
Mobile Agent Programming in Ajanta
�

Anand R. Tripathi Neeran M. Karnik Manish K. Vora Tanvir Ahmed Ram D. Singh

Department of Computer Science
University of Minnesota, Minneapolis MN 55455

Abstract

This paper gives an overview of Ajanta, a Java-based
system for mobile-agent programming. We outline the
Ajanta architecture, and discuss the basic elements that
comprise an agent-based application. Ajanta’s program-
ming environment is defined in terms of a set of primitive
operations for agent creation, dispatch, migration and re-
mote control. Agents can access server resources using
a proxy-based access control mechanism. We describe a
scheme for agent migration based on the composition of
some basic migration patterns which incorporate exception
handling mechanisms. Finally, we present two agent based
distributed applications implemented using the Ajanta sys-
tem. One is a middleware which supports file sharing over
the Internet and the other is a distributed calendar manager.

1. Introduction

Ajanta1 is an object-oriented system for programming
mobile-agent applications on the Internet. A mobile agent is
a program which represents a user in a network and is capa-
ble of migrating autonomously from node to node, perform-
ing computations on behalf of that user. The main advan-
tages of the mobile-agent paradigm lie in its ability to move
client code and computation to remote server resources, and
in permitting increased asynchrony in client-server interac-
tions [8]. Agents can be used for information searching, fil-
tering and retrieval, or for electronic commerce on the Web,
thus acting as personal assistants for their owners. Agents
can also be used in low-level network maintenance, testing,
fault diagnosis, and for dynamically upgrading the capabil-
ities of existing services.

A mobile agent programming system needs to provide
customizable agent servers to host agents, and a set of prim-
itives for the creation and management of agents. Program-

�

This work was partially supported by NSF grants ANIR 9813703 and
EIA 9818338

1See http://www.cs.umn.edu/Ajanta

ming abstractions are needed to partition the application’s
tasks among agents, specify their migration plans, commu-
nicate with them as they traverse the network. Robustness
of the system is also an important concern. An application
program should be able to monitor its agents’ status, and
control them remotely when needed.

Security is another important requirement of an agent in-
frastructure. Malicious agents can damage host resources,
leak sensitive data, or mount “denial of service” attacks. Se-
curity mechanisms are thus necessary to safeguard host re-
sources. Conversely, an agent needs to be protected while
in transit, because it may carry sensitive information about
the user it represents.

The main focus of this paper is on the programming
primitives supported by the Ajanta system. The mecha-
nisms supported by Ajanta include:

1. Generic agent and server classes that can be easily ex-
tended for building agent-based applications.

2. Mechanisms for protecting an agent’s state while
it travels over insecure networks, and to untrusted
servers.

3. A high-level programming abstraction based on the
concept of composable patterns of migration for build-
ing agent itineraries. These patterns separate an
agent’s computation task from the specification of its
migration path.

4. Mechanisms for applications to monitor the status of
their roving agents, and control them remotely. Appli-
cations can also provide mechanisms to handle excep-
tions.

5. A location-independent global naming and name res-
olution mechanism that facilitates communication be-
tween mobile objects.

The next section presents an overview of the Ajanta sys-
tem architecture. The details of its implementation are omit-
ted, as they can be found in other publications [15, 26, 14].

 



Section 3 presents its agent programming primitives. Sec-
tion 4 elaborates on the concept of building agent applica-
tions using itineraries and re-usable patterns of migration.
In Section 5, we describe two applications that we devel-
oped to test the capabilities of the Ajanta primitives.

2. Overview of the Ajanta Architecture

In Ajanta, the mobile agent implementation is based on
the generic concept of a mobile object [12]. Agents are ac-
tive mobile objects, which encapsulate code and execution
context along with data. Ajanta is implemented using the
Java [5] language, and uses Java facilities such as object
serialization, reflection, remote method invocation, and its
security model [2]. We use object serialization and dynamic
class loading to implement agent mobility.

