
Modular Software Upgrades for Distributed Systems

Sameer Ajmani1, Barbara Liskov2, and Liuba Shrira3

1 Google, Inc.
2 MIT Computer Science and Artificial Intelligence Laboratory

3 Brandeis University Computer Science Department

Abstract. Upgrading the software of long-lived, highly-available distributed sys-
tems is difficult. It is not possible to upgrade all the nodes in a system at once,
since some nodes may be unavailable and halting the system for an upgrade is
unacceptable. Instead, upgrades must happen gradually, and there may be long
periods of time when different nodes run different software versions and need to
communicate using incompatible protocols. We present a methodology and in-
frastructure that make it possible to upgrade distributed systems automatically
while limiting service disruption. We introduce new ways to reason about cor-
rectness in a multi-version system. We also describe a prototype implementation
that supports automatic upgrades with modest overhead.

1 Introduction

Internet services face challenging and ever-changing requirements: huge quantities of
data must be managed and made continuously available to rapidly growing client popu-
lations. Examples include online email services, search engines, persistent online games,
scientific and financial data processing systems, content distribution networks, and file
sharing networks.

The distributed systems that provide these services are large and long-lived and
therefore will need changes (upgrades) to fix bugs, add features, and improve perfor-
mance. Yet while a system is upgrading, it must continue to provide service to users.
This paper presents a flexible and modular upgrade system that enables distributed sys-
tems to provide service during upgrades. We present a new methodology that makes
it possible to upgrade distributed systems while minimizing disruption and without re-
quiring all upgrades to be compatible.

Our system is designed to satisfy a number of requirements. To begin with, upgrades
must be easy to define. In particular, we want modularity: to define an upgrade, the
upgrader must understand only a few versions of the system software, e.g., the current
and new versions.

In addition, we require generality: an upgrade should be able to change the software
in arbitrary ways. This implies that the new version can be incompatible with the old
one: it can stop supporting legacy behavior and can change communication protocols.
Generality is important because otherwise a system must continue to support legacy
behavior, which complicates software and makes it less robust. Our approach allows
legacy behavior to be supported as needed, but in a way that avoids complicating the
current version and that makes it easy to retire the legacy behavior when the time comes.

A third point is that upgrades must be able to retain yet transform persistent state.
Persistent state may need to be transformed in some application-dependent way, e.g., to
move to a new file format; and transformations can be costly, e.g., if the local file state
is large. We do not attempt to preserve volatile state (e.g., open connections) because
upgrades can be scheduled (see below) to minimize inconvenience to users of losing
volatile state.

A fourth requirement is automatic deployment. The systems of interest are too large
to upgrade manually (e.g., via remote login). Instead, upgrades must be deployed auto-
matically: the upgrader defines an upgrade at a central location, and the upgrade system
propagates and installs it on each node.

A fifth requirement is controlled deployment. The upgrader must be able to control
when nodes upgrade. Reasons for controlled deployment include: allowing a system to
provide service while an upgrade is happening, e.g., by upgrading replicas in a repli-
cated system one-at-a-time (especially when the upgrade involves a time-consuming
persistent state transform); testing an upgrade on a few nodes before installing it ev-
erywhere; and scheduling an upgrade to happen at times when the load on nodes being
upgraded is light.

A sixth requirement is continuous service. Controlled deployment implies there can
be long periods of time when the system is running in mixed mode, i.e., when some
nodes have upgraded and others have not. Nonetheless, the system must provide service,
even when the upgrade is incompatible. This implies the upgrade system must provide
a way for nodes running different versions to interoperate, without restricting the kinds
of changes an upgrade can make.

Our system provides an upgrade infrastructure that supports these requirements. We
make two main contributions. Ours is the first approach to provide a complete solution
for automatic and controlled upgrades in distributed systems. It allows upgraders to
define scheduling functions that control upgrade deployment, transform functions that
control transforming persistent state, and simulation objects that enable the system to
run in mixed mode. Our techniques are either entirely new, or are major extensions
of what has been done before. We support all schedules used in real systems, and our
support for mixed mode improves on what is done in practice and is more powerful than
earlier approaches based on wrappers [12, 24, 29], which support only a very restricted
set of upgrades.

Second, our approach provides a way to understand and specify mixed mode. In par-
ticular, we address the question: what should happen when a node runs several versions
at once, and different clients interact with the different versions? We address this ques-
tion by defining requirements for upgrades and providing a way to specify upgrades that
enables reasoning about whether the requirements are satisfied. The specification cap-
tures the meaning of executions in which different clients interact with different versions
of an object and identifies when calls must fail due to irreconcilable incompatibilities.
The upgrade requirements and specification technique are entirely new.

We have implemented a prototype, called Upstart, that automatically deploys up-
grades on distributed systems. We present results of experiments that show that our
infrastructure introduces only modest overhead, and therefore our approach is practi-

cal. We also discuss the usability of our approach in the context of several upgrades we
have implemented and run.

The remainder of the paper is organized as follows. Section 2 presents an overview
of our approach. Section 3 describes how to specify upgrades. Sections 4–6 discuss
the three core components of our approach; Section 7 presents an example upgrade.
Section 8 evaluates the overhead of our prototype, Section 9 discusses related work,
and Section 10 concludes. A more detailed discussion of the approach can be found in
a technical report [1].

2 Overview

This section presents an overview of our methodology and infrastructure.
We model a distributed system as a collection of objects. An object has an identity,

a type that defines its behavior, and a state; it is an instance of a class that defines how it
implements its type. Objects communicate by calling one another’s methods (e.g., via
RPC [27]); extending the model to general message-passing is future work. A portion of
an object’s state may be persistent. A node may fail at any point; when it node recovers,
the object reinitializes itself from the persistent portion of its state.

To simplify the presentation, we assume each node runs a single top-level object
that responds to remote calls. Thus, each node runs a top-level class—the class of the
top-level object. Upgrades are limited to replacing top-level classes: we upgrade entire
nodes at once. The top-level object may of course make use of other objects on its node
to respond to requests, and an upgrade will also contain new code for these lower-level
objects. We could extend this model to allow multiple top-level objects per node, in
which case each could be upgraded independently.

Fig. 1. The structure of a node.

An upgrade moves a system from one version to the next by specifying a set of
class upgrades, one for each (top-level) class that is being replaced. The initial version
has version number one (1) and each subsequent version has the succeeding version
number.

A class upgrade has six components: 〈oldClass, newClass, TF, SF, pastSO, fu-
tureSO〉. OldClass identifies the class that is now obsolete; newClass identifies the class
that is to replace it. TF identifies a transform function that generates an initial persistent
state for the new object from the persistent state of the old one. SF identifies a schedul-
ing function that tells a node when it should upgrade. PastSO and futureSO identify
classes for simulation objects that enable nodes to interoperate across versions. A fu-
tureSO object allows a node to support the new class’s behavior before it upgrades; a
pastSO object allows a node to support the old class’s behavior after it upgrades. These
components can be omitted when not needed.

The effect of an upgrade is (ultimately) to cause every node running an object of an
old class to instead run an object of the new one. We could add filters to the model that
would determine some subset of nodes that need to upgrade. Adding filters is enough
to allow restructuring a system in arbitrary ways. Of course it is also possible (without
using upgrades) to add new nodes to a system and to initialize them to run either existing
classes or entirely new ones.

2.1 How an Upgrade Happens

Our system consists of an upgrade server, an upgrade database, and upgrades layers
at the nodes. The upgrade server provides a central repository of information about
upgrades, and the upgrade database (UDB) provides a central store for information
about the upgrade status of nodes. Each node runs an upgrade layer (UL) that installs
upgrades and handles cross-version calls; the UL also maintains a local database in
which it stores information about the upgrade status of nodes with which this node has
communicated recently.

