However, the scheme requires relatively
complex hardware support (the one-time
identifier extension in the translation
lookaside buffer and the cache, com-
parators for the one-time identifier fields,
and so on). Also, when the processor exits
from a critical region, there is no longer
a way to restrict the execution of in-
validation instructions, so invalida-
tion is done as a preventive action.

This scheme is classified as (D:d,S:s,
R:c,A:f,L:l,G:l,B:r,P:e,U:h,C:v).

Coherence on interrupt request. David
Cheriton, Gert Slavenburg, and Patrick
Boyle26 present a true hybrid solution for
maintaining the coherence of virtually
addressed cache memories. They con-
ducted their work at Stanford University
as part of the VMP multiprocessor pro-
ject. The solution is characterized by
hardware-based detection of incoherence
conditions and the generation of an in-
terrupt request, followed by the soft-
ware-based enforcement of coherence.

This scheme is based on the concept
of virtual memory: page faults are deter-

mined in hardware; the fetching of re-
quested pages from secondary memory
is done in software. The proposed cache
page size is relatively large (up to 512
bytes), and the proposed hardware for
the page transfer is relatively fast (at 40
Mbytes/sec). Consequently, cache misses
are relatively rare and can be processed
at the operating-system level. 

This concept is extended into the do-
main of cache coherence maintenance.
The hardware-based bus monitor detects
incoherence conditions and interrupts
the local processor. In response, the
processor executes the interrupt routine
that enforces coherence. 

The main memory is viewed as a se-
quence of cache page frames. A page can
be in either a shared or private state. In
the shared state, the page frame contains
the current page value; private cache
memories are allowed to contain copies
of that page. In the private state, only one
cache memory contains the page. 

Each bus monitor maintains a private
table of actions. For each page frame, this
table defines what the monitor must do
when the address from that page appears
on the bus. If the corresponding page is
not in the processor’s private cache, no
action is needed. If the page in the cache
is shared, the monitor ignores all read-
shared requests; it must also abort all
read-private and assert-owner-
ship requests and issue an interrupt to
the local processor, causing the page to
be invalidated. If the page in cache is pri-
vate, the monitor must abort the request
and issue an interrupt, causing, if the
page was dirty, a write-back into main
memory; if the request is read-pri-
vate or assert-ownership, the
processor invalidates the page; if the re-
quest is read-shared, the page be-
comes shared. The processor perform-
ing the aborted request detects the
abortion and requests the page again.

Because the detection of incoherence
conditions is completely hardware-
based, invalidations are very restricted.
However, the cache page must be large
enough to make page faults relatively

rare. This makes invalidation poorly se-
lective if the shared data is fine-grained.

This scheme is classified as (D:d,S:s,
R:r,A:f,L:g,G:p,B:p,P:i,U:b,C:m).

Conditional invalidation. We have developed
three dynamic software schemes that test
for incoherence conditions when a
processor enters a critical region, thereby
avoiding unnecessary invalidations.27 We
performed this work at the University of
Belgrade in cooperation with NCR Corp.

Coherence is enforced at the entry
into/exit from the critical region. Of the
three schemes we propose, version verifi-
cation restricts invalidation to the greatest
degree, and most effectively uses the ex-
isting interregional locality of references.

Upon entry into the critical region,
the operating system explicitly compares
the real version of the shared segment
(information from the shared-segment
table) with private information about the
most recently used segment version. If
the versions do not match, the operating
system selectively invalidates the shared
segment. If the shared memory is up-
dated using the write-back approach, the
operating system updates the shared seg-
ment original (in main memory) before
exiting from the critical region.

Results of our simulation analysis
show that advantage of restrictively ap-
plied invalidation grows with number of
processors. The advantages were espe-
cially prominent if the shared segments
were mostly read.

This scheme is classified as (D:d,S:s,
R:r,A:f,L:g,G:s,B:r,P:e,U:a,C:v).

Adaptive cache management. John Bennett,
John Carter, and Willy Zwaenepoel28 de-
scribe a dynamic adaptive scheme for the
Munin system at Rice University. Munin
supports several coherence mechanisms
and applies them according to the access
dynamics of each class of shared objects.
Although Munin represents a distributed
shared-memory system, we include this
work in our list because of its generality
regarding the concept of adaptivity.