2.1. Location-Independent Naming of Resources

Location-independent naming of all entities in the sys-
tem — such as agents, servers and application-defined
global objects — allows us to transparently access such en-
tities without requiring any knowledge of their locations.
This is particularly useful for mobile entities such as agents.
In Ajanta, global names use the Uniform Resource Name
(URN) [23, 17] scheme. A URN is a persistent, location-
independent resource identifier which can be used for ac-
cessing the resource. Ajanta’s name service maintains the
mapping between the URN of an entity and its characteris-
tics, including its current location. Communication with the
name service is authenticated, and each entry in the name
registry is protected using an access control list. The name
registry is replicated to protect against “denial of service”
attacks. This name service also acts as a repository for
public-keys of various entities in the system.

2.2. Basic Elements of an Agent Application

A host in the Internet can provide services to mobile
agents by running an agent server. The following are some
of the important elements underlying an Ajanta application:

Principal: Actions in the system are always performed on
behalf of some authorized principal, an entity which
has a unique identity in the system. Agents, hosts,
agent servers and human users are some of the prin-
cipals in the system.

Owner: This is the human user whom the agent represents.
The agent is usually created by another principal, such
as an application program, or another agent — we call
this the creator of the agent.

Guardian: An application assigns to each of its agents a
guardian object which is responsible for dealing with
exception conditions encountered by the agent. If the
agent malfunctions during its execution, it is automat-
ically transported to its guardian, which takes the ap-
propriate recovery actions.

Agent Credentials: This is a signed certificate carried by
each agent. Its tampering can be detected. It con-
tains the names of the agent, its owner, creator, and
guardian. It also includes a digest of the “intentions”
for which the agent is created. The inclusion of in-
tentions places restrictions on the rights granted to an
agent by its creator. Typically, the intention is ab-
stracted into an itinerary.

Code Base Server: An agent’s credential contains the URL
for its code base server, which provides the code for
the classes required by the mobile agent. Typically the
creator of an agent would act as its code base server.

2.3. The Generic Agent Server

Ajanta provides a base AgentServer class, which im-
plements a generic agent server that can be suitably ex-
tended by a programmer to define an application-specific
server. It supports several important functions:

1. Execution of visiting agents within secure protection
domains.

2. Agent Transfer Protocol for agent migration to/from
other servers.

3. Secure access to server resources for agents.

4. Primitives for inter-agent communication, resource ac-
cess and migration.

5. Secure agent control and monitoring functions for
agent creators.

The server’s agent environment object acts as the inter-
face between agents and the services provided at the host.
Agents can invoke operations on their environment that al-
low them to migrate, communicate, access resources, etc.
Each server maintains a domain registry that keeps track of
the agents currently executing on it, and responds to status
queries from the agents’ owners and creators. A server may
also provide access to application-defined resources. A re-
source is an object that acts as an interface to some service
or data available at the host. The server maintains a resource
registry which is used in setting up “safe bindings” between
resources and agents.

An agent requesting migration specifies a destination and
the method to be executed there. An agent transfer request



is sent to the destination server containing agent’s creden-
tials, specification for the requested method, and some pa-
rameters controlling the transfer itself — such as flags indi-
cating whether the transfer should be encrypted and signed.
The credentials identify the agent, thus allowing the desti-
nation server to decide whether to permit the transfer. If
permission is granted, the agent object is serialized and sent
to the destination. The agent’s code is not transferred, and
is only loaded if necessary, from its code base.

Two Java mechanisms are used for isolating the agents
hosted by a server — thread grouping and class loading.
When an agent arrives, a new thread group is created; all
threads created by the agent are constrained to be within
this group. Thus at runtime, the actions of an agent’s code
can be identified by the thread group id. We use Java’s class
loader mechanism to isolate agents from each other. Each
executing agent is assigned a separate Ajanta-defined class
loader, which is responsible for loading any classes from
agent’s code base server during the agent’s execution. Each
class loader defines a separate name-space for the classes
that it loads and prevents an agent from bringing in any un-
trusted code for security-sensitive operations. Further de-
tails can be found in [14].

