
1

The Case for Non-transparent Replication:
Examples from Bayou

Douglas B. Terry, Karin Petersen, Mike J. Spreitzer, and Marvin M. Theimer

Computer Science Laboratory
Xerox Palo Alto Research Center

Palo Alto, CA 94304 USA

Abstract

Applicationsthat rely on replicateddata havedifferent requirementsfor how their data is managed.
For example, someapplicationsmayrequire that updatespropagateamongstreplicaswith tight time
constraints, whereas other applicationsmay be able to tolerate longer propagation delays.Some
applicationsonly require replicasto interoperatewith a few centralizedreplicasfor datasynchroniza-
tion purposes,while otherapplicationsneedcommunicationbetweenarbitrary replicas.Similarly, the
typeof updateconflictscausedbydatareplicationvariesamongstapplications,andthemechanismsto
resolve them differ as well.

Thechallengefacedbydesignersof replicatedsystemsis providingtheright interfaceto supportcoop-
eration betweenapplicationsand their data managers. Applicationprogrammers do not want to be
overburdenedbyhavingto dealwith issueslikepropagatingupdatesto replicasandensuringeventual
consistency, but at thesametimethey want theability to setup appropriatereplicationschedulesand
to control howupdateconflictsare detectedandresolved.TheBayousystemwasdesignedto mitigate
this tensionbetweenoverburdening and underempoweringapplications.This paper looks at two
Bayouapplications,a calendarmanager anda mail reader, and illustrateswaysin which they utilize
Bayou’s features to manage their data in an application-specific manner.

1 Introduction

A major challengefacedby designersof general-purposereplicatedstoragesystemsis providing application
developerswith somecontrolover thereplicationprocesswithout burdeningthemwith aspectsof replication
that are commonto all applications.Systemmodelsthat presentapplicationswith “one-copy equivalence”
have beenproposedbecauseof their simplicity for the applicationdeveloper[1, 3]. In particular, the goal of
“replication transparency” is to allow applicationsthat are developedassuminga centralizedfile systemor
databaseto run unchangedon top of a strongly-consistentreplicatedstoragesystem.Unfortunately, replicated
systemsguaranteeingstrongconsistency requiresubstantialmechanismsfor concurrency controlandmultisite
atomic transactions,and henceare not suitablefor all applicationsand all operatingenvironments.To get
improvedlevelsof availability, scalability, andperformance,especiallyin widely-distributedsystemsor those
with imperfectnetwork connectivity, many replicatedstoragesystemshave relaxed their consistency models.
For instance,many systemshave adoptedan “access-anywhere” model in which applicationscan readand
updateany availablereplicaandupdatespropagatebetweenreplicasin a lazymanner[2, 4, 7, 8, 9, 10,12,15].
Suchmodelsareinherentlymoredifficult for applicationdeveloperswho mustcopewith varying degreesof
consistency betweenreplicas,designschedulesandpatternsfor updatepropagation, andmanageconflicting
updates.Theharshreality is thatapplicationsmustbeinvolvedin thesedifficult issuesin orderto maximizethe

2

benefitsthatthey obtainfrom replication.TheBayousystemdevelopedatXeroxPARC is anexampleof a rep-
licated storage system that was designed to strike a balance between application control and complexity.

This paperpresentsboth theapplication-independentandapplication-tailorablefeaturesof Bayoualongwith
therationalefor thedivision of responsibilitybetweenanapplicationandits datamanagers.Examplesdrawn
from acoupleof Bayouapplicationsareusedthroughoutto illustratehow differentapplicationsutilize Bayou’s
features.The applicationsarea calendarmanageranda mail reader. The BayouCalendarManager(BCM)
storesmeetingsandothereventsfor individual,group,andmeeting-roomcalendars.A user’s calendarmaybe
replicatedin any numberof places,suchason his office workstationandon a laptopso thathecanaccessit
while travelling. Bayou’smail reader, calledBXMH, is basedon theEXMH mail reader[20]. BXMH receives
a user’s incomingelectronicmail messages,providesfacilities for readingmessages,andpermitsthe userto
permanentlystoremessagesin variousfolders.The BXMH mail databasemanagedby Bayoumay be repli-
catedon a numberof sitesfor increasedavailability or easeof access.Eachof thesetwo applicationsinteract
with theBayousystemin differentwaysto managetheir replicateddata.They demonstratetheneedfor flexi-
ble application programmer interfaces (APIs) to replicated storage systems.

