Object identifiers, keys, and surrogates —
object identifiers revisited

Roel Wieringa & Wiebren de Jonge
Faculty of Mathematics and Computer Science,
Vrije Universiteit
De Boelelaan 1081a, 1081 HV, Amsterdam
The Netherlands
Email: roelw@cs.vu.nl, wiebren@cs.vu.nl

Appeared in Theory and Practice of Object Systems, 1(2), 1995, pages 101-114

Abstract

Sound naming schemes for objects are crucial in many
parts of computer science, such as database model-
ing, database implementation, distributed and federated
databases, and networked and distributed operating sys-
tems. Over the past 20 years, physical pointers, keys,
surrogates and object identifiers have been used as nam-
ing schemes in database systems and elsewhere. However,
there are some persistent confusions about the nature, ap-
plicability and limits of these schemes. In this paper we
give a detailed comparison of three naming schemes, viz.
object identifiers, internal identifiers (often called surro-
gates) and keys. We discuss several ways in which identi-
fication schemes can be implemented, and show what the
theoretical and practical limits of applicability of iden-
tification schemes are, independently from how they are
implemented. In particular, we discuss problems with the
recognition and authentication of identifiers. If the iden-
tified objects are persons, an additional problem is that
object identification may conflict with privacy demands;
for this case, we indicate a way in which identification can
be combined with privacy protection.

1 Introduction

Object identification is a crucial issue in many
branches of computer science, ranging from operating
systems to computer networks, database systems and
programming languages. The importance of good ob-
ject identification schemes becomes even greater with
the advent of networked and distributed operating
systems, and information systems that communicate
with each other over EDI networks. Actually, object
identification is vital for any administration, comput-

erized or not. Much of the business of administrations
and of applying computers in the real world is about
manipulating identifications of objects.

Due to this importance, many different naming
schemes have been devised, such as physical point-
ers, keys, surrogates and object identifiers. However,
there is considerable confusion about the nature, ap-
plicability and limits of these schemes. For example,
in many cases, physical pointers, keys or surrogates
are used as object identifiers. Although many use ob-
ject identifiers and agree that they are a good thing,
few say what they actually mean by it. Those who do,
tend to say incompatible things. This is a problem
for theory as well as practice. Confusion about what
object identifiers are and how they can be used is a
hindrance to practical and theoretical progress. In
addition, inappropriate uses of naming schemes can
cause serious flaws in system design. Examples are
given later.

In this paper, we give a precise definition of object
identification schemes, compare this with the older
concepts of key and surrogate, discuss ways to imple-
ment identification schemes, and show what the lim-
its of the applicability of identification schemes are.
Our goal is conceptual analysis and consolidation of
what has been written about object identification.
A result of this analysis is, we hope, a better under-
standing of the nature and limits of object identifiers,
that provides a firm theoretical basis for the practical
use of object identifiers.

In section 2, we define the concepts of naming
scheme, oid scheme and oid (= object identifier). In
section 3, we compare oids with keys and internal

identifiers (called surrogates by some authors). In
section 4 we give some examples and, more interest-
ingly, non-examples of oid schemes. Section 5 dis-
cusses possible mechanisms for assigning oids to ob-
jects. It also discusses the problems of recognizing
the presence of an oid and of authenticating oids, and
gives oid borrowing as a way to alleviate these prob-
lems somewhat. Section 6 defines the information
transfer problem, shows a way to avoid the problem
by a suitable use of object identifiers, and in addition
shows how this can be combined with the demand for
privacy protection. In section 7, we compare our view
with the view of object identification in a number of
other papers. Section 8 concludes the paper.

2 Object identifiers

Basically, an oid is a proper name of an object such
that the connection between the oid and the object
is one-one and fixed. This simple idea, when put
into practice, contains many pitfalls, that can only be
avoided by a careful analysis of the naming relation
between the oid and the object. For example, if the
identity of a person is represented by a number, then
we can represent this number in 1’s complement or
2’s complement notation, with 16-bit words or 32-bit
words, as a character string in ASCII or EBCDIC,
etc. What does this do to the one-one relation be-
tween the oid and the object? Are there many differ-
ent (but equivalent) oids of one object? What hap-
pens if a machine changes its internal representation;
is this a change in 0id? But were oids not supposed to
be fixed? To see how this puzzle can be resolved, sup-
pose one machine in a distributed database system
uses the number 123 in 2’s complement notation as
the oid of a person, and another machine in the same
distributed system uses the number 123 in 1’s com-
plement notation as the oid of a person, then these
two different bitstrings represent the same oid and
therefore represent the same object. So apparently,
to determine whether two symbol occurrences repre-
sent the same oid, we must know which notation sys-
tem must be used to determine the value represented
by the symbol. By convention, we will subscript sym-
bol occurrences with the notation system to be used
for interpreting them.

To take another example, suppose two different
database systems both use the number 123 as the
oid of two different persons, and that one person has
oid 456 in one database system and oid 789 in the

other database system. Again, what does this do to
the one-one relationship between oids and objects?
Because the database systems are different, we can-
not conclude from equality of oids used by different
systems that the represented person is the same, nor
can we conclude from difference of oids that the rep-
resented persons are different. We can draw such con-
clusions only if the two database systems are known
to use the same naming scheme. So apparently, oid
occurrences must also be subscripted by the naming
scheme according to which oids are assigned to ob-
jects. (The difference between naming scheme and
notation system is explained below.)

As a final motivating example, some object-
oriented systems use the class name as part of an
oid. This seems convenient to represent class change:
just change the class name in an oid. What happens
in this case to the fixed nature of the relation between
an oid and a named object? And even if an object
never changes class, it may have multiple classifica-
tions. Does this mean that the object has as many
different oids as it has classes? And does this not
destroy the fixed and one-one relation between oids
and objects?

To sort out these and other problems, we start from
the observation that, at rock-bottom level, the iden-
tity of objects is represented in administrations by
means of symbol occurrences. These correspond to
abstract symbols, that in turn represent walues. It
is these values that constitute oids, not so much the
symbols or symbol occurrences. In the next subsec-
tion, we define different equality relations for these
levels of abstraction. The distinction between sym-
bol occurrences, symbols and values and the three
equality relations are needed to lay a firm founda-
tion for the construction of naming schemes. Nam-
ing schemes are defined as relations between values
and objects, and oid schemes can then be defined as
a special kind of naming scheme.

2.1 Symbols and equality

We assume a set V' of abstract entities, which we call
values. The set V itself is called a value space. The
elements of V' are abstract entities, which we hold to
be unobservable and unchanging. All of us have seen
many representations of the number 2, but have we
ever seen the number 2 itself? Similarly, all of us have
seen many representations of the character A, but
have we ever seen the (abstract) character A itself?
We do not assume that the elements of V exist, nor

that they do not exist; for our purposes, the question
whether values really exist or not is irrelevant.