2.4. The Generic Agent

The base Agent class defines an arrive method,
which can be overridden by the agent programmer to ex-
ecute an entry protocol at every host it visits. The agent
thread first executes this method, and then invokes the
method specified in the agent’s migration request. When
the agent finishes its task at a server, its exit protocol, in
the form of a depart method, is executed. In this method
the programmer can control further course of the agent by
specifying migration to another host.

During its execution, an agent may encounter various ex-
ceptions. Some of these may be anticipated by the program-
mer and handled within the agent’s code. If however, an
exception is not caught by the agent, it is propagated to the
agent server’s code. The server then deactivates the agent
and transports it to its guardian with the appropriate status
information, including the exception that caused the agent
to fail. The guardian acts as the agent’s exception handler.
It can inspect the agent’s state, and if appropriate, modify it
and re-launch the agent.

2.5. Secure Resource Access for Agents

An agent’s access to system-level resources is protected
using Java’s security manager mechanism. However we
chose not to burden the security manager further with ex-
tensions related to application-defined resources. Our ap-
proach is based on proxy interposition [22] between the re-

source and its client agents. Instead of giving direct access
to a resource, an agent is given a proxy, which acts like an
identity based capability [4]; each agent has its own cus-
tomized proxy, and no other agent can use this proxy to
access the resource.

BufferImpl BufferProxy

Resource

class

interface

BufferResourceImpl

KEY:

interface inheritance

implementation inheritance

AccessProtocol

Figure 1. Resource Class Hierarchy

public interface Resource {
// generic methods, common to all resources

}
public class ResourceImpl implements Resource {

// implementations of the generic methods
}
public interface AccessProtocol {

public Resource getProxy (Credentials cred);
}

Figure 2. Generic Resource Interfaces

Ajanta defines a Resource interface, and provides a
ResourceImpl class which implements it (see Figures 1
and 2). This class provides generic functionality common
to all resources. Application-defined resources, such as the
Buffer shown here, must implement the Resource in-
terface; this is typically done by simply inheriting from the
ResourceImpl class.

When an agent requests a resource, an instance of its
proxy class is returned. Each resource class must imple-
ment the AccessProtocol interface, i.e., a getProxy
method that creates a new instance of its proxy class, cus-
tomized for the caller agent. A proxy object contains a
private and transient reference to the resource it
represents, and it implements the interface of that resource.
An agent having access to a proxy cannot directly access or
serialize the resource. A proxy also contains a private
array called enabledMethods, which represents the set
of resource methods that the agent is permitted to invoke.
The agent invokes a method on the proxy object, which in



turn either passes the call through to the resource, or raises
a security exception if the method is disabled. Each proxy
class also provides two privileged methods enable and
disable using which the server can dynamically modify
the set of enabled methods. For security reasons, a proxy
class has no ancestors except for the base Object class
and it cannot be cloned. Further details of this mechanism
are presented in [14].

An agent must invoke the getResource method on
its environment object and supply the URN of the resource
it needs. The server finds the corresponding object in the
resource registry and makes an “upcall” to its getProxy
method, providing the calling agent’s credentials as a pa-
rameter. The resource object then creates an appropriately
restricted proxy, and passes it back to the agent.

3. Primitives for Agent Programming

Ajanta agent programming primitives allow one to create
and dispatch agents, control their mobility, monitor them,
and recover from failures.

3.1. Agent Creation and Dispatch

An agent can be created by instantiating a subclass of
the base Agent class. An agent is given a unique name
(its URN) and a Credentials object is embedded in it.
Every agent also contains an AgentStatus object, which
describes the status of its execution. A newly created agent
is activated by dispatching it to some agent server for ex-
ecution, using the start primitive. The agent’s creator
optionally specifies a method to invoke on the agent. If
this is omitted, the server executes the (parameterless) run
method by default.