2 Application-independent Features of Bayou

For mostreplicatedstoragesystems,thebasicreplicationparadigmandassociatedconsistency modelarecom-
mon to all applicationssupportedby the system.While it is conceivable that a replicatedstoragemanager
couldprovide individual applicationswith a choicebetweenstrongandweakdataconsistency, this madelittle
sensefor Bayou.Bayouwasdesignedfor anenvironmentwith intermittentandvariablenetwork connectivity.
In sucha setting,mechanismsto supportstrongconsistency would not be applicable.Therefore,Bayou’s
update-anywherereplicationmodelandits reconciliationprotocol,which guaranteeseventualconsistency, are
centralto thesystemsarchitecture.Thesefundamentaldesignchoicesover which theapplicationhaslittle or
nocontrolarediscussedin moredetailin thefollowing subsections.Additionalapplication-independentmech-
anismsfor replicacreationandretirementarealsobriefly described.Featuresthatarewithin anapplication’s
control, such as conflict management, are discussed in Section 3.

2.1 Update-anywhere replication model

Bayou manages,on behalf of its client applications,relationaldatabasesthat can be fully replicatedat any
numberof sites.Eachapplicationgenerallyhasits own database(s).Application programs,alsocalled“cli-
ents”,canreadfrom andwrite to any singlereplicaof adatabase.Onceareplicaacceptsawrite operation,this
write is performedlocally andpropagatedto all otherreplicasvia Bayou’s pair-wise reconciliationprotocol
discussedbelow. This “update-anywhere”replicationmodel,depictedin Figure1, permitsmaximumavailabil-
ity sinceapplicationscancontinueto operateevenif somereplicasareunavailabledueto machinefailuresor
network partitions.Thus,it is particularlysuitablefor applicationsthatoperatein mobilecomputingenviron-
mentsor large internetworks.Becauseeachreadandwrite operationinvolvesa singleinteractionbetweena
client and a replica, the update-anywhere replicationmodel is also easyto implementand provides good
response times for operations.

This replicationmodelwasadoptedfor Bayoubecauseof its flexibility in supportinga diversity of applica-
tions, usagepatterns,andnetworking environments[6]. If replicasare intermittentlyconnected,replicasare
allowed to arbitrarily diverge until reconciliation is possible.If replicasare few and well-connected,the
update-anywheremodelis still a satisfactorychoicesinceupdatescanpropagatequickly undersuchcircum-
stancesandthereplicasremainhighly consistent.As describedin section3.1,applicationscanselectreconcil-
iation schedules that best fit their requirements for how much replicas are allowed to diverge.

3

Consider the example of a user, Alice, managing her personal calendar using BCM. Alice might keep a replica
of her calendar on her office machine, one on her laptop, and also one on the office machine of her administra-
tive assistant, Bob, so that her assistant has quick access to her calendar. Alice and Bob’s office machines per-
form reconciliation with each other on a frequent basis so that any updates made to the calendar by either of
them are seen by the other with little delay. However, when Alice is travelling, she may update the replica on
her laptop while the laptop is disconnected. Any new meetings added by Alice are not readily available to Bob
(and vice versa). From her remote destination, Alice occasionally connects to her (or Bob’s) office machine via
a dial-up modem to exchange recently added meetings, thereby updating their replicas of the shared calendar.

