
Conserving Software-based Artwork through

Software Engineering

Francis T. Marchese

Department of Computer Science

Pace University

New York, NY, USA

fmarchese@pace.edu

Abstract — A long term strategy is offered for conserving

software-based digital art in perpetuity based on software

engineering practice. Software engineering is a rigorous,

formalized practice approach to preservation that engages all

stakeholders, including: artists, curators, and conservators;

offering a breadth of methodologies and degrees of rigor that

may be adapted by organizations of all sizes. In this paper the

focus is on the software engineering maintenance process, and

how it converts digital art into formats that should make it

preservable and displayable in the deep future.

Keywords — digital art; software engineering; software

maintenance; conservation.

I. INTRODUCTION

Museum visitors today can regularly view 500 year old art
by Renaissance masters. Museum visitors 500 years in the
future should be afforded the same opportunity for software-
based artwork created today. Any conservation strategy that
attempts to address issues related to the perpetual maintenance
of digital artwork must contend with its ephemeral nature, the
impermanence of the technological substrates upon which it is
based, and its place within a museum collection that inevitably
will grow in size and diversity over centuries. Because
museums collect more artwork than can be possibly exhibited
at any time, all art must be expected to revolve from storage
into galleries in accord with curatorial discretion, with the
exception of works that either define a museum’s collection or
are critical to the art canon. Given that decades may pass
before artworks are reinstalled, it is probable that attempts to
do so will fail because such works will have reached technical
obsolescence.

Our solution to this problem is based on software
engineering, the formal process of applying a systematic,
disciplined, quantifiable approach to problem analysis, system
and software design, its development, operation, and
maintenance [1]. Software engineering emphasizes both the
software as product, and the processes that create and maintain
it. Specifically, the software engineering process transforms
existing artisanal preservation procedures into a schematized
process integrable into traditional art conservation practice.
Software engineering plays an essential role in software
development within the aerospace, high technology, and
financial service industries. Since its processes are extensions
of the standard business life-cycle [2], its tools and techniques

may be integrated into a museum’s conservation practice.
Software engineering can engage all stakeholders including
artists, curators, conservators, installers, maintainers, museum
directors, art historians, and viewers; and can reflect and
integrate this process into a museum’s current best practices.

Here we focus on the software engineering maintenance
process [3]. Software maintenance is the "process of modifying
a software system or component after delivery to correct faults,
improve performance or other attributes, or adapt to a changed
environment" [4]. It is this software engineering process that
makes it possible for existing products to continue to be used.
Maintenance is the longest process in the software engineering
lifecycle, typically consuming up to 80% of the total effort
expended on a software product that may exhibit decades of
use. We consider how a mainstream strategy may be used to
convert a digital artwork into formats that should make it
preservable and displayable in the deep future as part of its
maintenance.

II. LEGACY SYSTEMS AND MAINTENANCE

When a museum acquires a digital artwork it is assumed
that the work will be exhibited as is, with no further
enhancements. This work and its conceptual and technological
foundations are now frozen in time. In effect, it is a legacy
system [5]. From a software maintenance perspective, legacy
systems are considered to be socio-technical in nature,
recognizing that the human factor is integral to the system’s
function. The components of a legacy system may be
envisioned as a stack of encapsulated layers, with each layer
depending on the layer immediately below for its resources,
and interfacing with that layer. The highest layer is the Artistic
Experience which directly engages the viewer. Below is the
Artistic Software itself, that generates this experience. The
Artistic Software layer relies on the services supplied by the
Support Software layer to run (e.g. operating system, database
managers, networking protocols, etc.). And the Hardware layer
provides all physical components required by the layers above
(e.g. CPU, video card, network adapter, sensors, actuators,
etc.).

In principle, it should be possible to replace a layer in the
system leaving the other layers unchanged. However, in
practice, this simple encapsulation rarely succeeds. Changes to
one layer of the system may require subsequent modifications

978-1-4799-3169-9/13/$31.00 ©2013 IEEE 181

to layers both above and below the altered level. At the
Hardware level, it is often impossible to maintain hardware
interfaces to the Support Software level when a fundamental
change in hardware is prescribed. Similarly, a required
redeployment of the artwork from one operating system to
another (say, Microsoft Windows to UNIX) would engender
major changes to the application software itself. Given that
software interfaces, formats, and protocols continually evolve;
resources will either disappear or become redistributed; and
computer hardware is guaranteed to become obsolete; at the
very least, software-based artwork will need to be adapted to
accommodate changes that arise for components within these
layers.