3.2. Agent Migration

An agent can request migration using the go primitive.
It specifies the URN of the desired destination agent server,
along with the method to be executed there. If an error oc-
curs during the transfer, the gomethod throws an exception,
allowing the agent to handle the error. In some situations,
the agent may prefer to co-locate itself with another agent
or resource that it needs to access, or an object it needs to
report to. It can use the colocateAndInvoke primitive,
specifying the URN of the target to co-locate with, and the
method to invoke on it.

The agent’s migration path is often encoded in the form
of an itinerary. The generic agent and server are unaware
of the itinerary construct, but we have provided an ItinA-
gent class which extends the Agent class and abstracts
the agent’s mobility into an Itinerary object. Further
details are presented in Section 4.

3.3. Agent Control

Ajanta provides various primitives to control an agent.
For security reasons, these primitives can only be invoked
by the agent’s owner or guardian. The recall primi-
tive allows the caller to recall an agent back to its home
site/guardian, or another location. The agent reports back
upon the completion of its task on the current host. The
implementation of these primitives uses RMI based com-
munication between the caller and the current host server.
The caller locates the current host of the agent and authen-
ticates itself. It then invokes the recall method of the
host server, specifying the target agent. This method sets
the “recall-pending” flag in the agent’s status object. In the
agent exit protocol, if the “recall-pending” is set, the agent
is sent to the requested server. The retract primitive al-
lows the caller to interrupt an agent and recall it back im-
mediately. The terminate primitive allows the caller to
kill the agent immediately.

3.4. Agent State Protection

In order to protect an agent’s state against tampering by
malicious servers, each agent includes three types of secure
containers. The ReadOnlyContainer object can be ini-
tialized with constant objects that the agent carries. Any
tampering with these objects can be detected. A Target-
edState container allows the agent to carry objects in an
encrypted form, such that only a specific server can access
each such object. An AppendOnlyContainer can be
used by an agent to protect objects in its state from later
modification or deletion. The agent ‘checks in’ an object
into this container, and the object is then cryptographically
protected such that any attempt to modify or delete it will be
detected. The details related to the use and implementation
of the these three kinds of data items are omitted here, but
the interested readers should refer to [14].

4. Patterns for Agent Migration

Our approach to agent programming is based on the sep-
aration of an agent’s migration control from its computa-
tion. Complex travel plans can be programmed by compos-
ing them from some commonly occurring migration pat-
terns2. A pattern is a description of an abstract migration
path for an agent.

2Patterns in Ajanta should not be confused with design patterns of
Gamma et al. [3] – they are not descriptions of designs; rather they provide
building blocks for a travel plan.



4.1. Classification of Patterns

Figure 3 shows the hierarchy of pattern classes defined
by Ajanta. The root of this hierarchy is an abstract class
Pattern. Every pattern is associated with an action (spec-
ified by the programmer) that the agent performs at the hosts
it visits. This can be overridden to specialize the action per-
formed at a specific host.

Class

Class
Abstract

Key

Pattern

ItinEntry PatternCollection

Sequence Selection Split Set

SplitJoin

SplitJoinAll SplitJoinAny

Figure 3. Hierarchy of Patterns

The pattern traversal is determined by the abstract
method next. It captures the notion of the next hop in
the migration path of the agent. Each pattern has its own
semantics to determine the next hop.

The basic unit of migration is an ItinEntry, which
is a singleton pattern. It specifies the destination server to
migrate to, and the action to be performed at that host. This
class is derived from the class Pattern. Its implementa-
tion of the next method actually migrates the agent to the
specified host using the go primitive.

The abstract class PatternCollection represents a
list of patterns. The next method can then be given differ-
ent semantics as described below, to derive various patterns.

Sequence: The traversal of this pattern implies a traversal
of the contained patterns in sequential order.

Selection: The traversal of this pattern implies select-
ing one pattern from the list using a user-defined
choosePatternmethod. This choice could depend
on the agent’s state or the availability of hosts to be
visited in the pattern. This pattern is thus useful in se-
lecting alternate paths in case of failures.