Next, we assume a set S of symbols. The set S it-
self is called a symbol space. Each symbol is a type
that may have many instances, also called symbol
occurrences. A symbol occurrence is an observable
part of the world, such as a spoken word, a written
word, an icon on a screen, or a word in computer
memory. The concept of existence is applicable to
symbol occurrences. For example, “a” is an occur-
rence of a symbol of which many occurrences exist on
the sheet of paper that you are reading now. Without
loss of generality, in the rest of this paper, we assume
fixed sets S and V.

We assume that for each symbol, there is an agreed
observation procedure that tells us whether a given
occurrence is an occurrence of that symbol. It is
not important here what this procedure is, as long
as it assigns symbols unambiguously to occurrences.
Thus, for the simplicity of our presentation, we re-
quire that different symbols have disjoint sets of oc-
currences. In this paper, we assume that all occur-
rences of one symbol are isomorphic. Thus, “E” and
“E” are two occurrences of the same symbol, but “E”
is an occurrence of a different symbol.

The text you are reading now!, like any other text,
only consists of symbol occurrences. Because we want
to be able to talk about symbol occurrences, symbols
as well as values, we need a textual convention to in-
dicate when a symbol occurrence in this text denotes
itself, a symbol, or a value. In the rest of this section,
we will use “ ” to denote symbol occurrences, ¢ ’ to
denote symbols, and use symbol occurrences (with-
out quotes) to denote values. For example, “E” is an
occurrence of the symbol ‘E’, which has as value the
character E.

A notation system is a partial function n : § —
V (see figure 1). The domain of n, written dom(n),
is the set of symbols for which n is defined. For any
s € dom(n), we call the value n(s) the denotation
of s.

What the meaning (value) of a symbol is depends
upon the notation system used to interpret it. If con-
text is not sufficient to disambiguate the intended
meaning of a symbol or symbol occurrence, we will
subscript it with the notation system in terms of
which to interpret it. For example, in the decimal
notation system (dec), “1” and “12” are occurrences
of symbols ‘1’ and ‘12’, that denote the numbers 1 4.

IStrictly spoken, the text occurrence you are reading now

and 124, respectively. In general one symbol can
have many corresponding values. For example, the
symbol ‘E’ in the hexadecimal notation system (hex)
has as value Ep.,, which is equal to 144... In the
alphabetic character notation system (char), ‘E’ has
the character E.p,4- as its value.

The sets V and S come with identity relations,
which have extension {(v,v) | v € V} and {(s,s) |
s € S}, i.e. values and symbols are only identical
to themselves. The same is true of symbol occur-
rences. We can now define several equality relations
(figure 2).

e Any value, symbol or symbol occurrence is only
equal to itself. We denote equality in this strict
sense by =.

For example, “E” cpar = “E” char, because these two
occurrences are not identical to each other, but only
to themselves. Howewer, we have ‘E’cher = ‘Echar
and Ecpor = Echer- Moreover, we have ‘E’pe, =
‘E’ char because we have two occurrences of the same
symbol, and Epe; # Ecnar, because these occurrences
are interpreted as different values.

Because symbols denote values, we can define a
second type of relation, which we call equivalence and
which is based on the denotation relation:

e Two (subscripted) symbols are equivalent (de-
noted by =) if and only if they denote the same
value.

For example, using the subscript dec to represent the
decimal notation system, the subscript bin to repre-
sent the binary notation system and the subscript
hex to represent the hexadecimal notation system,
‘14 gec, ‘1110°;, and ‘E’jp., are non-identical sym-
bols, but they are equivalent (they denote the same
value): 14dec = 111051'” = Ehe:r,-

We also apply the equivalence relation to symbol
occurrences:

e Two (subscripted) occurrences of symbols are
equivalent (also denoted by =) if and only if
their symbols are equivalent.

So “BE” char = “E” char because ‘E’cpor = ‘Ecpar, and
“Bhex Z “BE” char because ‘Erep Z ‘Fepgr. In ad-
dition, we define a third relation for symbol occur-
rences, called congruence.

e Two (subscripted) occurrences of symbols are

congruent (written as =) if they are occur-
rences of the same symbol.

Symbol

occurrence

Figure 1: Relationships between symbol occurrences, symbols, and values. The cardinality constraint “> 0"
means “any natural number, including 0", and “< 1" means “0 or 1". So each symbol has 0 or more occurrences
and each value has zero or more symbols, related to it by a notation system n. In addition, each symbol occurrence
is an occurrence of exactly one symbol, and a notation system n assigns at most one value to a symbol, which is

its denotation.

Strictly equal

Equivalent

Congruent

(=23

Exactly the same

Same value

Same symbol

Values X
Symbols X X
Occurrences | X X X

Figure 2: Three meanings of the general concept of equality. The entries of the table indicate applicability.

Equal

Equivalent

Congruent

o~

Exactly the same

Same value

Same symbol

Values

Echar = Echar

Ehez 7é Echar
Ehem = 14dec

Echar = Echar

Symbols

‘E7cha1‘ = ‘E7char
E'hee = Echar
‘E,hem # ‘14’dec
‘Evchar 75 ‘Eychar

‘E’hem =

‘E7cha1‘ = ‘E,char
‘E,hem $ ‘Eychar
‘14’dec
‘E’char = ‘E,char

Occurrences

“E” char # “E” char
“E” hex 7é “E” char
“Rn hew # “14” dec
“E” char 7é “E” char

“E” char = “E” char

“Eﬂ hex $ “Eﬂ char
“E” hex = “14” dec

“E” char = “E” char

“E” char = “E” char
“E”hex o~ W char
“E”hem % “14” dec
“E” char 7’! “E” char

Figure 3: Examples of equality, equivalence and congruence. By E 4 we mean the value denoted by the symbol

‘E’ in the alphabetic character notation system, i.e. char(‘E’).

symbol ‘E’ in the hexadecimal notation system, i.e. hez(‘E’).

By Epez we mean the value denoted by the

For example, “E” per =2 “E” char, because we have two
instances of the same symbol, and “E” pez & “E” char,
because the two symbol occurrences are are assumed
to represent different symbols. Figure 2 summarizes
the applicability of the three kinds of equality rela-
tions and figure 3 gives a number of examples. Note
that the subscripts are only relevant for the inter-
pretation of the first row (value equality) and the
second column (equivalence). The examples show a
regularity, viz. that symbol equivalence follows value
equality, and that congruence of symbol occurrences
follows equality of symbols. This agrees with the def-
inition of the three kinds of equality relations.

2.2 Naming schemes

Object identifiers (oids) are a special kind of proper
names used for denoting real world objects. To make
us independent of the notation systems used, we use
values rather than symbols as proper name. For ex-
ample, if 353764558 is an oid of a person, then we
can represent this by a symbol written on paper or
on a screen, a bit string in one’s complement nota-
tion, a bar code, etc. and still say that occurrences
of these different symbols represent the same oid (i.e.
are equivalent in our terminology).

To make the concept of oid more precise, we assume
a symbol space S, a name space V, and a notation
system n : § — V as before. In addition, we assume
a set O of all possible objects. The set O is called
the object space. The set O contains all possible
objects that might possibly be named, so without loss
of generality, we can assume that O does not change.

