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Abstract 
The long-term conservation of code-based digital art remains 

an open issue. Recently, we have proposed the use of software 

engineering methodologies to create rigorously structured 

documentation that will support archival preservation of a digital 

artwork with the intent of future installation. In this paper we 

expand this notion by proposing that the software engineering 

process, and its artifacts provide a means for systematically 

organizing and comparing a collection of digital artworks. In so 

doing, software engineering transforms existing artisanal 

preservation procedures into a schematized process that can be 

integrated with traditional art conservation practice. Software 

preservation also becomes an activity associated with software 

archaeology: the systematic study of software systems through the 

recovery and examination of outstanding material evidence, such 

as source code, tests, and design documentation. The paper 

focuses as well on the practice of software archaeology as it 

applies to the systematic study of software-based artworks to: 

reveal patterns in their underlying architectures, preserve 

archetypal software, maintain a historical record, and select 

artifacts for preservation. 

Introduction  
Conservators of software-based art must archivally manage an 

assortment of artworks in order to make them displayable at any 

time in the distant future. Digital artists employ an expanding 

range of computer languages. Software interfaces, formats, and 

protocols are evolving. Globally accessible resources either 

disappear or become redistributed. And computer hardware will 

become obsolete. Conservators have taken a two-pronged 

approach to preserving a digital artwork: technology preservation, 

in which replacement parts are stockpiled; and document 

compilation, in which extensive documentation is assembled to 

help define and contextualize the artwork. Both these approaches 

remain problematic. Museums and cultural institutions neither 

have resources to stockpile computer parts, nor the ability to 

routinely maintain artworks to extend their lifespans. Since 

museums collect far more artwork than they can exhibit at any 

particular time, all remaining art may be expected to rotate from 

storage into galleries pursuant to curatorial discretion, with the 

exception of works that either define a museum’s collection or are 

critical to the art canon. In such environments it may be decades 

before artworks are reinstalled. As a result, routine maintenance of 

these works becomes managerially prohibitive because of time, 

staffing, and financial constraints. This leaves open the prospect 

that when an artwork is finally scheduled for installation, it may 

not be possible to do so, because either part or all of the artwork 

will have reached technical obsolescence. 

We have proposed a solution to the preservation of software-

based digital art that addresses these issues by recasting artwork as 

a unified collection of documents [1][2]. It posits a long term view 

of digital art preservation in which a curator and conservator five 

hundred years in the future should be able to install today’s digital 

art, something commonplace today with traditional art from five 

hundred years ago (e.g. Medieval and Renaissance). We contend 

that software engineering methodologies should make it possible 

to construct rigorously structured documentation, that will support 

archival preservation of a digital artwork intended for future 

installation. By definition, software engineering is the process of 

applying a systematic, disciplined, quantifiable approach to 

problem analysis, system and software design, its development, 

operation, and maintenance [3]. Software engineering 

methodologies focus on both the software product, and the process 

used to create and maintain it. In the latter case, the software life-

cycle is an extension of the business life-cycle, and defined by the 

business process management model (BPM) [4]. As such, its tools 

and techniques may be integrated into a museum’s conservation 

practice.  

In this paper we expand this notion by proposing that the 

software engineering process and its artifacts provide a means for 

systematically organizing and comparing a collection of digital 

artworks. In so doing, software engineering transforms existing 

artisanal preservation procedures into a schematized process that 

can be integrated with traditional art conservation practice. 

Software preservation also becomes an activity associated with 

software archaeology: the systematic study of software systems 

through the recovery and examination of outstanding material 

evidence, such as source code and design documentation. Here, we 

put forward the practice of software archaeology as a holistic 

approach to the systematic study of software-based artworks in 

order to reveal patterns in underlying architectures, preserve 

archetypal examples of code-based art, select artifacts for 

preservation, and maintain the historical record.  