The structure of a node is shown in Figure 1. The node’s current version identifies
the most recently installed upgrade (or the initial version); the node’s current object is
an instance of its current class, which is the new class of this upgrade. The node may
also be running a number of simulation objects: future SOs to simulate versions not yet
installed at the node, and past SOs to simulate versions that are older than the current
version.

Past and future SOs are typically implemented using delegation: they call methods
of the object for the next or previous version, which may be the current object or another
SO. These calls all move toward the current object, as shown in Figure 1.

A node’s UL labels outgoing calls with the version number of the caller: calls made
by the current object are labeled with the node’s current version number, and calls made
by an SO are labeled with the SO’s version number. The UL dispatches incoming calls
by looking at their version number and sending them to the local object that handles
that version number.

Nodes learn about upgrades because they receive a call from a node running a later
version, through periodic communication with the upgrade server, or via gossip: nodes

gossip with one another periodically about the newest version and their own status, e.g.,
their current version number and class.

When the UL learns of a newer version, it communicates with the upgrade server
to download a small upgrade description. Then it checks whether the upgrade affects
it, i.e., whether the upgrade contains an old class that is running at the node. (A node
might be several versions behind, but it can process the upgrades one-by-one.) If the
node is affected, the UL fetches the class upgrade components that concern it; drains
any currently-executing RPCs; then starts a future SO if necessary, e.g., if the new type
is a subtype of the old one, or if the upgrade is incompatible.

Next, the upgrade layer invokes the class upgrade’s scheduling function, which runs
in parallel with the node’s other processing. The scheduling function notifies the UL
when it is time to upgrade.

To upgrade, the UL restarts the node and runs the transform function to convert
the node’s persistent state to the representation required by the new class. After this,
the UL does “normal” node recovery, during which it creates the current object and
the SOs. Because SOs delegate toward the current object, the UL must create them in
an order that allows this. First, it creates the current object, which recovers from the
newly-transformed persistent state. Then it creates any past and future SOs as needed,
in order of their distance from the current object.

Finally, the upgrade layer notifies the upgrade database that its node is running the
new version.

When all nodes have moved to a new version, the previous version can be retired (or
this could happen on command). Information about retirement arrives in messages from
the upgrade server. In response, a UL discards past SOs for retired versions. This can be
done lazily, since keeping past SOs around does not affect the behavior or performance
of later versions.

3 Specifying Simulation

A key contribution of our approach is that we allow simulation so that nodes running
different versions can nevertheless interact. But for simulation to make sense, we need
to explain what it means.

Simulation enables a node to support multiple types. It implements its current type
using its current object; it simulates old types (of classes that it upgraded from in the
past) using past SOs and new types (of classes that it will upgrade to in the future)
using future SOs. Some clients interact with the node via the current type, while others
interact via an older or newer type. Yet all the objects implementing these types share
a single identity and thus each call needs to affect and be affected by the others. It’s
straightforward to define these interactions when the old and new class implement the
same type, or one is a subtype of the other [19], because in these cases the types already
have a relationship that defines the meaning of the upgrade. Things get interesting,
however, when there is an incompatible upgrade: when the two types are unrelated by
subtyping.

This section explains what it means to simulate correctly. We capture the effects of
simulation for a particular class upgrade by defining a specification for the upgrade; the
specification guides the design of the simulation objects and transform function.

Correct simulation must support reasoning about client programs, not only when
they call nodes that are running their own version, but also when they call nodes that are
running newer or older versions, when they interact with other clients that are using the
same node via a different version, and when the client itself upgrades and then continues
using a node it was using before it upgraded. Furthermore upgrades of servers should be
transparent to clients: clients should not notice when a node upgrades and changes its
current type (except that more or fewer calls may fail as discussed below). Essentially,
we want nodes to provide service that makes sense to clients, and we want this service
to make sense across upgrades of nodes and clients.

We begin by defining some requirements that an upgrade must satisfy. Clearly, we
require:

Type Requirement. The class for each version must implement its type.

In particular, the class implementing a future SO must implement the new type, and a
class implementing the past SO must implement the old one. This requirement ensures
that a client’s call behaves as expected by that client.

However, we also need to define the effects of interleaving. Interleaving occurs
when different clients running different versions interact with the same node, e.g.,

O1.m(args); O1.m(args); [version 2 introduced at server];
O1.m(args); O2.p(args); [server upgrades from 1 to 2];
O1.m(args); O2.p(args); [version 1 retired];
O2.p(args); O2.p(args);

where ON is the object with which version N clients interact. Between the introduction
of version 2 and the retirement of version 1, there can be an arbitrary sequence of calls
to O1 and O2. If the server is supporting more than two types, calls to objects of all
supported types can be interleaved. Although these calls can be running concurrently,
we assume they occur one-at-a-time in some serial order; we discuss concurrency in
Section 4.1.

To define what happens with interleaving we require:

Sequence Requirement. Each event in the computation at a node must reflect the ef-
fects of all earlier events in the computation in the order they occurred.

An event is a call, an upgrade, or the introduction of a version.
This requirement means method calls to a current object or SO must reflect the

effects of calls made to the others. If the method is an observer, its return value must
reflect all earlier modifications made via other objects; if it is a mutator, its effects must
reflect all earlier modifications made via other objects, and must be visible to later calls
made via other objects.

When the node upgrades and its current type changes, observations made via any of
the objects after the upgrade must reflect the effects of all modifications made via any
object before the upgrade. For example, if a node is running several versions of a file

system, modifications to a file using one of the versions must be visible to clients using
the others and must continue to be visible after the node upgrades.

Together, the type and sequence requirements can be overconstraining: it may not
be possible to satisfy both of them for all possible computations. When this happens,
we resolve the problem by disallowing calls. The system causes disallowed calls to fail
(i.e., to throw a failure exception). In essence, we meet the requirements above by ruling
out calls that would otherwise cause problems. However, we require:

Disallow Constraint. Calls to the current object must not be disallowed.

In other words, we can only disallow calls to past and future SOs. The rationale is that
the current object provides the “real behavior” of the node, so it should not be affected
by the node’s support for other versions. Another point is that the code that implements
the current object need not be concerned with whether there are simulation objects also
running at its node, and therefore we simplify the implementation that really matters.

Disallowing takes advantage of the fact that any RPC can fail, e.g., because of net-
work problems, so that clients won’t be surprised by such a failure.

3.1 Specifying Upgrades

Now we describe how to specify an upgrade involving two types that are unrelated
by subtyping, Tnew and Told. An upgrade specification has three parts, an invariant, a
mapping function, and shadow methods.

The invariant, I(Oold,Onew), relates the old and new objects throughout the compu-
tation: assuming I(Oold,Onew) holds when a method call on one of the objects starts,
I(Oold,Onew) also holds when the method returns. The invariant must be total: for each
legal state Onew of Tnew, there exists some legal state Oold of Told such that I(Oold,Onew)
holds, and vice versa.

The invariant is likely to be obvious to the upgrader. For example, if Oold and Onew

are file systems, an obvious invariant is that the new and old file systems contain the
same files (although some file properties may differ). However, weaker invariants can
lead to fewer disallowed methods (as discussed in Section 3.2).

The mapping function (MF) defines an initial state for Onew given the state of Oold

when Tnew is introduced at the node. For example, the MF from the old file system to
the new one would state that the new file system contains all the old files; it would
also define initial values for any new file properties. The MF must be total and must
establish the invariant: I(Oold,MF(Oold)) must hold.

I tells us something about what we expect from method calls. In particular, it con-
strains the behavior of mutators. For example, it wouldn’t be correct to add a file to
Onew but not to Oold. But I doesn’t tell us exactly what effect a mutator on Onew should
have on Oold, or vice versa. This information is given by shadow methods.

For each mutator Told.m, we specify a related method, Tnew.$m. The specification
of Tnew.$m explains the effect on Onew of running Told.m. Similarly, for each mutator
Tnew.p, we specify a related method, Told.$p, that explains the effect on Oold of running
Tnew.p.

