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Time synchronization in a wireless sensor network is critical for accurate timestamping of events
and fine-tuned coordination of wake/sleep duty cycles to reduce power consumption. This paper
proposes TSync, a novel lightweight bidirectional time synchronization service for wireless sensor
networks. TSync’s bidirectional service offers both a push mechanism for accurate and low over-
head global time synchronization as well as a pull mechanism for on-demand synchronization by
individual sensor nodes. Multi-channel enhancements improve TSync’s performance. We deploy a
GPS-enabled framework in live sensor networks to evaluate the accuracy and overhead of TSync in
comparison with other in-situ time synchronization algorithms.

I. Introduction

Wireless sensor networks (WSNs) have recently emerged
as an important and growing research area. Typically, a
WSN consists of a large number of nodes that sense the
environment and collaboratively work to process and route
the sensor data [11][15]. The architecture of WSNs is typ-
ically characterized by hierarchy, where a base station acts
as a gateway that collects sensor data and relays the data
over a wired backbone to a back-end server for further pro-
cessing. Application scenarios for such WSNs are wide-
ranging, and include battlefield monitoring [3], robotic toys
[8], as well as habitat monitoring [1][2].

Time synchronization is an important issue in the correct
operation of deployed sensor networks. First, it is often
critical to keep a globally synchronized clock when a sen-
sor reading is taken in order to determine the right chronol-
ogy of events. The lack of a global clock will result in
inaccurate timestamping as the local clocks drift on each
sensor node. As a base station collects sensor data, inaccu-
rate time stamps from different sensor nodes can lead the
base station to falsely reorder, or even reverse, an actual se-
quence of events. Second, time synchronization has been
found to be crucial for efficiently maintaining low duty cy-
cles in sensor networks [2]. The majority of the lifetime
of a sensor network should be spent sleeping to conserve
energy. During the brief wake periods, neighboring sen-
sor nodes should be synchronized to be awake together so
that packet messages can be quickly routed between neigh-
bors and over multiple hops to the base station. If the sleep
times are unsynchronized or random, then packets contain-
ing sensor event data may be slow to propagate through the
sensor network, because neighbors may be asleep and un-
able to relay messages.

Time synchronization in WSNs is faced with a vari-
ety of challenges. First, the resource constraints imposed
by WSNs both in terms of limited battery life and lim-
ited bandwidth necessitate that any algorithm achieve time
synchronization in a lightweight manner, i.e. with low

packet transmission overhead so that the radio does not
expend excessive energy and bandwidth sending synchro-
nization packets. Second, the broadcast nature of the wire-
less medium introduces packet collisions between sensors
as well as lost packets. This increases the variance in the
delay experienced by routed packets. The inaccuracy of
time synchronization algorithms developed for wired net-
works increases with delay variance. As a result, new al-
gorithms are needed to achieve time synchronization over
wireless multi-hop sensor networks. Third, the sensor net-
work consists of inexpensive nodes that use low cost crys-
tals to provide the clock. These inexpensive clocks are
far more susceptible to clock drift at unknown rates than
traditional resource-rich laptops and servers. Finally, dif-
ferent applications will have different clock precision re-
quirements. For some applications, loose synchronization
that maintains just the relative timing order may be satis-
factory, while other applications may only require a pre-
cision of tens of milliseconds. However, in cases such
as localization, synchronization accuracy on the order of
microseconds is required for location determinination and
range-finding. To accommodate this range of application
requirements, a time synchronization service will need to
be flexible.
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Figure 1: GPS-enabled sensor networks require time syn-
chronization for obscured outdoor or indoor nodes.

Potential time synchronization approaches for sensor



networks include the Global Positioning System (GPS)
[20], which is capable of providing a globally accurate
clock to each node in a WSN. One example of a GPS-
enabled outdoor sensor network is Zebranet for wildlife
monitoring [21]. However, GPS has an inherent weak-
ness, namely the requirement of line-of-sight to orbiting
satellites. As a result, GPS-enabled time synchronization
is inappropriate for indoor WSNs, though assisted GPS via
pseudolites is attempting to provide indoor coverage [22].
GPS-enabled time synchronization is also insufficient out-
doors even in a sensor network where all nodes possess
GPS capability. As shown in Figure 1, some sensor nodes
may be obscured, e.g. by foliage, buildings, or mountains.
Such obscured nodes will still require a distributed time
synchronization algorithm in order to obtain an accurate
clock from another node in the WSN. In the figure, ob-
scured indoor and outdoor sensor nodes could retrieve ac-
curate clocks from an unobstructed GPS backbone in the
outdoor portion of the network.

Several time synchronization protocols have been pro-
posed for wireless sensor networks [13][25][18]. Elson et
al proposed Reference Broadcast Synchronization (RBS)
[13][14], where a node periodically broadcasts wireless
beacon messages to its neighbors. The neighboring nodes
use the broadcast beacon’s arrival time as the reference
point for comparing the clock readings. The local times-
tamps are exchanged between neighboring peers in order
to calculate the drifts and thereby synchronize clocks. RBS
removes several non-deterministic sources from traditional
time synchronization, and is able to achieve a precision of
1 µsec after thirty broadcasts. A disadvantage of this ap-
proach is the overhead caused by the broadcasts exchanged
between neighbors to achieve pair-wise synchronization.
This overhead increases with network density [24]. An ex-
tension to RBS for time synchronization over multiple hops
has also been proposed [14]. For two nodes in different do-
mains to synchronize to one another, a multi-hop chain of
time-synchronizing gateways needs to be constructed be-
tween them in order to exchange the time stamps.