2.2 Reconciliation protocol and eventual consistency

Bayou’s reconciliation protocol is the means by which a pair of replicas exchange updates or “writes” [16].
The protocol is incremental so that only writes that are unknown to the receiving replica are transmitted during
reconciliation. It requires replicas to maintain an ordered log of the writes that they have accepted from an
application client or received from another replica via reconciliation. Pair-wise reconciliation can guarantee
that each write eventually propagates to each replica, perhaps by transmission through intermediate replicas, as
long as there is an eventual path between a replica that accepts a write and all other replicas. The theory of epi-
demics indicates that, even if servers choose reconciliation partners randomly, writes will fully propagate with
high probability [4]. Arbitrary, non-random, reconciliation schedules can be set up by applications if desired as
discussed in section 3.1.

Bayou ensures “eventual consistency” which means that all replicas eventually receive all writes (assuming
sufficient network connectivity and reasonable reconciliation schedules) and any two replicas that have
received the same set of writes have identical databases. In other words, if applications stopped issuing writes
to the database, all replicas would eventually converge to a mutually consistent state. Eventual consistency
requires replicas to apply writes to their databases in the same order. Bayou replicas initially order “tentative”

Replica
Read

or
Write

Read
or

Write

Reconciliation

Replica

Replica

Replica

Figure 1. Bayou’s update-anywhere replication model.

4

writes according to their accept timestamps, and later reorder these writes as necessary based on a global com-
mit order assigned by a primary server [19].

Fortunately, the machinery for managing write-logs, propagating writes, ordering writes, committing writes,
rolling back writes, and applying writes to the database are completely handled by the Bayou database manag-
ers. Applications simply issue read and write operations and observe the effects of eventual consistency. Appli-
cations can optionally request additional session guarantees that affect the observed consistency [18].

2.3 Replica creation and retirement

Bayou permits the number and location of replicas for a database to vary over time. While the replica place-
ment policies are under the control of applications as discussed below in section 3.1, the mechanism for creat-
ing new replicas and retiring old ones is application-independent. Bayou allows new replicas to be cloned from
any existing replica. The data manager for the new replica contacts an existing replica to get the database
schema, creates a local database, and then performs reconciliation with an existing replica to load its database
and write-log. Information about the existence of the new replica then propagates to other replicas via the nor-
mal reconciliation protocol. This is done by inserting a special “creation write” for the new replica into the
write-log. As this write propagates via reconciliation, others replicas learn of the new replica’s existence [16].

Retirement of replicas is similar. A replica can unilaterally decide to retire by inserting a “retirement write” in
its own write-log. The retiring replica can destroy itself after it performs reconciliation with another replica
who will then propagate knowledge of the retirement and of other writes that were accepted by the retired rep-
lica.

3 Application-tailorable Features of Bayou

In contrast to the mechanisms for update propagation and eventual consistency, policies and functionalities that
vary amongst Bayou applications include how they deal with update conflicts, where they place replicas, and
which replicas they access for individual operations. Those issues are discussed in this section. Examples taken
from the Bayou applications illustrate how different applications can tailor the Bayou system to meet their spe-
cific needs.

3.1 Replica placement and reconciliation schedule

The choice of where to place replicas and when replicas should reconcile with each other is an important pol-
icy that is under the control of Bayou applications and users. As described above, the mechanism for replica
creation is the same for all Bayou applications. However, the choice of the time at which a replica gets created
and the machine on which it resides is completely determined by users or system administrators. The only con-
dition for a replica to be successfully created is that one other replica be available over the network.

Similarly, since Bayou’s weak consistency replication model does not require updates to be immediately prop-
agated to each replica, users are afforded a large amount of flexibility in setting up reconciliation schedules.
Experience suggests that such schedules are generally dictated more by the user’s work habits than by the
needs of a particular application. For example, a user who works from home in the evening, may wish his
office workstation to reconcile with his home machine at 5:00 pm each evening, but does not care about keep-
ing his home machine up-to-date during the day. Also, users and applications often know when are good times
or bad times to reconcile with another replica. For instance if the application is in the process of doing a num-
ber of updates or refreshing its display, it may not want the database to change underneath it. As another exam-

5

ple, a travelling user may dial-in from a hotel room and want reconciliation with the office performed
immediately rather than waiting for the next scheduled time.