In the following section we expand the definition of software 

archaeology stated above. This is followed by sections that: define 

a theoretical model for analyzing artworks, discuss the use of 

reverse engineering recovering structural information, and 

compare some examples. 

Software Archaeology 
Booch [5] defines software archaeology as "the recovery of 

essential details about an existing system sufficient to reason 

about, fix, adapt, modify, harvest, and use that system itself or its 

parts." This is a tactical approach to software understanding in 

which the results of research are utilized to maintain the digital 

artifacts it studies. A strategic approach to artifact understanding 

comes from the field of archaeology itself, in which research 
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results are categorized, compared, and interpreted over time. As 

defined, archaeology is the study of human activity in the past, 

primarily through the recovery and analysis of the material culture 

and environmental data that they have left behind. One goal of 

archaeology is to expose the structure of the past through 

description and classification of physical evidence so as to use it to 

account for the distribution of the remains of ancient societies over 

time and space. Another goal is the determination of a system’s 

behavior, represented by physical remains, in order to understand 

underlying cultural processes. If we consider that the wide variety 

of digital artwork designs fall into artistic genres such web, 

immersive, mobile, pervasive, and more; and that each software 

category has its own “tribal” or “cultural” identity, meaning that 

the design and behaviors of each software artifact may be 

associated with a particular tribe of artists or digital artistic culture, 

then software archaeology adopts the holistic and strategic 

dimensions characteristic of the archaeological field.  

Both tactical and strategic approaches are essential for digital 

archaeology. On the one hand a conservator must be able to 

preserve digital art for it ultimate installation. On the other, the 

conservator needs a global or holistic view of the kinds of digital 

art that must be preserved in order to define and use best practices 

for maintaining a particular digital artwork. Such a view allows 

conservator and art historian to perceive an artwork as a reflection 

of the conceptual space the artist had worked in at the time the art 

was created. The number of software components, their hierarchy, 

and the interconnections among them should give an idea of how 

the artist viewed a representation problem, and how it was 

transformed into a computer system. As such, the works within 

each group should share a common set of design constructs, the 

evolution of which could be monitored over time. Hence, 

archaeological analysis of digital artwork should yield important 

answers to questions about: 

 Authorship – which parts were written by whom (The hand of 

the artist? Or was the artist the designer who contracted out 

construction?). 

 Educational/Cultural context – who influenced the artist 

conceptually or technologically.  

 Craftsmanship – how well the software was written and 

system built, how well the parts fit together. 

 Aesthetics – Well conceived and designed software possess 

an elegance and refinement comparable to any other 

beautifully created or designed object. 

 Development Process – design strategies used by the artist. 

 Technical Context – what development tools, libraries, 

environments were available at the time the artwork was 

created.  

 Theoretical Foundations – theories/paradigms of computer 

organization, algorithm use, and data design. 

 

Table 1 (adapted from [6]) collects together the components 

of the strategic and tactical components associated with software 

archaeology, organizing them under the headings of “preservation” 

and “usage”, respectively. Preservation assumes a holistic 

perspective, concentrating on the acquisition, evaluation, 

organization, and integration of digital artwork into a software 

collection. One process important to the preservation of digital art 

is the development of design patterns [7]. A design pattern is a 

general reusable solution to a commonly occurring problem within 

a given context in software design. Originally introduced by the 

architect Christopher Alexander to solve recurring problems that 

arose in the design of towns, buildings, and construction activities, 

patterns offer conceptual and concrete guides to problem solving 

[8]. As part of a strategic preservation initiative, creation of design 

patterns through analysis of digital art collections should provide 

general solutions to problems common to the long-term 

maintenance of each genre.  