A shadow method must be able to run whenever the corresponding real method
can run. This means the precondition for a shadow method must hold whenever the
precondition for the corresponding real method holds:

prem(Oold) ∧ I(Oold,Onew)⇒ pre$m(Onew)

prep(Onew) ∧ I(Oold,Onew)⇒ pre$p(Oold)

Also, shadow methods must preserve the invariant:

I(Oold,Onew)⇒ I(Oold.m(args),Onew.$m(args))

I(Oold,Onew)⇒ I(Oold.$p(args),Onew.p(args))

Given these constraints, we can prove that the invariant holds throughout the com-
putation of a node that implements the old and new types simultaneously. The proof
is by induction: the mapping function establishes the base case (when the new type is
introduced), and shadow methods give us the inductive step (on each mutation).

As an example, consider a upgrade that replaces a set of colored integers with a set
of flavored integers. This example is analogous to an upgrade that changes a property
of files in a file system.

We begin by choosing an invariant I that we want to hold for each ColorSet (Oold)
and FlavorSet (Onew). We could require that the two sets contain the same integers:

{ x | 〈x, c〉 ∈ Oold } = { x | 〈x, f 〉 ∈ Onew } (1)

A stronger invariant maps colors to flavors:

〈x, blue〉 ∈ Oold ⇔ 〈x, grape〉 ∈ Onew,

〈x, red〉 ∈ Oold ⇔ 〈x, cherry〉 ∈ Onew,

... (2)

Whereas (1) treats colors and flavors as independent properties, (2) says these properties
are related. A weaker invariant allows Onew to contain more elements than Oold:

{ x | 〈x, c〉 ∈ Oold } ⊆ { x | 〈x, f 〉 ∈ Onew } (3)

The next step is to define a mapping function. For invariant (1), we might have:

Onew = MF(Oold) = { 〈x, grape〉 | x ∈ Oold } (4)

As required, this MF establishes I.
Here are possible definitions of the shadow methods, assuming that both types have

an insert method that adds an element with a specified color or flavor, and a delete
method.

void ColorSet.$insertFlavor(x, f)
effects: ¬∃ 〈x, c〉 ∈ thispre ⇒ thispost = thispre ∪ {〈x, blue〉}

void ColorSet.$delete(x)
effects: thispost = thispre − {〈x, c〉}

void FlavorSet.$insertColor(x, c)
effects: ¬∃ 〈x, f 〉 ∈ thispre ⇒ thispost = thispre ∪ {〈x, grape〉}

void FlavorSet.$delete(x)
effects: thispost = thispre − {〈x, f 〉}

These definitions satisfy invariant (1). They do not work for invariant (2) since in that
case the shadows must preserve the color-flavor mapping. Our original mapping func-
tion and shadow methods would work for invariant (3), but we could use weaker defi-
nitions, e.g., define FlavorSet.$delete to have no effect.

3.2 Disallowed Calls

There was no need to disallow any methods in the example above. But sometimes dis-
allowing is needed.

When we specify an upgrade we implicitly define a “compound type,” Told&new. This
type has the methods of both Told and Tnew. Its objects contain the old state and the new
state and they satisfy the invariant I.

The specification of a mutator is a combination of its original specification and
its shadow specification provided in the upgrade; the former defines its effect on its
own type, and the latter defines its effect on the other type in the upgrade. E.g., the
specification of insertFlavor states its effect on the FlavorSet (its original specification)
and on the ColorSet (as defined by the specification of ColorSet.$insertFlavor).

If Told&new is a subtype of both the old and new types, the simulation is working
properly, since users will always see the behavior they expect. In the case of the upgrade
from FlavorSet to ColorSet, this subtype property holds. But sometimes it doesn’t, and
in this case we solve the problem by disallowing. We might disallow all calls to a
method, or only some calls, based on the parameters of the call or the current state of
the object.

For example, consider an upgrade that replaces GrowSet with IntSet; a GrowSet is
like an IntSet except that it never shrinks because it has no delete method. The shadow
of delete on a GrowSet object must remove the deleted object, assuming the invariant
that the two objects have the same elements. Since GrowSet objects never shrink, we
must disallow the delete method in the future SO for IntSet. However, once the node
upgrades, we can no longer disallow this method since the current object is now an
IntSet. Therefore the state of the past SO for GrowSet can shrink. Since this does
not match the specification of GrowSet, we must disallow any GrowSet methods that
would expose the problem. Thus we would need to disallow GrowSet.isIn.

Thus disallowing is done differently for the future SO and the past SO: for the future
SO we only disallow methods of the new type, while in the past SO, we only disallow
old type methods. These restrictions on disallowing follow from our disallow constraint:
they ensure that all methods of the current object are allowed.

To disallow for the future SO, we proceed as follows. First we disallow all mutators
of the new type whose shadow definitions for the old type would cause violations of
the specification of the old type; this disallowing will ensure that Told&new is a subtype

of the old type. In addition, if the new shadows of any old type methods violate the
specification of the new type, we disallow new methods that expose these violations;
this ensures that users of the future SO won’t notice that something strange is going on.

The situation for the old type is similar. We disallow any old methods whose shad-
ows would cause violations of the specification of the new type; this way we will obtain
a subtype of the new type. Also, if any shadows of the new type methods violate the
specification of the old type, we disallow old methods that expose these violations to
ensure that users won’t see the odd behavior.

This notion of “exposing violations” has a different meaning for past and future
SOs, because a future SO will eventually become the current object and at that point all
its methods will be allowed. These calls represent another way of noticing a violation,
and must be taken into account when disallowing. For example, consider the reverse
upgrade (from IntSet to GrowSet). The future SO in this case must disallow both isIn
and insert. It must disallow insert because once the GrowSet becomes the current ob-
ject, calls of isIn will be allowed, and at that point the absence of an object that had
previously been inserted into the GrowSet object would be noticed!

Weakening the invariant can reduce the need to disallow. For example, if we allowed
the GrowSet object to contain a superset of the elements of the IntSet object, we would
not need to disallow any methods in either the past or future SO.

In general, the upgrader should choose the weakest invariant that makes sense for
the two types in the upgrade, in order to disallow as little as possible. Disallowing is
unlikely to be what users want; therefore the upgrader may choose to avoid it by using
an accelerated schedule for the upgrade (see Section 6).

3.3 Multiple Upgrades

The previous sections have discussed what is needed to specify and upgrade in isolation,
assuming that no other upgrade is “active.” In other words we considered a system that
was everywhere running a particular version, and defined an upgrade to move it to the
next version. Now we consider a more general case, in which more than one upgrade
may be in progress.

If some upgrades are in progress when a new one is defined, and if some of those
earlier upgrades are incompatible, we are in a situation where the previous upgrade
is actually defining not Tnew but in fact Told&new. Therefore, we need to extend our
specification approach so that we define the intended behavior of these extra methods—
the ones in Told&new of the previous upgrade that aren’t also in Tnew of the previous
upgrade. The extra methods are precisely the shadows of the mutators of the old type.
(We do not need to consider the shadow definitions for the mutators of the new type
because those details are handled by the previous implementation.)

Thus we need to provide shadows for these shadows. In addition, we need to use
Told&new from the previous upgrade when deciding what methods to disallow for the
past and future SOs of the current upgrade.

As an example, suppose we define a second upgrade to follow the upgrade from
ColorSet to FlavorSet. This second upgrade defines a CommentSet in which each ele-
ment of the set has both a flavor and an associated comment. This upgrade is compatible
since CommentSet is a subtype of FlavorSet.

However to define the upgrade we need to provide an explanation of the effect
of a call on ColorSet.insertColor on the CommentSet. This is done by considering
FlavorSet.$insertColor; the specification of this shadow explains the effect of run-
ning the insertColor on the FlavorSet. We provide a shadow for this method, Com-
mentSet.$$insertColor, which explains the additional effect on the CommentSet. In
this example, it isn’t necessary to disallow any new methods because we have the sub-
type property.