3.2 Replica selection

Bayou applications generally issue read and write requests without even being aware of which replicas they are
accessing. The Bayou client library, which implements the application programming interface (API) and is
loaded with the application code, chooses an appropriate replica on which to perform a read or write operation.
This choice is based on the availability of replicas, cost of accessing them, and application-chosen session
guarantees. The Bayou client library automatically adapts to changing network conditions and replica avail-
ability.

Originally, Bayou provided no ability for an application to override the replica selections made by the client
library. That is, a Bayou application could not direct its operations to a particular replica. We presumed that
most applications, while concerned with the consistency of the data they read, do not wish to be concerned
with the specifics of which replicas to access. Moreover, we reasoned that applications do not have enough
information about the underlying network connectivity or communication costs to make reasonable decisions
about replica selection. What we failed to recognize initially is that users do, in fact, often know quite a bit
about the network characteristics as well as the capabilities and consistency of various replicas. For instance,
Alice might prefer to access the copy of her calendar that resides on her workstation rather than the one on her
laptop, even if the calendar client application is running on the laptop and both the workstation and laptop rep-
licas are available. Hence, users occasionally do want to provide hints about which replicas to access.

Also, there are situations in which an application may want control over replica selection. For instance, an
application that supports synchronous collaboration between a number of users, such as a shared drawing tool,
may want all these users to access the same replica so that they share the exact same database state. Replication
may be desired by this application solely for fault-tolerance, that is, so that it can fail-over to a secondary rep-
lica in case the primary fails. Thus, in the second implementation of the Bayou system, we added support for
application-controlled replica selection.

3.3 Conflict detection

An inherent feature of Bayou’s update-anywhere replication model is that concurrent, conflicting updates may
be made by users interacting with different replicas of a shared database. For instance, in the Bayou Calendar
Manager (BCM), Alice and Bob could schedule different meetings for Alice at the same time. Such conflicts
must be dealt with by each application in an application-specific manner.

The definition of what constitutes a conflict varies from application to application and potentially from user to
user. Traditionally, database managers and file systems have pessimistically treated any concurrent writes as
conflicting. However, experience with Bayou applications suggest that not all concurrent writes result in appli-
cation level conflicts. Moreover, writes to separate tuples, which are traditionally viewed as independent, may,
in fact, conflict according to the application. Consider BCM which stores each calendar entry or meeting as a
separate tuple in the database. Without help from the application, the storage system would detect conflicts as
operations that are concurrent at the granularity of either the whole database or individual tuples. If the former,
then any concurrently added meetings would be detected as conflicting; if the latter, then no meetings would
ever conflict since they involve updating different tuples. Neither of these cases reflect BCM’s semantic defini-
tion of a conflict.

6

In BCM, two writes that add new meetings to a calendar or modify existing meetings conflict if their meetings
overlap in time and involve the same user(s) or conference room. This simple definition of conflicts is readily
supported by Bayou’s application-specific conflict detection mechanism. However, we discovered in practice
that it did not satisfy all BCM users; some users would prefer to allow overlapping meetings not to conflict and
have them scheduled on their personal calendar so they can decide later which meeting to actually attend.

BXMH has a much more complicated model of conflicting operations on a shared mailbox. While BCM basi-
cally has a single type of conflict, BXMH has dozens of potential conflict scenarios. BXMH supports 13 oper-
ations on a mailbox: adding a new message, moving a message to a named folder, creating a new folder,
renaming a folder, deleting a message, and so on. Each of these operations can conflict with other operations in
various ways. Moreover, when designing this application, we discovered that potential users could not always
agree on which operations conflict under what conditions. The result is that BXMH, through its “conflict pref-
erences menu”, allows its users to decide what types of concurrent operations should be considered conflicting.
Figure 2 shows one of the many conflict scenarios that appears on the BXMH conflict preferences menu. In
this example, the user is asked to decide whether moving a message from one folder to another conflicts with a
concurrent operation that renamed the destination folder and, if so, how the conflict should be resolved.

