
Exploiting UML in the Design of Multi-Agent Systems

Federico Bergenti and Agostino Poggi

Dipartimento di Ingegneria dell’Informazione, Università degli Studi di Parma
Parco Area delle Scienze 181A, Parma, Italy
{Bergenti, Poggi}@CE.UniPR.IT

Abstract. Software engineering describes a system at different levels of ab-
straction. Agent-oriented software engineering introduces a new level, called
the agent level, to allow the software architect modelling a system in terms of
interacting agents. This level of abstraction is not yet supported by an accepted
diagrammatic notation even if a number of proposals are available. This paper
shows how UML can be exploited to design a multi-agent system at the agent
level. In particular, it presents a set of agent-oriented diagrams intended to pro-
vide an UML-based notation to model: the architecture of the multi-agent sys-
tem, the ontology followed by agents and the interaction protocols used to co-
ordinate agents. The presented notation exploits stereotypes to associate an
agent-oriented semantic with class and collaboration diagrams. Therefore, it can
be managed with any off-the-shelf CASE tool supporting UML.

1 Introduction

The research on agent-oriented software engineering starts from the possibility to
model a software system at the agent level of abstraction [8]. This level of abstraction
considers agents as atomic entities that communicate to implement the functionality of
the system. This communication is supported by an agent communication language,
such as FIPA ACL [5] or KQML [2], and by an ontology used to associate a meaning
with content messages. Even if the agent level is the natural level of abstraction for
describing a multi-agent system, the lack of accepted diagrammatic notations and
design tools might prevent the multi-agent architect from exploiting its benefits. The
research community of agent-oriented software engineering is tackling this problem
investigating the possibility of extending UML to support the basic agent-oriented
concepts such as agent, ontology and interaction protocol. This trend has led to a
number of UML extensions [3, 9, 10, 13] that are not completely accepted because
they are not supported by CASE tools yet.

This paper tackles the problem of defining a diagrammatic notation to support the
design at the agent level exploiting an UML-based notation that can be managed by
any off-the-shelf CASE tool. In particular, four agent-oriented diagrams are intro-
duced taking advantage of stereotypes, the customisation means offered by UML. This
allows providing an agent-oriented semantic to UML as a straightforward generalisa-
tion of its well-known object-oriented semantic and therefore the software architect
should feel comfortable with it. The presented diagrams are meant to support the basic

agent-oriented abstractions, but they cannot be considered sufficient to support a
complete agent-oriented model of the software life cycle. In particular, section 2 in-
troduces ontology diagram as a means to provide the multi-agent architect with an
UML-based notation to model ontologies. Section 3 tackles the problem of modelling
the architecture of a multi-agent system introducing architecture diagrams. Section 4
completes the presented set of diagrams with role diagrams and protocol diagrams.
These diagrams can be used jointly to model the interaction protocols that the multi-
agent architect may use to co-ordinate agents. In order to show the possibilities and
the features offered by the proposed agent-oriented diagrams, the agent-based service
defined in the FIPA Audio/Video Entertainment and Broadcasting (FIPA AVEB)
specification [4] is taken into account. This specification is sufficiently complex to
represent a valid test case for the proposed diagrammatic notation and the comparison
with the textual description found in FIPA documents should clarify the benefits of the
presented approach.

2 Ontology Diagrams

The design of a multi-agent system at the agent level of abstraction requires defining a
model of the world in which agents live. Agents exploit this model to reason about the
world and to talk about it. This is fundamental in the design of a system at the agent
level because this level of abstraction treats agents as atomic entities and therefore
agents can be modelled properly only in terms of the messages they exchange.

The problem of describing the world to agents is traditionally solved providing
them with an ontology that outlines a model of the world in terms of entities and rela-
tions between such entities [1, 6, 7, 12]. UML can be used to model ontologies ex-
ploiting ontology diagrams, i.e. class diagrams whose elements are associated with an
ontology-oriented semantic. This semantic is straightforward as it is similar to the one
employed in conceptual diagrams. An ontology diagram allows describing the entities
belonging to an ontology in terms of classes. Such entity classes represent classes of
entities comprised in an ontology, just like the classes in a class diagram represent
classes of objects. Moreover, ontology diagrams allows the multi-agent architect de-
fining the relations between the entities belonging to an ontology exploiting relations
between entity classes. These are mapped into UML exploiting public relations be-
tween entity classes.