In such systems, the incoherence

Our formal
classification
treats individual
schemes as points
in an abstract
criteria space.

.
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problem exists because the shared ad-
dress space is physically distributed
across several local memories (caches),
enabling one memory address to be
mapped into several local memories.29

Munin makes this problem completely
transparent for the application; the pro-
grammer merely informs the system
about the expected access dynamics to
shared objects. 

The authors’ study shows that there
are relatively few general read-write ob-
jects, that parallel programs behave dif-
ferently in different phases of execution,
and that except in the initialization phase,
most accesses are reads. The authors
note that the average period between two
accesses to synchronization objects is
considerably longer than the average ac-
cess period for other shared objects. 

Munin maintains the following object
classes using the mechanisms in parenthe-
ses after each class: write-once (replica-
tion), private (not managed), write-
many (delayed update), result (delayed
update), synchronization (distributed
locks), migratory (migration), pro-
ducer-consumer (eager object move-
ment), read-mostly (replication and
broadcast updating), and general read-
write (Berkeley ownership).

In addition to traditional mechanisms
for maintaining coherence in distributed
shared-memory systems (replication, in-
validation, migration, and remote
load/store), the authors of the scheme
propose using delayed update. When a
process modifies a shared data item, the
system does not immediately send the
new value to remote servers to update
their copies. Instead, it postpones send-
ing until the next synchronization and
then sends all changes in one package.

Simulation studies28 show that for a
given application (such as Quicksort) this
method can decrease bus traffic by more
than 50 percent relative to the conven-
tional hardware write-update, and by
more than 85 percent relative to the
write-invalidate mechanism.

This scheme is classified as (D:d,S:s,
R:r,A:a,L:g,G:f,B:p,P:*,U:*,C:*).

EXPLORING AND
COMPARING SCHEMES

Using a consistent classification ap-
proach lets us formalize the classification
to consider individual schemes as points
in an abstract criteria space. The formal-
ization of our classification lets designers
see major differences in existing schemes
as well as explore gaps in the criteria space
for not-yet-conceived solutions. In the
formal view, coordinates within the ab-
stract multidimensional criteria space
correspond to the chosen criteria; the val-
ues on these coordinates correspond to
the classes. The number of criteria de-
termines the number of dimensions of the
space. The number of classes per crite-
rion determines the number of discrete
values that exist on the corresponding co-
ordinate. If the set of criteria is indepen-
dent, the space is orthogonal (not the case
in our classification). 

If the abstract space is described with a
sufficient number of criteria and corre-
sponding classes (for example, all 10 cri-
teria for the schemes described here), it is
considered complete; that is, each solution
corresponds to one point. In the preced-
ing survey, we used a complete space.

If the abstract space is described with
a subset of criteria or classes, it is con-
sidered reduced; each point may corre-
spond to more than one existing solution.
Figure 1 shows a reduced space for the
first three criteria in Table 1 (dynamism,
selectivity, and restrictiveness). 

Frequently, a reduced space is suffi-
cient to see major differences among se-
lected schemes. If it is not, typically, a sig-
nificant criterion was not considered, or
the multiple solutions in one point are
practically the same, such as version con-
trol20 and timestamps.21 It may also be
that solutions are semantically similar,
such as timestamps21 and one-bit time-
stamps,24 but different in implementa-
tion, yielding different performance
and/or complexity. Figure 1 shows only
one representative solution per point, al-
though in reality some points correspond
to several solutions. For example, the

point (s,s,r) contains not only version
control,20 but also the programmable
cache scheme,19 timestamps,21 the life
span strategy,22 the generational ap-
proach,23 and one-bit timestamps.24

With this classification, designers can
detect that some solutions are similar
(because they belong to points close to
each other), even though their authors
declare them as different. They can also
use the classification in exploratory stud-
ies. If a combination of attributes (an n-
element tuple) corresponds to a non-
existent solution, it is a free point. The
corresponding solution  may make no
sense or not be particularly useful in the
desired setting, but it may also stimulate
research into classes of schemes that offer
new levels of performance. For example,
we believe it is worth searching for a new
solution in the plane of adaptive static
schemes. Knowing expected access dy-
namics to a properly declared shared ob-
ject, the compiler can predict and embed
the appropriate protocol to maintain the
coherence of that object.