The largest expenditure of effort during maintenance is the
discovery process in which the source code is searched to
exposes domain knowledge and an implementation strategy.
Domain knowledge describes the environment in which the
program functions, and provides a context for understanding
the various characteristics of the software. Artistic theory and
practice upon which the artwork is founded is such an example.
Implementation strategy represents the way the system has
been built, encompassing code-level knowledge (e.g. theories
of data structures and algorithms) as expressed in the
programming language used for the artwork. Because the code
contains all data representations, and the fine details of its
processing capabilities, extracting conceptual information is
difficult, because each logical grouping of code must be
interrogated to understand its purpose. Indeed, source code
analysis requires maintainers to spend up to 60% of their time
searching for the knowledge required to effectively conserve
the software [7]. The interweaving of domain knowledge with
implementation strategy makes understanding, maintaining,
adapting, reusing and evolving the software difficult, time-
consuming, error-prone, and hence expensive.

Software evolves as part of maintenance practice [8].
Evolving software is characterized by an increasing complexity
that arises from the inevitable modification of its configuration
over time to accommodate change. Complexity is exhibited in
two ways. Design complexity, in which the artwork’s overall
configuration exhibits a composition, arrangement, and
interconnection among its component parts that is poorly
designed. As an example, consider a poorly designed
architectural plan for a house in which rooms are oddly sized
and arranged, making their utility and accessibility difficult.
And code complexity, in which a program is difficult to
understand. Here the programming logic may contain too many
variables and control paths, or reveal obscure programming
language constructs; making the code difficult to trace. For
software that began its life inadequately designed and coded,
enormous maintenance costs are possible, because these
systems cannot easily support change [9].

In general, there are four types of maintenance that digital
artwork may undergo [6]. Perfective maintenance improves
software functionality in response to requested changes.
Corrective maintenance corrects errors identified within the
software. Adaptive maintenance alters the software in response
to changes within the software environment. And preventative
maintenance updates software to improve its future
maintainability without changing its functionality. Preventative

maintenance offers the prospect of transforming a digital
artwork into a format that will improve its maintainability. The
goal is to define the artwork independent of its implementation,
that is, to represent the artwork at a conceptual level higher
than source code. There are two key advantages. First, the
artwork is completely defined at a level of abstraction that
supports investigation of “what” the system does and “how” it
does it without resorting to sifting through source code that
may be poorly documented. For adaptive maintenance of an
artwork, this means a more efficient method for not only
finding components of the artwork that require modification,
but also understanding their function. Second, it places the
artwork’s conceptual model and design in a time-independent
state. When the museum received the original artwork, it was
implemented in the technology of its time. This placed it in a
time-dependent state that diminishes its ability to be adaptable
to the technology of a distant future time period, because its
design and implementation become less compatible with future
technological advances as time progresses. In contrast, a time-
independent representation can be translated into whatever
technology is available that befits its implementation, because
its overall structural and behavioral schemes, and processing
details (e.g. data structures, algorithms) are specified in a
collection of representations that are devised for human
understanding; and not bound to any technological substrate.
Just as an architectural design of a home can be constructed
employing a variety of building materials, these conceptual
representations of software may be transformed into
functioning software employing programming languages.

For the preventive maintenance process to be successful it
must work from an expanded definition of software that not
only includes source code, executable programs, and data, but
also analysis and design documents; operations, system,
installation, and implementation manuals; and any other
documentation relevant to its functionality. Such a breadth of
documentation improves the probability of the preventive
maintenance process recovering the software’s conceptual
foundation and domain knowledge. This process is applicable
to the conservation of software-based art as well, because the
goal of contemporary digital art conservation practice is to
capture an artwork’s essential properties, so it may be
understood, maintained, and displayed at a future date [10] by
employing an extended set of documentation [11] – [13]. This
expanded notion of an artwork’s identity as a collection of
concepts and artifacts mirrors preventative maintenance, and is
the starting point for a formal identification and documentation
employing the principles and practices from reverse
engineering.