Set: The agent must traverse all patterns in the list, but
the order of traversal is immaterial, or is determined
dynamically by the user-defined choosePattern
method. Hence, when the next method is called on
this pattern, it chooses one amongst the list of patterns
not yet traversed. This pattern can also be used to make

a travel plan more robust, since it can order paths based
on host availability.

Split: This pattern results in the creation of child agents
for parallel traversal of the contained patterns. It only
controls creation and dispatch of agents, and is used
when child agents are not expected to report back to
the parent.

SplitJoin: This is a specialization of the Split pattern
in which the child agents must report their results to
some object (usually the parent). On completing its
task a child agent co-locates with the specified ob-
ject and invokes the join method on it, which uses
a Synchronizer object for synchronizing the child
agents. In the default case, the synchronizer is a sim-
ple counter implementing a barrier. SplitJoin is an
abstract class, which can be extended by the agent pro-
grammer to define a join policy. Two concrete classes
SplitJoinAll and SplitJoinAny are provided
which, respectively, implement synchronization of all
or any of the child agents to be joined.

4.2. Pattern Traversal

Each ItinAgent contains an Itinerary which en-
capsulates the travel plan of the agent as a Sequence pat-
tern. The basic unit of execution for an agent is the action
it performs at each host. This is its computation, which is
separate from its migration control. The exit protocol (de-
fined by an agent’s depart method), which is executed
when the agent completes its computation task, requests the
Itinerary to choose the next host and migrate to it.

We illustrate this process with the help of an exam-
ple. Figure 4 shows an Itinerary, i.e. a Sequence
SQ1 that contains a Selection (SL1), a Set (ST1) and
an ItinEntry (H). The Selection is a choice be-
tween a Sequence (SQ2) and an ItinEntry (C). The
Set (ST1) consists of the ItinEntrys D, G, and a Se-
quence (SQ3). Therefore the actual path traversed could
be �����������	��
���
���������� or ������
���
��������	����� and
so on. This example shows how agent programmers can use
these building blocks to make a complex plan.

When the agent completes its task at one host, it assigns
its Itinerary the task of picking the next host and mi-
grating to it. This is done by calling the next method on
the Itinerary which initiates a recursive call, execut-
ing the next method of the Sequence SQ1. This in turn
will call the next method of selection SL1, and so on un-
til an ItinEntry is reached whose next method makes
the actual hop using the go primitive. If migration fails, an
exception is thrown, and is passed up the recursion chain.



Set ST1

G

F

E
D

Sequence SQ3

H

A

B

Sequence SQ2
Selection SL1

C

Sequence SQ1

Itinerary

Figure 4. Building Itineraries using Pattern
Composition

4.3. Exception Handling with Patterns

Each pattern must define its own exception han-
dling semantics. The system must be capable of han-
dling several types of exceptions; e.g. Unknown-
HostException, HostUnreachableException,
ServerOverloadedException. We illustrate with
the help of an example, how patterns handle some of these
exceptions.

Consider the same Itinerary described in Figure 4.
If the agent is at host A and decides to migrate, the next host
it must go to is B. Assume that the name service cannot re-
solve host B, hence the go method throws an Unknown-
HostException. The ItinEntry cannot handle this,
so it throws it to its caller, the Sequence SQ2. The se-
mantics of a Sequence are such that it cannot handle this
exception and must re-throw it to its caller, the Selec-
tion SL1. The Selection catches this exception and
its semantics allow it to choose a different path. Hence,
it chooses to go to host C. Note that the system makes no
guarantee of atomicity of pattern traversal. The exception
handlers in the next methods of Set and Selection
can incorporate suitable fault-tolerance mechanisms when
a particular host is unreachable or the server is overloaded.

An exception can also be used for deliberate termina-
tion of a travel plan. For example, if the agent has found
the information that it was looking for, it could throw a
TaskCompletedException, which would then cause
the Itinerary to terminate the traversal of the current
pattern.

5. Agent-based Applications

We present two applications designed to test the effec-
tiveness of the Ajanta primitives and to show how patterns
help make programming easy and robust.