Table 1: Software Archaeology — Dual Perspectives 

Preservation: Usage: 

Strategic Tactical 

Software Repository Legacy Systems  

Software Preservation Software Reuse 

Rights Management Reverse Engineering 

Software Selection Software Construction 

Software History Leaving a Legacy for Future 

Generations 

Classic Software Integration 

Design Patterns Software Maintenance 

Time: Centuries Time: Decades or Less 

 

The tactical approach to software archaeology in Table 1 

assumes the artwork to be a legacy system in which its conceptual 

and technological underpinnings are frozen in time. This is a 

natural assumption for most digital artworks, given that when art 

museums acquire such works they should be complete, 

functioning, with no further additions or modifications anticipated. 

Reverse engineering becomes an important part of the maintenance 

strategy behind this artwork, in which it is analyzed to identify its 

component parts, and the interrelationships among those parts, in 

order to either create representations of the system in another form 

or representations at a higher level of abstraction [6]. Reverse 

engineering generally involves extracting design artifacts to 

synthesize more general abstractions. It does not necessarily 

involve changing the system under study or creating a new system 

based on the reverse engineered system, although these are two 

characteristic goals of the process. As Chikofsky and Cross have 

stated “reverse engineering is a process of examination, not a 

process of change or replication.” [9] In all, the methodologies 

underlying software reuse, reverse engineering, and software 

maintenance work in concert to provide information about low and 

high level representations of an artwork from source code through 

system design documents.  

Theoretical Model 
A theoretical model is required to understand individual 

digital artworks and systematically compare them. The approach 

used here relies on the “4+1 View Model” of Kruchten [10] which 

captures multiple views or perspectives of software architecture. 

Models provide referents for analyzing software and formal 

structures or patterns for its decomposition. Software architecture 

represents the high-level structure of a software system. It can be 

defined as the set of structures needed to reason about the software 

system, which comprise the software’s component parts, the 

relations between them, and the properties of both components and 

relations. Software architecture is concerned with the processes of 
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abstraction, decomposition, and composition, utilizing style and 

aesthetics as guides.  

The “4+1 View Model” consists of logical, process, physical, 

and development views. Added to this are use cases or scenarios 

(the “plus one” view) that bind together the four architectural 

components (cf. Figure 1). The logical view represents the 

functional requirements — a collection of conceptual classes or 

abstractions that define and characterize the actions the artwork 

performs. The process view captures the artwork’s behavior, 

exposing its distribution of tasks and their synchrony. Crucial to a 

process view is its display of a thread of control that reveals the 

sequential communication between process tasks, enabling a 

process to generate a particular behavior. The physical view 

describes the mapping(s) of the software onto the hardware taking 

into account the system’s non-functional requirements. Non-

functional requirements, sometimes called quality attributes, are 

not system features, but rather required system characteristics. 

They represent important aspects of the system such as 

performance, security, usability, adaptability, compatibility, and 

legal concerns. The development view describes the static 

organization of the software in its development environment, 

focusing on the organization of software modules within the 

software development environment. Software is packaged naturally 

into subsystems that are organized in a hierarchy of layers, each 

layer providing a narrow and well-defined interface to the layers 

above it. Finally, scenarios describe how one or more entities 

interact with a system by enumerating the steps, events, and/or 

actions which occur during engagement. Scenarios may be 

considered abstract representations of the most important system 

requirements, because at a high level they specify what the system 

is expected to do. As such, they impact all four architectural views, 

and are shown in Figure 1 as binding them together.  

Creating these architectural views requires a systematic 

reengineering approach that works backward from the software 

components acquired by an art museum. Such an approach is 

necessary because this documentation is expected to differ 

significantly by artwork, and exhibit varying degrees of 

incompleteness, inhomogeneity, and diversity in its content and 

format. Software engineering provides a systematic methodology 

for creating and maintaining documentation to support 

communication, preservation of system and institutional memory, 

and processes such as system auditing. Within this context an 

artwork’s documentation should supply comprehensive 

information about its capabilities, architecture, design details, 

features, and limitations. It should encompass the following five 

components [7]: 

1. Functional Requirements – The artwork’s conceptual 

foundation. What it is supposed to do.  

2. Architecture/Design – An overview of software that includes 

the software’s relationship to its environment, and 

construction principles used in design of the software 

components.  

