

Software Archaeology and the Preservation of Code-based

Digital Art

Francis T. Marchese; Computer Science Department, Pace University; New York, NY/USA

Abstract
The long-term conservation of code-based digital art remains

an open issue. Recently, we have proposed the use of software

engineering methodologies to create rigorously structured

documentation that will support archival preservation of a digital

artwork with the intent of future installation. In this paper we

expand this notion by proposing that the software engineering

process, and its artifacts provide a means for systematically

organizing and comparing a collection of digital artworks. In so

doing, software engineering transforms existing artisanal

preservation procedures into a schematized process that can be

integrated with traditional art conservation practice. Software

preservation also becomes an activity associated with software

archaeology: the systematic study of software systems through the

recovery and examination of outstanding material evidence, such

as source code, tests, and design documentation. The paper

focuses as well on the practice of software archaeology as it

applies to the systematic study of software-based artworks to:

reveal patterns in their underlying architectures, preserve

archetypal software, maintain a historical record, and select

artifacts for preservation.

Introduction
Conservators of software-based art must archivally manage an

assortment of artworks in order to make them displayable at any

time in the distant future. Digital artists employ an expanding

range of computer languages. Software interfaces, formats, and

protocols are evolving. Globally accessible resources either

disappear or become redistributed. And computer hardware will

become obsolete. Conservators have taken a two-pronged

approach to preserving a digital artwork: technology preservation,

in which replacement parts are stockpiled; and document

compilation, in which extensive documentation is assembled to

help define and contextualize the artwork. Both these approaches

remain problematic. Museums and cultural institutions neither

have resources to stockpile computer parts, nor the ability to

routinely maintain artworks to extend their lifespans. Since

museums collect far more artwork than they can exhibit at any

particular time, all remaining art may be expected to rotate from

storage into galleries pursuant to curatorial discretion, with the

exception of works that either define a museum’s collection or are

critical to the art canon. In such environments it may be decades

before artworks are reinstalled. As a result, routine maintenance of

these works becomes managerially prohibitive because of time,

staffing, and financial constraints. This leaves open the prospect

that when an artwork is finally scheduled for installation, it may

not be possible to do so, because either part or all of the artwork

will have reached technical obsolescence.

We have proposed a solution to the preservation of software-

based digital art that addresses these issues by recasting artwork as

a unified collection of documents [1][2]. It posits a long term view

of digital art preservation in which a curator and conservator five

hundred years in the future should be able to install today’s digital

art, something commonplace today with traditional art from five

hundred years ago (e.g. Medieval and Renaissance). We contend

that software engineering methodologies should make it possible

to construct rigorously structured documentation, that will support

archival preservation of a digital artwork intended for future

installation. By definition, software engineering is the process of

applying a systematic, disciplined, quantifiable approach to

problem analysis, system and software design, its development,

operation, and maintenance [3]. Software engineering

methodologies focus on both the software product, and the process

used to create and maintain it. In the latter case, the software life-

cycle is an extension of the business life-cycle, and defined by the

business process management model (BPM) [4]. As such, its tools

and techniques may be integrated into a museum’s conservation

practice.

In this paper we expand this notion by proposing that the

software engineering process and its artifacts provide a means for

systematically organizing and comparing a collection of digital

artworks. In so doing, software engineering transforms existing

artisanal preservation procedures into a schematized process that

can be integrated with traditional art conservation practice.

Software preservation also becomes an activity associated with

software archaeology: the systematic study of software systems

through the recovery and examination of outstanding material

evidence, such as source code and design documentation. Here, we

put forward the practice of software archaeology as a holistic

approach to the systematic study of software-based artworks in

order to reveal patterns in underlying architectures, preserve

archetypal examples of code-based art, select artifacts for

preservation, and maintain the historical record.

In the following section we expand the definition of software

archaeology stated above. This is followed by sections that: define

a theoretical model for analyzing artworks, discuss the use of

reverse engineering recovering structural information, and

compare some examples.

