Modeling Dynamic Software Components in
UML

Axel Wienberg, Florian Matthes!, and Marko Boger?

! Software Systems Institute (AB 4.02)
Technical University Hamburg-Harburg, Germany
http://www.sts.tu-harburg.de
% Distributed Systems Group, University of Hamburg, Germany
http://vsys-wuw.informatik.uni-hamburg.de

Abstract. UML provides modeling support for static software compo-
nents through hierarchical packages. We describe a small extension of
UML for modeling dynamic software components which can be instan-
tiated at runtime, customized, made persistent, migrated and be aggre-
gated to larger components. For example, this extension can be used
to describe systems built with JavaBeans, ActiveX-Controls, Voyager
Agents or CORBA Objects by Value. With our extension, the lifecycle
of a dynamic software component can be expressed in terms of UML.
We can not only describe a system at design time, but also monitor its
runtime behaviour. A re-engineering tool is presented that exploits our
UML extension for a high-level visualization of the interaction between
dynamic components in an object-oriented system.

1 Introduction and Motivation

In academia and industry, the concept of a software component [Szy98,Gri98]
as a self-contained, persistent, customizable and large-grain building block for
(possibly distributed) application systems has attracted a lot of interest.

In our research work on orthogonally persistent and mobile object systems
[MS94,MMS96,BWL99], we encountered the need to model and to visualize the
state and the behavior of a (possibly distributed) system which consists of a large
number of objects, some of which are aggregated to dynamic software compo-
nents. These software components are dynamic, because they can be instantiated
at runtime, customized, made persistent and be migrated within a dynamic com-
ponent hierarchy. We successfully applied UML for this modeling task and we
were also able to develop a visualization tool (a debugger extension) to monitor
the state and the behavior of such systems by means of UML diagrams.

However, it turned out that the existing notations of UML for static com-
ponents (e.g., packages, components in deployment diagrams) are not suited for
this task and that we had to extend UML slightly by notations for component
links, component boundaries (see Sec. 2.1 and Sec. 2.2) and for component aggre-
gation (see Sec. 3.4) to smoothly integrate components into UML object, class,
collaboration and sequence diagrams.

Our minimal UML extensions have been chosen deliberately to capture the
common semantics of the growing number of industrial component models (e.g.,
JavaBeans, ActiveX-Controls, Voyager Agents, CORBA with Objects by Value)
while leaving room for their differences: Components may or may not consist of
further components internally (defining a hierarchic structure as in Java beans
or a flat structure as in CORBA); they may be able to migrate as in Voyager or
have a fixed location as in CORBA; components may or may not be first class
objects, allowing parameter passing of components and substitution of objects
for components; and components may be active (running their own thread of
control) or passive (waiting for incoming messages), depending on the model
used.

The common characteristics of these components are their ability to com-
municate by sending and receiving messages, the possibility of having multiple
components of the same type (class) in a system, and the requirement that a
component is the unit of co-location, i.e. that all objects of a component re-
side completely on one node. Finally, the state of a component consists of the
attributes and objects aggregated by the component.

In Section 2, we first introduce the notion of component links and compo-
nent boundaries to identify components and component hierarchies in object
diagrams. The gain in modeling power through this extension in collaboration
diagrams, sequence diagrams and class diagrams is discussed in Section 3. As
a practical application, in Section 4 we present a re-engineering tool that visu-
alizes component behaviour by monitoring component boundaries at runtime.
Section 5 briefly discusses ways to identify component links in existing com-
ponent systems. After relating our work to that of others, we conclude with a
summary.

2 Modeling Component Configurations with UML

In this section, we introduce a notation for dynamic components. A dynamic
component is a runtime entity based on objects, and is therefore shown in an
object diagram. The configuration of a dynamic component includes its relation
to other components, as well as the set and structure of objects internal to the
component. Using our notation, these aspects can be expressed in UML.