3. Technical – Source code, algorithms, and interface 

documentation. 

4. End User – Installation, maintenance, and user 

documentation. 

5. Supplementary Materials – Anything else related to the 

system. This includes: legal documents, design histories, 

interviews, scholarly books, installation plans, drawings, 

models, documentary videos, websites, etc. 

 

Each component is important to the representation of a digital 

system. Each may operate at a different level of abstraction or 

within a particular context. Functional Requirements 

documentation presents the conceptual view of what the system is 

expected to do. It is written to be understood by all the 

stakeholders who comprise an art museum’s business practice. 

Architecture/Design documentation functions very much like an 

architect’s sketch of a building, showing all its components and 

how they fit together. Technical documentation represents the 

bricks-and-mortar of the artwork, conveying information about 

how the artwork is constructed. Figure 2 displays mappings 

between software documentation and the “4 + 1 View Model”.  

The open-headed solid arrows indicate how the software 

documentation organizes the views, while the closed-headed dash 

arrows show the possible contributions Supplementary Materials 

may contribute to understanding the design of these views. It 

should be emphasized that the reason why we perform a mapping 

to a standardized set of formal software engineering documents, 

such as those provided by the Rational Unified Process (RUP) 

Logical View

Physical ViewProcess View

Development 

View

Scenarios

End User

Functionality

Programmers

Software Management

Integrators

Performance

Scalability

System Engineers

Topology

Communications

Figure 1. “4+1 View Model” [10]. 

Requirements

Architecture / 
Design 

Technical

End User

Supplementary 
Materials

Scenarios

Logical View

Process View

Development 
View

Physical View

Software 
Documentation “4 + 1 View Model”

Figure 2. “4+1 View Model” and software documentation mapping. 
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[11], is that it immediately affords a comparison among artworks, 

thus supporting the archaeological scheme.  

Reverse Engineering 
Reclamation of an artwork’s design is a reverse engineering 

process that begins with recovery of user scenarios – the 

foundation of functional requirements. One place to look for these 

scenarios is in the artwork’s Supplementary Materials, where its 

temporal designs may have been depicted in storyboards, videos, 

and such. Otherwise, scenarios may be captured through 

observation of visitors engaging the artwork as it operates within a 

gallery setting. Formal usability techniques [12] may be applied to 

the problem in order to extract the precise dialog between artwork 

and viewer. Typically, a set of scripts are written to systematically 

define user engagement, and then are followed stepwise to explore 

each aspect of interaction. Supplementary Materials may 

contribute to the Physical View as well, supplying non-functional 

requirements defining how a gallery visitor is expected to engage 

the artwork. If the artwork has been provided as source code, this 

contributes to the development view that makes up the Technical 

documentation. If only executable code exists, then it may be 

possible to decompile it to source code, something that can be 

done if the artwork has been constructed with popular 

programming languages. The logical and process views that 

constitute the Architecture/Design documentation in the form of 

UML  (Unified Modeling Language) class diagrams that fix an 

artwork’s static structure as a collection of basic, interconnected 

building blocks, and sequence diagrams that convey the messages 

passed between the user and the system, and among objects within 

the system [7], are not expected to be part of the artwork when 

acquired by a museum. Most artists are not trained as software 

engineers, and thus are not expected to create UML representations 

of their works, as of yet.  

Given a complete set of scenarios, and employing the 

remaining documentation categories as the interpretive context, it 

should be possible to generate UML representations – in effect, 

produce a complete design document for the artwork from scratch 

[7]. Alternatively, in circumstances where the artwork has been 

written in a popular programming language such as C, C++, or 

Java, UML class and sequence diagrams may be generated 

automatically from either source or executable code exploiting 

mainstream UML CASE tools [13]. The resulting UML diagrams 

embody the artist’s original software architecture as opposed to an 

architectural design that has been inferred from the remaining 

documentation categories. 