Software Archaeology
Booch [5] defines software archaeology as "the recovery of

essential details about an existing system sufficient to reason

about, fix, adapt, modify, harvest, and use that system itself or its

parts." This is a tactical approach to software understanding in

which the results of research are utilized to maintain the digital

artifacts it studies. A strategic approach to artifact understanding

comes from the field of archaeology itself, in which research

Archiving 2013 Final Program and Proceedings 25

results are categorized, compared, and interpreted over time. As

defined, archaeology is the study of human activity in the past,

primarily through the recovery and analysis of the material culture

and environmental data that they have left behind. One goal of

archaeology is to expose the structure of the past through

description and classification of physical evidence so as to use it to

account for the distribution of the remains of ancient societies over

time and space. Another goal is the determination of a system’s

behavior, represented by physical remains, in order to understand

underlying cultural processes. If we consider that the wide variety

of digital artwork designs fall into artistic genres such web,

immersive, mobile, pervasive, and more; and that each software

category has its own “tribal” or “cultural” identity, meaning that

the design and behaviors of each software artifact may be

associated with a particular tribe of artists or digital artistic culture,

then software archaeology adopts the holistic and strategic

dimensions characteristic of the archaeological field.

Both tactical and strategic approaches are essential for digital

archaeology. On the one hand a conservator must be able to

preserve digital art for it ultimate installation. On the other, the

conservator needs a global or holistic view of the kinds of digital

art that must be preserved in order to define and use best practices

for maintaining a particular digital artwork. Such a view allows

conservator and art historian to perceive an artwork as a reflection

of the conceptual space the artist had worked in at the time the art

was created. The number of software components, their hierarchy,

and the interconnections among them should give an idea of how

the artist viewed a representation problem, and how it was

transformed into a computer system. As such, the works within

each group should share a common set of design constructs, the

evolution of which could be monitored over time. Hence,

archaeological analysis of digital artwork should yield important

answers to questions about:

 Authorship – which parts were written by whom (The hand of

the artist? Or was the artist the designer who contracted out

construction?).

 Educational/Cultural context – who influenced the artist

conceptually or technologically.

 Craftsmanship – how well the software was written and

system built, how well the parts fit together.

 Aesthetics – Well conceived and designed software possess

an elegance and refinement comparable to any other

beautifully created or designed object.

 Development Process – design strategies used by the artist.

 Technical Context – what development tools, libraries,

environments were available at the time the artwork was

created.

 Theoretical Foundations – theories/paradigms of computer

organization, algorithm use, and data design.

Table 1 (adapted from [6]) collects together the components

of the strategic and tactical components associated with software

archaeology, organizing them under the headings of “preservation”

and “usage”, respectively. Preservation assumes a holistic

perspective, concentrating on the acquisition, evaluation,

organization, and integration of digital artwork into a software

collection. One process important to the preservation of digital art

is the development of design patterns [7]. A design pattern is a

general reusable solution to a commonly occurring problem within

a given context in software design. Originally introduced by the

architect Christopher Alexander to solve recurring problems that

arose in the design of towns, buildings, and construction activities,

patterns offer conceptual and concrete guides to problem solving

[8]. As part of a strategic preservation initiative, creation of design

patterns through analysis of digital art collections should provide

general solutions to problems common to the long-term

maintenance of each genre.

Table 1: Software Archaeology — Dual Perspectives

Preservation: Usage:

Strategic Tactical

Software Repository Legacy Systems

Software Preservation Software Reuse

Rights Management Reverse Engineering

Software Selection Software Construction

Software History Leaving a Legacy for Future

Generations

Classic Software Integration

Design Patterns Software Maintenance

Time: Centuries Time: Decades or Less

The tactical approach to software archaeology in Table 1

assumes the artwork to be a legacy system in which its conceptual

and technological underpinnings are frozen in time. This is a

natural assumption for most digital artworks, given that when art

museums acquire such works they should be complete,

functioning, with no further additions or modifications anticipated.

Reverse engineering becomes an important part of the maintenance

strategy behind this artwork, in which it is analyzed to identify its

component parts, and the interrelationships among those parts, in

order to either create representations of the system in another form

or representations at a higher level of abstraction [6]. Reverse

engineering generally involves extracting design artifacts to

synthesize more general abstractions. It does not necessarily

involve changing the system under study or creating a new system

based on the reverse engineered system, although these are two

characteristic goals of the process. As Chikofsky and Cross have

stated “reverse engineering is a process of examination, not a

process of change or replication.” [9] In all, the methodologies

underlying software reuse, reverse engineering, and software

maintenance work in concert to provide information about low and

high level representations of an artwork from source code through

system design documents.