2.1 Component Links

The fact that a component is made up of certain objects which implement its
functionality implies an aggregation of the objects to a component. We shall
model this specific form of aggregation using component links.

Definition component link A form of aggregation link between two objects,
a component and a subcomponent, with the additional semantics that each
object is an immediate subcomponent of at most one component. Therefore,
the graph of objects and component links forms a forest. A component link
may change over time and implies no dependence of lifetimes.

Notation In an object diagram, a component link is represented using the
stereotype <« component>>, displayed graphically as a link with a half-filled
diamond on the side of the component. Fig. 1 gives an example.

:Calendar :Contacts

:Primindex

:Person byDate

:Recurringltem
name="john smith" 4@
next=6.4.2000 ! !

birthday=6.4.1974

Fig. 1. A UML object diagram with component links

Fig. 1 shows the example of a personal information manager component
(PIM) consisting of two independent subcomponents, a contacts database and
a calendar, possibly implemented by different vendors. Internally, the contacts
database stores its person records in a primary index by name, so that the person
object is a subcomponent of the primary index. The secondary index only holds
an association link to the person object.

2.2 Component Boundaries

Using component links emphasizes the relation between a component and its
immediate subcomponent. However, we also want to show which subcomponents
belong together to implement a given component.

This grouping of peer objects cannot be denoted easily through links. Instead,
we introduce a slight notational extension, analogous to sytem boundaries in use
case diagrams.

Definition component boundary A graphical element enclosing exactly the tran-
sitive subcomponents of a component.

Notation A dotted boundary with rounded corners is drawn around the set of
subcomponents. The object representing the component itself (the primary
object) is positioned on the boundary, to show its role as the primary inter-
face of the component. Fig. 2 augments the personal information manager
example from Fig. 1 with component boundaries.

P R RRRReLE :Calendar |- S RARLIEERPRILLS :Contacts |- .

o N
’—T .1 ...| :Primindex M
dtem T :

: :Person byDate
‘Recurringltem —— |

40 name="john smith" [— :Seclindex
nexi=6.4.2000 birthday=6.4.1974 | :

Fig.2. A UML object diagram with component boundaries

Since the subcomponents of a component may in turn rely on internal sub-
components to implement their functionality, we naturally gain a hierarchical
decomposition. This nesting of component boundaries can be used to depict
logical as well as physical object spaces. It offers a unified notation for objects
within arbitrary levels of components within nodes [Sto97], which in turn might
be aggregated to local networks and to administrative domains [CG98].

The hierarchical structure can also be exploited to reduce the level of detail in
an object diagram. By collapsing a component bubble and keeping the primary
object, the overall structure is preserved, but irrelevant detail (internal to the
component) is omitted. Fig. 3 gives a coarser view on our example, which was
generated systematically from the detailed view.

:Calendar ——— :Contacts

Fig. 3. A coarser view on the PIM.

Component links and component boundaries are essentially two views on the
same concept, namely the grouping of objects to components. When a compo-
nent link is given, the subcomponent will be inside the component’s boundaries;

when component boundaries are given, an object’s supercomponent is obvious
as the immediately enclosing component. In contrast to component links, com-
ponent boundaries offer no opportunity for attaching additional information like
navigability or roles, and therefore model a less specific component concept.

3 Modeling Component Behaviour with UML

A component presents a defined behavioural interface to the outside. All inter-
action takes place in the form of incoming or outgoing messages crossing the
component boundary. In this section, we show how the information about which
objects belong to a component can be used to decide what is internal and what
is external communication. Further, component membership of subcomponents
may change over time. This is expressed by a notational extension in the com-
ponent’s interface.

UML offers two kinds of diagrams for interaction: collaboration and inter-
action diagrams. We will begin by investigating the influence of components on
the former.

3.1 Components in Collaboration Diagrams

So far, we have described component boundaries in object diagrams. Collabo-
ration diagrams are basically object diagrams overlaid with message flow infor-
mation, so component boundaries can be drawn in a collaboration diagram as
well.