Examples of UML class and sequence diagrams are shown in 

Figures 3 and 4 for a video store, a generic, non-artistic project, 

that is characteristic of many software systems. The class diagram 

represents the video store’s information domain composed of 

conceptual classes, shown as boxes, with labels such as Customer, 

VideoStore, Video, VideoRental, etc., that define the main 

business entities. Each class is connected to others by lines of 

association which specify their semantic relationships such as 

“One CashPayment Pays for one RentalTransaction.” This is a 

high level, or abstract class diagram, because it does not show the 

kinds of processing each class performs in support of the video 

rental procedure. The high level sequence diagram in Figure 4 

represents the dialog between the clerk and system during the 

video rental process. The right-pointing sold arrows show the 

clerks request while the left pointing dashed arrows show the 

systems response. Such a diagram would be created by translating 

scenario narratives. This diagram also works at the class level to 

express the dialog between system classes as each responds to a 

request for information or processing. 

Comparing Architectural Structures 
The goal of our analysis was to explore the architectural 

structures among digital artworks. As an initial archaeological 

exploration, five works were selected for analyses from the 

CODeDOC exhibition of the Whitney Museum of American Art’s 

AirPort website [14]. CODeDOC exhibits both artwork and the 

underlying code, allowing individuals to look under the artwork’s 

hood. Artists were given the assignment of connecting and moving 

three points in space, with their source code not to exceed 8KB in 

size. Works selected here for analysis were created by the artists 

Mark Napier, Golan Levin, Brad Paley, Scott Snibbe, and Martin 

Wattenberg. All were interactive, graphical Java applets. Briefly, 

these artworks included a cartographic application (Levin), 

dynamic geometric art (Napier, Snibbe, and Wattenberg), and text 

visualization (Paley). 

Architectural diagrams were generated automatically from 

either an artwork’s Java source or compiled codes, utilizing a 

UML design tool. A sample design class diagram is presented in 

VideoRental

dueDate

returnDate

returnTime

CashPayment

amount : Money

Video

ID

Stocks?

Rents?

Rents- from 

Pays- for ?

Initiates ?

1

1

1..*

1

1

1

1..*

1 *1*

Pays-for- overdue- charges ?

RentalTransaction

date1

* *

VideoStore

address

name

phoneNumber

Customer

address

name

phoneNumber

1

Records- rental-of 

0..1

1

 

rent( videoID)

: System: Clerk

outputRentalReport()

video info

* [ more rentals]

recordNewRental( customerID)

customer info

rental report

Figure 3. Sample conceptual class diagram.. 

Figure 4. Sample sequence diagram. 
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Figure 5 for Scott Snibbe’s Tripolar artwork. This diagram shows 

a program comprised of one software class that collects together all 

data (middle segment of the class diagram) and functionality 

(bottom segment). The other four artworks exhibit similar 

monolithic architectures as well. No sequence diagram is shown 

because there is only one defining class for each program. A 

sequence diagram’s utility is in its ability to show collaborative 

behavior among classes or other interacting entities, such as that 

shown in Figure 4. Hence, a minimum of two classes or entities are 

required to produce a sequence diagram. 

Given that all artists shared the same problem and constraints, 

there might be an expectation of similarity in design across 

artworks. In all works the software is tightly written. All employ 

similar Java libraries for interaction and graphics. Essentially, they 

only differ in the code related to what each portrays on the 

computer screen, which can differ radically across artworks. See 

Figure 6 for example, which displays class diagrams for Paley’s 

and Napier’s applets, respectively. Paley’s is a far larger applet, 

involving more attributes and methods; something that comes from 

the algorithms used to process and render the relationships among 

textural items.  

Figure 6 demonstrates as well the power of class diagrams for 

ease of comparison. Instead of attempting to compare lines of 

source code, these graphical representations immediately provide a 

high level accounting of each software class.  