Ganeriwal et al proposed a hierarchical time synchro-
nization protocol for WSNs [25]. The protocol is divided
into two different phases, i.e. the level discovery phase and
the synchronization phase. In the level discovery phase,
each node in the sensor network is assigned a level. The
node that initiates the synchronization is called the root
node and is assigned level 0. The level field on each node
reflects the hop count from itself to the root node. In the
synchronization phase, every node exchanges time stamps
with its parent in a manner similar to the Simple Network
Time Protocol (SNTP) [29]. The root node, which is the
parent of all other nodes, provides an accurate reference,
and signals its children to initiate SNTP with itself by send-
ing a time synchronization pulse. Sichitiu et al focus on the
development of a deterministic time synchronization algo-
rithm for data fusion [18]. The work is evaluated within
an 802.11b multi-hop ad-hoc network. Hill et al. claim 2
µsec precision for time synchronization on MICA sensor
motes within a single broadcast domain, though the details
are vague [16].

Time synchronization has been extensively studied
for the traditional Internet and for distributed systems
[6][7][5][17][23][19]. However, complex protocols such
as NTP [7] are inappropriate for deployment in sensor net-
works, due to their intensive computational requirements.
Several new approaches explore time synchronization over
wireless links, e.g. the CesiumSpray system [23] and [19].
These approaches exploit the broadcast nature of the wire-
less medium, as TSync does. The goal of the Cesium-
Spray system is also similar to TSync as it tries to pro-
vide global time synchronization to large scale real-time
systems. However, CesiumSpray requires all hosts to exist
in the same broadcasting domain.

The first contribution of this paper is the development of
a time synchronization service, i.e.TSync, that is adapted
for wireless sensor networks and satisfies the following
properties:

• accurate

• lightweight

• flexible

• comprehensive

Sections II, III, and IV describe how TSync manages to
achieve these properties using a bidirectional multi-channel
approach. Section VI provides an analysis of TSync’s per-
formance, including its accuracy and overhead.

A second contribution of this paper is the development
and testing of an in-situ GPS-enabled evaluation frame-
work to assess the accuracy of TSync and other time syn-
chronization algorithms in live deployed WSNs. Section V
describes this evaluation framework.

II. Bidirectional Time Synchroniza-
tion Service

II.A. Design Themes

To achieve its goals of an accurate, lightweight, flexi-
ble, and comprehensive time synchronization solution for
WSNs, TSync adopts several design themes. These themes
also address the challenges of wireless communication and
resource constraints characteristic of sensor networks.

To achieve an accurate and lightweight solution, a key
design theme of TSync is its reliance on exploiting multi-
channel radios for frequency diversity. Multi-channel fre-
quency diversity has long been used in wireless communi-
cation to reduce packet collisions/interference and prevent
jamming [4][26]. Sensor nodes equipped with radios that
are capable of communicating on more than one frequency
channel are becoming increasingly common in today’s sen-
sor networks, e.g. the MICA2 Mote [27], MIT cricket
Indoor Location System [28] and the MANTIS Nymph
[9], all use the CC1000 multi-channel radio. Such multi-
channel radios help minimize packet collisions by allow-
ing adjacent nodes to transmit on different channels. One
consequence of reduced collisions is an improvement in the
accuracy of time synchronization, since reduced collisions



decrease the variance in roundtrip delay that directly af-
fects the accuracy of clock estimation. A second important
consequence is lightweight overhead, since time synchro-
nization probes need not be retransmitted. TSynch achieves
even more lightweight operation via efficient message ex-
change, as described in later subsections.

To achieve a comprehensive and flexible solution, a sec-
ond key design decision of TSync was to adopt a bidi-
rectional approach. TSync consists of two mechanisms
for synchronization: a push-based mechanism and a pull-
based mechanism. The strengths of a push mechanism
compensate for the weaknesses of the pull mechanism, and
vice versa. For example, a strength of a purely pull-based
scheme such as NTP is that it gives maximum control to
individual sensor nodes, who can request on-demand syn-
chronization at any time. However, pull-based schemes in-
variably incur high overhead as each sensor node attempts
to individually synchronize itself with the network. Pull-
based schemes have also suffered from lower accuracy, due
to wide variation in propagation delays due to wireless col-
lisions [25]. A strength of a purely push-based mechanism
is that it gives control to reference nodes, e.g. base sta-
tions, and allows for a low overhead method of quickly
synchronizing large portions of the network. However,
push-based schemes are vulnerable to lost packets, which
would leave downstream sensor node(s) in an unsynchro-
nized state. Such unsynchronized nodes are forced to wait
until the next synchronization period. Prior proposals for
time synchronization in sensor networks have at most fo-
cused on a single mechanism, and therefore suffer from the
weaknesses of that particular mechanism.

Our integrated bidirectional approach gives full flexibil-
ity to both the base station and individual sensor nodes. The
push-based mechanism is used as a lightweight synchro-
nization mechanism for most sensor nodes. In case such a
synchronization message is lost due to wireless collisions
or fading, then the sensor nodes have the flexibility to ini-
tiate or request synchronization. Flexibility is enhanced by
permitting both push and pull-based mechanisms to be pa-
rameterized, e.g. by their frequency of occurrence or multi-
hop range.

II.B. Definitions

TSync is flexible and self-organized. Neither a fixed topol-
ogy nor the guarantee of delivery latency is required in
order to deploy the TSync service in a WSN. A physical
broadcast channel is required, which is automatically satis-
fied by the wireless medium. A connected network is also
required in order to spread the synchronization ripple to
nodes network wide.

The TSync service assumes the coexistence of reference
nodes and normal sensor nodes in a WSN. A“reference
node” periodically transmits beacon messages to its neigh-
bors. These beacon messages initiate the synchronization
waves. Multiple reference nodes are allowed to operate in
the system simultaneously. A sensor node in TSync will
dynamically select the nearest reference node as its refer-
ence for clock synchronization.