One point about writing these specifications is that a kind of “transitive” disallowing
is possible. Suppose the specification for the old upgrade disallows a method of the new
type. Then when we shadow this method, there are two cases: either it is disallowed
(because its upgrade hasn’t yet been installed) or not. However, when the old method is
disallowed, this necessarily implies that the new one is too. Therefore we require that
the shadow specification only explain what happens when the method being shadowed
is allowed.

The key question about specifying upgrades when many upgrades are in progress is
modularity: how much does an upgrader need to know to specify an upgrade? Clearly
the upgrader must know the old and new types of the current upgrade plus the specifica-
tion of the earlier upgrade. However, this earlier upgrade has both an old and new type,
and it’s possible that in order to understand its specification it is necessary to understand
both of them. Fortunately, this appears to not be necessary most of the time because the
shadows of Told methods are usually specified in terms of the Tnew state; in this case
the definer of the next upgrade need not understand Told. The CommentSet example
is like this, and so are all the real examples we looked at; the only ones that aren’t are
pathological examples we invented.4

If a pathological example were to arise, it may be possible to avoid the problem by
changing the invariant. Otherwise it may be necessary to go arbitrarily far back in the
chain of “active” upgrades (ones whose old type has not yet been retired). To avoid this,
the upgrader might decide to use an eager schedule for the upgrade to limit the time
during which defining future upgrades requires understanding of the old type.

4 Implementing Simulation

This section presents ways to use simulation objects to implement multiple types. The
approaches differ in how calls are dispatched to objects (i.e., which objects implement
which types) and how simulation objects can interact with one another. The first “direct”

4 An example that causes problems is the following. The old upgrade replaces ColorSet with
FlavorSet, but the invariant specifies some function f that maps colors to flavors, where several
colors map to the same flavor. Furthermore the specification of ColorSet.setColor states that
the color of an item in the set can be changed only when its current color is blue. To define the
shadow FlavorSet.$setColor, we need to consult the state of the ColorSet object to determine
the current color of the item, since only then will we know what its flavor will be:

void FlavorSet.$setColor(x, c)
effects: 〈x, blue〉 ∈ prev.thispre ⇒ thispost = thispre − {〈x, ∗〉} ∪ {〈x, f(c)〉}

approach is simple and is similar to what others have proposed [12, 24, 29]. However it
lacks expressive power, and therefore we instead use a much more powerful “intercep-
tor” approach.

4.1 Direct Approach

In the direct approach, calls for each version are dispatched directly to the object that
implements the type for that version. Each SO implements just its own type and can
delegate calls to the next object closer to the current object: the next older object for
future SOs, the next newer object for past SOs. When an upgrade is installed, a past SO
for the old type is created if necessary (i.e., if the new type isn’t a subtype of the old
type). Figure 2 depicts how SOs are managed in the direct approach.

Fig. 2. The direct approach, presented as a sequence of states of a node. Large arrows are state
transitions. In each state, the box is the current object, and the circles are SOs. Objects may
delegate calls as indicated by the small arrows. Each object handles calls only for its own version.

The direct approach is simple but has limited expressive power. The most serious
problem is that there is no way for an SO to be informed about calls that go directly to
its delegate, and as a result it can do the wrong thing. For example, consider an SO that
implements ColorSet by delegating to an object that implements IntSet. The delegate
stores the state of the set (the integers in the set), and the SO stores the associated
colors, which it updates when it runs its own methods. However, consider the following
sequence of calls (here O refers to the SO’s delegate): SO.insertColor(1, red); O.de-
lete(1); O.insert(1); SO.getColor(1). The result of the final call will be “red,” because
the SO cannot know that 1 was ever removed; but because 1 was removed and re-
inserted, its color should be the default color, e.g., “blue”, as specified for the shadow
of IntSet.insert(x).

Since we cannot prevent the SO state from being stale, our only recourse is to dis-
allow SO methods (we cannot disallow O.delete because of the disallow constraint). It
may seem that we must disallow SO.getColor, since it is the method that revealed the

problem in our example, but in fact we must disallow SO.insertColor because otherwise
we’ll be able to observe the problem when the upgrade is installed (since at that point
calls to the getColor will be allowed). And disallowing SO.insertColor is sufficient; we
needn’t disallow SO.getColor in addition (because every integer is blue).

A second problem is that the direct approach provides no way for the different
versions to synchronize. Since calls go directly to the different versions, SOs have no
way to control how calls are applied to their delegates. For example, suppose the current
object implements a queue with methods enq and deq, and the future SO implements a
queue with an additional method, deq2, that dequeues two consecutive items. With the
direct model, how can the future SO ensure that two adjacent items are dequeued, since
a client could call deq directly on the delegate while the SO is carrying out deq2?

It does not work for the upgrade layer to force methods to execute one-at-a-time,
as this may cause the distributed system to deadlock. Instead, the delegate might pro-
vide some form of application-level concurrency control, such as a lockdeq method
that locks the queue on behalf of the caller for any number of deq calls, but allows
enq calls from other clients to proceed. The delegator can use lockdeq to implement
deq2 correctly. This solution is complex, however. Furthermore, if the delegate does
not provide appropriate concurrency control methods, the upgrader’s only choice is to
disallow deq2.

4.2 Interceptor Approach

The interceptor approach avoids the problems of the direct approach.
In the interceptor approach, the simulation object for the latest version handles all

calls (it intercepts calls intended for the earlier versions). The upgrade layer dispatches
all calls for any version to the newest SO, which executes the calls by delegating to the
preceding object, which may be the current object or another SO.

If the current upgrade is compatible, then when the upgrade occurs, the node re-
places its current object and the future SO with an instance of the new class, which
becomes the current object of the node. The current object continues to handle all calls
intended for its predecessor. There is no need for a past SO, because calls made by
clients running at the old version are handled by the current object.

However, when the current upgrade is incompatible, the current object isn’t suffi-
cient since we want it to implement only the new behavior, and therefore it isn’t pre-
pared to handle calls for the old type of its upgrade. Therefore in this case, the upgrade
replaces the future SO and current object with an instance of the new class and past SO.
Furthermore all incoming calls are dispatched to the past SO, which simulates the old
type’s behavior and delegates to the current object. Figure 3 illustrates this approach.

If another upgrade is introduced, it receives a future SO, which must be prepared
to handle the methods of the new type, the old type, and the old type of the previous
upgrade. The future SO handles these methods by delegating to the past SO of the
previous upgrade; because of this delegation, handling these extra calls isn’t a burden.

This situation continues until the old type of the incompatible upgrade is retired.
At this point the past SO can be removed and calls that used to be delegated to it will
go directly to the current object. The calls won’t be to methods of the old incompatible
type, since that type is no longer in use.

Fig. 3. The interceptor approach, presented as a sequence of states of a node. Large arrows are
state transitions. In each state, the box is the current object, and the circles are SOs. Objects may
delegate calls as indicated by the small arrows. One object in each state intercepts all calls.

The interceptor model works well as long as there is only one active incompatible
upgrade. However, this model has only one past SO object in existence at any time,
and this object must handle all the legacy behavior. It can do this by using the previous
past SO as a subobject, which can delegate to the current object if the upgrade that just
happened is compatible. Otherwise the new past SO will have to do more of the work
of simulating past behavior.

Therefore a good upgrade strategy is to always retire an incompatible upgrade be-
fore introducing the next incompatible upgrade. We believe this is a reasonable ap-
proach since incompatible upgrades are introduced relatively infrequently.

4.3 Implementing SOs in the Interceptor Approach

Now we consider what is needed to implement SOs.
Obviously the implementation needs to satisfy the specification: the future SO needs

to implement Told&new of its upgrade with disallowing of Tnew methods, while the past
SO needs to implement Told&new with disallowing of Told methods.