A naming relation is a subset of V' x O. The ele-
ments of a naming relation are assignments of proper
names to objects. Naming relations may change dur-
ing a state transition of the world. To make this
explicit, let X be the set of all possible states of the
world. Then we define a naming scheme N to be a
function

N:¥ - p(V x0),

where p(V x O) is the powerset of V' x O. The func-
tion N assigns to every possible state of the world
o € ¥ a naming relation N, C V x O. In database
terms, N, is a many-many relationship. Here, it is
also convenient to view N, as a function V' — p(O).
The situation is represented in figure 4.

We can now get from a symbol to an object in two
steps, in which a notation system is composed with

a naming relation:
sov s p(0).

Because in general, there may be several naming
schemes applicable to a value, in order to know which
object(s) a symbol denotes, we must subscript it with
a notation system, a naming scheme and a state, e.g.
as in

Sn,N,o-

We usually suppress these subscripts when they are
clear from the context of a symbol occurrence.

To give an example of this, let bar be a notation
system in which natural numbers are represented by
bar codes, and let card be a naming scheme in which
natural numbers are used as names for library users.
Using obvious type definitions, in each state o of the
world we have

BARCODE "3 NATURAL ““5* o(USER).

Then if b is a bar code, card, (bar(b)) is the set of
library users identified by the number bar(b) in state
o of the world. (In this example, the intention is of
course that card, (n) is a set of at most one element.)
However, suppose for the sake of the example that
the same bar code is also used to identify furniture.
Let us call this naming relation furn:

BARCODE "% NATURAL’"3" o(FURNITURE).

Then furn,(bar(b)) is the furniture identified by
bar(b) in state o. In both cases, we can of course
switch notation systems without changing anything
in the naming scheme. For example, we may repre-
sent the number bar(b) by a bit string b’ in computer
memory, using a notation system bit:
BITSTRING %% NATURAL.
We would then have bit(b') = bar(b), so that both
symbols could be used for the same naming purposes.
We define the domain and range of a naming rela-
tion as follows:

dom(N,)={v|Jo€ O :
range(N,)={o| eV :

(v,o) € Na}a
(v,0) € No}.

In any state o of the world, there may be names in
V that are not assigned by N, to any object in O,
and there may be objects in O that are not assigned a
name by N,. Examples of nameless objects are prod-
ucts such as pins, nails and screws, where the over-
head of giving them a name is not worth the trouble.

Symbol
Occur- - S

rence

Figure 4: Relationships between symbol occurrences, symbols, values and objects. A naming relation N, assigns
to each value a set of zero or more objects that it names, and to each object a set of zero or more values that

are its names.

In administrations, however, every explicitly repre-
sented object will be named (otherwise it could not
be represented explicitly)?.

Finally, note that naming and existence can be in-
dependent of each other. There may be named ob-
jects that do not exist in o. For example, we may give
a car a name (e.g. a serial number) before it is pro-
duced and we may continue using the proper name
of a car, even after the car has been demolished.

2.3 0Oid schemes

In the following we will identify the requirements that
a naming scheme must satisfy in order to be called
an object identification scheme (oid scheme). If a
naming scheme N is an object identification scheme,
then in each state o, the elements of N, are called
oid assignments and the elements of dom(N,) are
called oids.

At least the following two requirements should be
satisfied by an oid scheme.

e Singular reference. A naming scheme [V satis-
fies the singular reference requirement if in each
possible state o of the world, each proper name
in dom(N,) refers to exactly one object in O.

e Singular naming. A naming scheme N satis-
fies the singular naming requirement if in each
possible state o of the world, each object in
range(N,) is named by exactly one proper name
from V.

In other words, singular reference requires each N,
to be a function dom(N,) — O and singular naming
requires each N; ! to be a function range(N,) — V.
Figure 5 shows a naming relation that satisfies these
two requirements. Figure 6 illustrates violations of

2We use the term “explicitly represented” to exclude the
case that an object (e.g. a potato) belongs to a quantity (e.g.
20 pounds of potatoes) registered in the administration, but is
not registered individually. Such an object would be implicitly,
but not explicitly represented.

the two requirements. Singular reference is needed
to exclude states of the world in which one oid refers
to more than one real-world object (i.e. to exclude
homonyms), and singular naming is needed to ex-
clude states of the world in which one object has two
different oids (i.e. to exclude synonyms).

An important consequence of the two singular-
ity requirements imposed on object identification
schemes is that if we use a single oid scheme, then in
each single state of the world, we can count objects by
counting their oids. This is true in each single state
of the world, but not across all possible states of the
world. For example, figure 7 shows two state transi-
tions that are allowed by the singularity requirements
but which we want to exclude. In order to represent
historical information adequately, we must addition-
ally impose the following two requirements:

¢ Rigid reference: After each state transition of
the world, each proper name remains referring
to at least the same object(s) as before.

¢ Rigid naming: After each state transition of
the world, each object remains named by at least
the same proper name(s) as before.

Rigid reference helps to exclude situations in which
in two different states of the world, the same oid
is used for different real-world objects (i.e., this ex-
cludes reuse of oids), and rigid naming helps to ex-
clude situations in which in two different states of the
world, different oids are used for the same real-world
object (i.e., this excludes renaming).

We formulated the rigidity requirements in such a
way that they are parallel to the two singularity re-
quirements. Note, however, that they are equivalent:
a violation of either one is always a violation of the
other one as well. Actually, the rigidity requirements
are both equivalent with the following, more precisely
formulated requirement:

¢ Monotonic designation: In each pair of suc-
cessive states o1 and o9 of the world, N,, C N,,.

Symbol >0 1 >0 <1 <1 <1
occur- S \4 0]
rence

Figure 5: An oid relation I, satisfies the singular reference and singular naming requirements. It also satisfies
the monotonic designation requirement, but this cannot be represented in this figure.

U1 U1 V2

01 02 01

v1 is a name and 01 and o2 are objects. v1 is a homonym. | v1 and v2 are names and o1 is an object. v1 and vz are
Such a state is excluded by the requirement of singular | synonyms. Such a state is excluded by the requirement
reference. of singular naming.

Figure 6: The situations excluded by the two singularity requirements.

v U1 U1 V2

01 092 01 01

Identifier reuse. Object renaming.

Figure 7: Two state transitions violating the monotonic designation requirement but not the singularity require-
ments.

Altogether, a naming scheme must satisfy three re-
quirements to be an object identification scheme. The
two singularity requirements demand that there be a
1-1 correspondence between oids and objects, and the
monotonic designation requirement demands that oid
assignments are never deleted.

Together, the three requirements imply that in an
administration that uses a single oid scheme, we al-
ways can count objects by counting oids. In addition
to allowing us to count objects in one state of the
world and across historical states of the world, oids
allow us to distinguish objects even if they have the
same (represented) object state. We always model
the world at a certain level of abstraction. This
means that we may not represent enough attributes
of objects to be able to guarantee that in all possible
states of the world, different objects have different
attribute values. In this case, we can rely on oids to
tell us which objects are different.