‘ ¢ 1:insertPerson("john smith", 6.4.1974)

"""""""""""""""" :PIM
8:insert(ri) T T 2:insert("john smith", 6.4.1974)
- e :
-
7:insertEvent(ri)
:Calendar oo)
6:«create» . -~ Do
- ‘ 4:insert("john smith”, js)
-7 Bcreater/ Lo
e y ¢ 5iinsert(6.4.1974, js)
- js:Person -

ri:Recurringltem

——— name="john smith"
next=6.4.2000 - | birthday=6.4.1974

Fig. 4. A collaboration diagram including component boundaries.

When a new person is registered in our personal information manager exam-
ple, some interactions take place in order to update the indices and to register
the person’s birthday in the calendar. Fig. 4 gives the whole detailed sequence.
When the personal information manager (PIM) receives an insertPerson message
(1), it delegates the message to the contacts database (2). There, a new person
record is created (3, depicted using the «create>> stereotype [RJB98]) and in-
serted into the primary index under the person’s name (4). A link to the record
is also stored in the secondary index (5). The contacts database then creates a
calendar item for the person’s birthday (6) and informs the personal information
manager about it (7). The personal information manager inserts this calendar
item into the calendar (8), finally resulting in the state already shown in Fig. 2.

The coarsening that has taken place in the object diagram from Fig. 2 to
Fig. 3 can be applied to this collaboration diagram as well, stripping some of the
distracting details. When the sender and the receiver of a message are members
of the same component, and this component has been collapsed, the message will
be abstracted from, and will not be shown. Fig. 5 gives the resulting diagram.

‘ * 1:insertPerson("john smith", 6.4.1974)

AR -PIM R ERITI R R .

: T 2:insert("john smith", :

¢ S a— ¢ 6.4.1974)
3:insertEvent(ri)

4:insert(ri)

:Calendar :Contacts

Fig. 5. A high-level collaboration diagram created from Fig 4.

3.2 Components in Sequence Diagrams

In this section, we shall briefly describe sequence diagrams with an emphasis on
the concept of activation (which we will need in the next section), and will then
consider the influence of components on sequence diagrams.

Sequence diagrams show the interaction of a number of objects, distributed
horizontally, over time. Time flows from top to bottom. We will only consider
the instance form here, which describes one actual sequence without branches,
conditions or repetition. Fig. 6 gives an example.

At each point in time (represented by a horizontal cut), a number of living
objects are represented by lifelines. Interactions, such as message send and return
message, are depicted as horizontal arrows. Each kind of message can carry

:PIM ‘ ‘ :Calendar ‘

:Contacts ‘:Primlndex‘ ‘ :Seclndex ‘

insertPerson(...)‘

insert(...)

«create»

js:Person

insert("john smith", js)

" insert(ri)

1]
1=

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
g :
insert(6.4.1974, js) |
I
I
I
I
I
I
I
I
I
I
I
I
I
I
|

I

I

I

I

I

I

I

I

I}

I

I

I

I

I

I

I

:

I

| | gl
.. - «create»

rediEventy | | ReCUrTingltem
! |
I

I

I

I

I

I

I

I

I

Fig. 6. The sequence diagram corresponding to Fig. 4.

arguments, i.e. values or links. In the UML notation, arguments have to be
represented in textual form. Each living object can have a number of activations,
each representing an ongoing computation on the object. An activation starts
when the object receives a message. The activation may then itself send a number
of messages before it terminates by sending a return message to its caller.

Obviously, activations are part of the system state.! The system state at
some point in time includes all activations, and for each activation, its respective
progress in executing its method, and the local data it has gathered so far,
including information taken from the invoking message.

In a collaboration diagram or in an object diagram, local links can be depicted
using the <local>> stereotype [RJB98§], but the activation itself cannot be seen:
the link originates at the active object to which the activation belongs. In a
sequence diagram, activations are visible, but links are not.