The single class structure of these artworks raises a question 

about how to categorize artwork in general. From a software size 

perspective (c.f. Table 2), this artwork falls into the trivial 

category. Trivial programs tend to be written on a part-time basis, 

may be used for a single purpose or to demonstrate a concept, and 

are sparsely documented. From an artistic perspective, we may 

prefer to call these works sketches, since their purposes are similar 

in nature to artist sketches. In addition, the ability to create a 

digital sketch has been facilitated by the development of the 

Processing programming language [15], a streamlined version of 

Java, now employed to teach programming in digital art courses. 

With its extensive libraries for sound, graphics, video, image 

processing, interaction, and sensor control, it is possible to 

construct rich artistic experiences with a minimal amount of 

programing [16]. Indeed, in the decade since the CODeDOC 

exhibition, the amount of Processing-based digital artwork has 

exploded, some of which has found its way into major museum 

collections. For example, Philip Worthington’s work Shadow 

Monsters is in the collection of New York’s Museum of Modern 

Art [17]. 

The single class structure of these artworks raises the issue of 

maintaining monolithic programs as well. In general, monolithic 

programs tend to be difficult and time consuming to maintain, 

because their design and behaviors can only be understood by 

detailed analysis of their source coded; a problem exacerbated as 

program size increases, and as documentation within the software 

decreases. Since the CODeDOC artworks considered here reside at 

the trivial end of the software spectrum, and they only rely on the 

Figure 6. Class diagram comparisons. 

Figure 5. Class diagram for Scott Snibbe’s Tripolar artwork. 
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functionality intrinsic to the Java programming language as well, 

their low level designs and behaviors can be deconstructed and 

represented using UML state charts and activity diagrams. 

However, all this comes at a greater expenditure of time and effort. 

Likewise, conservation of monolithic digital art written in the 

Processing language will face similar issues, in particular their 

reliance on libraries external to the core programming language - 

libraries that may have both a short lifetime, and be poorly 

documented.  

Assessment of such concerns for monolithic code is found in 

our archaeological approach. The creation of class diagrams from 

source code provides a means for quickly evaluating the kinds of 

data and functionality a program contains. Comparing class 

diagrams among artworks allows the conservator to categorize 

collections of works by their functional requirements, and evaluate 

their reliance on external resources. Finally, based on these 

considerations, it should be possible to appraise an artwork’s 

suitability for conservation. 

Table 2: Software Size Categories 

Category  Programmers Duration  
Size (Lines 

of Code) 

Extremely 

Large  
> 200 > 6 yrs.  >1,000,000 

Very 

Large  
20 - 200 3 - 6 yrs.  

100,000 - 

1,000,000 

Large  5 - 20 2 - 3 yrs.  
20,000 - 

100,000 

Medium  2 - 5 
6 mo.– 2 

yrs.  

3,000 – 

20,000 

Small  1 - 2 1 - 6 mo.  500 - 3,000 

Trivial  1 1 - 4 wks.  < 500 

Summary  
In this paper we have put forward the notion of applying 

principles of software archaeology (the systematic study of 

software systems through the recovery and examination of 

outstanding material evidence) to the long term conservation of 

code-based digital artwork through the application of the software 

engineering process, and the use of its artifacts to systematically 

organize and compare a collection of digital artworks. We have put 

forward the use of the “4+1 View Model” of Kruchten for 

analyzing digital artworks, and shown how this model can be 

translated into the formal documentation that is part of the 

Rationalized Unified Process, a standard software engineering 

methodology. In so doing, existing artisanal conservation 

procedures are transformed into a systematized process that can be 

integrated with traditional art conservation practice software, 

maintain a historical record, and select artifacts for preservation. 

Lastly, we applied our method to a collection of web-based 

artworks, comparing their architectures, and discussing their 

capacities for conservation. It was found that even though these 

works were considered “trivial” by contemporary software stands, 

the nature of their designs signals that significant effort may be 

required for their long term conservation. 
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