3 Oids versus keys and surro-
gates

3.1 Keys

In relational databases, a key is a combination of one
or more attributes with values that must be a unique
combination in a relevant set of tuples. For exam-
ple, a database key must be unique in each allowed
state of the database, and a relation key must be
unique in each relation instance. We call a key user-
assigned if there is at least one database user (other
than the database administrator) who may assign key
values to tuples.

We have identified the following (mutually related)
differences between keys and oids (see also figure 8).
First of all, keys identify tuples in a database state,
whereas oids identify objects in a part of the world.
This means that the concept of a key is a database
concept whereas the concept of an oid is more gen-
eral; the definition of oids above does not mention
databases at all, and therefore has wider applica-
bility than in computerized databases alone. (It is
clear though that oids are required to make good
databases.)

Second, because keys consist of attributes, key val-
ues may represent information about the state of ob-
jects. For example, a key consisting of a name and
birth date not only identifies a tuple uniquely in the
relevant set of tuples, it also contains the name and

birth date of the represented entity. In our definition
of oids, we have not excluded the possibility that an
oid represents information about the object it rep-
resents. However, because of the singularity require-
ments, the represented properties of each object must
then be unique across all possible objects and because
of the monotonicity requirement, they must also be
unchangeable. (Note that it is practically impossible
to find such properties. We return to this when we
discuss the possibility of fraud in section 5.2.)

Third, keys are updatable whereas oids are not.
It is true that updates of key values can easily be
prohibited by adding to the definition of a (primary)
key the requirement that key attributes must be non-
updatable. However, this would merely mean that
the key of a tuple cannot be updated; the key of the
represented entity then still can change. If the rep-
resented entity changes a key value, we can simply
delete the tuple that represents the entity and insert
another one, containing the new key value.

Fourth, a key is required to be unique in each single
state of the database (or relation), whereas an oid is
unique across all possible states of the world. (The
concept of a world is made more explicit in section 6.)
This is a consequence of the monotonicity property
imposed on oids (but not on keys).

A fifth difference between keys and oids often men-
tioned is that oids are claimed to avoid the informa-
tion transfer problem. (As we will see, this difference
is only gradual.) When an administration A receives
information from an administration B, the informa-
tion transfer problem for A is to determine on the
basis of transferred information alone whether the
transferred information is about an object already
represented by A, and if so, which one this is. This
problem arises whenever the receiver uses a different
naming scheme than the sender does. This may oc-
cur in federated databases [7], in database merges [9]
and in EDI networks. For example, when two vehicle
databases are combined that use different keys (or oid
schemes) for vehicles, it is impossible to determine on
the basis of keys (or oids) alone whether two tuples
represent the same vehicle.

We define the usage scope of a naming scheme as
the set of administrations currently using the nam-
ing scheme. The usage scope of a naming scheme can
be different in different states of the world. Indeed,
the information transfer problem does not exist when
there is one identification scheme whose object space
O contains all possible objects whatsoever, and whose
usage scope is always universal (i.e. that is used by all

Keys

Oids

Internal identifiers (Surrogates)

Database concept

Modeling concept

Implementation concept

May carry changeable informa-
tion

Carries no changeable informa-
tion

Carries no changeable informa-
tion

Updatable

Non-updatable

Non-updatable

Unique in each single state of one
database (or relation)

Unique across all possible states
of the world

Unique across all possible states
of one database system

Information transfer problem fre-
quent

Information transfer problem in-
frequent

Information transfer problem be-
tween different database systems

Often assigned by a database
user

Assigned by an oid assignor (see
section 5)

Assigned by the database system

Visible to the user

Visible to the user

Invisible to the user

Figure 8: Differences between keys, oids, and internal identifiers.

possible administrations). In that case, every object
about which information could ever be transferred,
has an oid in this global oid scheme. Since the us-
age scope of this global oid scheme is universal, the
sender and receiver both can use it, and so they will
not have an information transfer problem. Obviously,
such a global oid scheme is unattainable in practice,
and even if it would be attainable, its use would be
undesirable for privacy reasons. We return to this
in section 6. Here, we remark that keys often have
a validity restricted to one database system; other
database systems often use other keys for the same
objects. By contrast, oid schemes (e.g. social secu-
rity numbers) typically have a large usage scope and
object space. Different databases within the usage
scope of such a large scale oid scheme will not expe-
rience the information transfer problem when they
use identifiers from this scheme in their transfers.
This means that by a suitable use of oid schemes, we
can reduce the frequency with which the information
transfer problem is encountered.

A sixth difference between oids and keys is also
gradual. Keys are often assigned to objects by
database users and oids are not. Due to the usefulness
of having oid schemes with a large scope, oids are of-
ten assigned by authorities higher than the database
user. Thus, the personnel department assigns em-
ployee numbers company-wide and the governmen-
tal tax department in The Netherlands assigns some-
thing called a sofi number, which is similar to a social
security number, to identify all inhabitants of The

Netherlands.

Finally, we think oids should be visible to the user.
This is because oids are used by people to distinguish
(the representations of) different real-world objects
and to identify the same object in different states.
Social security numbers, serial numbers and other
proper names used as oids, would be of no use if they
were invisible to people. Thus, there is no difference
in visibility between keys and oids.

3.2 Surrogates and internal identifiers

Besides the concepts of oid and key, the concept of
a surrogate has been proposed [4, 6]. There are re-
ally two concepts here, that of surrogate and that of
internal identifier, which must be distinguished (fig-
ure 9). A real-world object o can be represented in a
database system by an internal object s. We will call
s a surrogate for 0. Each state of o is represented by
a state of s, which can be stored as, for example, a tu-
ple. In particular, we can store an external identifier
of o, such as a serial number nr, in the tuple.

In addition to identifying o, we also need to identify
s so that it can be recognized as the same through all
its possible states, and can be distinguished from any
other possible surrogate in the database. This is done
by an internal identification scheme in which in-
ternal identifiers ¢ are generated by the database
system and assigned as oids to surrogates. The ob-
ject space of this identification scheme is the set of all
possible surrogates. Internal identifiers are visible to
the DBMS software, but not to the application soft-

DBS

Figure 9: A database system (DBS) represents part of the world (the Universe of Discourse or UoD). The external
object o is represented by an internal object s (e.g. a record), which is a surrogate for the external object o. nr
is an external identifier of 0 and 7 is an internal identifier of s. Because of the 1-1 correspondence between ¢ and
s, it does no harm to call the internal identifier ¢ a surrogate.

ware, nor to the users of the database system, nor
to other systems with which it could communicate
through an EDI network. Thus, internal identifiers
are invisible to the user. When information about
a new real-world object o is entered in the database
system, a surrogate s is created and a fresh internal
identifier ¢ is generated. An example of a tuple that
represents the car in figure 9 is

(int_oid : i, ext_oid : nr,weight : 5000, .. .).