Theoretical Model
A theoretical model is required to understand individual

digital artworks and systematically compare them. The approach

used here relies on the “4+1 View Model” of Kruchten [10] which

captures multiple views or perspectives of software architecture.

Models provide referents for analyzing software and formal

structures or patterns for its decomposition. Software architecture

represents the high-level structure of a software system. It can be

defined as the set of structures needed to reason about the software

system, which comprise the software’s component parts, the

relations between them, and the properties of both components and

relations. Software architecture is concerned with the processes of

26 © Copyright 2013; Society for Imaging Science and Technology

abstraction, decomposition, and composition, utilizing style and

aesthetics as guides.

The “4+1 View Model” consists of logical, process, physical,

and development views. Added to this are use cases or scenarios

(the “plus one” view) that bind together the four architectural

components (cf. Figure 1). The logical view represents the

functional requirements — a collection of conceptual classes or

abstractions that define and characterize the actions the artwork

performs. The process view captures the artwork’s behavior,

exposing its distribution of tasks and their synchrony. Crucial to a

process view is its display of a thread of control that reveals the

sequential communication between process tasks, enabling a

process to generate a particular behavior. The physical view

describes the mapping(s) of the software onto the hardware taking

into account the system’s non-functional requirements. Non-

functional requirements, sometimes called quality attributes, are

not system features, but rather required system characteristics.

They represent important aspects of the system such as

performance, security, usability, adaptability, compatibility, and

legal concerns. The development view describes the static

organization of the software in its development environment,

focusing on the organization of software modules within the

software development environment. Software is packaged naturally

into subsystems that are organized in a hierarchy of layers, each

layer providing a narrow and well-defined interface to the layers

above it. Finally, scenarios describe how one or more entities

interact with a system by enumerating the steps, events, and/or

actions which occur during engagement. Scenarios may be

considered abstract representations of the most important system

requirements, because at a high level they specify what the system

is expected to do. As such, they impact all four architectural views,

and are shown in Figure 1 as binding them together.

Creating these architectural views requires a systematic

reengineering approach that works backward from the software

components acquired by an art museum. Such an approach is

necessary because this documentation is expected to differ

significantly by artwork, and exhibit varying degrees of

incompleteness, inhomogeneity, and diversity in its content and

format. Software engineering provides a systematic methodology

for creating and maintaining documentation to support

communication, preservation of system and institutional memory,

and processes such as system auditing. Within this context an

artwork’s documentation should supply comprehensive

information about its capabilities, architecture, design details,

features, and limitations. It should encompass the following five

components [7]:

1. Functional Requirements – The artwork’s conceptual

foundation. What it is supposed to do.

2. Architecture/Design – An overview of software that includes

the software’s relationship to its environment, and

construction principles used in design of the software

components.

3. Technical – Source code, algorithms, and interface

documentation.

4. End User – Installation, maintenance, and user

documentation.

5. Supplementary Materials – Anything else related to the

system. This includes: legal documents, design histories,

interviews, scholarly books, installation plans, drawings,

models, documentary videos, websites, etc.

Each component is important to the representation of a digital

system. Each may operate at a different level of abstraction or

within a particular context. Functional Requirements

documentation presents the conceptual view of what the system is

expected to do. It is written to be understood by all the

stakeholders who comprise an art museum’s business practice.

Architecture/Design documentation functions very much like an

architect’s sketch of a building, showing all its components and

how they fit together. Technical documentation represents the

bricks-and-mortar of the artwork, conveying information about

how the artwork is constructed. Figure 2 displays mappings

between software documentation and the “4 + 1 View Model”.

The open-headed solid arrows indicate how the software

documentation organizes the views, while the closed-headed dash

arrows show the possible contributions Supplementary Materials

may contribute to understanding the design of these views. It

should be emphasized that the reason why we perform a mapping

to a standardized set of formal software engineering documents,

such as those provided by the Rational Unified Process (RUP)

Logical View

Physical ViewProcess View

Development

View

Scenarios

End User

Functionality

Programmers

Software Management

Integrators

Performance

Scalability

System Engineers

Topology

Communications

Figure 1. “4+1 View Model” [10].