The agent level of abstraction does not deal with implementation details because
these are normally tackled at the object level. This implies that entity classes are not
allowed containing private and protected methods and attributes. Similarly, class dia-
grams allow associating a set of public methods to a class of objects to specify the
messages objects may exchange to implement the functionality of the system. At the
agent level of abstraction, this is not allowed because the actors communicating to
implement the system are the agents and not the entity belonging to an ontology.
Therefore, entity classes defined in an ontology diagram are allowed to be character-
ised only in terms of public attributes. These attributes are used to model the structure
of the entities comprised in the ontology, just like they are used in conceptual dia-

grams. Figure 1 shows an ontology diagram describing a subset of the ontology de-
fined in the FIPA AVEB specification. This diagram defines a class of entities called
FIPAAVDescription characterised by a string called title. The stereotype entity is
introduced to allow the multi-agent architect keeping the entities belonging to the
ontology apart from the objects used at the object level. Moreover, this stereotype
allows an agent-enabled CASE tool employing a different diagrammatic convention
for object classes and entity classes, just like they normally do for actors and objects.

FIPATVProgramDescription

startTime : Date

<<entity>>

1..*

Genre

name : String

<<entity>>

1

1 Rate

value : Real

<<entity>>
1

1

FIPAAVDescription

title : String

<<entity>>

1..*

1

genre

11 averageRate

1

User

name : String
middlename : String
surname : String

<<entity>>

1

1rate

FIPAMovieDescription

duration : DateInterval

<<entity>>

Figure 1. Part of the ontology diagram for the FIPA AVEB ontology.

Ontology-description languages allow modeling the relations between the entities
comprised in an ontology. Ontology diagrams support this exploiting public relations
between entity classes. For example, figure 1 shows that the classes FIPATVPro-
gramDescription and FIPAMovieDescription extend the class FIPAAVDescription,
i.e. these classes contain all attributes characterizing the class FIPAAVDescription.

The main purpose of ontology diagrams is to model the ontology followed by
agents at the agent level of abstraction and the multi-agent architect may take this into
account to produce useful ontology descriptions. In particular, ontology diagrams
should contain the features needed to support the communication between agents. This
can be accomplished treating relations between the entity classes as predicates defined
over such classes. This approach allows the multi-agent architect exploiting an ontol-
ogy diagram as a description of some of the elements, i.e. entity and predicates, that
agents may use to create content messages. For example, figure 1 shows a relation
called averageRate between an entity belonging to the class User and an entity be-
longing to the class FIPAAVDescription. This relation is chosen because the FIPA
AVEB specification requires agents understanding messages like:

(inform
:sender guide-agent
:receiver control-agent
:content

(averageRate
(FIPAMovieDescription :title “Batman”)
(Rate :value 0.8)))

3 Architecture Diagrams

The research community of agent-oriented software engineering has not yet identified
an accepted process to support the design of a multi-agent system. Nevertheless, all
proposed processes emphasise the importance of modelling a multi-agent system in
terms of an architecture that can be instantiated to create a configuration. Such archi-
tecture is composed of a set of agent classes and each class represents a class of
agents with a precise set of responsibilities. UML can be used to model the configura-
tion of a multi-agent system exploiting deployment diagrams. Besides, the modelling
of its underlying architecture is not that easy. In fact, the architecture of a multi-agent
system is generally specified by means of a textual description. This description con-
tains a list of agent classes and a set of relations connecting them. Moreover, each
class is associated with a set of responsibilities and with a set of messages that an
agent belonging to that class is requested to understand. We propose to use architec-
ture diagrams to model the architecture of a multi-agent system. These diagrams are
class diagrams that contain agent classes and relations between such classes.

A complete model of an agent class requires describing the set of features used to
characterise an agent belonging to that class. These features include:
1. the supported interaction protocols;
2. the accepted content messages, taking into account the ontology;
3. the semantic of each message.
Architecture diagrams support the latter two entries of this list, leaving the description
of interaction protocols to protocol diagrams and role diagrams as described in the
following section.