Each state change of o is represented by a state
change of s, which is a replacement of the above tu-
ple by another one. Because ¢ and nr are identifiers,
they will remain invariant through all state changes.
However, note that we can replace the internal iden-
tification scheme by another one without the user of
the database system noticing it. Such a replacement
is not a state change of the implementation, but a
replacement of one implementation by another one.
Because of the 1-1 correspondence between internal
identifiers and surrogates, it can do no harm to treat
internal identifiers as if they were surrogates.
Internal identifiers differ from keys, because they
are assigned by the database system and not by the
user. In addition, they are kept invisible from the
user. Internal identifiers are implementation con-
cepts, not database concepts. Because internal iden-
tifiers are a particular kind of oids, they carry no
changeable information about the surrogates they
identify, and they are non-updatable. In addition, un-
like keys, they are unique across all database states.
Finally, there is no information transfer problem as
long as the transfer remains within the same database
system. For example, transfering information be-
tween two different views of one database system is

10

possible.

Because internal identifiers have a usage scope lim-
ited to one DBMS, they cannot be used instead of
oids. Nevertheless, the concept can be useful for con-
structing efficient DBMS implementations.

Because of the limited usage scope of internal iden-
tifiers, the information transfer problem is even more
acute for internal identifiers than it is for keys. Note
that even if database administrators would enforce
internal identifiers in two database systems to sat-
isfy the singularity and monotonicity requirements
across those database systems, the information trans-
fer problem would still exist for database users, for
internal identifiers are invisible to the users.

4 Some (non-)examples of oids

For concreteness, we give some examples and non-
examples of oid schemes.

e Passport numbers do not qualify as oids for per-
sons, for one person may have two passports (e.g.
because he or she has two nationalities), which
violates singular naming. In addition, some peo-
ple may loose a nationality, and thus a passport,
which violates monotonic designation. The oid
requirements are also violated when people re-
new their passport and receive one with a num-
ber different from the old one.

Employee numbers can qualify as oids for the ob-
ject space of employees employed by one com-
pany. This works if we let employee numbers
only identify employee roles played by people.
(We will say more about roles in section 6.3.)

If an employee number would also be intended
to identify the person playing the employee role,
then we would have to enforce that nobody
can have two jobs with two different employee
numbers at the same company; furthermore, we
would have to ensure that whenever the same
person is re-employed by the same company, the
same employee number is given to that person,
even if this occurs many years later.

The Vrije Universiteit (VU) library assigns bar
codes to all its documents and all library users.
According to the description of its administra-
tive library procedures, the first digit of this bar
code is a “1” if the identified object is a docu-
ment and it is a “2” if the identified object is
a user. The bar code has a fixed, finite length.
If we assume that the library will never possess
more documents than can be named by different
fixed-length bar codes starting with a “1”, then
these bar codes can be used as an oid for docu-
ments. On the other hand, a bar code starting
with a “2” is not an oid for persons, because if
a person stops being a user of the library and
later becomes a user again, he or she receives a
different bar code. It is not even an oid for users,
where USER is a role of PERSONS, because a
user can loose his or her plastic card on which
the bar code is printed, and then can receive a
new card, containing a different code while still
being regarded as the same user. Thus, contrary
to what is stated in the description of VU library
regulations, the bar code is an oid of user iden-
tification cards, and not of persons or users.

Rumbaugh [14] gives the example of a credit card
company which identifies credit cards by the ac-
count number of the credit card. This gives a
problem if two people (e.g. husband and wife)
each have a credit card for the same account,
and the credit card is used by a third party (e.g.
a car rental company) to identify a person hir-
ing a car. This is an increase of scope of this oid
scheme, which causes problems if not all adminis-
trations using the oid scheme agree about what
the object space of the scheme is. The rental
company in this case did not realize that the ob-
ject space of this oid scheme is the set of all possi-
ble credit card account numbers, and not the set
of all possible credit card users. The credit card
company itself did not realize this well enough
either, for Rumbaugh’s example shows that this

11

company wishes to distinguish transactions per-
formed with the two cards; this is impossible if
the object space is the set of all possible account
numbers rather than the set of all possible cards
itself.

Unix process numbers do not qualify as oids, be-
cause they violate the monotonic designation re-
quirement. There is a finite set of available pro-
cess numbers and Unix reuses numbers once all
numbers have been used once. In addition, after
each bootstrap, Unix restarts assigning numbers
to processes starting from 1.

Ethernet addresses do not qualify as oids, even
though they were intended to be oids. There is
a world-wide distributor that allocates finite sets
of unused Ethernet addresses to different manu-
facturers. Each manufacturer can use numbers
from its set to identify the boards it produces. If
a manufacturer runs out of numbers, it can get a
new set of unused numbers. However, there is no
agreement among manufacturers about what the
object space of this oid scheme is. Some man-
ufacturers (call them type 1) think the object
space is the set of all possible Ethernet boards
and others (call them type 2) think that it is the
set of all possible machines in which Ethernet
boards are placed. Since one machine can have
many Ethernet boards, a machine produced by
a manufacturer of type 1 can have many Ether-
net addresses; but different Ethernet boards in a
machine produced by a manufacturer of type 2
share the same Ethernet address.

An internet domain name is a proper name used
to identify clusters of nodes in the Internet net-
work. Its composition is not fixed, but in many
cases it consists of a name for a country, a local
network within the country and a host in this
local network. This means that it holds state
information. This is not strictly forbidden for
oids, but we saw that this state information must
then be unique and unchanging. The state rep-
resented by an internet address, however, can
change: the union of Germany and the division
of Czecho-Slovakia caused some domain names
to change. Internet domain names are therefore
not oids.

We now discuss a few general mechanisms for oid as-
signment, and look at a few problems with oid as-
signment.

5 Assignment of oids

Real-world objects are not “born” named. If we want
objects to have a name, we must give it to them.
To implement a naming scheme N : ¥ — @(V X
0), we need an assignor that assigns names from V/
to objects from O. The simplest way to implement
an oid scheme is to choose the natural numbers as
value space, start assigning with 0 and let the oid
assignor remember the last assigned value. Each time
an object must be named, the assignor uses the next
higher natural number.

5.1 Information content of oids

It is permissible to use oids with information content,
as long as this content never changes. One way in
which it may be useful to allow oids with information
content is a situation in which we want to have more
than one assignor per oid scheme. Let A be the set of
assignors of a naming scheme. We must then ensure
that each a € A generates a name that is not yet
generated by any assignor for the oid scheme. One
way to do this is to define a mapping that assigns to
each a € A a set V, of potential names, such that
VonNVy = 0 for a # a’. A simple way to define
this mapping is to first implement a higher level oid
scheme with A as its object space. Each assignor
a € A can then generate a value independently from
any other assignor, but prefix this value with its own
oid. Note that the values in V now have an internal
structure. This can do no harm as long as we use one
oid scheme for the assignors. The generated names
now contain information about who generated them.

Under certain conditions it is also permissible to
put class information in an oid. If C is an object class,
we call C' a natural kind if instances of C' will be
instances of C for as long as they exist. For example,
an instance of CAR will remain a CAR instance for
as long as it exists. By contrast, an instance of class
STUDENT is really an instance of PERSON in the
state of being a STUDENT. (Deciding whether or
not a class is a natural kind is a modeling decision
that may depend upon the application. For example,
in some applications we may want to represent the
possibility that a CAR is rebuilt into a TRUCK. In
a model of this application, CAR is not a natural
kind.)