We introduce a component boundary notation for sequence diagrams, too:
A vertical dotted line, similar to the swimlanes used in UML activity diagrams,
separates objects of different components. Messages crossing the boundary are
easily recognized. However, since objects only have a one-dimensional (horizon-
tal) position, drawing nested components is awkward.

A high-level sequence diagram is created by subsuming the lifelines of all
objects inside a component under that of the primary object, as shown in Fig. 7.
Internal messages are abstracted from, as well as internal activations. Note that
the resulting interaction is the same as that depicted in Fig. 5.

! The designers of the programming language BETA even went so far as to unify the
concepts of object and activation. We do not follow that trail here.

:PIM ‘

‘ :Calendar ‘

insertPerson(...)

insert(...)

:Contacts

insertEvent(ri)

insert(ri)

-

Fig. 7. A high-level sequence diagram created from figure 6.

3.3 The Lifecycle of a Component

In the example we have shown, a subcomponent (the recurring birthday item) is
created in one component (the contacts database), and then migrated to another
component, where it is made persistent by storing it in a database (the calendar).
At a later point in time, e.g. when the person is removed from the contacts
database, the birthday item will be deleted from the calendar, and the lifetime
of this subcomponent ends. This is what we call the lifecycle of a component.

:PIM

-
6:insert(<© ri)
- :Calendar Y
L, \ «local»

T

s
/
7

ri:Recurringltem “ :

\
. «become» \

,

50

ri:Recurringltem

o :
3iinsertEvent(© ri) :
L, ‘\ :Contacts o

47 2 Do

\
\

7

|
P : h :
" «become»: ', «local» Plnew
.
: |

\
\

ri:Recurringltem | |

Fig. 8. Migration and persistence of a subcomponent.

Fig. 8 shows this process in greater detail. After creation of the birthday
object, the creator (the contacts database) holds a local component link to the
created object. The created object is then sent off in a message to the PIM com-
ponent. As we have mentioned, links in UML messages have to be represented in
textual form. In order to indicate that the message carries a component instead
of an object reference, we have added a half-filled diamond before the object

name. The symbol can be transcribed as the keyword component.

Upon receipt, the message starts a new activation in the PIM component (not
visible in a collaboration diagram). The transmitted component link becomes a
local component link of this activation. The PIM component passes the object
on to the calendar component, where the object first becomes locally bound (not
shown) and then becomes a persistent subcomponent.

Because component, links determine the assignment of objects to components,
the birthday object is actually a subcomponent of the message while in transit.
This means that we can model the passing of objects by value as e.g. in RMI or
CORBA. However, passing objects by value usually has copy semantics, which
is not implied by passing a component link. By using the <become>> stereotype
[RIB9S], we state that the object’s identity is maintained across the migration.
The <become>> arrows indicate that the different birthday objects shown in
the diagram are actually versions of the same object at different points in time.

subcomponent of...
drop
(write over or

ass)))
message I P activation | location expires)
receive o

take out create
move into \‘

object

\ —

unbound

free
[no more references]

Fig. 9. Component lifecycle with respect to component aggregation.

The state diagram in Fig. 9 shows the lifecycle of an object with respect to
component aggregation. In addition to the states already described — the com-
ponent link may originate in an object, an activation or a message — the unbound
state signifies that there are no component links to the object in question. This
state can be reached when either the only component link to the object is ex-
plicitly removed (e.g. when it is changed to point to another object) or when
the source of the link is destroyed. The latter takes place when an activation
ends or when an object is destroyed. An object’s subcomponents are not nec-
essarily destroyed along with the component; the subcomponents may continue
an individual existence even after the bubble has burst.

3.4 Components in Class Diagrams

A component as a group of collaborating objects is a concept at the object level,
not at the class level. Therefore, dynamic components are not visible directly in
a class diagram; especially, it makes no sense to draw component boundaries in
a class diagram. For grouping classes, UML provides the concept of packages.