III. REVERSE ENGINEERING

Reverse engineering is a maintenance strategy in which a
system is analyzed to identify its component parts, and the
interrelationships among those parts for the purpose of either
creating representations of the system in another form or
representations at a higher level of abstraction [14][15].
Reverse engineering commonly involves recovering system
design. Its goal as a maintenance strategy is to capture an
artwork’s identity, and transform it into a maintainable
collection of representations that embody its functional, design,

182

interface, and environmental requirements. Fundamental to
reverse engineering are the creation and maintenance of
documentation to support software evolution, communication,
preservation of system and institutional memory, and processes
such as system auditing. Here, documentation supplies
comprehensive information about an artwork’s capabilities,
architecture, design details, features, and limitations.

The documentation used here is associated with the
Rational Unified Process (RUP) [16], a general object oriented
software engineering methodology that has been used to
reverse engineer legacy systems [17]. Its documentation
encompasses the following five components: Functional,
Architecture/Design, Technical, End User, and Supplementary
Materials. Functional Requirements are the artwork’s
conceptual foundation that communicates what it is supposed
to do. The Architecture/Design component provides an
overview of the software that includes a definition of how it
relates to its environment, and construction principles used in
design of the software components. It is typically organized as
a collection of diagrams or charts to show its parts and their
interconnections. Technical documentation encompasses
source code, algorithms, and interface documents. End User
documents include installation, maintenance, and user manuals.
And Supplementary Materials contains anything else related to
the system, including: legal documents, design histories,
interviews, scholarly books, installation plans, drawings,
models, documentary videos, websites, etc. Taken as whole,
this documentation supports both abstract and detailed
descriptions of static artwork structure and its dynamic
processes, providing a diversity of representations to satisfy all
stakeholders.

RUP documentation is the basis for a theoretical model that
is used to both examine software’s architecture and formally
deconstruct it. Software architecture represents the highest-
level abstraction of a software system’s structure. It can be
defined as the set of constructs needed to reason about the
software system, comprising its component parts, the relations
between them, and the properties of both components and
relations. The approach used here relies on the well-known
“4+1 View Model” of Kruchten [18].

The “4+1 View Model” consists of logical, process,
physical, and development views (c.f. Fig. 1). The logical view
represents the functional requirements — a collection of
conceptual classes or abstractions that define and characterize
the actions the artwork performs. The process view captures the
artwork’s behavior, exposing its distribution of tasks and their
synchrony. Crucial to a process view is its display of a thread
of control that reveals the sequential communication between
process tasks, enabling a process to generate a particular
behavior. Logical and process views comprise the
Architecture/Design documentation, and are in the form of
UML (Unified Modeling Language) class diagrams that fix an
artwork’s static structure as a collection of basic,
interconnected building blocks; and sequence diagrams, that
convey the messages passed between the user and the system,
and among objects within the system [16]. The physical view
describes the mapping(s) of the software onto the hardware
taking into account the system’s non-functional requirements.
Non-functional requirements, sometimes called quality

attributes, are not system features, but instead required system
characteristics. They represent important aspects of the system
such as performance, security, usability, adaptability,
compatibility, and legal concerns. The development view
describes the static organization of the software in its
development environment, focusing on the organization of
software modules within the software development
environment. If an artwork’s source code exists, then it
constitutes most of the Technical documentation, and
contributes to the development view.

Scenarios represent the “plus one” view, binding together
the four architectural components. Scenarios describe how one
or more entities (e.g. artwork viewers) interact with a system
by enumerating the steps, events, and/or actions which occur
during engagement. Scenarios may be considered abstract
representations of the most important system requirements,
because at a high level they specify what the system is
expected to do. Scenarios, along with process and logical
views are transformed into the development view as part of the
software development by coding them in appropriate
programming languages. This is a forward engineering process
where software is packaged naturally into subsystems that are
organized into a hierarchy of layers, each layer providing a
narrow and well-defined interface to the layers above it.