Suppose NK is a set of natural kinds that parti-
tions O, i.e. each o € O is an element of exactly
one k € NK. We then first implement an oid scheme

12

with NK as object space and implement one assignor
for each k¥ € NK. Now assignors can again operate
independently from each other, but prefix the gen-
erated names with the name of the natural kind for
which they generate names. For example, the object
space of the VU library naming scheme has two nat-
ural kinds, DOCUMENT and USER. The oid of
documents has the structure “DOCUM ENT.n” and
the “oid” of users (which we saw is really an oid of
user identification cards) has the form “USER.n”. If
there is more than one assignor for a natural kind,
then we can again use the technique mentioned ear-
lier and further prefix the generated value with the
oid of the assignor itself to get n.

Prefixing with a natural kind name is allowed be-
cause an oid composed in this way does not give
changeable information about the object. If, on the
other hand, migration into and out of a class C would
be possible, membership of C would be part of the
changeable state of an object and we cannot put the
name of C into oids of instances of C. For exam-
ple, since we know that people will never turn into
documents and vice versa, we may encode the class
DOCUMENT or PERSON into the oids used by
the library. This is even so if we view bar codes start-
ing with a “2” more correctly as identifiers of user
identification cards, for presumably, user identifica-
tion cards will never turn into library documents and
vice versa.

5.2 The oid presence and authentica-
tion problems

Oid assignment has some persistent problems, which
we call the oid presence and authentication prob-
lems. They arise from the fact that oid assignors
must be able to distinguish which objects have al-
ready received an oid, and which objects have not.
This makes two kinds of mistakes possible.

First, an assignor must be able to recognize
whether or not an object has an oid, i.e. is already
in range(N,). This is the oid presence problem.
This problem is most severe for an oid assignor, but
it also exists for users of oids. If an oid assignor can
make a mistake in recognizing the presence or absence
of an oid for a real-world object, then an object may
receive more than one “oid” and this would violate
the singular naming requirement of oids.

For users of oids the oid presence problem also ex-
ists, although it is less severe because users may know
which types of objects are supposed to have been as-

signed an oid by an oid assignor by the time they
encounter them. For example, we usually know that
an engine block should have been assigned a serial
number as oid. If we do not see a serial number in
its proper place, we know that something is wrong:
perhaps the assignor forgot to assign it or someone
erased it.

The second problem is that the baptizing proce-
dure in which a real-world object receives an oid can
be faked. Thus, objects that have or have not re-
ceived an oid from an oid assignor can receive a fake
oid from a fake oid assignor. The value used as fake
oid may or may not have already been assigned by
an assignor as oid to an object. Fake baptizing pro-
cedures may lead to one proper name being used as
“0id” for different objects or different proper names
being used as “oids” for one object, thus violating the
oid requirements. For example, engine block numbers
can be altered and people can give a false social se-
curity number. In practice, people have been falsely
accused after others used their social security number
as a fake identifier. We call the problem of recogniz-
ing whether a proper name is a true or a false oid the
oid authentication problem.

The oid presence and authentication problems can
be partly prevented, but not completely solved. The
only way to solve the oid presence problem is to elim-
inate the oid assignment process by finding a combi-
nation of properties that all objects have and that
can act as oid. The desired combination of proper-
ties should therefore be singular (there should be a
1-1 correspondence between the properties and the
objects) and monotonic (the properties should never
change). The trouble, however, is that it is very hard
or even impossible to find such a combination of prop-
erties.

For example, it is not even completely certain
whether fingerprints are unique for all possible per-
sons. But if we assume that a singular combination of
properties could be found, then we would only have
solved the oid presence problem, since every object
now has an oid. The authentication problem then still
remains, since it is impossible to prevent fraud. For
example, even fingerprints might be changed, e.g. by
burning or skin transplantation. Furthermore, they
are not unique for all possible persons and rubber
gloves taken together. It is possible to give a rubber
glove the same fingerprint as a person and use this
glove to mislead an identification device based on fin-
gerprints. As far as we know, for any identification
scheme, fraud is always possible (although it may be

13

very expensive).

The oid presence and authentication problems ex-
ist in all implementations of oid schemes. They are
not alleviated, and often aggravated, when we choose
a hierarchical oid distribution scheme in which one
central oid distributor delegates the authority to as-
sign oids to subdistributors. This is because all oid
(sub)distributors must now be able to recognize the
presence of an oid assigned by any of them, and must
be able to authenticate an oid string generated by
any of them as being a legal oid.

5.3 Borrowing oids

One way to reduce the oid presence and authentica-
tion problems is to reduce the number of oid schemes
that are used. We simply leave the generation and as-
signment of oids to one higher level institution, with
a large scope, and use the oids distributed by this
institution in different local administrations. For ex-
ample, in The Netherlands, something called a sofi
number is used to identify all people who are regis-
tered as inhabitants of The Netherlands. In addition,
a person who is not registered as an inhabitant of The
Netherlands can request a sofi number and, under
certain conditions, be granted one by the Dutch gov-
ernment. Within its object space, and assuming that
the Dutch government really succeeds in preventing
any person in the object space to obtain more than
one soft number, the sofi number satisfies all oid re-
quirements. Because the sofi scheme has a large usage
scope (many administrations in The Netherlands use
it) and it has a reasonably large object space, it is a
suitable candidate from which to borrow oids.

Borrowing oids reduces the oid presence problem,
because users of oids often know that certain kinds of
objects are supposed to have an oid. It does not re-
duce the oid authentication problem. In addition,
borrowing oids does create a dependence on some
high level institution. For example, some compa-
nies in The Netherlands have foreign nationals as cus-
tomers. These have not always received a soft num-
ber, so these companies cannot use sofi numbers as
oids for their customers. In general, only objects that
have been assigned an oid by the higher level institu-
tion can be represented, and it is often not possible
for a company to influence the naming policy of this
higher-level organization to suit the needs of the com-
pany exactly.

6 Information transfer

We have seen several times that there is not one oid
scheme for all possible objects in the world, but that
there are many different oid schemes, often with dif-
ferent but overlapping object spaces, value spaces,
usage scopes, and notation systems. This creates
a problem with information transfer. The informa-
tion transfer problem has been defined above as the
problem for an administration A, when it receives
information from an administration B, to determine
on the basis of transferred information alone whether
the transferred information is about an object already
represented by A, and if so, which one this is. To
explain the problem in more detail, we must make
the concept of world, used in table 8, more precise.
We will do this by replacing it with the more tech-
nical term “Universe of Discourse”. A more accurate
reading of table 8 ensues if we replace “world” with
“universe of discourse” as defined below.