However, there are two impacts of components on class diagrams, as can
be seen in Fig. 10. Firstly, an aggregation between two classes can use the
< component>> stereotype, turning all instances of this component aggregation
into component links. As in the general case of aggregation, the component
aggregation in the class diagram may include recursion in order to describe hier-
archical structures. An example are the Java AWT user interface beans, where a
Container is a kind of Component that may include further instances of the class
Component, so there is a cycle between Component and Container. Of course, ev-
ery concrete user interface hierarchy only has finite depth, so there are no cycles
in the object diagram.

Contacts ; Primarylndex o Person
- - name:String
insert(hname:String,birth:Date) insert(name:String, p ©:Person) birth:Date

takeout(name:String) ©:Person
lookup(name:String) :Person

0..*

Secondarylndex

insert(birth:Date, p:Person)
lookup(birth:Date) :Person

Fig. 10. A class diagram describing components (see text).

Secondly, method parameters and results can be labeled with a half-filled
diamond (transcribed as the keyword component) to indicate that component
links are expected or returned. When a method takes a component parameter,
the object supplied in the actual message is migrated to the message’s receiver.
Using this notation, the interface of a database can state whether the database
will store the object itself or only a link to the object. In Fig. 10, the primary
index aggregates the person objects, while the secondary index is only associated
with them. So the insert operation of the primary index requires a component
link to the person, while the secondary index takes a non-component link.2

As a second example, an object factory can state whether it passes the re-
sponsibility for its created objects to the client, or whether it manages the set
of created objects itself and only passes out association links.

When component boundaries are interpreted as denoting physical location
(similar to a deployment diagram), the interface specifies which arguments are to
be migrated to the receiver’s node, and the component links in those arguments
specify which other objects are to be moved along with the primary objects. If a

2 The question of interface compatibility, e.g. whether there may be a common super-
class for both primary and secondary index, and the question of parameterization,
i.e. whether both classes may be instantiations of the same template, is discussed
further in [Wie99] in the context of a strongly typed programming language.

migrated component contains activations, this models a variant of the migrating
threads described in [MMS96].

When the component boundary is interpreted as the border between volatile
and persistent storage, the annotations state which objects are to be made per-
sistent together. Again, the model covers persistence of active components, cor-
responding to persistent threads [MS94].

4 Visualizing Component Behaviour at Runtime

As we have shown, the dynamic component structure can be employed to au-
tomatically coarsen a detailed interaction sequence to a high-level one, only
showing the interaction between selected components and abstracting from com-
munication internal to one component.

One application for this transformation is the presentation of interaction in-
formation observed in a running system in a re-engineering tool. This interaction
data has a high volume and needs to be organized and filtered before it can be
presented to the user in a meaningful form.

Existing approaches (e.g. [DKV94,SSC96,KM96]) distinguish between rele-
vant and irrelevant interaction based on the static program structure, such as the
class of sender and receiver. However, we believe that when observing a dynamic
phenomenon like interaction, the dynamic system configuration has to be taken
into account. For example, using static information only, it becomes impossible
to observe the interaction between different complex instances of the same static
component, unless the observer reverts to individual objects.

=484l Netscape: Evaluate test in a TestDriver - [}
File Edit Wiew Go Communicator Help

v| m‘!' Bookmarks 4!". Lacation: ij_http:,-",-"bnarchy:64?5;"ad.min,-"evalobj. stml?expression=testio ,.|'|
A

Evaluate test in a TestDriver il

[aContacts | [aCalendar |

a TestDriver; Send insertPerson(a utableStri
a Pl Send insertia hutableString ("John Smi
a Contacts: Send insertEvent(a Recurtingltem
a PIl: Send insertia Recurtingltem@) to a Cal
a Calendar: Return nil to a Pk
a Plki: Beturn nil to & Contacts
a Contacts: Return il to & FunD

] -

J=i
E | |.ﬁ.pp|gt SeqDiagram running |

Fig. 11. A high-level sequence diagram corresponding to Fig. 7, automatically created
by tracing an annotated program.