An agent class can contain only public methods corresponding to the actions that an
agent belonging to that class can be requested to perform. These methods must be
declared with no return values, i.e. they must be declared void. Moreover, the pa-
rameters passed to these methods must belong to entity classes defined in an ontology
diagram. The list of actions associated with agent class does not include the performa-
tives of the agent communication language because these are almost embedded in
chosen the agent model. As an example, figure 2 shows the complete architecture
diagram of the system defined in the FIPA AVEB specification. This diagram contains
seven classes and just for one of them the FIPA AVEB specification provides a re-
quirement regarding an action. Only agents belonging to the class TunerWrapper are
requested to support an action, called invoke, to wrap concrete commands directed to
a TV tuner. This action is understood only when supplied along with two parameters:
a tuner, i.e. an entity belonging to the class Tuner, and a command expressed as a

String. Therefore, this diagram allows an agent belonging to the class TunerWrapper
to accept messages like:

(request
:sender control-agent
:receiver tuner-wrapper-agent
:content

(action
invoke

(tuner :name tuner1)
(command “start”)))

The actions that the multi-agent architect associates with the agent classes complete
the elements provided by ontology diagrams to create valid content messages. An
agent can understand all messages composed using the entities and predicates found in
the ontology diagrams and can be requested to perform the actions specified in its
class. This restricts agents understanding only messages based on first-order logic.
While this is a limitation of the considered logic framework, it does not limit strongly
the set of messages that agents may wish to exchange in a real-world multi-agent sys-
tem. Therefore, the development of a more comprehensive logic framework is consid-
ered for a future work.

Guide
<<agent>>

TunerWrapper

invoke (tuner : Tuner, command : String) : void

<<agent>>

VoDController
<<agent>>

DigitalStorageMedia
<<agent>>

Interface
<<agent>>

UserProfile
<<agent>>

Control
<<agent>>

Figure 2. Architecture diagram of the system defined in the FIPA AVEB specification.

Architecture diagrams contain also relations between agent classes to allow the multi-
agent architect modelling the relations between agents. These relations are mainly
used to express simple acquaintance as it is common to promote flexibility in a multi-
agent system avoiding the use of relations to spread the responsibility across agents.
For example, figure 2 shows that the FIPA AVEB specification requires the control
agent knowing all other agents in the multi-agent system, while the VoD controller
agent knows only the control agent.

4 Protocol Diagrams and Role Diagrams

Interaction protocols are considered a valuable tool the multi-agent engineer may
exploit in the design of a system at the agent level. They allow modelling the interac-
tions between agents without taking into account the formal semantic of the chosen
agent communication language. Moreover, they represent off-the-shelf solutions to a
large number of problems.

3b. rejectOffer ()

: Manager : Contractor

: Manager

: Contractor: Manager

1. cfp ()

2c. refuse ()
2b. notUnderstood ()

2a. bid ()

3a. acceptOffer ()

4. perform ()
5b. inform ()
5a. failure ()

Contractor

cfp () : void
rejectOffer () : void
acceptOffer () : void

<<role>>

Manager

bid () : void
perform () : void
refuse () : void
notUnderstood () : void
inform () : void
failure () : void

<<role>>

Figure 3. Protocol diagram and role diagram for the FIPA reactive contract net protocol.

Object protocols, the object-oriented counterpart of interaction protocols, are not
considered a fundamental element in the design of a system at the object level. This is
the main reason why UML does not provide diagrams to model object protocols. This
has led to the assumption that UML should be extended to model interaction protocols
at the agent level of abstraction. For example, AUML [10] defines a diagrammatic
notation to modelling interaction protocols based, but not compatible, with sequence
diagrams. A sequence diagram expresses a sequence of messages exchanged by a set
of objects, while an AUML diagram models all sequences of messages that a set of
agents may exchange in the scope of an interaction protocol. These diagrams are not
generally adopted because they are not yet supported by off-the-shelf CASE tools. We
propose to use protocol diagrams and role diagrams as an UML-based notation to
model interaction protocols. These diagrams are based on collaboration diagrams and
class diagrams respectively. A protocol diagram is a collaboration diagram that com-
prises only classes declared in a role diagram. These classes are labelled with the
stereotype role to keep them apart from other kinds of classes, such as agent or entity
classes. A role class models a role played by an agent in an interaction protocol. This
role is meaningful only in the scope of the protocol in which it is defined and it is
described in terms of the communicative acts that an agent playing that role must
support. As an example, figure 3 shows the FIPA reactive contract net protocol de-
fined in the FIPA AVEB specification.