6.1 The UoD of an administration

The Universe of Discourse (UoD) of an adminis-
tration is the set of possible objects that are of inter-
est to the administration and about which the admin-
istration may represent information. If we connect
two administrations by merging them or by connect-
ing them through an EDI network, then we do this
with the intention to join at least part of their UoD’s.
If the UoD’s are known to be disjoint, then there is no
information transfer problem, for the answer to the
question whether the received information is about an
object already in A, is always negative. If the UoD’s
are disjoint, then merging two administrations gives
no problem even if the oid schemes use the same value
space, since we required oids to be disambiguated by
subscripting them with the naming scheme in any
case.

If, on the other hand, the joined UoD’s overlap
and the two administrations are not known to use the
same oid scheme(s) on the objects in the intersection
of the UoD’s, then there is an information transfer
problem. Given two oids from different oid schemes,
it is impossible to ascertain on the basis of the oids
alone, whether they name the same object. In gen-
eral, looking at the attributes stored with the oids
does not give a definite answer to the identity ques-
tion either; we can achieve certainty only by looking
at the corresponding object(s) themselves.

The only way to avoid (current or future) infor-

mation transfer problems is to use oid borrowing as
much as possible, so that as many different adminis-
trations as possible use the same oid scheme for the
same object space. This explains the tendency for
the usage scope of oid schemes to grow, as well as the
tendency to define oid schemes for object spaces that
are as large as possible. For example, if two compa-
nies merge their employee administrations, then they
can do this effectively if they both used the sofi num-
ber as employee identifier. However, if the identified
objects are people, the use of a large object space and
a large usage scope goes counter to the demand for
privacy of human beings [3, 13].

6.2 Privacy

There are several forms of privacy. For example, bod-
ily privacy puts limits on the situations and ways in
which people can be physically examined, and spa-
tial privacy puts limits on the situations in which
people’s homes can be searched. We are concerned
here with information privacy, which is defined by
Westin [16] as “the claim of individuals, groups or
institutions to determine for themselves when, how
and to what extent information about them is com-
municated to others.” We adopt this definition here.

6.3 Protecting privacy by introducing
roles

Administrations have a tendency to increase the pos-
sibility of information transfer by enlargening the us-
age scope of an identification scheme, so that more
administrations use common identifiers. This ten-
dency should be balanced against the claim of people
and institutions to information privacy. A simple way
to combine the need for identification with the need
for privacy is to define roles of objects and identify
the roles instead of the objects that play them. We
argue elsewhere that roles are needed for another pur-
pose too, viz. to solve an apparent paradox of classi-
fication [17, 18, 19]. In the following paragraphs, we
very briefly describe what this paradox is.

A class like EMPLOY EE is often said to be
a subclass of the class PERSON. If so, each
EMPLOYEE would be identical to a PERSON.
However, there are people who have two or more
jobs. In this situation, we would like to be able to
say that e; and ey are two different employees, with
different employers, salaries, employee numbers etc.,
but that they are the same person. But if this is so,

14

EMPLOY EE cannot be a subclass of PERSON,
because this implies that each EM PLOY E'E is iden-
tical to a PERSON. And since the identity relation-
ship is transitive, if e; and es are both identical to the
same person, they would be identical to each other.

The paradox can easily be resolved by modeling
EMPLOY EFE not as a subclass of PERSON, but
as a role class of PERSON. The instances of
EMPLOYEE are roles played by PERSON in-
stances. Each role has its own identifier, and we can
simply associate a role identifier to an object if the
object plays that role. This is not the whole story,
for we may want to take care of (some kind of) in-
heritance. The application of a PERSON attribute
(e.g. name or birth date) to an EMPLOY EE role
should perhaps not give a type error, but must re-
turn the value that the attribute has for the person
who plays the employee role. As is discussed in more
detail elsewhere [18], this could be accomplished by
a delegation mechanism [12, 15].

Returning to the subject of privacy, if the require-
ment of anonymity of persons must be combined with
the need for identification, then this is done by iden-
tifying roles of persons and not the persons them-
selves. Thus, passengers get a ticket which may iden-
tify them as a passenger, but not as a person.

The use of roles played by people to represent infor-
mation about them allows us to keep the people who
play these roles (partly) anonymous. The connection
between roles and the people who play them could for
example be stored in a secure place. This could be
realized by “privacy banks”, to whom we would give
the connection between our oid and our role identi-
fiers. Just as we usually spread our money over a
few banks, we would spread the information about
our role identifiers over a few different privacy banks.
Privacy banks should be subject to strict rules and
regulations about the way they should guard these
secrets. The connection between a person and the
roles he or she plays should only be given away un-
der strict conditions, because it is a handle to dossier
linking [2]. Thus, the usage of oids identifying roles
reduces (as it is intended to do) the possibility of
transferring information about these people or insti-
tutions.

7 Comparison with other work

The concept of surrogate has been defined in 1976
(roughly in the sense of internal identifier) by Hall,

15

Owlett and Todd [6, pages 206-207] as a solution to
the following problems:

e Updating keys without losing track of the iden-
tity of the represented object.

e Distinguishing real-world objects that happen to
be represented in the system by the same at-
tribute values.

e Representing information about an object before
it has been assigned a key value.

Hall et al. attribute this idea to Engles [5]. Another
early appearance of the same idea is Cadiou [1].

Internal identifiers are used by Codd in RM/T [4]
(where they are also called surrogates). In addition
to the arguments above, Codd adds a fourth one:

e It is possible that one entity is represented in two
(relational) tables with different user-assigned
keys [4, pages 409-410]. Without internal iden-
tifiers, identity information would then not be
represented, not even in one database system.

Khoshafian and Copeland [9, page 408] use the same
arguments as above to argue for the need for object
identifiers. In addition, they use an argument based
on information transfer:

e If companies merge their databases systems,
which use different oid schemes, then the oid
scheme of one of the database systems must
change. But this would cause a discontinuity in
the identity of the objects represented by that
database system.

A solution to this problem mentioned by Khoshafian
and Copeland is that both database systems use in-
ternal identifiers and continue to use these internal
identifiers after they are merged. This avoids the
discontinuity problem, but does not solve the infor-
mation transfer problem. A better solution would
be to prevent the information transfer problem (and
therefore the discontinuity problem) by letting both
database systems use from the beginning the same
(visible) oid scheme, whose object space is large
enough to include all objects in the intersection of
the UoD’s of both database systems. As pointed out
earlier, the desirability of this solution must be bal-
anced against privacy claims.

After Khoshafian and Copeland’s paper, the term
“object identifier” came to be used for a concept that,
for different authors, has different degrees of overlap

with our concept of internal identifier. This is re-
grettable, because a lack of a consistent terminology
leads to a confusion of distinct concepts, which leads
to a lack of recognition of the requirements for good
naming schemes, and therefore results in bad naming
schemes.

Kim [10, page 108-109] uses “object identifier”
more in the sense of “internal identifier”. For ex-
ample, his “identifiers” are system-generated and in-
visible. They also contain the name of the class of
the identified object, which we saw is permissible if
objects cannot migrate between classes. However, in
Kim’s approach, objects are allowed to migrate to a
different class, and if migration occurs, the class name
in the “identifier” is replaced by the name of the class
to which the object has moved. Since his class mem-
bership is changeable, the name of the class cannot be
stored in any oid. In particular, it cannot be stored
in an internal identifier.