These implementations must cause modifications of the state of the SO itself, but
they must also do the right thing on other versions. For example, when the future SO
handles a call on a mutator, it must also mutate its predecessor in the version chain. In
our approach this is always done via delegation: an SO will call one or more methods
on its predecessor (or successor if it is a past SO).

One interesting point is that the delegation may fail because that call is disallowed.
When this happens, the call to the delegating object must also be disallowed. However,
what happens due to disallowing can change during the lifetime of a future SO. Initially
a call to the predecessor might be disallowed because it is a call to a method of the
new type of the earlier upgrade, and upgrade hasn’t happened yet. However, once that
upgrade has happened, the call will be allowed, and therefore the call on the future SO
should also be allowed. Thus the implementations in the future SO will typically be
written to disallow if any disallowed calls are encountered, and to allow otherwise.

Each call that arrives from a client must be executed atomically at each object in the
chain, and if some delegated call fails (whether because it is disallowed, or for some
other reason), the states of all objects must be left unchanged (i.e., the call aborts). This
can sometimes be tricky to ensure. For example, suppose that to carry out a call on
method m of the future SO, two calls, to p1 and p2, are made to the predecessor object,
where p1 is a mutator. The implementation in the future SO must be done in such a
way that if the call to p2 is disallowed, the state of the predecessor doesn’t change.
This can be accomplished by checking in advance whether the call to p2 will succeed,
assuming such a method exists. The method will exist if the old type of the upgrade is
“complete” [16]; if not, it may sometimes be necessary to add extra observers to the
predecessor to permit more access to its state. For example, if p1 is insert(x) and p2 is
remove(y), it may be necessary to check isIn(y) before calling p1 then p2.

A future SO comes into existence when the infrastructure at its node first learns
about the upgrade. The node drains its currently-executing RPCs [26], and then creates
the SO by running a default constructor. This code has no access to any arguments, nor
can it access the object implementing the old version. Therefore it is unlikely to be able
to fully implement the mapping function; instead it must leave the object in a partially-
initialized state, and methods that are called after this point complete the initialization
(e.g., by making calls on the delegate). This limitation on how an SO initializes is
intentional so that SO installation can be a lightweight (and fast) operation.

5 Transform Functions

A transform function (TF) reorganizes a node’s persistent state from the representation
required by the old instance and future SO to that required by the new instance and
past SO. It must implement the identity mapping: the post-TF abstract state of the past
SO is the same as the pre-TF state of the old object, and the post-TF abstract state of
the new object is the same as the pre-TF state of the future SO. Thus, clients do not
notice that the node has upgraded, except that clients of the new type may see improved
performance and fewer rejected calls, and clients of the old type may see decreased
performance and more rejected calls.

A TF must be restartable, because the node might fail while the TF is running.
If this happens, the upgrade infrastructure simply re-runs the TF, which must recover
appropriately.

A TF may not call methods on other nodes, because we can make no guarantees
about when one node upgrades relative to another, so other nodes may not be able to
handle the calls a TF might make. This restriction does not limit expressive power;
if a node needs to recover state from another node (e.g., in a replicated system), it
can transfer this state after it has completed the upgrade. This restriction helps avoid
deadlocks that may occur if nodes upgrading simultaneously attempt to obtain state
from each other. It also makes TFs simpler to implement and reason about.

6 Scheduling Functions

Scheduling functions (SFs) allow an upgrader to control upgrade progress. SFs run on
the nodes themselves, so they can consider the node’s state in deciding when to upgrade.
But often what’s more important for SFs is the state of the system; in particular, the
upgrade state of other nodes. Therefore we provide SFs with additional information: a
central upgrade database (UDB) that records the upgrade status of every node and can
contain user-defined tables (e.g., that authorize the upgrades of subsets of nodes), and
per-node local databases (LDBs) that record information about the status of other nodes
with which a node communicates regularly. Each class upgrade has its own scheduling
function, which allows the upgrader to consider additional factors, such as the urgency
of the class upgrade and how well the SOs for that class upgrade work.

When defining an SF, the first priority is to ensure that all nodes eventually upgrade.
We guarantee this trivially by requiring that the upgrader specify a timeout for each SF.

The second priority is to minimize service disruption during the upgrade. How this
is accomplished depends on how the system is designed. For example, Brewer [7] de-
scribes several upgrade schedules used in industry; each of these can be implemented
easily as scheduling functions:

– A rolling upgrade causes a few nodes to upgrade at a time; this makes sense for
replicated systems and can be implemented by an SF that queries its local database
to decide when its node should upgrade, e.g., by waiting its turn in a sequence.

– A big flip causes half the nodes in a system to upgrade at once; this makes sense for
systems that need to upgrade quickly and can be implemented by an SF that flips a
coin to decide whether its node should be in the first or second upgrade group.

– A fast reboot causes all nodes to upgrade at once; this make sense when cross-
version simulation is poor and can be implemented by an SF that causes its node
to upgrade at a particular wall-clock time. Alternatively, this SF could wait for an
explicit signal written to the UDB or sent via RPC.

The implementations of these SFs are each just a few lines of script.
A variety of other schedules are possible, e.g., “wait until the node’s servers up-

grade,” “wait until all nodes of class C upgrade,” “wait until the node is lightly loaded,”
and “avoid creating blind spots in the sensor network.” Some of these schedules require
centralized knowledge, which is provided via the UDB; others require local knowl-
edge, which is provided via the node’s state and LDB. Our goal is to provide sufficient
flexibility so that upgraders can build a library of SFs according to the needs of their
system; once this is done, an upgrader simply selects an SF for each class upgrade from
the library.

Upgrade schedules can help the upgrader avoid implementing difficult SO fea-
tures. For example, it may be impractical to simulate a certain method of a new server
type. We can avoid the need to simulate this method by scheduling the upgrade such
that servers upgrade to the new type before any clients upgrade; thus, the difficult-to-
simulate method will not be called until the servers have upgraded.

An upgrader may want to test an upgrade on a few nodes and, if those upgrades fail,
roll them back and abort the remaining upgrades. This policy is implementable with

SFs (by recording upgrade failure in the UDB), though we do not discuss the details of
how to rollback the failed upgrades here.

7 Example

In developing our methodology we looked at many examples, focusing on incompati-
ble upgrades and real distributed systems including Thor [18], NFS [8], and DHash [9].
Some of the upgrades were ones that had actually happened, while others were invented.
Our goal was to come up with challenging examples so that we could make sure our ap-
proach had sufficient expressive power, and so that we could understand the challenges
in specifying upgrades and implementing SOs.

In this section we present a brief example of an incompatible upgrade to illustrate
our approach. The example is a challenging one because the old and new types are quite
different and there are several ways to resolve the differences. The upgrade replaces a
file system that uses Unix-style permissions with one that uses per-file access control
lists (ACLs) [15]. We assume the file system is distributed: the files are stored at many
servers. The upgrade contains two class upgrades: one for clients (to switch to using
ACLs) and one for servers (to switch to providing ACLs).

We assume there is no particular order in which nodes upgrade; thus clients might
be ahead of servers and vice versa. A possible schedule might have a client SF that
waits until the client is idle, while the server SF upgrades servers round-robin over
some extended time period.

Each file in the old system has read, write, and execute bits for its owner, its group,
and everyone else (the “world”). Thus, the old state (Oold) is a set of tuples:

〈filename, content, owner, or, ow, ox, group, gr, gw, gx, wr, ww, wx〉

Only the owner of a file can modify the file’s permissions, group, or owner. The new
state (Onew) is a set of

〈filename, content, acl〉

tuples, where acl is a sequence of zero or more 〈principal, r, w, x, a〉 tuples. Principals
with the a permission are allowed to modify the ACL.