5.1. A Calendar Manager

In this application, a user maintains his/her personal cal-
endar of activities. Agents are used to schedule a meeting
of a specified set of users. For this, an agent is launched to
visit each user’s calendar server, determine their availability
for the desired meeting times, find common available times,
and then modify each user’s calendar appropriately.

Each user runs a CalendarServer, which is de-
rived from the base AgentServer class. The Calen-
darServer customizes the generic agent server by adding
a Resource viz. a CalendarDB, which is a database
recording the appointments for a user. This is made avail-
able to agents via the proxy-based binding mechanism. We
also incorporated mechanisms for access control of calen-
dar entries based on user identities.

Any application which needs to make a customized
agent, must extend either the base Agent class or the Iti-
nAgent class. The CalendarAgent extends the Iti-
nAgent class. We implemented the Calendar Manager
by programming agents using two different types of mi-
gration patterns viz. the Set and the SplitJoin. An
agent which visits the CalendarServers of its partici-
pants does not care about the order in which it visits them
to check for conflicts or availability. Hence a Set pattern
seems a natural choice for such an application. In the sec-
ond implementation, we used the SplitJoin pattern to
send one child agent to each server, in parallel.

5.2. A File Sharing System

This is a middleware system that allows users to selec-
tively share files across a network with other users. Each
user runs a FileServer, which is an agent server cus-
tomized with a FileSystem resource. This resource pro-
vides visiting agents with access to a user-specified ‘root’
directory on the local file system (and to all underlying files
and directories). Its interface includes the following basic
primitives, that an agent can invoke:

fetchFile: Requests the file system to return the contents
of a specified file. Typically a client would direct an
agent to a remote server, fetch a file, and then store the
file locally.

depositFile: This stores a given array of bytes as a file un-
der the server’s root directory. To create a file on a



remote user’s file access server, a client sends an agent
to that server to execute this primitive.

transferFile: Similar to fetchFile, except that the file
contents are sent over the network to a specified URL.

search: Performs a full-text search, using Glimpse3, on the
files contained in the root directory, and returns a list
of the files that contain the specified keywords. Some
simple boolean operators can be used when searching
for multiple keywords.

The user can control which agents have access to the files
using a simple access control list. This is a file placed in
the root directory. When an agent invokes, say the de-
positFile operation on a file, the access control list is
checked to ensure that an entry in the access control list al-
lows the agent’s owner to access the specified file using the
depositFile operation.

We implemented a FileAccessAgent by extending
the ItinAgent class. A file access agent is given a tasklist
specifying which servers to visit, and which file system op-
erations to execute there. The tasklist translates into an
Itinerary for the agent. More complex applications
could be built upon this file sharing middleware; e.g. collab-
orative authoring tools, multimedia file systems, etc. Build-
ing upon the full-text search capabilities described above,
we have recently implemented a web-page search agent,
which can visit various users’ web-page index servers and
bring back the URLs of the documents satisfying some
given search criteria.

6. Related Work

Telescript [25] was among the earliest mobile agent sys-
tems. It includes an object-oriented type-safe language
specifically designed to support mobile-agent program-
ming. It was followed by systems like Tacoma [11] and
Agent Tcl [6], which supported mobile agents written as
Tcl scripts. The emergence of Java has led to the develop-
ment of several Java-based mobile-agent systems, such as
Aglets [9], Voyager [19], Sumatra [21], and Mole [24].

The Ajanta system’s architecture and programming fa-
cilities can be compared and contrasted with the other mo-
bile agent systems based on the following aspects [16]: se-
curity mechanisms for protecting hosts and agents, remote
agent control and communication, location-independent
naming, migration primitives, itineraries and high level pro-
gramming constructs.