Requirements

Architecture /
Design

Technical

End User

Supplementary
Materials

Scenarios

Logical View

Process View

Development
View

Physical View

Software
Documentation “4 + 1 View Model”

Figure 2. “4+1 View Model” and software documentation mapping.

Archiving 2013 Final Program and Proceedings 27

[11], is that it immediately affords a comparison among artworks,

thus supporting the archaeological scheme.

Reverse Engineering
Reclamation of an artwork’s design is a reverse engineering

process that begins with recovery of user scenarios – the

foundation of functional requirements. One place to look for these

scenarios is in the artwork’s Supplementary Materials, where its

temporal designs may have been depicted in storyboards, videos,

and such. Otherwise, scenarios may be captured through

observation of visitors engaging the artwork as it operates within a

gallery setting. Formal usability techniques [12] may be applied to

the problem in order to extract the precise dialog between artwork

and viewer. Typically, a set of scripts are written to systematically

define user engagement, and then are followed stepwise to explore

each aspect of interaction. Supplementary Materials may

contribute to the Physical View as well, supplying non-functional

requirements defining how a gallery visitor is expected to engage

the artwork. If the artwork has been provided as source code, this

contributes to the development view that makes up the Technical

documentation. If only executable code exists, then it may be

possible to decompile it to source code, something that can be

done if the artwork has been constructed with popular

programming languages. The logical and process views that

constitute the Architecture/Design documentation in the form of

UML (Unified Modeling Language) class diagrams that fix an

artwork’s static structure as a collection of basic, interconnected

building blocks, and sequence diagrams that convey the messages

passed between the user and the system, and among objects within

the system [7], are not expected to be part of the artwork when

acquired by a museum. Most artists are not trained as software

engineers, and thus are not expected to create UML representations

of their works, as of yet.

Given a complete set of scenarios, and employing the

remaining documentation categories as the interpretive context, it

should be possible to generate UML representations – in effect,

produce a complete design document for the artwork from scratch

[7]. Alternatively, in circumstances where the artwork has been

written in a popular programming language such as C, C++, or

Java, UML class and sequence diagrams may be generated

automatically from either source or executable code exploiting

mainstream UML CASE tools [13]. The resulting UML diagrams

embody the artist’s original software architecture as opposed to an

architectural design that has been inferred from the remaining

documentation categories.

Examples of UML class and sequence diagrams are shown in

Figures 3 and 4 for a video store, a generic, non-artistic project,

that is characteristic of many software systems. The class diagram

represents the video store’s information domain composed of

conceptual classes, shown as boxes, with labels such as Customer,

VideoStore, Video, VideoRental, etc., that define the main

business entities. Each class is connected to others by lines of

association which specify their semantic relationships such as

“One CashPayment Pays for one RentalTransaction.” This is a

high level, or abstract class diagram, because it does not show the

kinds of processing each class performs in support of the video

rental procedure. The high level sequence diagram in Figure 4

represents the dialog between the clerk and system during the

video rental process. The right-pointing sold arrows show the

clerks request while the left pointing dashed arrows show the

systems response. Such a diagram would be created by translating

scenario narratives. This diagram also works at the class level to

express the dialog between system classes as each responds to a

request for information or processing.

Comparing Architectural Structures
The goal of our analysis was to explore the architectural

structures among digital artworks. As an initial archaeological

exploration, five works were selected for analyses from the

CODeDOC exhibition of the Whitney Museum of American Art’s

AirPort website [14]. CODeDOC exhibits both artwork and the

underlying code, allowing individuals to look under the artwork’s

hood. Artists were given the assignment of connecting and moving

three points in space, with their source code not to exceed 8KB in

size. Works selected here for analysis were created by the artists

Mark Napier, Golan Levin, Brad Paley, Scott Snibbe, and Martin

Wattenberg. All were interactive, graphical Java applets. Briefly,

these artworks included a cartographic application (Levin),

dynamic geometric art (Napier, Snibbe, and Wattenberg), and text

visualization (Paley).

Architectural diagrams were generated automatically from

either an artwork’s Java source or compiled codes, utilizing a

UML design tool. A sample design class diagram is presented in

VideoRental

dueDate

returnDate

returnTime

CashPayment

amount : Money

Video

ID

Stocks?

Rents?

Rents- from 

Pays- for ?

Initiates ?

1

1

1..*

1

1

1

1..*

1 *1*

Pays-for- overdue- charges ?