TSync exploits the usage of multi-channel radios to im-
prove precision, minimize the communication overhead
and lower the energy consumption. A commoncontrol
channel is shared by all the sensor nodes for delivery of
beacon messages and control packets. This control chan-
nel can be the same one as is used for general data traffic.
Each sensor node is also assigned a uniqueclock channel
different from all its neighbors’ clock channels. Usage of a
dedicated clock channel reduces the variation in propaga-
tion delay caused by packet collisions and retransmissions,
thereby improving the accuracy of clock estimation. As we
observe in section VII, it is possible to deploy TSync in a
WSN with only single-frequency radios, i.e. no dedicated
clock channel, though accuracy will suffer.

An explanation of a standard two-way message ex-
change between a pair of nodes employing SNTP for syn-
chronization is helpful to understand TSync’s synchroniza-
tion design. As illustrated in Figure 2, node A and node
B wish to synchronize with each other. Node A sends a
message to node B who then sends a reply message back to
node A. t1 and t4 are measured by A’s local clock while t2
and t3 represent the local clock’s readings on B. We define
the message propagation delay to be d1 and the local clock
offset between A and B to be d2. The propagation delay d1
and the clock offset is assumed to be constant during the
message exchange between A and B.

Node A initiates the synchronization by sending B a
packet at time t1. The value t1, i.e. the original timestamp,
is also contained in this packet. At time t2, Node B receives
this packet. Here, t2 is called the received timestamp, and

t2 = t1 + d1 + d2 (1)

At time t3, Node B acknowledge A’s synchronization effort
by sending back an ack packet which includes t2 and t3.
Node A receives this packet at time t4, and

t4 = t3 + d1− d2 (2)

Thus, d1 and d2 can be estimated with the following simple
formula:

d1 =
(t2− t1) + (t4− t3)

2
(3)

d2 =
(t2− t1)− (t4− t3)

2
(4)

Node B

Node A t1

t2 t3

t4

Figure 2: Synchronization algorithm timeline.

As a result, the clock on node A could be synchronized
with node B’s clock by adding offset d2. This procedure
synchronizes the sender to the receiver, e.g. A to B, and
can be applied in reverse as well.



Traditional synchronization protocols such as SNTP
above assume that the delay d1 is the same in both direc-
tions. In reality, variation in the forward and reverse de-
lays introduces errors that limit the accuracy of such time
synchronization algorithms. Major sources of delay dur-
ing time synchronization have been categorized into four
distinct components, namely the send time, access time,
propagation time and the receive time [10]. Thesend time
is affected by the operating system overhead, such as con-
text switching and resource allocation during construction
of the message. Timing error is minimized by obtaining the
timestamp at as low a level as possible.Access timeis the
delay that occurs when the node tries to access the medium.
The MAC layer protocol determines this access time. The
send time and the access time together contribute to errors
in the estimation of t1 and t3 in the above example.Prop-
agation timeis the time needed for the message to be de-
livered from the sender to the receiver. For multi-hop time
synchronization, this is a major error source. The propa-
gation delay is nearly constant in one broadcasting domain
and is only related to the speed that the message is tranmit-
ted on the media. However, propagation delay varies sig-
nificantly in multi-hop wide area networks due to random
factors such as the backoff time after collisions, retransmis-
sion and queuing delays. This contributes to variations in
d1, which violates the initial assumption of constancy. Fi-
nally, thereceive timeis the delay between the time when
the message arrives at the receiver’s radio interface and the
time when the system is notifed about the arrival. Operat-
ing system processing needed to generate the message no-
tification signal will affect thereceive timeand thereby the
precision of estimating t2 and t4.

III. Push: HRTS - Hierarchy Ref-
erencing Time Synchronization
Protocol

The first component of TSync’s bidirectional time synchro-
nization service is the push-based Hierarchy Referencing
Time Synchronization (HRTS) Protocol. The goal of HRTS
is to enable central authorities to synchronize the vast ma-
jority of a WSN in a lightweight manner. Protocol specifics
based on a single reference node are discussed first, fol-
lowed by an analysis, and then a generalization of the pro-
tocol to multiple reference nodes.

III.A. Single Reference Node

As shown in Figure 3, HRTS consists of three simple steps
that are repeated at each level in the hierarchy. First, a base
station, namely the reference node, broadcasts a beacon on
the control channel (Figure 3(a)). One child node speci-
fied by the reference node will jump to the specified clock
channel, and will send a reply on the clock channel (Figure
3(b)). The base station will then calculate the clock offset
and broadcast it to all child nodes, synchronizing the first
ripple of child nodes around the base station (Figure 3(c)).
This process can be repeated at subsequent levels in the hi-
erarchy further from the base station (Figure 3(d)).

The HRTS protocol is explained in more detail as fol-
lows:

control channel
clock channel

control channel
clock channel

control channel
clock channel

control channel
clock channel

(a) (b)

(c) (d)
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Figure 3: Push-based time synchronization: (a) Reference
node broadcasts (b) A neighbor replies (c) All neighbors
are synchronized (d) Repeat at lower layers

Step 1: BS initiates the syncbegin announcement with
time t1 using the control channel and then jumps to
the clock channel. All interested nodes record the re-
ceived time of the announcement. BS randomly spec-
ifies one of its children, e.g. n2, in the announcement.
The node n2 jumps to the specified clock channel.
(Figure 3(a))

Step 2: At time t3, n2 replies to the BS with its received
times t2 and t3. (Figure 3(b))

Step 3: BS now owns all time stamps from t1 to t4. It
calculates d2 and then broadcasts t2,d2 on the control
channel.(Figure 3(c))

Step 4: All interested neighbors, e.g. n2, n3, n4 and n5,
compare the time t2 with their received timestamp t2’.
For example, n3 calculates the offset d’ as

d′ = t2− t2′ (5)

Finally, the time on n3 is corrected as:

T = t + d2 + d′ (6)

t is the local clock reading.