Although BCM and BXMH have very different notions of conflicting operations, they both rely on the same
mechanism to detect their conflicts, namely Bayou’s dependency checks [19]. A dependency check accompa-
nies each write performed by an application. The dependency check is a way for the application issuing the
write to detect whether the write conflicts with other concurrent writes. Specifically, a dependency check is a
query (or set of queries) and a set of expected results. When the dependency query is run at some replica
against its current database and returns something other than the expected results, the replica has detected a
conflict; in this case, the replica resolves the conflict, as discussed below, rather than performing the given
write. Observe that dependency checks are often specific not only to the application but also to the particular
write operation.

For example, if Alice adds a meeting to her calendar from 11 to noon on Friday, BCM creates a dependency
check for this write that queries the database for other calendar entries at this time and expects none. Bob might
concurrently add a conflicting meeting, say at 11:30 on Friday, because his replica has not yet received Alice’s
write. If Bob’s write is ordered before Alice’s, then the dependency check included in Alice’s write will fail.

3.4 Conflict resolution

Strategies for resolving detected conflicts also vary from application to application and user to user. In BCM, a
conflict involving two meetings is resolved by trying to reschedule one of the meetings. The meeting that was

Figure 2. Sample conflict scenario from BXMH’ s conflict preferences menu.

7

added last according to Bayou’s write ordering is the one that is rescheduled. In BXMH, the resolution depends
on the type of conflict and on the user’s preferences. For example, a user might choose to resolve the conflict in
Figure 2 by moving the message to the renamed folder, by leaving the message in its original folder, by creat-
ing a new folder for the message or by moving the message to some other existing folder.

Merge procedures in Bayou are the means by which applications resolve conflicts. Specifically, each Bayou
write operation actually consists of three components: a nominal update, a dependency check, and a merge pro-
cedure [19]. The nominal update indicates changes that should be made to the application database assuming
that no conflicting writes have been issued. The dependency check, as discussed above, detects conflicts
involving the write. The merge procedure is a piece of application code that travels with the write and is exe-
cuted to resolve any detected conflicts. The merge procedure associated with a write can query the executing
replica’s database and produces a new update to be performed instead of the nominal update. Since merge pro-
cedures are arbitrary code, they can embody an unlimited set of application-specific policies for resolving con-
flicts.

An application is free to pass null dependency checks and merge procedures with each write, in which case the
writes issued by the application resemble normal database updates. Importantly, even in the application ignores
conflicts, its database is guaranteed to eventually converge to a consistent state at all replicas. Concurrent
updates may cause the application not to see some updates because they are overwritten, but eventual consis-
tency is preserved.

3.5 Reading tentative data

Bayou gives applications the choice of reading only committed data or data that may be in a tentative state. The
rationale was that some applications may only want to deal with data after it has been committed. Interestingly,
the Bayou applications that have been built to date never select the commit-only option when reading data.
This is because users always want to see updates that they have made, even if the update has not yet been com-
mitted. Bayou indicates which data items an application reads are tentative and which are committed. How the
application deals with the information varies with the application. BCM uses this information to show tenta-
tively scheduled meetings in a different color than committed ones. The expectation is that a committed meet-
ing is not likely to change in time, at least not without the meeting organizer informing the participants
explicitly, while tentative meetings could get rescheduled due to conflicts. So it is important for the user to
know which meetings are tentative and which are not. BXMH, on the other hand, does not distinguish between
tentative and committed data when showing a folder’s content to the user. The user does not really care whether
a particular message is tentatively in a folder as long as the message is successfully displayed when the user
clicks on it.