By exploiting the component structure, the visualizations produced by the re-
engineering tool come closer to the abstract design-phase model, which facilitates
understanding as well as validation [LN95]. The semantic gap between design
and implementation is narrowed, and architectural properties can be observed
in the running system.

For example, due to the hierarchic component structure, it becomes possi-
ble to distinguish between up-calls and down-calls. In the personal information
manager example in Fig. 5, the PIM performs a down-call towards the contacts
databases, which calls back up via an insert event in order to install the birthday
item in the calendar. The PIM then does a down-call to the calendar on behalf
of the contacts database. Clearly, the PIM functions as a mediator.

In our approach, when examining a running program, the user has to spec-
ify the dynamic components whose boundaries [s/he wishes to monitor. This
is achieved by marking their primary objects. Monitored components need not
be disjoint, i.e. a marked object may be a transitive subcomponent of another
marked object. The objects to be marked could be specified by an arbitrary
predicate, e.g. “all instances of class A”, or can be selected individually.

P S

(a) different components (b) same component (c) outside monitored space
——= observed interaction I a I / d ‘ S I b I """ .
c L : :

> ignored interaction \;‘< = : :
: marked object (d) control flow to the same and to a different component

Fig. 12. Types of interaction relative to component boundaries.

Our tracing tool examines all interaction between different objects. For the
source as well as the destination of an interaction, the innermost enclosing mon-
itored component is determined. If the objects belong to different monitored
components, then we have an interaction crossing both component boundaries
(Fig. 12a). This interaction will be presented to the user.

If source and destination belong to the same monitored component (Fig. 12b),
or if both are outside of monitored space (Fig. 12¢), the interaction is completely
ignored.

If only the source object belongs to a monitored component, this means
that the action leaves monitored object space. Control may flow through several
unmonitored objects before it re-enters a monitored component. The leaving and
entering messages are only reported if control flows between different monitored
components, not if it re-enters the same component (Fig. 12d).

We have implemented this filtering strategy in a research prototype described
in [Wie99]. The sequence diagram in Fig. 11 was created automatically by this
tool, from running an annotated program. Individual objects sending and re-
ceiving messages are displayed in the textual listing on the right hand side of
the window; the sequence diagram itself only includes lifelines for the monitored
components.

Besides visualizing the components’ behaviour, the research prototype also
allows browsing the components’ structure, as in Fig. 13. For now, the compo-
nent hierarchy is displayed as a simple explorer-style hierarchy, but we hope to
employ the component boundary notation in a future version. Note the differ-
ence between reference links (shown as arrows) and component links (shown as
expandable folders) in the graphic; for example, the contacts database has a ref-
erence link to the enclosing personal information manager (for sending upcalls),
but it cannot hold a component link, because this would consitute a cycle. An
important consequence of the acyclic component graph is that the object struc-
tures displayed by the tool always have finite depth and show each object at
most once.

= 48ul Netscape: PIM =l
File Edit Wiew Go Communicator Help

T‘ " Bookmarks A Location: [http //bnarchy 6475 /adnin/ohisct. stn ,.r|

PIM

superCompoenent: a TestDriver

B [Jcalendar: a Calendar
| - byDate: an AtDictionary
© o bemlppim: a PIM
E| nta “ontacts
[hyMame: an AtDictionary

E[100% | Applet Treedpp running e %l AP EF N2

Fig. 13. Exploiting component information for object store browsing.

5 Identifying Component Links in an Implementation

In our research prototype, the observed program is prepared by annotating which
variables (instance variables, local variables, parameters and method results)
hold component-links and which variables hold non-component links. The com-
ponent structure is deduced from this information.

If a modification of the examined program is not feasible, an existing dis-
tinction between different kinds of links can be mapped onto component and
non-component links.