Step 5: n2, n3, n4 and n5 initiate the syncbegin to their
downstream nodes. (Figure 3(d))

We assume that each sensor node knows about its neigh-
bors when it initiates the synchronization process. In Step
1, the response node is specified in the announcement. It’s
the only node that jumps to the clock channel specified by
the BS. The other nodes are not disturbed by the synchro-
nization conversation between BS and n2 and can conduct
normal data communication while waiting for the second
update from the BS, the reference node. A timer is set in
the BS when the announcement is transmitted. In case the



announcement is lost on its way to n2, the BS goes back to
the normal control channel after the timer expires and thus
avoids indefinite waiting.

As the synchronization ripple spreads from the reference
node to the rest of the network, a multi-level hierarchy is
dynamically constructed. Levels are assigned to each node
based on its distance to base, i.e. # hops to the central
reference point. Initiated from the reference nodes, the
synchronization steps described above are repeated by the
nodes on each level from the base to the leaves. To avoid
being updated by redundant synchronization requests from
peers or downstream nodes, HRTS allows the nodes to
parameterize their requests with two variables, i.e. “level”
and “depth”:

levelA “level” indicating the number of hops to the syn-
chronization point is contained in each syncbegin packet.
At the very beginning of each synchronization ripple, the
reference nodes set the level to 0 in the syncbegin packet.
If a node M is updated by a syncbegin packet marked by
level n, it will set its level to n+1 and then broadcast the
syncbegin message to all its neighbors with level n+1. If
M receives another syncbegin packet later during the same
synchronization period, M will look into the “level” con-
tained in this packet. If the new level is equal to or larger
than n, then M will just ignore this updating request. Oth-
erwise, it will respond to this syncbegin packet and update
itself based on the sender. Following this procedure, a tree
is constructed dynamically with the reference nodes sitting
at the base. Each node is associated with a level according
to its distance to the base. For example, in Figure 3, the BS
is at level 0, while all its neighbors n2, n3, n4, and n5 are
at level 1 after being synchronized with the BS. After be-
ing updated by BS, the nodes n2, n3, n4 and n5 initiate the
syncbegin packet to their child nodes. However, n2 and n3
are in each other’s broadcasting domain. n3 will find n2 to
be at the same level, and therefore will simply ignore the
synchronization request from n2.

depth Besides “level”, HRTS also allows network nodes
to specify the radius of the synchronization ripple. The
nodes could parameterize the request with a second field
called “depth” in the syncbegin message. The initiating
nodes set the “depth” field in the syncbegin packets. The
value of “depth” is decremented by one in each level. The
synchronization ripple stops spreading when the depth be-
comes zero. However, the downstream nodes could adjust
the “depth” field according to their needs. With this flexi-
ble mechanism, the reference point will have the ability to
control the range of the nodes that are updated.

III.B. Analysis of HRTS
The HRTS protocol exploits the broadcast nature of the
wireless medium to establish a single common point of ref-
erence, i.e. the arrival time of the broadcast message is the
same on all neighbor peers. This common reference point
can be used to achieve synchronization in Step 4 of the pre-
vious subsection, i.e. t2 at node n2 occurred at the same
instant as t2’ at node n3. As the BS is synchronizing it-
self with n2, the other neighboring nodes can overhear the

BS’s initial broadcast to n2 as well as the BS’s final up-
date informing n2 of its offset d2. If in addition the BS
includes the time t2 in the update sent to n2 (redundant for
n2), then that allows all neighbors to synchronize. The in-
tuition is that, since t2 and t2’ occurred at the same instant,
then overhearing t2 gives n3 its offset from n2’s local clock
and overhearing d2 gives n3 the offset from n2’s local clock
to the BS reference clock. Thus, n3 and all children of the
BS can calculate their own offsets to the BS reference clock
with only three messages (2 control broadcasts and 1 clock
channel reply)!

HRTS is highly scalable and lightweight, since there is
only one lightweight overhead exchange per hop between a
parent node and all of its children. In contrast, synchroniza-
tion in RBS happens between a pair of neighbors, which is
called pair verification, rather than between a central node
and all of its neighbors. As a result, RBS is susceptible
to high overhead as the number of peers increases. The
HRTS approach eliminates the potential broadcast storm
that arises from pairwise verification, while at the same
time preserving the advantage of reference broadcasting,
namely the common reference point. Also, since the HRTS
parent provides the reference broadcast that is heard by
all children, then HRTS avoids the problem in RBS when
two neighbors of an initiating peer are “hidden” from each
other. The parameters used in the protocol dynamically as-
sign the hierarchy level to each node during the spread of
the synchronization ripple. No extra routing protocol is re-
quired. HRTS is lightweight since the number of required
broadcasting messages is constant in one broadcasting do-
main. Only three broadcast messages are necessary for
one broadcasting domain, no matter how dense the sensor
nodes are.

R

N1

N2

t1

t2

Figure 4: Variation in propagation delay within a single
broadcast domain

In HRTS, the sender error is eliminated by comparing
the received time on each node. The major error sources
come from:

• variance in the propagation delayHRTS ignores the
difference between the propagation time to different
neighbors. As is illustrated in Figure 4, node R broad-
casts to its neighbors n1 and n2. The propagation time
needed for the message to arrive at n1 and n2 are t1
and t2, which are different in reality. As the propa-
gation speed of electromagnetic signals through air is
close to the speed of light, then for sensor network
neighbors that are within tens of feet, the propaga-



tion time is in the nanosecond level and thus could
be ignored compared with the other error sources.
Also, HRTS makes the assumption that the propaga-
tion speeds are the same in different channels.

• receiver error Latency due to processing in the re-
ceiver side is attributable to operating system jitter.
However, sensor operating systems can be designed so
that this jitter becomes relatively small and determin-
istic, e.g. the time can be read immediately at each in-
terrupt generated by the radio interface when a packet
is received.