There are many invariants one could imagine for this example. Our invariant I(Oold,
Onew) is very weak:

〈filename, content, owner, or, ow, ox, group, gr, gw, gx, wr, ww, wx〉 ∈ Oold

⇔ (〈filename, content, acl〉 ∈ Onew

∧ (〈owner, or, ow, ox, “true”〉 ∈ acl ∨ (owner = “nobody” ∧ ¬ or ∧ ¬ ow ∧ ¬ ox))
∧ (〈group, gr, gw, gx, “false”〉 ∈ acl ∨ (group = “nobody” ∧ ¬ gr ∧ ¬ gw ∧ ¬ gx))
∧ (〈“system:world”, wr, ww, wx, “false”〉 ∈ acl ∨ (¬ wr ∧ ¬ ww ∧ ¬ wx))

This invariant says that each file in Oold is in Onew with the same contents, and either
the owner of the file in Oold appears in the ACL in Onew with the same permissions plus
the ACL-modify permission, or the owner is the special user “nobody” and the owner
permissions are all false, and similarly for the group and world permissions (except

these have no ACL-modify permission). We need to include the “nobody” case so that
I is total, i.e., so there is a defined state of Oold for each state of Onew, and vice versa
(in particular, consider the case when the ACL is empty). Clearly other invariants are
possible, e.g., to select a particular owner among several in the ACL to be the owner in
the permissions.

The mapping function for this upgrade states that each file in Onew has the same
contents as in Oold and an ACL containing the owner, group, and world permissions
from Oold. The initial ACL grants ACL-modify permissions only to the owner.

The shadow methods must preserve I. When a client modifies a file in Oold, that file
is also modified in Onew, and vice versa. Furthermore, the file system must only allow
file operations that are consistent with the file’s permissions (in the old system) or ACL
(in the new system). But consistency is a problem, since ACLs are more expressive than
permissions.

Let’s consider the case of the future SO first. If the future SO allows modifications
of ACLs, clients of the permissions system may see modifications made by clients of
the new system that do not appear to have the correct permissions. For example, if an
owner in the ACL system adds as a second owner a user of the permissions system, and
later removes that user as an owner, a client using the permissions system and running
as that user might notice odd behavior.

To prevent this, we might disallow such operations in the future SO. However, we
cannot disallow modifications of ACLs once the server has upgraded, which means that
we must figure out what to do for users of the permissions systems when such changes
happen. A possible solution is to make it impossible for users of the permissions system
to notice odd behavior by not allowing them to do anything at all. But this doesn’t seem
like a good idea: clearly we don’t want to prevent users of the permissions system
access to files. A second possibility is to disallow only cases where observation of odd
behavior is possible. For example, we might disallow access only for files where there
is more than one owner. This second solution is less draconian than the first but still
seems undesirable.

In general when defining an upgrade it may not be possible to allow all behavior,
and furthermore, almost always disallowing isn’t desirable. In this particular example,
however, we have an out because file systems don’t guarantee that owners are in com-
plete control, since the superuser can change anything: the specification of a file system
does not rule out the kinds of odd behavior discussed above. Therefore we can in fact
allow all methods in both the past and future SO.

Now let’s consider how to implement the past and future SOs. Implementing the
past SO is easy: it just needs to present the permissions corresponding to the ACLs in
Onew and map any permissions modifications to the appropriate ACL modifications.

The implementation of the future SO is trickier. If it allows ACL mutations without
restrictions it must keep track of all the entries in each ACL, not just the ones that map
to permissions in Oold (Onew may be more permissive than Oold because of these extra
ACL entries). Furthermore, it would need to run with superuser privileges in order to
support the behavior in the ACL, which may be undesirable. Therefore the upgrader
might choose to disallow the creation of ACLs via the future SO that have entries with
no corresponding permissions in Oold.

The effort to implement the SOs is modest. SOs need to provide the extra behavior
needed at that version, e.g., to store the extra information in the ACL for the future SO;
the rest of the work is delegated. Furthermore, what is happening in the SO is similar to
what will happen in the version it is simulating, once that becomes the current version,
and therefore this code can be used in implementing the SO. For example, all the code
for manipulating ACLs is available when the future SO for this upgrade is implemented.

The TF must produce the state of Onew (files and ACLs) from that of Oold (files
and permissions) and the future SO (if it has state). Therefore, if we decide to allow
unrestricted ACLs creation in the future SO, the TF would need to access to its state to
create the current object.

The exact choice of what to allow is up to the definer of the upgrade, and as this
example shows, there may be several possible choices. Furthermore, the decision might
take into account implementation difficulties: the upgrader might choose to disallow
some behavior because it would be difficult to implement.

8 Evaluation

This section evaluates Upstart, our prototype upgrade infrastructure. The purpose of this
prototype is to demonstrate that our methodology can be realized efficiently, not to ad-
vocate any particular implementation. We describe Upstart, the results of microbench-
marks, and our experience running a distributed upgrade.

Upstart implements the upgrade server as an Apache web server. The upgrade server
stores upgrade descriptions and code for upgrades. The upgrade descriptions are small;
they identify the new code using URLs. To reduce load on the upgrade server, we use
the Coral content distribution network [11] to cache and serve the code.

Upstart implements the upgrade database (UDB) as a PostGres database that resides
on the upgrade server. Nodes append new records to the UDB periodically but do not
write to the UDB directly, as this would cause too much contention in a large system.
Instead, nodes send their header over UDP to a udb logger process that in turn inserts
records in the UDB. Under heavy load, some headers may be lost; but this is okay, as
nodes will periodically resend updated headers.

The upgrade layer runs on each node, in a separate process from the application.
This separation is important: if the application has a bug (e.g, that causes it to loop
forever), the upgrade layer must be able to make progress so that it can download and
install code that fixes the bug. The UL fetches upgrades from the upgrade server, runs
the SF (in a separate process), runs SOs, installs upgrades, and writes status information
to the UDB. Once a minute, the UL piggybacks headers on the messages it sends to
other nodes it has communicated with lately to inform them of its status. Each UL
maintains status information in a local PostGres database (LDB); scheduling functions
can query the LDB to make scheduling decisions. To avoid writing to the LDB on the
critical path, the UL passes headers to a local udb logger process.

The UL is implemented as a TESLA handler [23]. TESLA is a dynamic interposi-
tion library that intercepts socket, read, and write calls made by an application and
redirects them to handler objects. When the application creates a new socket, TESLA
creates an instance of the UL handler. When the application writes data to the socket or

when data arrives on that socket from the network, TESLA notifies the UL via method
calls. Since TESLA is transparent to the application, the application can listen on its
usual port and communicate normally, which is important for applications that exchange
their network address with other nodes, such as peer-to-peer systems.

We implemented the UL and SOs in event-driven C++. To reduce the implementa-
tion burden on the upgrader, we provide code-generation tools that simplify the process
of implementing SOs for systems that use Sun RPC [27]. Providing support for other
kinds of systems is straightforward and requires no changes to the upgrade infrastruc-
ture.

8.1 Microbenchmarks

The most important performance issue is the overhead imposed by the upgrade layer
when no upgrades are happening, as this is the common case. This section presents
experiments that measure these overheads and show them to be modest.

We ran the experiments with the client and server on the same machine (connected
over the loopback interface) and on separate machines (connected by a crossover cable).
Each machine is a Dell PowerEdge 650 with four 3.06 GHz Intel CPUs, 512 KB cache,
2 GB RAM, and an Intel PRO/1000 gigabit ethernet card. We also ran experiments on
the Internet; we do not report the results here, as the latency and bandwidth constraints
of the network dwarf the overhead of the upgrade infrastructure.