4 Related Work

Early weakly-consistent replicated systems, like Grapevine [2], were intimately tied to particular applications,
like electronic mail and name services. The issue of designing replicated storage systems that effectively sup-
port a number of diverse applications arose when replication was added to conventional file systems and data-
base management systems. Many of these systems started with the goal of replication transparency but
gradually ended up adding hooks for applications to give input to the replication process.

Replicated file systems like Coda [11] and Ficus [17] present applications with a traditional file system inter-
face but also allow them to install “application-specific resolvers” to deal with conflicting file updates. Coda

8

has also recently added “translucent caching” which hides some caching details from users and applications
while revealing others [5, 14].

In the database arena, Oracle 7 supports weakly consistent replication between a master and secondary replicas
or between multiple masters. It permits applications, when specifying their database schema, to select rules for
resolving concurrent updates to columns of a table; each “column group” can have its own conflict resolution
method [15]. Applications can provide a custom resolution procedure or choose from a set of standard resolv-
ers.

Lotus Notes, like Bayou, utilizes pair-wise reconciliation between replicas and allows its system administrators
to specify arbitrary replication schedules [13]. Notes also permits users and applications to manually invoke
reconciliation between two replicas. It detects conflicting updates to a document using timestamps, but has no
support for application-specific conflict resolution; alternative versions can be maintained for documents that
are concurrently updated.

Bayou, since it was not concerned about backwards compatibility or supporting existing applications, could
design a new API that permits more direct application control over various aspects of replication and consis-
tency management. Bayou’s conflict resolution mechanism, based on per-write merge procedures, is more flex-
ible than that of other systems, as is its support for application-specific conflict detection.

5 Conclusions

Designing an application programming interface (API) for replicated data is difficult since one must balance
the desire for simplicity against the amount of control afforded the application. Simplicity argues for placing
common functionality in the replicated storage system, for presenting a storage model that is as close as possi-
ble to that of a non-replicated system, and for minimizing aspects of the underlying replication state that are
exposed to the application. However, to obtain the maximum benefits from replication, an application needs
methods for cooperating with the replicated storage system in the management of the application’s data. Per-
mitting such cooperation without requiring the application to assume unnecessary responsibility for the repli-
cation process is the key challenge.

The development of Bayou and its applications has allowed us to explore these issues of interaction between
applications and replicated data managers. In Bayou, data managers take full responsibility for propagating
and ordering updates and ensuring that replicas converge to a consistent state, while applications may control
the detection and resolution of update conflicts, create and destroy replicas at convenient times, and set up rec-
onciliation schedules.

Experience building a number of Bayou applications has confirmed the belief that applications need custom-
ized control over the replication process. The two applications used as examples in this paper, a calendar man-
ager and a mail reader, have very different policies for detecting and resolving update conflicts. Additionally,
they often want different reconciliation schedules. Interestingly, these choices vary not only between applica-
tions but also among users of the same application. We conclude that “replication transparency”, while a laud-
able goal for supporting legacy applications, is not appropriate for a replicated storage system intended to
support a number of applications in diverse networking environments.

9

6 Acknowledgments

We are grateful for the contributions of our colleagues and interns who have aided in the design and implemen-
tation of Bayou and its applications including: Atul Adya, Surendar Chandra, Alan Demers, Keith Edwards,
Carl Hauser, Anthony LaMarca, Beth Mynatt, Eric Tilton, Brent Welch, and Xinhua Zhao.

7 References
[1] P. A. Bernstein and N. Goodman. An algorithm for concurrency control and recovery in replicated dis-

tributed databases. ACM Transactions on Database Systems 9(4):596-615, December 1984.

[2] A. Birrell, R. Levin, R. M. Needham, and M. D. Schroeder. Grapevine: An exercise in distributed com-
puting. Communications of the ACM 25(4):260-274, April 1982.

[3] S. Davidson, H. Garcia-Molina, and D. Skeen. Consistency in a partitioned network: A survey. ACM
Computing Surveys 17(3):341-370, September 1985.