HRTS’ current policy for selecting the child node to re-
spond to the syncbegin message is a random selection.
However, it is possible to incorporate historical knowledge
from previous HRTS cycles in the selection of the next
child responder. Moreover, previous HRTS responses may
be combined to broadcast a composite value in Step 3. This
may be useful to account for propagation delay differences
between neighbors within a local broadcast domain, which
we have assumed to be small, but which may become more
relevant when the distances between neighbors becomes
very large in a highly distributed WSN.

III.C. Multiple Reference Nodes
By parameterizing each synchronization request, HRTS
permits the existence of multiple reference nodes in the
sensor network to provide accurate clock readings.

BS2

control channel
clock channel

n1
n3

n4
n5

BS
n2

Figure 5: Synchronized by Multiple Reference Points

The existence of the “level” field in the syncbegin
packet also serves the purpose of eliminating redundant up-
dating requests from multiple reference nodes. By looking
into the field of “level”, a sensor node is able to recognize
whether the message is from the nearer reference node or
not. For example, in Figure 5, two reference nodes BS and
BS2 exist in the sensor network. Node n1 is in the broad-
casting domain of BS2 and 2 hops away from the BS. If the
node n1 is updated by n2 before receiving a synchroniza-
tion message from BS2, it will synchronize its clock again
in response to a syncbegin packet from BS2, because the
“level” in the packet from BS2 is 0, which is smaller than
that from n2. On the contrary, n1 will ignore n2’s updat-
ing request if it is updated first by BS2. When there are
several reference nodes existing in the network together, a
shortest path tree is formed around each reference node.
This scheme allows each sensor node to select the nearest

reference node in order to correct their local reading, thus
minimizing jitter. When there are several reference nodes
of the same distance to a sensor node, the node always se-
lects the first arrival.

IV. Pull: ITR - Individual-based Time
Request Protocol

The second component of TSync’s bidirectional time syn-
chronization service is the pull-based Individual Time Re-
quest (ITR) Protocol. ITR is designed to allow each sen-
sor node to independently obtain the time or synchronize
itself to its surrounding environment on-demand. ITR is
proposed as a complementary mechanism to HRTS in or-
der to give full flexibility to both individual nodes as well
as central authorities, i.e. base stations. In some cases,
HRTS’ push-based ripple scheme may unnecessarily syn-
chronize too many nodes despite being parameterized to a
small radius, whereas ITR would be able to offer a targeted
on-demand alternative to synchronize just those nodes that
need it.

IV.A. Protocol Description

The ITR protocol is based on SNTP but integrates multi-
channel support to address the vulnerability of SNTP to
variations in delay. It’s well known that the accuracy
of SNTP’s time synchronization’s algorithm is highly de-
pendent on the variation in delay experienced during the
roundtrip SNTP query. Indeed, the research literature has
statistically modeled this variation [17]. MAC-layer colli-
sions followed by hop-by-hop retransmissions in a wireless
sensor network increase the variation in delay experienced
by SNTP queries, and hence reduce the accuracy of SNTP
time estimation. By employing a separate clock channel
for time synchronization queries and responses, variations
in latency due to collisions are reduced, resulting in more
accurate clock estimation.

The ITR protocol is detailed as follows:

Step 1: Node n1 sends an ITRQUERY on the control
channel. The clock channel for transmitting the
actual synchronization request is specified in the
ITR QUERY. (Figure. 6(a))

Step 2: n1’s parent n2 hears the request. It then puts an
ITR ACK on the control channel to notify its par-
ent, i.e. BS. In general, upstream parents continue re-
peating ITRACK’s until a reference node is reached.
(Figure. 6(b))

Step 3.a: n2’s parent BS hears the ITRACK. BS then
switches to the specified clock channel in the
ITR ACK for the incoming request. All nodes along
the path are now switched to the specified clock chan-
nel.

Step 3.b: n2 receives the actual ITR synchronization re-
quest from n1 at the clock channel and forwards it to
BS at the same clock channel as well. (Figure. 6(c))



Step 4, 5 and 6:The BS initiates the same procedure to
send the time back to n1. (Figure. 6(d))

End: n1 synchronizes itself according to BS’s feedback.
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Figure 6: Pull-based multi-channel time synchronization
avoids collisions and lowers delay variance (a)-(d)

The algorithm of ITR is illustrated in Figure 6. Simi-
lar to HRTS, ITR also allows the sensor nodes to param-
eterize their request. The “depth” is used here to specify
the diameter of the query ripple spreading to its neighbors.
By setting the “depth” field to different values, the sensor
nodes can choose either to synchronize with a remote refer-
ence node many hops away or simply with its surrounding
neighbors.

In the case of multiple hops to the BS, the ITRACK
will propagate upwards through its parents until a reference
node is encountered or the ’depth’ field has expired. The
path from requesting node to reference node (BS) will be
“paved” using the same clock channel. If there are N imme-
diate neighbors to a node requesting ITR synchronization,
then up to N ITRACKs will be unicast outwards towards
possibly N reference nodes. The first reference node that
responds will be selected for synchronization. In the case
that the topology is known in advance, i.e. by listening to
HRTS messages, then the ITRQUERY can be targeted to
only one of the N neighbors, thereby limiting ITRACK
propagation.

To synchronize to an unknown reference node, the sen-
sor node simply sets the “depth” field in the request to in-
finity. This request will then be forwarded until the request
either encounters a reference node or reaches the edge of
the network. Such a request could be expensive and nodes
may have to wait for a long time before the response is re-
ceived. A timeout is therefore set when the request is first
sent. When the timeout expires, the sensor node will think
there is no reference node nearby and can then simply syn-
chronize to the neighbor node that responds first.