5 Conclusions

Software engineering is founded on the possibility to model a system at different lev-
els of abstraction. Agent-oriented software engineering introduces a new level, called
the agent level, to allow the software architect describing a system in terms of inter-
acting agents. At this level of abstraction, an agent is considered as an atomic entity
that communicates with all other agents comprised in the multi-agent system exploit-
ing an agent communication language. Besides, the multi-agent engineer may not
exploit the benefits offered by this new level of abstraction for the lack of accepted
notations and tools. This paper shows an UML-based notation that can be used to
model a system at the agent level. This notation relies on the possibility to provide an
agent-oriented semantic to the elements comprised in class and collaboration dia-
grams. In particular, four agent-oriented diagrams are introduced exploiting the cus-
tomisation means, i.e. stereotypes, provided by UML to support domain-specific dia-
grams. These diagrams can be used to model the basic elements characterising the
agent level of abstraction: the architecture of the multi-agent system, the interaction
protocols supported by agents and the ontology followed by agents. Architecture dia-
grams allows modelling the architecture of the multi-agent system in terms of a set of
agent classes connected through relations. Each class is characterised by the actions
that an agent belonging to it can be requested to perform. The relations between
classes may be used to express the network of acquaintance that an agent can gain in
the architecture of the multi-agent system. Role diagrams and protocol diagrams are
intended to support the multi-agent architect in the definition of interaction protocols.
Role diagrams can be used to specify the roles that agents may play in a protocol,
while protocol diagrams model an interaction protocol defined over a set of roles as
the set of all possible conversations compatible with it. Ontology diagrams allows
defining a model of the world composed of entities and relations. These relations can
be used to specify the predicates that agents may use to communicate and therefore
ontology diagrams can be used to model the content messages that agents are allowed
to use to communicate.

Acknowledgement

This work is partially supported by the EU IST Project LEAP (IST-1999-10211).

References

1 S. Cranefield and M. Pruvis, “UML as an Ontology Modelling Language”, in Proceedings
of the Workshop on Intelligent Information Integration, 1999.

2 T. Finin, Y. Labrou and J. Mayfield, “KQML as an Agent Communication Language”, in
J. M. Bradshaw (Ed.) Software Agents, MIT Press, 1997.

3 FIPA Technical Committee C, “Extending UML for the Specification of Agent Interaction
Protocols”, response to the OMG Analysis and Design Task Force UML RTF 2.0 Request
for Information, 1999.

4 FIPA, “FIPA ’97 Specification Part 6: Audio/Video Entertainment and Broadcasting”,
available at http://www.fipa.org.

5 FIPA, “FIPA ’99 Specification Part 2: Agent Communication Language”, available at
http://www.fipa.org.

6 M. R. Genesereth and R. E. Fikes, “Knowledge Interchange Format - Version 3 - Reference
Manual”, technical report Logic-92-1, Stanford University, 1992.

7 M. R. Genesereth, N. Singh and M. Syed, “A Distributed and Anonymous Knowledge
Sharing Approach to Software Interoperation”, International Journal of Cooperative Infor-
mation Systems 4(4):339-367, 1995.

8 C. A. Iglesias, M. Garijo and J. C. A. González, “Survey of Agent-Oriented Methodolo-
gies”, in Proceedings of the Workshop on Agent Theories, Architectures and Languages,
1998.

9 J. Odell and C. Bock, “Suggested UML Extensions for Agents”, response to the OMG
Analysis and Design Task Force UML RTF 2.0 Request for Information, 1999.

10 J. Odell, H. Van Dyke Parunak and B. Bauer, “Representing Agent Interaction Protocols in
UML”, in Proceedings of Agents 2000, 2000.

11 OMG, “The Common Object Request Broker Architecture and Specification”, available at
http://www.omg.org.

12 P. F. Patel-Schneider and B. Swartout, “Description-Logic Knowledge Representation
System Specification”, DARPA KSE technical report, 1993.

13 J. Treur, “Methodologies and Software Engineering for Agent Systems”, available at
http://www.cs.vu.nl/~treur.