With a few exceptions, most of the existing systems ei-
ther do not address security issues, or attempt to add se-
curity mechanisms onto existing system architectures, re-

3A text search and indexing tool from the University of Arizona.

sulting in inadequate protection from attacks [16]. Tele-
script [25] uses different types of permits for access control
and for imposing quotas on resource use. Security mix-in
classes can be used to protect objects from unauthorized
modification, copying or migration. Aglets [9] has only
limited security functionality, and a security architecture for
this system has recently been proposed [13]. Voyager [19],
Sumatra [21], and Mole [24] do not address security issues.
Among Tcl-based systems, Tacoma does not address secu-
rity. Agent Tcl supports coarse-grained access control lists
based on host names, and uses PGP for encryption and au-
thentication. In Ara [20], agent servers use access control
lists (called “allowances”) to impose restrictions on visiting
agents.

Ajanta uses proxies for protecting server resources from
malicious agents. The concept of proxies was first devel-
oped by Shapiro [22]. We use proxies to act as capabili-
ties. These may include the identity of the client, thus acting
as identity-based capabilities [4], and may also contain ac-
counting information, as suggested in [18]. The protection
scheme described in [7] has some conceptual similarities
to our approach. In [7], the restricted interfaces of proxy
classes are statically defined, independently by clients and
servers, and automatically interposed in a client-server in-
teraction. In contrast, Ajanta supports dynamic definition
as well as modification of access privileges assigned to an
agent through a proxy.

In most systems, there is little support for features that
are required for robustness, such as agent monitoring and
control, failure detection, and recovery. Aglets is the only
other system that supports recalling of an agent from a re-
mote location. However, it does not enforce any security
restrictions in executing a recall operation. This makes
an Aglet application vulnerable to attack. No other agent
programming system presents to the programmers a clear
model for handling exceptions. Ajanta’s guardian mech-
anism allows the programmer to perform recovery actions
from exceptions that are encountered, but not handled by an
agent.

Little attention has been paid to the ease of agent pro-
gramming. The concept of migration patterns has been re-
cently used by other researchers [10, 1]. The patterns in
those systems are described in terms of single hops. The mi-
gration patterns in Ajanta present a higher-level abstraction
in the sense that a pattern can be recursively composed of
several other patterns, simple or complex. Moreover, these
patterns can also encapsulate suitable exception handling
policies for common failure conditions.

7. Conclusions and Future Work

We have described Ajanta, a Java-based system which
permits agent programs to execute, communicate and mi-



grate themselves securely. Building upon Java’s security
model, we provide a confined execution environment for
each agent, and a secure protocol for migrating agents be-
tween servers. The unique features of Ajanta include a fine-
grained dynamic access control mechanism based on proxy
interposition. We have also introduced the concept of ab-
stract migration patterns, which can be used to simplify the
task of creating complex agent itineraries by composition of
some basic patterns. These patterns incorporate failure re-
covery for robustness. Two applications built on top of the
Ajanta system were described. One is a distributed calendar
manager, and the the other is a middleware system for file
sharing over the Internet.

In the future, we plan to include security mechanisms
(such as authentication) in the migration patterns, in order
to further simplify the programmer’s task. Agent program-
ming primitives can be further improved by providing group
communication operations. Another area of future work is
auditability, i.e., we need to provide a mechanism to reliably
determine the migration history of an agent.

References

[1] Yariv Aridor and Danny B. Lange. Agent Design Patterns:
Elements of Agent Application Design. In Second Interna-
tional Conference on Autonomous Agents, May 1998. Avail-
able at http://www.acm.org/˜danny/ag.pdf.

[2] J. Steven Fritzinger and Marianne Mueller. Java Security.
Technical report, Sun Microsystems, 1996. Available at
http://www.javasoft.com/security/whitepaper.ps.

[3] Erich Gamma, Richard Helm, Ralph Johnson, and John
Vlissides. Design Patterns. Elements of Reusable Object-
Oriented Software. Addison-Wesley Publishing Co., 1997.

[4] Li Gong. A Secure Identity-Based Capability System. In
IEEE Symposium on Security and Privacy, pages 56–63,
May 1989.

[5] James Gosling, Bill Joy, and Guy Steele. The Java Language
Specification. Addison-Wesley, August 1996.

[6] Robert S. Gray. Agent Tcl: A flexible and secure mobile-
agent system. In Proceedings of the Fourth Annual Tcl/Tk
Workshop (TCL 96), July 1996.