RentalTransaction

date1

* *

VideoStore

address

name

phoneNumber

Customer

address

name

phoneNumber

1

Records- rental-of 

0..1

1

rent(videoID)

: System: Clerk

outputRentalReport()

video info

* [more rentals]

recordNewRental(customerID)

customer info

rental report

Figure 3. Sample conceptual class diagram..

Figure 4. Sample sequence diagram.

28 © Copyright 2013; Society for Imaging Science and Technology

Figure 5 for Scott Snibbe’s Tripolar artwork. This diagram shows

a program comprised of one software class that collects together all

data (middle segment of the class diagram) and functionality

(bottom segment). The other four artworks exhibit similar

monolithic architectures as well. No sequence diagram is shown

because there is only one defining class for each program. A

sequence diagram’s utility is in its ability to show collaborative

behavior among classes or other interacting entities, such as that

shown in Figure 4. Hence, a minimum of two classes or entities are

required to produce a sequence diagram.

Given that all artists shared the same problem and constraints,

there might be an expectation of similarity in design across

artworks. In all works the software is tightly written. All employ

similar Java libraries for interaction and graphics. Essentially, they

only differ in the code related to what each portrays on the

computer screen, which can differ radically across artworks. See

Figure 6 for example, which displays class diagrams for Paley’s

and Napier’s applets, respectively. Paley’s is a far larger applet,

involving more attributes and methods; something that comes from

the algorithms used to process and render the relationships among

textural items.

Figure 6 demonstrates as well the power of class diagrams for

ease of comparison. Instead of attempting to compare lines of

source code, these graphical representations immediately provide a

high level accounting of each software class.

The single class structure of these artworks raises a question

about how to categorize artwork in general. From a software size

perspective (c.f. Table 2), this artwork falls into the trivial

category. Trivial programs tend to be written on a part-time basis,

may be used for a single purpose or to demonstrate a concept, and

are sparsely documented. From an artistic perspective, we may

prefer to call these works sketches, since their purposes are similar

in nature to artist sketches. In addition, the ability to create a

digital sketch has been facilitated by the development of the

Processing programming language [15], a streamlined version of

Java, now employed to teach programming in digital art courses.

With its extensive libraries for sound, graphics, video, image

processing, interaction, and sensor control, it is possible to

construct rich artistic experiences with a minimal amount of

programing [16]. Indeed, in the decade since the CODeDOC

exhibition, the amount of Processing-based digital artwork has

exploded, some of which has found its way into major museum

collections. For example, Philip Worthington’s work Shadow

Monsters is in the collection of New York’s Museum of Modern

Art [17].

The single class structure of these artworks raises the issue of

maintaining monolithic programs as well. In general, monolithic

programs tend to be difficult and time consuming to maintain,

because their design and behaviors can only be understood by

detailed analysis of their source coded; a problem exacerbated as

program size increases, and as documentation within the software

decreases. Since the CODeDOC artworks considered here reside at

the trivial end of the software spectrum, and they only rely on the

Figure 6. Class diagram comparisons.

Figure 5. Class diagram for Scott Snibbe’s Tripolar artwork.

Archiving 2013 Final Program and Proceedings 29

functionality intrinsic to the Java programming language as well,

their low level designs and behaviors can be deconstructed and

represented using UML state charts and activity diagrams.

However, all this comes at a greater expenditure of time and effort.

Likewise, conservation of monolithic digital art written in the

Processing language will face similar issues, in particular their

reliance on libraries external to the core programming language -

libraries that may have both a short lifetime, and be poorly

documented.

Assessment of such concerns for monolithic code is found in

our archaeological approach. The creation of class diagrams from

source code provides a means for quickly evaluating the kinds of

data and functionality a program contains. Comparing class

diagrams among artworks allows the conservator to categorize

collections of works by their functional requirements, and evaluate

their reliance on external resources. Finally, based on these

considerations, it should be possible to appraise an artwork’s

suitability for conservation.

Table 2: Software Size Categories

Category Programmers Duration
Size (Lines

of Code)

Extremely

Large
> 200 > 6 yrs. >1,000,000

Very

Large
20 - 200 3 - 6 yrs.

100,000 -

1,000,000

Large 5 - 20 2 - 3 yrs.
20,000 -

100,000

Medium 2 - 5
6 mo.– 2

yrs.