If the depth field in ITR is set to be 1, then each node in
ITR only makes an SNTP-like query to its upstream parent.
In this way, clocks are distributed in a scalable manner. The
query is only local to an upstream neighbor, rather than go-
ing all the way back to the reference node. This particular

form of ITR is thus configured in a manner similar to the
hierarchical SNTP approach of [25].

IV.B. Analysis of ITR

ITR is intended for use by nodes that wish to synchronize
their clocks during the interval between two synchroniza-
tion ripples pushed by HRTS. The majority of the sensor
nodes are intended to be synchronized via HRTS’ push
mechanism.

Similar to SNTP, ITR is vulnerable to variations in the
propagation delay in both communication directions. The
receiver delay also contributes to the error in delay estima-
tion. However, as we will show, ITR’s multi-channel ap-
proach eliminates a large part of the variation in the trans-
mission delay over a multi-hop network, as no other traffic
exists on the same clock channel. The ITRACK message
is also designed to be much smaller than the regular times-
tamping packets. Thus, the collision chances are reduced,
especially when there is heavy traffic present. The resulting
improvement in precision is demonstrated in Section VI.

While an intermediate node along the ITR route is busy
servicing an ITR request, it ignores other ITRACK’s. This
minimizes the cross-traffic hence delay jitter experienced
by the ITR synchronization packet. An additional conse-
quence of this policy of dedicating a node to service a sin-
gle ITR request is that the node may also ignore on-going
data/control traffic through the node. Our assumption is
that on-demand ITR synchronization will be invoked rela-
tively infrequently and over a localized enough path such
that the disruption to the rest of the sensor network will be
relatively minor. Moreover, the urgent time-delay require-
ments of ITR packet traffic motivated our design choice of
prioritizing service to time synchronization packets.

V. GPS-enabled Evaluation Frame-
work

In order to evaluate the effectiveness of TSync in a live
WSN, we developed a GPS-based framework for evaluat-
ing time-synchronization algorithms in-situ. This frame-
work is based on the MANTIS nymph platform [9],
which provides integrated GPS support in a small low-cost
lightweight form factor. Other sensor platforms also sup-
port GPS, e.g. Zebranet, a system that is designed to have
GPS, flash memory, CPU and two wireless radios working
together to track wild animals [21].

The Lassen SQ GPS chip from Trimble is currently used
with the MANTIS nymph sensor node, as illustrated in Fig-
ure 7. This integrated GPS chip provides the nymph with a
pure clock, which has a precision within 200 nanoseconds.
This clock is used to assess the accuracy of various time
synchronization algorithms at each node in a WSN, provid-
ing a powerful framework to assess the accuracy of in-situ
time synchronization algorithms down to the microsecond
level over multi-hop wireless networks.

All nymphs in the experiments are connected to the GPS
chip via a serial port. The PPS(pulse per second) pin on
the GPS chip is connected to the nymph’s external inter-



Figure 7: GPS-enabled sensor nodes using the MANTIS
Nymph hardware platform

rupt pin. The GPS clock reading can be queried over the
serial port. A local clock generated by the nymph’s crystal
is running on each nymph sensor node. As the crystals on
different sensor nodes have different frequencies, each lo-
cal clock will drift at a different rate. We thus first measure
the individual clock drifts by comparing the local clocks to
the GPS clock.

VI. Experiments and Performance
Analysis

In this section, we verify the performance of TSync’s ser-
vices via an implementation on live nymph sensor nodes
within our in-situ GPS-enabled evaluation framework [9].
We first measure the clock drift on each node and then use
this drift to correct the clock reading. The performance of
TSync is then evaluated in terms of its accuracy, overhead
and scalability.

The two components of TSync, namely ITR and HRTS,
are implemented independently as two different protocols
in order to evaluate their individual performances. In ITR,
the “depth” is set to infinity, so that the sensor nodes will
search for the nearest reference node. HRTS is also param-
eterized to spread the synchronization ripple to all sensor
nodes. Several algorithms are implemented for compari-
son, including SNTP and RBS [14]. For RBS, the gate-
way nodes are statically assigned, as well as the timestamp-
converting path of chained gateways.

VI.A. Experimental Setup

The experimental setup is illustrated in Figure 8. The ex-
periment consists of five deployed GPS-equipped sensor
nymphs n1, n2, n3, n4 and BS (sensor node functioning as
a base station), with the outermost node n1 requesting time
synchronization over a three-hop network from the node
BS. The Chipcon CC1000 radio on the MANTIS nymphs
supports spread spectrum multi-channel communication,
which enables implementation of TSync. To model modest
packet traffic consisting of sensor data that could interfere
with packets involved in time synchronization, a sixth node
n5 is placed neighboring n3, n2 and BS. For each time syn-
chronization algorithm, n5 is set to inject about 200 packets
into the network within every 10 minute trial period. The
injected packet size was varied from 20 bytes to 128 bytes.

��

��

control channel
clock channel

BS

n1

n2

n5n3
n4

Figure 8: Experimental Setup

The clock reading should be taken as close as possible
to the point when the event happened in order to minimize
the sender error and the receiver error, as described ear-
lier. The timestamps are processed at the lowest level of
the MANTIS sensor OS, i.e. the interrupt handler of the ra-
dio interface. During wireless communication, each packet
is appended with a preamble and a synchronization word
at the head of the real packet in order to achieve DC bal-
ance and indicate the starting point to the receiver. When a
packet is transmitted, the clock is read just prior to sending
the first byte of the synchronization word. When a packet
is received, the time when the synchronization word arrives
is recorded immediately.