[4] A. Demers, D. Greene, C. Hauser, W. Irish, J. Larson, S. Shenker, H. Sturgis, D. Swinehart, and D. Terry.
Epidemic algorithms for replicated database maintenance. Proceedings Sixth Symposium on Principles of
Distributed Computing, Vancouver, B.C., Canada, August 1987, pages 1-12.

[5] M. R. Ebling. Translucent cache management for mobile computing. Carnegie Mellon University techni-
cal report CMU-CS-98-116, March 1998.

[6] W. K. Edwards, E. D. Mynatt, K. Petersen, M. J. Spreitzer, D. B. Terry, and M. M. Theimer. Designing
and Implementing Asynchronous Collaborative Applications with Bayou. Proceedings User Interface
Systems and Technology, Banff, Canada, October 1997, pages 119-128.

[7] R. A. Golding, A weak-consistency architecture for distributed information services, Computing Sys-
tems, 5(4):379-405, Fall 1992.

[8] J. Gray, P. Helland, P. O’Neil, and D. Shasha. The dangers of replication and a solution. Proceedings
1996 ACM SIGMOD Conference, Montreal, Canada, June 1996, pages 173-182.

[9] R. G. Guy, J.S. Heidemann, W. Mak, T.W. Page, Jr., G.J. Popek, and D. Rothmeier. Implementation of
the Ficus replicated file system. Proceedings Summer USENIX Conference, June 1990, pages 63-71.

[10] L. Kalwell Jr., S. Beckhardt, T. Halvorsen, R. Ozzie, and I. Greif. Replicated document management in a
group communication system. In Groupware: Software for Computer-Supported Cooperative Work,
edited by D. Marca and G. Bock, IEEE Computer Society Press, 1992, pages 226-235.

[11] P. Kumar and M. Satyanarayanan. Supporting application-specific resolution in an optimistically repli-
cated file system. Proceedings IEEE Workshop on Workstation Operating Systems, Napa, California,
October 1993, pages 66-70.

[12] R. Ladin, B. Liskov, L. Shrira, and S. Ghemawat. Providing high availability using lazy replication. ACM
Transactions on Computer Systems 10(4):360-391, November 1992.

[13] R. Larson-Hughes and H. J. Skalle. Lotus Notes Application Development. Prentice Hall, 1995.

[14] L. B. Mummert, M. R. Ebling, and M. Satyanarayanan. Exploiting weak connectivity for mobile file
access. Proceedings Fifteenth ACM Symposium on Operating Systems Principles, Copper Mountain,
Colorado, December 1995, pages 143-155.

10

[15] Oracle Corporation. Oracle7 Server Distributed Systems: Replicated Data, Release 7.1. Part No.
A21903-2, 1995.

[16] K. Petersen, M. J. Spreitzer, D. B. Terry, M. M. Theimer, and A. J. Demers. Flexible Update Propagation
for Weakly Consistent Replication. Proceedings 16th ACM Symposium on Operating Systems Principles,
Saint-Malo, France, October 1997, pages 288-301.

[17] P. Reiher, J. Heidemann, D. Ratner, G. Skinner, and G. Popek. Resolving file conflicts in the Ficus file
system. Proceedings Summer USENIX Conference, June 1994, pages 183-195.

[18] D. B. Terry, A. J. Demers, K. Petersen, M. J. Spreitzer, M. M. Theimer and B. B. Welch. Session guaran-
tees for weakly consistent replicated data. Proceedings Third International Conference on Parallel and
Distributed Information Systems, Austin, Texas, September 1994, pages 140-149.

[19] D. B. Terry, M. M. Theimer, K. Petersen, A. J. Demers, M. J. Spreitzer, and C. H. Hauser. Managing
update conflicts in Bayou, a weakly connected replicated storage system. Proceedings Fifteenth ACM
Symposium on Operating Systems Principles, Copper Mountain, Colorado, December 1995, pages 172-
183.

[20] B. B. Welch. Customization and flexibility in the exmh mail user interface. Proceedings Tcl/Tk Work-
shop, Toronto, Canada, 1995, pages 261-268.