For example, distributed programming languages like Emerald [Jul89] and
DOWL [Ach93] offer primitives for specifying a migration group, i.e. a set of
objects to be migrated together. A variable attribute is used to determine which
references are to be followed when computing the migration group. Such an
object group can be interpreted as one component; the variable attribute then
designates component links. In a similar manner, Java uses the volatile attribute
to specify the boundaries of a group of objects to be made persistent together.

In Voyager, remote references can be interpreted as non-component links,
and local Java references as component links. The disadvantage of this approach
is that local references allow sharing between different components, precluding
a clear assignment of objects to components for purposes of visualization, mi-
gration, persistence etc. This weakness is fixed in the Dejay system [BWL99] by
grouping objects in wvirtual processors.

Many programming languages include the UML concept of composition (e.g.
as member objects in C++, expanded objects in Eiffel [Mey97] or static links in
BETA [MMPNO93]). Due to the inflexibility of composition however, the object
groups are usually quite small, and component membership cannot change over
time.

If component links are not distinguished in the program source, an object
can still be assigned to the component that created it. This creates a relation
with the required formal properties. However, migration is not expressible.

As a last possibility, component membership can be assigned manually inside
the re-engineering tool. When manipulating a sequence diagram, a command like
“merge the lifelines of these objects” could be used. Such a command could easily
be integrated in existing visualization tools, and would complement operations
like navigation along the call graph [KM96]. The obvious disadvantage is that
the grouping has to be specified each time the tool is used, instead of specifying
it once and for all during design and implementation.

6 Related Work

Our concept of dynamic components is a generalization of the concepts of com-
ponent instances and of nodes in UML. We have chosen the term dynamic com-
ponent to stress their twofold dynamic nature: Firstly, they reside on the level of
object diagrams as opposed to class diagrams; and secondly, they can migrate,
so that the component structure itself is dynamic. Dynamic components also
differ from component instances in that their primary object is treated like any
other object, i.e. it is treated as first-class. Primary objects could be differen-
tiated from other objects using a stereotype, but only if required. The same is
true for nodes, which become another stereotype of a dynamic component, with
the additional semantics of a fixed, distinct location.

Civello [Civ93] talks about different kinds of aggregation. He lists several or-
thogonal properties used to specify an aggregation more exactly. In his terms, our
concept of component aggregation is only restricted in that it excludes sharing;
apart from that, any aggregation may be labeled as a component aggregation.
Especially, Civello says that “it must be possible to model the migration of
objects from one composite to another”, which is possible in our model.

The importance of object configurations as opposed to static relations is
stressed in [GL96], where the concept of environmental acquisition is presented.
In the model by Gil and Lorenz, objects acquire properties from their ancestors
in a hierarchical aggregation structure similar to the component structure de-
scribed here. Gil and Lorenz also propose programming language mechanisms
for distinguishing between component and non-component links (there called
aggregation and nonaggregation links).

The hierarchical grouping of runtime objects to larger units has also been
investigated in a number of papers dealing with aliassing in object-oriented pro-
gramming languages, the latest of which is [NVP98]. The aim of that paper is to
enhance encapsulation, which has not been considered in our work. However, the
linguistic mechanisms developed in [NVP98] are also applicable for designating
component links.

7 Summary

In this paper, we have introduced a small UML extension for denoting nested
component boundaries in object and interaction diagrams, and have demon-
strated its usefulness for systematically creating high-level diagrams of a com-
ponent system. The component boundaries are defined based on component
links, a form of aggregation between a component and its internal objects.

Secondly, we have shown how migration of components across component
boundaries can be specified through an extension of the UML method signature
notation.

Thirdly, a re-engineering tool has been presented that automatically creates
meaningful sequence diagrams from a program, based on the dynamic component
structure of the object graph.

Acknowledgements

This work has been supported in part by the project ISC-CAN-080 CIS of the
European Communities.

References

[Ach93] Bruno Achauer. The DOWL distributed object-oriented language. Com-
munications of the ACM, 36(9):48-55, 1993.