VI.B. Performance Analysis
VI.B.1. Clock Behavior

Figure 9: Clock Readings

Figure 10: Clock Reading Distribution

Before analyzing the time synchronization algorithms,



our first goal was to isolate and characterize the behavior of
the sensor clocks using our GPS-enabled sensor nodes. At
the beginning of each experiment that measures the clock
drift, all nodes are synchronized by a pulse to the same
start point. The pulse is generated once per second. As
soon as the pulse is received by the nymph, an interrupt is
generated in a very tight loop and the local clock is com-
pared to the GPS clock to see if exactly one second has
elapsed on the local clock since the previous time. Typi-
cally, the local elapsed time, which we term the clock drift,
is distributed around the mean of one second, with indi-
vidual measurements slightly above and below the mean.
The measurements are taken after the clock is stabilized.
All nodes are measured within similar environmental con-
ditions, e.g. same temperature.

For each sensor node, 5 different trials have been taken
with more than 400 observations per trial in order to as-
sess the clock’s behavior. Figure 9 shows a sample set of
clock drift observations taken in one 400-sample trial for
one sensor. The clock drifts appear to be randomly dis-
tributed around the mean of about one second.

A closer statistical analysis of this single trace of data re-
veals that the clock readings form a roughly normal distri-
bution with the mean value at 1,000,009µsec, and standard
deviation of 15.3µsec, as shown in Figure 10. The standard
deviation is larger than expected due to the long tails on ei-
ther side of the curve. Though this particular sensor clock
was found to drift on average 9µsec fast for each second,
other sensor clocks were found to drift on average slower
than true time. However, the common property of all the
sensor clocks that we measured, fast or slow, was that the
error distribution formed a roughly normal distribution.

This analysis of clock behavior is used to correct for
clock drift introduced by individual sensor nodes, as seen
in the next subsection.

VI.B.2. Synchronization Accuracy

Figure 11: Single Hop Accuracy Comparison

A key metric for TSync is its accuracy as a time syn-
chronization algorithm. We implemented SNTP, RBS, and
TSync’s HRTS and ITR over our experimental testbed of
GPS-enabled nymphs. We executed each algorithm every
10 seconds, and compared the clock of a sensor node after

Figure 12: 3 Hop Accuracy Comparison

synchronization to the true GPS clock attached to that sen-
sor node. For the case of three hops, the designated sensor
node for evaluation was chosen to be n1. This comparison
was repeated every 10 seconds during each one-hour trial
for each algorithm. An initial random offset within 10 sec-
onds is independently chosen by each sensor node in order
to emulate the variations at boot up time.

The resulting distribution of errors was collected from all
one-hour trials to produce Figure 11 and Figure 12, which
show the distribution of the error in the accuracy of clock
estimation for each of the four time synchronization algo-
rithms over one hop and three hops respectively. The error
distribution of all techniques appear to be roughly Gaus-
sian. Table VI.B.2 and Table VI.B.2 present the mean in
µseconds and variances, obtained by using the approxima-
tion method of numerical analysis.

The error values in both the figures and table for all al-
gorithms have been corrected for the individual clock drifts
at nodes n1, n2, etc., obtained from the preceding section’s
analysis. In the absence of such correction for clock drift,
TSync will continue to function properly, though with less
accuracy. This same limitation applies to the other algo-
rithms as well. Correction for clock drift requires that
each node’s clock behavior be characterized a priori, that
this characterization remain relevant over time, and that
this characterization be made known to the time synchro-
nization algorithm. The correction value is calculated by
following an approach similar to [14], obtaining a least-
squares linear regression estimate of the clock drift given
statistics as from Figure 10. This offers a fast and conve-
nient method for finding the best fit line through the error
observed each second. A detailed study of clock skew ex-
ceeds the scope of this paper. The correction value is added
or subtracted from a node’s local time in order to correct for
clock drift. As a result, the analysis of Figure 11 and Fig-
ure 12 can focus just on the inaccuracy introduced by the
time synchronization algorithms themselves.

In this context, our experimental results in Figure 11 re-
veal that over a single hop, all algorithms achieve roughly
similar accuracy. However, as the number of hops in-
creases, our experimental results in Figure 12 over 3 hops
reveal a significant increase in disparity between the accu-
racy achieved by pull and push-based algorithms. SNTP



Table 1: Approximate Mean and Variances of Single Hop
Clock Estimation Error

Protocol mean variance
SNTP 22.3857 24.7843

ITR 23.6871 25.3742
RBS 20.3765 22.4728

HRTS 21.2342 23.4786

Table 2: Approximate Mean and Variances of 3-Hop Clock
Estimation Error

Protocol mean variance
SNTP 75.9573 96.5837

ITR 48.4831 62.8639
RBS 28.8974 31.4765

HRTS 29.4762 32.0584

performs with the least accuracy. SNTP’s inaccuracy can
be attributed to its sensitivity to variations in propaga-
tion delay caused by congestion as well as packet inter-
ference losses in both directions. The analysis of ITR’s
pull-based mechanism reveals that ITR’s multi-channel en-
hancements to SNTP significantly reduce delay varation,
reducing the error in time synchronization precision by
roughly half. However, ITR’s pull-based mechanism still
suffers inherently from variations in multi-hop queueing
over the WSN. Turning to the push-based broadcast tech-
niques, both HRTS and RBS have very similar error dis-
tributions, and both are much improved over multi-channel
ITR, with average errors of about 29µsec being quite com-
mon. Push-based synchronization achieves greater accu-
racy because it exploits the reference broadcasting prop-
erty of wireless links, allowing all the sensor nodes in the
same broadcasting domain to synchronize to a single com-
mon reference point, namely the broadcast message. As a
result, the propagation delay is limited to one broadcast-
ing domain and thus there is no extra variation in delay, as
would be experienced by the pull-based techniques. This
contributes to minimizing the error between the local time
and the absolute time.

The true advantage of HRTS compared to RBS is re-
vealed in the next section by examining the comparative
overhead of the two schemes.