Kim [11, page 681] correctly observes that the use
of (invisible) internal identifiers does not eliminate
the need for keys. However, we hope to have shown
that keys do not appropriately solve the problems of
object identification, and that the use of (visible) oids
does make it possible to dispense with keys, in other
words, that object identity should be represented by
oids.

Kent [7, 8] uses the term “identifier” almost in the
way defined in this paper. He mentions the following
four identifier criteria [7, page 12]:

1. Identifiers should be unique (this is our singular
naming requirement),

2. singular (this is our singular reference require-
ment),

3. total (each object should have one), and

4. stable (this comes close to our monotonic desig-
nation requirement).

One difference with our view of oids is only that we
do not require oid schemes to be total: we also al-
low anonymous objects. This difference is probably
due to the fact that Kent is concerned with the prob-
lem of connecting information about objects stored
in different, heterogeneous databases, whereas we are
also concerned with the identification of objects in a
UoD outside databases. In those UoD’s, there exist
unidentified objects.

Another difference is that we make a distinction
between symbols and values and use values as oids.

Kent does not make this distinction and uses his sym-
bols mostly as we use values [8].

8 Conclusions

In this paper, we gave a precise definition of the con-
cept of an oid scheme as a naming scheme that sat-
isfies the singularity and monotonicity requirements.
We listed a number of differences with the concepts of
key and surrogate, and defined internal identification
schemes as a special kind of oid scheme. We listed
a number of ways in which oid schemes can be im-
plemented, and listed a number of practical limits to
their use. The oid presence problem is the problem
for an oid assignor to ascertain that an object has
already been assigned an oid, and the oid authenti-
cation problem is the problem of ascertaining that
a value is a (legally assigned) oid. We noted that
the information transfer problem is solved within one
object space of one oid scheme, but not across ob-
ject spaces of different oid schemes. The frequency
with which the information transfer problem is en-
countered can be reduced if we make object spaces
and usage scopes of oid schemes as large as possible.
However, the tendency of administrations to increase
the usage scope of oids should be balanced against
the claim of people and institutions to information
privacy. One way to do this is to use role identifiers,
which allows one to keep the disclosure of the con-
nection between a role and a person under one’s own
control.

Acknowledgements: We thank Hans van Staveren
for helping us with the intricacies of the naming
schemes of Internet, Ethernet boards and Unix pro-
cesses. Thanks are due to Henri Bal and Andy Tanen-
baum for comments given on a draft version of this
paper. The detailed comments of the anonymous ref-
erees helped us to rethink some fundamental points,
which led to improvements in the presentation of the

paper.

References

[1] J.M. Cadiou. On semantic issues in the rela-
tional model of data. In Proc. 5th Symposium
on Mathematical Foundations of Computer Sci-
ence, pages 23-38. Springer, 1976. Lecture Notes
in Computer Science 45.

16

2]

(3]

[4]

[5]

[6]

[7]

(8]

[9]

[10]

[11]

[12]

[13]

D. Chaum. Security without identification:
transaction systems to make Big Brother ob-
solete. Communications of the ACM, 28:1030—
1044, 1985.

R.A. Clarke. Information technology and
dataveillance. Communications of the ACM,
31(5):498-512, May 1988.

E.F. Codd. Extending the database relational
model to capture more meaning. ACM Transac-
tions on Database Systems, 4:397-434, 1979.

R.W. Engles. A tutorial on database organiza-
tion. In Annual review of Automatic Program-
ming, pages 1-64. Pergamon, 1972. Volume 7,
part 1.

P. Hall, J. Owlett, and S. Todd. Relations and
entities. In G.M. Nijssen, editor, Modelling in
Database Management Systems, pages 201-220.
North-Holland, 1976.

W. Kent. The breakdown of the information
model in MDBs. Sigmod record, 20(4):10-15, De-
cember 1991.

W. Kent. A rigorous model of object refer-
ence, identity, and existence. Journal of Object-
Oriented Programming, 4(3):28-36, June 1991.

S.N. Khoshafian and G.P. Copeland. Object
identity. In Object-Oriented Programming Sys-
tems, Languages and Applications, pages 406—
416, 1986. SIGPLAN Notices 22 (12).

W. Kim. Introduction to Object-Oriented
Databases. MIT Press, 1990.

W. Kim. Object-oriented database systems,
promises, reality, future. In Proceedings of the
19th International Conference on Very Large
Databases, pages 676-687, 1993.

H. Lieberman. Using prototypical objects to im-
plement shared behavior in object oriented sys-
tems. In N. Meyrowitz, editor, Object-Oriented
Programming: Systems, Languages and Applica-
tions, pages 214-223, October 1986.

M. Rotenberg. Prepared testimony and state-
ment of Marc Rotenberg, Director, Washington
Office, Computer Professionals for Social respon-
sibility (CPSR), on the use of the social secu-
rity number as a national identifier, before The

17

[14]

[15]

[16]

[17]

18]

[19]

Subcommittee on Social Security, Committee on
Ways and Means, U.S. House of Representa-
tives, February 27, 1991. Computers and Society,
21:13-19, October 1991.

J. Rumbaugh. A national identity crisis. Jour-
nal of Object-Oriented Programming, 5(6):11—
16, October 1992.

E. Sciore. Object specialization. ACM Trans-
actions on Information Systems, 7(2):103-122,
1989.

A.F. Westin. Privacy and Freedom. Atheneum,
1970.

R.J. Wieringa and W. de Jonge. The identifi-
cation of objects and roles. Technical Report
IR-267, Faculty of Mathematics and Computer
Science, Vrije Universiteit, Amsterdam, Decem-
ber 1991.

R.J. Wieringa, W. de Jonge, and P.A. Spruit.
Roles and dynamic subclasses: a modal logic
approach. In M. Tokoro and R. Pareschi, ed-
itors, Object-Oriented Programming, 8th FEu-
ropean Conference (ECOOP’94), pages 32-59.
Springer, 1994. Lecture Notes in Computer Sci-
ence 821.

R.J. Wieringa, W. de Jonge, and P.A. Spruit.
Using dynamic classes and role classes to model
object migration. Theory and Practice of Object
Systems, 1, to be published. Extended version
of [18].

Contents

1

2

Introduction

Object identifiers

2.1 Symbols and equality
2.2 Naming schemes
2.3 Oidschemes.

Oids versus keys and surrogates
31 Keyso v i e
3.2 Surrogates and internal identifiers. . .

Some (non-)examples of oids

Assignment of oids

5.1 Information content of oids

5.2 The oid presence and authentication
problems.

5.3 Borrowingoids

Information transfer

6.1 The UoD of an administration

6.2 Privacy
6.3 Protecting privacy by introducing roles

Comparison with other work

Conclusions

[=2 3N 0N VR V]

co Qo

10

12
12

12
13

14
14
14
14

15

16