[7] Daniel Hagimont and Leila Ismail. A Protection Scheme for
Mobile Agents on Java. In Proceedings of the 3rd ACM/IEEE
International Conference on Mobile Computing and Net-
working, September 1997.

[8] Colin G. Harrison, David M. Chess, and Aaron
Kershenbaum. Mobile Agents: Are they a good
idea? Technical report, IBM, March 1995. URL
http://www.research.ibm.com/massdist/mobag.ps.

[9] IBM. IBM Aglets Workbench Documentation. URL
http://www.trl.ibm.co.jp/aglets/documentation.html.

[10] IBM. JMT (Java-based Moderator Templates)
Specification - Alpha3. Available at URL
http://www.trl.ibm.co.jp/aglets/jmt/index.html, 1998.

[11] Dag Johansen, Robbert van Renesse, and Fred B. Schnei-
der. An Introduction to the TACOMA Distributed System.
Technical Report 95-23, Department of Computer Science,
University of Tromsø, June 1995.

[12] Eric Jul, Henry Levy, Norman Hutchinson, and Andrew
Black. Fine-Grained Mobility in the Emerald System. ACM
Transactions on Computer Systems, 6(1):109–133, February
1988.

[13] Gunter Karjoth, Danny Lange, and Mitsuru Oshima. A Se-
curity Model for Aglets. IEEE Internet Computing, pages
68–77, July-August 1997.

[14] Neeran M. Karnik. Security in Mobile Agent Systems. PhD
thesis, University of Minnesota, October 1998.

[15] Neeran M. Karnik and Anand R. Tripathi. Agent Server
Architecture for the Ajanta Mobile-Agent System. In Pro-
ceedings of the 1998 International Conference on Paral-
lel and Distributed Processing Techniques and Applications
(PDPTA’98), pages 66–73, July 1998.

[16] Neeran M. Karnik and Anand R. Tripathi. Design Issues in
Mobile Agent Programming Systems. IEEE Concurrency,
6(6):52–61, July–September 1998.

[17] R. Moats. RFC 2141: URN Syntax, May 1997.

[18] B.C. Neuman. Proxy-based authorization and accounting for
distributed systems. In Proc. of the 13’th Intl. Conf. on Dis-
tributed Computing Systems, pages 283–291, May 1993.

[19] ObjectSpace. ObjectSpace Voyager Core Package Technical
Overview. Technical report, ObjectSpace, Inc., July 1997.
Available at http://www.objectspace.com/.

[20] Holger Peine and Torsten Stolpmann. The Architecture of
the Ara Platform for Mobile Agents. In Proceedings of
the First International Workshop on Mobile Agents (MA’97),
Berlin, Germany, April 1997. Springer Verlag, LNCS #1219.

[21] M. Ranganathan, Anurag Acharya, Shamik Sharma, and Joel
Saltz. Network-aware Mobile Programs. In Proceedings of
USENIX ’97, Winter 1997.

[22] Marc Shapiro. Structure and Encapsulation in Distributed
Systems: The Proxy Principle. In Proceedings of the 6th In-
ternational Conference on Distributed Computing Systems,
pages 198–204. IEEE, 1986.

[23] Karen Sollins and Larry Masinter. RFC 1737: Func-
tional Requirements for Uniform Resource Names, Decem-
ber 1994.

[24] Markus Stra
�
er, Joachim Baumann, and Fritz Hohl. Mole -

A Java Based Mobile Agent System. In Proceedings of the
2nd ECOOP Workshop on Mobile Object Systems, 1996.

[25] Joseph Tardo and Luis Valente. Mobile Agent Security and
Telescript. In Proceedings of COMPCON Spring ’96, pages
58–63. IEEE, 1996.

[26] Anand R. Tripathi and Neeran M. Karnik. Protected Re-
source Access for Mobile Agent-based Distributed Comput-
ing. In Proc. of the 1998 ICPP Workshop on Wireless Net-
works and Mobile Computing, pages 144–153, 1998.