VI.B.3. Overhead

In this section, we evaluate each algorithm in terms of its
overhead, i.e. the total number of messages exchanged dur-
ing each propagation step. We begin with a simple example
of synchronizing two receivers given a parent node, and
then discuss how the algorithms scale to dense networks
with many receivers. First, RBS employs two messages if
the two receivers can directly hear each other, namely one
beacon message and one from the peer nodes. Otherwise,
three messages are required, since the time conversion path

Table 3: Necessary Synchronization Messages for One
Broadcasting Domain and Two Receivers

Protocol Message Number

HRTS 3
RBS 2 if they could hear each other

Otherwise at least 3
SNTP 4

needs to be constructed by the parent node. SNTP requires
four messages as each individual receiver needs to acquire
the time from the sender. HRTS requires three messages
during synchronization. A conversation between the par-
ent and one of the children requires two packets while the
parent also needs to broadcast a final update. The above
analysis doesn’t consider repeated messages due to packet
collision. The number of necessary messages for two re-
ceivers in one broadcasting domain is summarized for each
algorithm in Table 3.

However, as the density and number of receivers in-
creases, the number of overhead messages required for syn-
chronization can increase substantially. For example, the
number of necessary messages for RBS increases dramati-
cally due to pairwise verification. The construction of time-
conversion gateway chain paths requires even more routing
messages. In contrast, the number of necessary messages
for HRTS grows slowly since the messaging overhead re-
quired in one domain is a constant and redundant messages
are largely eliminated by the parameterization mechanism.
The routing in HRTS also does not entail extra overhead
as it is constructed naturally by leveraging the broadcast
medium.

To assess messaging overhead in a multi-node sensor
network, we evaluated TSync in an ns2 simulation sce-
nario. The ns2 simulation is confined to assessing over-
head alone, and is not used to measure the accuracy of
time synchronization. We randomly placed 200 nodes in
a 400x400 area. The nodes’ positions are static. A node is
randomly chosen to be the reference node during initializa-
tion. Network-wide time synchronization is initiated from
this reference point by sending a syncbegin to surround-
ing neighbors. In the simulation, the clock channel and the
control channel use the same channel.

Figure 13 shows the number of messages required to
propagate one synchronization ripple throughout the net-
work, i.e. the total number of messages necessary in or-
der that the sensor nodes in each broadcasting domain are
synchronized to each other. As the number of receivers
increases, RBS’s overhead increases significantly as more
messages are required between pairs of nodes. Without the
appropriate optimization, the number of messages could
increase exponentially. In contrast, HRTS is considerably
less sensitive to the density of the sensor network, since all
nodes in any given broadcasting domain can be synchro-
nized with three messages. This supports the contention
that HRTS achieves many of the benefits of broadcast-



Figure 13: Overhead Comparison with 200 nodes. The x
coordinate is the average number of average neighbors for
each node.

based time synchronization while avoiding the pairwise
overhead of RBS.

VII. Discussion and Future Work

TSync could be easily adapted to wireless sensor networks
that don’t support multiple channels. The clock synchro-
nization messages would use the same channel as used for
data communication. The accuracy would decrease due to
increased packet collisions.

HRTS and ITR achieve different accuracies, so sensor
nodes have the option of initiating coarse time synchro-
nization on demand by using ITR, or of simply waiting for
the next syncbegin cycle of HRTS initiated by a reference
node. The network may choose to offer HRTS broadcast
synchronization on a limited periodic basis, where the pol-
icy for periodicity could be application-specific and adap-
tive to the energy status of the sensor network.

An alternative to HRTS’ scheme of pre-selecting the re-
sponding node from among all children is to have all the
child nodes jump to the clock channel and employ a ran-
dom backoff timer that selects the first child who grabs
the channel as the respondent to the reference node. This
scheme has the advantage of not requiring a priori knowl-
edge of the neighborhood topology. However, the advan-
tage of pre-selecting the responding node is that other in-
terested but non-selected nodes can simply stay on the con-
trol/data channel, continuing to service other packets on
this channel and eventually collecting from this channel
the synchronization packet broadcast from the reference
node. Unnecessary jumping to/from the clock channel is
thus avoided.

An interesting issue concerns at what layer to place time
synchronization. In our implementation, time synchroniza-
tion packets were intercepted at or below the MAC layer to
understand the limits to accuracy that can obtained by re-
moving operating system jitter. In theory, TSync can be im-
plemented at any layer, e.g. as an application layer thread in
the MANTIS OS. This approach would be more portable,
but would also introduce more imprecision. It remains as a
future research issue whether application layer implemen-
tions of TSync and other time synchronization algorithms
can provide sufficient clock accuracy.

Our future work will be focused on security and robust-

ness issues of time synchronization, as well as in-situ de-
ployment issues such as application layer implementation
that we expect to experience for TSync. Security is im-
portant for time synchronization, since it’s easy for a mali-
cious node to completely destroy the precision of the TSync
system by variably delaying packets on the clock channel.
The current design requires mutual trust between all nodes
and thus is vulnerable to malicious nodes. The energy con-
sumption for the sensor network will also be a design con-
sideration in later versions of TSync.

VIII. Conclusion

In this paper, we have introduced a light-weight bidirec-
tional time synchronization service TSync for networked
wireless sensors. TSync’s comprehensive service consists
of two components, namely a push-based HRTS proto-
col and a pull-based ITR protocol. Both approaches can
be flexibly parameterized to suit the time synchronization
needs of a given application. We show that our service can
synchronize all the sensor nodes to within an average ac-
curacy of around 21µsec over a single hop and 29µsec
over three hops using push-based HRTS synchronization.
The performance is comparable to reference broadcasting
in terms of accuracy while the overhead of HRTS is far less
than RBS. HRTS scales remarkably well because its num-
ber of messages is constant per broadcast domain. We also
present results from a GPS-enabled framework for evaluat-
ing the accuracy of TSync in a live sensor network.
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