[BWL99] Marko Boger, Frank Wienberg, and W. Lamersdorf. Dejay: Unifying con-
currency and distribution to achieve a distributed Java. In Proceedings of
TOOLS Europe ’99, Nancy, France, June 1999. Prentice Hall.

[CGOS]

[Civ93]

[DKV94]

[GLY6]

[Gri9g]
[Jul89]

[KM96]

[LN95]

[Mey97]

Luca Cardelli and Andrew D. Gordon. Mobile ambients. In Proceedings
of FoSSaCS 98, volume 1378 of Lecture Notes in Computer Science, pages
140-155. Springer-Verlag, March 1998.

F. Civello. Roles for composite objects in object-oriented analysis and
design. In Proceedings of OOPSLA 93, pages 376—393, San Jose, California,
October 1993.

Wim DePauw, Doug Kimelman, and John Vlissides. Modeling object-
oriented program execution. In Proceedings of ECOOP 94, pages 163-182,
Bologna, Italy, July 1994. Springer-Verlag.

Joseph Gil and David H. Lorenz. Environmental acquisition — a new
inheritance-like abstraction mechanism. In OOPSLA [OOP96], pages 214—
231.

Frank Griffel. Componentware: Konzepte und Techniken eines Soft-
wareparadigmas. dpunkt-Verlag, Heidelberg, 1998.

E. Jul. Object Mobility in a Distributed Object-Oriented System. PhD
thesis, Department of Computer Science, University of Washington, 1989.
Kai Koskimies and Hanspeter Mossenbock. Scene: Using scenario diagrams
and active text for illustrating object-oriented programs. In International
Conference on Software Engineering (ICSE '96), Berlin, 1996.

D. B. Lange and Y. Nakamura. Interactive visualization of design patterns
can help in framework understanding. In Proceedings of OOPSLA ’95,
pages 342-357, Austin, Texas, USA, October 1995. ACM.

Bertrand Meyer. Object-oriented Software Construction, 2nd edition. Pren-
tice Hall, 1997.

[MMPN93] Ole Lehrmann Madsen, Birger Mgller-Pedersen, and Kristen Nygaard.

[MMS96]

[MS94]

[NVP9S]

[OOP96]
[RIB9g]
[SSCI6]
[St097]
[Szy98]

[Wie99]

Object-Oriented Programming in the BETA Programming Language.
Addison-Wesley, 1993.

B. Mathiske, F. Matthes, and J.W. Schmidt. On migrating threads. Journal
of Intelligent Information Systems, 8(2), 1996.

F. Matthes and J.W. Schmidt. Persistent threads. In Proceedings of the
Twentieth International Conference on Very Large Data Bases, VLDB,
pages 403-414, Santiago, Chile, September 1994.

James Noble, Jan Vitek, and John Potter. Flexible alias protection. In
Proceedings of ECOOP ’98, number 1445 in Lecture Notes in Computer
Science, pages 158-185, Brussels, Belgium, July 1998. Springer-Verlag.
ACM. Proceedings of OOPSLA ’96, San Jose, California, October 1996.
James Rumbaugh, Ivar Jacobson, and Grady Booch. The Unified Model-
ing Language Reference Manual. Addison-Wesley object technology series.
Addison Wesley Longman, December 1998.

Mohlalefi Sefika, Aamod Sane, and Roy H. Campbell. Architecture-oriented
visualization. In OOPSLA [OOP96], pages 389-405.

David Petrie Stoutamire. Portable, Modular Ezpression of Locality. PhD
thesis, University of California at Berkeley, December 1997.

Clemens Szyperski. Component Software: Beyond Object-Oriented Pro-
gramming. Addison-Wesley, 1998.

Axel Wienberg. Dynamic components in an object-oriented programming
language - model, language implementation and visualization. Diploma
thesis, computer science department, University of Hamburg, Germany,
March 1999. in German.