In each experiment we ran a benchmark and compared its baseline performance with
the costs imposed by our system. In the graphs, Baseline measures the performance of
the benchmark alone. TESLA measures the performance of the benchmark running with
the TESLA “dummy” handler on all nodes; it adds the overhead for interposing between
the benchmark and the socket layer, context switching between the benchmark and
the TESLA process, and copying data between the benchmark to the TESLA process.
Upstart measures the performance of the benchmark running with the upgrade layer
on all nodes; it adds the overhead for adding/removing version numbers on messages
and bookkeeping in the proxy object. In our experiments, we disabled upgrade server
polling and periodic header exchanges. In our prototype, prepending a version number
to a message requires copying the message to a new buffer; so each RPC incurs two
extra copies. These copies could be avoided by extending TESLA to support scatter-
gather I/O.

Table 1 summarizes the results.

Null RPC (loopback) Null RPC (crossover) 100MB TCP transfer
5% 50% 95% 5% 50% 95% 5% 50% 95%

Baseline 50µs 51µs 53µs 247µs 382µs 769µs 896ms 896ms 923ms
TESLA 128µs 139µs 154µs 371µs 382µs 782µs 896ms 898ms 919ms
Upstart 192µs 206µs 223µs 245µs 388µs 819µs 897ms 908ms 936ms

Table 1. Microbenchmark results (N=100000 for Null RPC, N=100 for TCP). For each experi-
ment, the 5th, 50th (median), and 95th percentile latencies are given.

In the Null RPC benchmark, a client issues empty RPCs to a server one-at-a-time
using UDP. By instrumenting the code with timers, we found that the time spent in
the client and server ULs is approximately equal, which is as expected since each side
sends and receives one message per RPC. Half the time in the UL is spent in the proxy
objects, and the other half is spent adding and removing version numbers.

Over the loopback interface, the latencies are normally distributed; but over the
crossover cable, we see significant variance. This is due to interrupt coalescing done
by the gigabit ethernet card, in which the card and/or driver delay interrupts so that one
interrupt can be used for multiple packets. A cumulative distribution function of this
data (not shown) reveals that the latencies cluster at 125µs intervals; this accounts for
the fact that TESLA’s 5th percentile is close to the median value.

In the TCP benchmark, a client transfers 100 MB of data to a server using TCP
(without RPCs) over a crossover cable. The upgrade layer sees the 100 MB transfer as
12,800 8 KB messages (8 KB is the block size in the benchmark). The UL overhead is
due to copying these messages and adding/removing version numbers.

8.2 Experience

To evaluate Upstart “in the field,” we defined and ran a simple upgrade on PlanetLab, a
large research testbed [21]. Specifically, we deployed DHash [9], a peer-to-peer storage
system, on 205 nodes and installed a null upgrade on it. We chose a null upgrade to
isolate the effect of the upgrade infrastructure on system performance and behavior.

Defining the upgrade was straightforward: no TF or SOs were required. The SF
upgrades nodes gradually: it flips a biased coin periodically and signals if the coin is
heads; we used a heads probability of 0.1 and a period of 3 minutes between flips (this
SF is implemented as a 6-line Perl script). We set the time limit for the scheduling
function to 6000 seconds (100 minutes); by this time, we expect 97% of nodes to have
upgraded. The upgrade ran as expected, and the DHash network remained functional
throughout.

We also ran an experiment to evaluate the effect of an upgrade on DHash client
performance. Here the system consists of four nodes, each running a DHash server; one
node also ran the DHash client. Before the upgrade began, we stored 256 8KB data
blocks in the system. The client fetches the blocks one-at-a-time in a continuous loop
and logs the latency of each fetch. Figure 4 depicts the fetch latencies over the course
of the experiment.

The three non-client nodes upgrade round-robin, two minutes apart. The TF causes
an upgrading node to sleep for one minute. Figure 4 reveals a stutter in client perfor-
mance when each node goes down, but the client fetches resume well before each node
recovers. The fetch performance while one node is down is slightly less than when all
nodes are up.

The precise effect of an upgrade on clients depends somewhat on the application.
With better timeouts, for example, the DHash client may see less stutter when nodes
fail. Furthermore, we expect the client to see very little stutter in a larger system, as
clients are less likely to need to access a node that is upgrading.

 0

 5

 10

 15

 20

 25

 30

 35

 40

 45

 50

1 2 3 4 5 6 7 8 9

B
lo

ck
 fe

tc
h

la
te

nc
y

(m
s)

Time (min)

^ Node 2 down
^ Node 2 up

^ Node 3 down
^ Node 3 up

^ Node 4 down
^ Node 4 up^ Upgrade installed

Fig. 4. DHash block fetch performance during an upgrade.

9 Related Work

Distributed upgrades have been explored in systems with a wide variety of require-
ments, some similar, some different from ours. We compare our approach to the related
work in research systems and to the current practice in real-world Internet systems.

9.1 Research on Upgrades

Reconfigurable distributed systems [2, 4, 5, 14, 17, 22] support the replacement of sub-
systems for specific distributed object systems, provided the new type implemented by
a subsystem is compatible with the old one. These approaches do not support incom-
patible upgrades, and they stall when nodes in the subsystem fail.

A few systems support cross-version interaction using wrappers: PODUS [12] sup-
ports upgrades to individual procedures in a (possibly distributed) program, and the
Eternal system [29] supports upgrades for replicated CORBA objects. But these sys-
tems do not consider the correctness issues of cross-version interoperation. Moreover,
they use a weaker implementation model than Upstart since they do not allow chaining
of wrappers and therefore do not meet our modularity requirement.

The closest approach to ours is Senivongse’s “evolution transparency” approach [24],
which uses chained mapping operators to support cross-version interoperation in a
modular way. However, this work does not provide a correctness model: it does not
define what system behavior clients can expect after they upgrade or when they com-
municate with clients running different versions.

Many of the correctness issues that arise in upgrading distributed systems also arise
in schema evolution for object-oriented databases, where one object calls the methods
of another, even though one of the objects has upgraded to a new schema, but the other
has not. Some approaches transform the non-upgraded object just in time for the method
call [6]; others [20,25] use mixed mode: they allow objects of different versions to inter-
act but do not consider general consistency issues. Encore [25] supports cross-version
calls for a limited class of version changes via a version set interface that is a union of

all the versions of that type. The work on views in O2 [3] provides a comprehensive
study of how mutations made to one object type (a view type) are reflected on another
(the base type) and so has much in common with our model for supporting multiple
types on a single node. However, whereas a database can use schema information to de-
tect correctness violations and reject mutations dynamically, the SO implementor must
determine which calls to disallow statically.

Finally, we consider the state preservation requirement. The goal of dynamic soft-
ware updating [10, 13, 26, 28] is to enable a node to upgrade its code and transform its
volatile state without shutting down. These techniques require implementor to identify
where in the program reconfiguration can take place and are typically language-specific.
Furthermore, these points must guarantee that no future execution threads will reference
the old types; this can be achieved either by draining the old threads [26] or by detecting
such points statically [28]. Our approach guarantees this property by shutting down a
node before changing its code. Dynamic updating is complementary to our approach
and could be used to reduce downtime during upgrades.

9.2 Real-World Upgrades

Internet and web service providers must upgrade large-scale distributed systems reg-
ularly. How they do so depends on whether the upgrade is internal to the service or
externally visible to clients and whether the upgrade is compatible or incompatible.

For web services, upgrades are either internal to the service or, if they are externally-
visible, are usually compatible. Furthermore, it’s acceptable for some clients of a service
to see new behaviors while others see the old ones, which means its client-facing nodes
may upgrade gradually.

Internally, Internet services are tiered: the topmost tier faces clients; middle tiers
implement application logic; and the bottommost tiers manage persistent state. Internal
upgrades change the code of one or more tiers and may change the protocols between
them. Compatible upgrades are straightforward: the lowermost affected tier is restarted
using a rolling upgrade [7], then the next-lowermost tier is upgraded, and so on up the
stack. Since the upgrade is compatible, calls made by higher tiers can always be handled
by the lower tiers.