Also, in exploratory studies, re-
searchers can evaluate if the criteria for
a proposed method are sufficiently broad
to describe them by associating the new
method with a free point in the criterion
space; if not,  the proposed criteria set
may be further enlarged. We believe it
may also be possible to roughly estimate
a solution’s performance solely on the
characteristics of the classes that describe
it—without analyzing the solution 
details. 

One can explore
major differences
in existing schemes
as well as gaps in the
criteria space for
not-yet-conceived
solutions.

.
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PERFORMANCE PARAMETERS

Various parameters will impact the
performance of these schemes, especially
parameters related to workload. Several
evaluation studies are useful. There is not
enough space to cover them in any depth
here, but we urge readers to look them
up and read further. A perusal will show
you how you can use different techniques
to evaluate software solutions.

♦ Min and Baer.30 Min and Baer com-
pare a hardware scheme based on a cen-
tralized full-map directory5 with their
timestamps scheme.21 The comparison
is based on a simulation driven by real
address traces. The authors conclude that
the miss ratio is about the same for both
schemes, the write traffic is considerably
higher with the software scheme, and the
network traffic is higher with the hard-
ware scheme.

♦ Tartalja and Milutinovic′.27 We ana-
lyze how the restrictiveness of invalidation
conditions affects processing power using
a modified Archibald-Baer model of the
probabilistically synthesized workload.
The modifications consist of introducing

new parameters that model the spatial and
processor localities and a new operating
system model. We propose a selective and
conditional self-invalidation class of
schemes and compare them on a bus-
based multiprocessor simulator. The pre-
liminary results demonstrate the advan-
tages of restrictively applied invalidation,
even in systems with only 16 processors.

♦ Owicki and Agarwal.8 The authors
use the mean value analysis model to
compare the performance of four repre-
sentative schemes: Base, a scheme with
no coherence maintenance, which de-
fines the upper limit for performance;
No-cache, a very conservative scheme that
does not allow the caching of shared
data;7 Software-flush, a scheme based on
static program analysis and insertion of
the Flush instruction;18,19 and Dragon,
one of the best hardware schemes based
on snooping and write-broadcast. The
results show that software schemes are
more sensitive to workload-related para-
meters than hardware snoopy schemes.

♦ Adve and colleagues.3 The authors
compare hardware directory-based
schemes and software static schemes.

Their analytical method starts from a
general program behavior model based
on the access dynamics for different
classes of shared data. For these classes,
they give the contours of the constant
ratio of software to hardware efficiency
method. From these contours, they
identify the parameter domains where
the software scheme exhibits an advan-
tage over the hardware scheme, and vice
versa. For example, software schemes
outperform hardware schemes in han-
dling migratory data; in maintaining of
read-write data objects the two classes
of schemes are comparable.

These studies give good insight into
the real performance differences between
software and hardware schemes for dif-
ferent values of technology- and applica-
tion-related parameters. Especially im-
portant is that for some workloads
software schemes demonstrate better per-
formance. We expect that in real imple-
mentations, this performance advantage
is even slightly higher because the com-
plexity of hardware support for software
schemes is relatively low. Consequently,
VLSI systems that use software schemes
potentially have a slightly better internal
timing, and operate with a slightly faster
system clock.

The proposed classification makes it
easier both to see the characteristics

of existing approaches and to anticipate
the appearance of new ones. We believe
the classification and its formalization will
make it easier to see directions for new re-
search. The free points in the criterion
space can serve as guides toward new so-
lutions, much as the periodic table aided
chemists in discovering new elements.

The performance evaluation efforts
we have presented include both analyti-
cal (mathematical models) and empirical
(simulation models) studies. Similar re-
sults of several studies point to the rela-
tive advantage of software schemes for
certain workloads. This conclusion
should encourage further research in
software-based cache coherence. ◆

Fast selective
invalidation

(s,s,c)
Version
control
(s,s,r)

One-time
identifiers

(d,s,c)

Cache on/off
control
(s,i,c)

Conditional
invalidation

(d,s,r)

(d,i,c)

(d,i,r)(s,i,r)

R

D

S

Figure 1. An example of a reduced abstract criteria space for the first three criteria in
Table 1: dynamism: static (s) or dynamic (d); selectivity: indiscriminate (i) or selective
(s); and restrictiveness: conservative (c) or restrictive (r).
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