3,000 –

20,000

Small 1 - 2 1 - 6 mo. 500 - 3,000

Trivial 1 1 - 4 wks. < 500

Summary
In this paper we have put forward the notion of applying

principles of software archaeology (the systematic study of

software systems through the recovery and examination of

outstanding material evidence) to the long term conservation of

code-based digital artwork through the application of the software

engineering process, and the use of its artifacts to systematically

organize and compare a collection of digital artworks. We have put

forward the use of the “4+1 View Model” of Kruchten for

analyzing digital artworks, and shown how this model can be

translated into the formal documentation that is part of the

Rationalized Unified Process, a standard software engineering

methodology. In so doing, existing artisanal conservation

procedures are transformed into a systematized process that can be

integrated with traditional art conservation practice software,

maintain a historical record, and select artifacts for preservation.

Lastly, we applied our method to a collection of web-based

artworks, comparing their architectures, and discussing their

capacities for conservation. It was found that even though these

works were considered “trivial” by contemporary software stands,

the nature of their designs signals that significant effort may be

required for their long term conservation.

References
[1] F.T. Marchese, “Conserving Digital Art for Deep Time,” Leonardo,

44 (4), 302 -308 (2011).

[2] F.T. Marchese and M.P.K Shergill, 500 Year Documentation, Proc.

DocEng’12 (Paris, France, September 4–7, 2012), pp. 157 -160

(2012).

[3] R.S. Pressman, Software Engineering: A Practitioner’s Approach, 6th

Edition (New York: McGraw-Hill, 2005).

[4] R.K. Ko, A Computer Scientist’s Introductory Guide to Business

Process Management (BPM), Crossroads,. 15 (4), 11–18 (2009).

[5] G. Booch, Software Archaeology, ACM OOPSLA (2008).

[6] E. Walker, "Tech Views," Jour. Softw.Tech, 8 (3), 1- 3 (2005).

[7] C. Larman, Applying UML and Patterns: An Introduction to Object

Oriented Analysis and Design and Iterative Development, 3rd Edition

(Upper Saddle River, NJ: Prentice Hall, 2005).

[8] C. Alexander, A Pattern Language: Towns, Buildings, Construction

(Oxford University Press, 1977).

[9] E.J. Chikofsky and J.H. Cross, “Reverse Engineering and Design

Recovery: a Taxonomy,” IEEE Software, 7(1), 13-17 (1990).

[10] P. Kruchten, “Architectural Blueprints — The ‘4+1’ View Model of

Software Architecture,” IEEE Software, 12 (6), 42-50 (1995,

November).

[11] P. Kruchten, The Rational Unified Process-An Introduction, 3rd ed.

(Addison-Wesley, 2003).

[12] J. F. Dumas and J.C. Redish. A Practical Guide to Usability Testing,

1st ed. (Greenwood Publishing Group Inc., Westport, CT, USA,

1993).

[13] L. Khaled, A Comparison Between UML Tools, Proc. Second

International Conference on Environmental and Computer Science,

111-114 (2009).

[14] Whitney Museum of American Art, “CODeDOC,” (2002). Retrieved

Feb. 1, 2013 from http://artport.whitney.org/commissions/codedoc/.

[15] C. Reas, B. Fry, and J. Maeda, Processing: A Programming

Handbook for Visual Designers and Artists, 1st ed.(The MIT Press,

2007).

[16] D. O'Sullivan and T. Igoe, Physical Computing: Sensing and

Controlling the Physical World with Computers. (Boston, MA,

Course Technology Press, 2004).

[17] P. Worthington, “Shadow Monsters,” (2004). Retrieved Feb. 1, 2013

from http://www.moma.org/collection/object.php?object_id=110196

Author Biography
Francis T. Marchese received his BS in natural science from

Niagara University (1971), MS in chemistry from Youngstown State

University (1973), and PhD in theoretical chemistry from the University

of Cincinnati (1979). Professor of computer science at Pace University,

his research spans visual computing and conservation of digital art. He is

founder and co-director of the Pace Digital Gallery, and an associate

editor of the ACM Journal on Computers and Cultural Heritage.

30 © Copyright 2013; Society for Imaging Science and Technology

http://artport.whitney.org/commissions/codedoc/