Incompatible, internal upgrades are typically executed by upgrading datacenters
round-robin: drain a datacenter of all traffic (and redirect its clients to other datacen-
ters), upgrade all its nodes, warm up the datacenter, restore its traffic, then repeat for the
next datacenter. Thus nodes in the same datacenter never encounter incompatibilities.

Incompatible, externally-visible upgrades are rare for web services that use HTTP
but are more common in non-web services like persistent online games. In such systems,
clients are forced to disconnect while the service upgrades and, when they reconnect,
are forced to upgrade their client software to the latest version. This ensures that the
service never needs to support old behaviors and that all clients see the same version of
the service. Some systems support such upgrades by implementing multiple versions.
For example, NFS servers implement both NFSv2 and NFSv3. The problem with this
approach is that there is no barrier between these implementations, so one can corrupt
the other; simulation objects prevent this by modularizing the implementation, and they
furthermore make it easy to retire the old code.

Our methodology supports all these kinds of upgrades and enables systems to pro-
vide service during incompatible upgrades via simulation. Simulation eliminates the
need to take down whole datacenters for incompatible upgrades and can allow clients
to delay upgrading until convenient. Our methodology is especially important for peer-
to-peer systems, since in those systems there are no tiers or clients; rather every node
must upgrade, the upgrade must happen gradually, and even compatible upgrades re-
quire simulation so that upgraded nodes can call new methods on non-upgraded nodes.

10 Conclusions

We have presented a new automatic upgrade system. Our approach targets upgrades
for large-scale, long-lived distributed systems that manage persistent state and need to
provide continuous service. We support very general upgrades: the new version of the
system may be incompatible with the old. Such incompatible upgrades, while infre-
quent, are important for controlling software complexity and bloat. We allow upgrades
to be deployed automatically, but under control: upgraders can define flexible upgrade
scheduling policies. Furthermore, our system supports mixed mode operation in which
nodes running different versions can nevertheless interoperate.

In addition, we have defined a methodology for upgrades that takes mixed mode
operation into account. Our methodology defines requirements for upgrades in systems
running in mixed mode and provides a way to specify upgrades that enables reasoning
about whether the requirements are satisfied. Our specification techniques are modu-
lar: only the old and new types of the upgrade must be considered, and possibly the
specification of the previous upgrade.

We also presented a powerful implementation approach (running SOs as intercep-
tors) that allows all behavior permitted by the upgrade specification to be implemented.
Our approach allows the upgrader to define how long legacy behavior must be sup-
ported, by defining the deployment schedule for the incompatible upgrade.

We have implemented a prototype infrastructure called Upstart and shown that it
imposes modest overhead. We have also evaluated the usability of our system by im-
plementing a number of examples. The most challenging problem is defining SOs, but
they can mostly be implemented by a combination of delegation and use of code that
will be in the new version provided by the upgrade.

References

1. Sameer Ajmani. Automatic Software Upgrades for Distributed Systems. Ph.D., MIT, Septem-
ber 2004. Also available as technical report MIT-LCS-TR-1012.

2. Joao Paulo A. Almeida, Maarten Wegdam, Marten van Sinderen, and Lambert Nieuwenhuis.
Transparent dynamic reconfiguration for CORBA, 2001.

3. S. Amer-Yahia, P. Breche, and C. Souza. Object views and updates. In Journes Bases de
Donnes Avances, 1996.

4. C. Bidan, V. Issarny, T. Saridakis, and A. Zarras. A dynamic reconfiguration service for
CORBA. In Intl. Conf. on Configurable Dist. Systems, pages 35–42, May 1998.

5. Toby Bloom. Dynamic Module Replacement in a Distributed Programming System. PhD
thesis, MIT, 1983.

6. Chandrasekhar Boyapati, Barbara Liskov, Liuba Shrira, Chuang-Hue Moh, and Steven Rich-
man. Lazy modular upgrades in persistent object stores. In OOPSLA, 2003.

7. Eric A. Brewer. Lessons from giant-scale services. IEEE Internet Computing, July 2001.
8. B. Callaghan, B. Pawlowski, and P. Staubach. NFS version 3 protocol specification. RFC

1813, Network Working Group, June 1995.
9. Frank Dabek, M. Frans Kaashoek, David Karger, Robert Morris, and Ion Stoica. Wide-area

cooperative storage with CFS. In SOSP, October 2001.
10. R. S. Fabry. How to design systems in which modules can be changed on the fly. In Intl.

Conf. on Software Engineering, 1976.
11. Michael J. Freedman, Eric Freudenthal, and David Mazières. Democratizing content publi-

cation with Coral. In NSDI, San Francisco, CA, March 2004.
12. Ophir Frieder and Mark E. Segal. On dynamically updating a computer program: From

concept to prototype. Journal of Systems and Software, pages 111–128, 1991.
13. Michael W. Hicks, Jonathan T. Moore, and Scott Nettles. Dynamic software updating. In

Programming Language Design and Implementation, pages 13–23, 2001.
14. Christine R. Hofmeister and James M. Purtilo. A framework for dynamic reconfiguration of

distributed programs. Technical Report CS-TR-3119, University of Maryland, College Park,
1993.

15. Michael Kaminsky, George Savvides, David Mazières, and M. Frans Kaashoek. Decentral-
ized user authentication in a global file system. In SOSP, pages 60–73, October 2003.

16. Deepak Kapur. Towards a theory for abstract data types. Technical Report MIT-LCS-TR-
237, MIT, June 1980.

17. J. Kramer and J. Magee. The Evolving Philosophers Problem: Dynamic change manage-
ment. IEEE Transactions on Software Engineering, 16(11):1293–1306, 1990.

18. Barbara Liskov, Miguel Castro, Liuba Shrira, and Atul Adya. Providing persistent objects in
distributed systems. In European Conf. on Object-Oriented Programming, June 1999.

19. Barbara Liskov and Jeannette Wing. A behavioral notion of subtyping. ACM Transactions
on Programming Languages and Systems, 16(6):1811–1841, November 1994.

20. Simon Monk and Ian Sommerville. A model for versioning of classes in object-oriented
databases. In British National Conf. on Databases, pages 42–58, Aberdeen, 1992.

21. L. Peterson, D. Culler, T. Anderson, and T. Roscoe. A blueprint for introducing disruptive
technology into the Internet. In HotNets I, October 2002.

22. Tobias Ritzau and Jesper Andersson. Dynamic deployment of Java applications. In Java for
Embedded Systems Workshop, London, May 2000.

23. Jon Salz, Alex C. Snoeren, and Hari Balakrishnan. TESLA: A transparent, extensible
session-layer architecture for end-to-end network services. In USITS, 2003.

24. Twittie Senivongse. Enabling flexible cross-version interoperability for distributed services.
In Distributed Objects and Applications, 1999.

25. Andrea H. Skarra and Staney B. Zdonik. The management of changing types in an object-
oriented database. In OOPSLA, pages 483–495, 1986.

26. Craig A. N. Soules, Jonathan Appavoo, Kevin Hui, Robert W. Wisniewski, Dilma Da Silva,
Gregory R. Ganger, Orran Krieger, Michael Stumm, Marc Auslander, Michal Ostrowski,
Bryan Rosenburg, and Jimi Xenidis. System support for online reconfiguration. In USENIX
Annual Technical Conf., 2003.

27. R. Srinivasan. RPC: Remote procedure call specification version 2. RFC 1831, Network
Working Group, 1995.

28. G. Stoyle, M. Hicks, G. Bierman, P. Sewell, and I. Neamtiu. Mutatis mutandis: Safe and
flexible dynamic software updating. In Principles of Programming Languages, 2005.

29. L. A. Tewksbury, L. E. Moser, and P. M. Melliar-Smith. Live upgrades of CORBA applica-
tions using object replication. In ICSM, pages 488–497, November 2001.