The process of recovering an artwork’s character alternates
between reverse and forward engineering activities in a spiral
fashion. First an artwork’s attributes are recovered through
reverse engineering, then validated and tested through forward
engineering until the model’s design coalesces into a consistent
whole (c.f. [17]). The process proceeds as follows: evaluate the
scope of the reverse engineering project; construct the abstract
models (here the “4+1 View Model”); and recover the
architecture of the software. Once the problem’s scope has
been determined, use cases are identified related to a viewer’s
engagement with the artwork. Use cases represent the distinct
system behaviors associated with one or more actors external
to the system. They are the analysis model’s foundation,
helping define the artwork’s architecture, and the starting point
for recovering user scenarios, also called use case scenarios,
which represent the fine structure of behaviors. Use cases and
scenarios are found in an artwork’s Supplementary Materials,
where its temporal designs may have been depicted in
storyboards, videos, and such. Otherwise, use cases and

Logical View

Physical ViewProcess View

Development

View

Scenarios

Artwork Functionality

(Viewer Experience)

Software Management

(Programming)

Artwork Behavior

(Response to Inputs)

Artwork Hardware Interfaces

(e.g. User Interface)

Fig. 1. “4+1 View Model”

183

scenarios may be captured through observation of artwork
engagement. This precise dialog between artwork and viewer
may be extracted employing formal usability techniques [19].
Finally, recovery of an artwork’s architecture proceeds from an
initial architectural design of its structure and behaviors based
on use cases. It is validated through program implementation,
where each use case is tested to understand the sequence of
coding steps required for successful deployment.

IV. DISCUSSION AND CONCLUSIONS

This paper has put forward a strategy for conserving
software-based digital art, grounded in standard software
engineering practices. It employs the Rational Unified Process
(RUP) to transform a digital artwork into a model that is
independent of technology and time. As such, it addresses the
biggest challenge facing conservators – the legacy dilemma,
where it is expensive and risky to replace a legacy system, and
expensive to maintain it too. It does so by generating a model
that can be consulted and referenced throughout the artwork’s
extended lifetime. This model may be used for either
understanding what parts of the work need to be adapted to
new technologies, so it may be displayed in the near future; or
completely reconstructed outright in the technology of the
distant future. In this way, software engineering methods
address the “migration” approach to software preservation,
where the software object is adapted to the next software or
hardware platform. And, once an artwork is transformed into
the “4+1 View Model,” any discovery process need not be
subjected to the time intensive task of sifting through source
code to gather knowledge about “what” or “how” the software
system performs a task. Instead, consulting the conceptual
model affords significant savings in maintenance effort.

The RUP methodology possesses two distinct advantages
over the code-to-code translation process. First, Dugerdil’s
[17] procedure works from a worst case scenario where the
original software developers are no longer available to provide
information, and no reliable documentation exists – including
source code. This is a genuine possibility, given that many
artists will not release source code to museums. As such,
digital artwork reengineering must proceed from a
combination of interrogation of the functioning artwork and
exploration of RUP’s Supplementary Materials. Second,
Dugerdil’s procedure and similar approaches have already
been shown to work in information system reengineering, so
the process of creating an appropriate maintenance strategy for
digital art conservation becomes an act of adapting a standard
technique instead of creating anew.

Perpetual maintenance of only one artwork has been
considered. But museums are expected to conserve hundreds
or thousands more from different eras, where each individual
artwork embodies the technology of its time. Translation of
these artworks into time-independent representations such as
Kruchten’s “4+1 View Model” via RUP allows groups of
artworks to be assessed as a whole. Such an approach provides
bases for formal software risk management [20] and the
development of evolvable conservation strategies for
collections as a whole.

Finally, conservation of an artwork’s hardware should be
addressed. An artwork’s hardware requirements are extracted
as part of RUP. Given that the long term conservation of
computer hardware remains problematic, RUP documentation
would be essential to the redesign and construction of an
artwork’s hardware in the distant future. This approach
remains open for exploration.

REFERENCES

[1] R.S. Pressman, Software Engineering: A Practitioner’s Approach, 6th
ed. New York: McGraw-Hill, 2005.

[2] R.K. Ko, “A computer scientist’s introductory guide to business process
management (BPM),” Crossroads, vol. 15, no. 4, pp.1 – 18, 2009.

[3] K.H. Bennett and V.T Rajlich, “Software maintenance and evolution: a
roadmap,” in Proceedings of the Conference on The Future of Software
Engineering (ICSE '00). New York: ACM, 2000, pp.73-87.

[4] IEEE, "IEEE Standard Glossary of Software Engineering Terminology,"
IEEE Std. 610.12-1990. Institute of Electrical and Electronics Engineers,
1990.

[5] J. Ransom, I. Sommerville, and I. Warren, “A method for assessing
legacy systems for evolution,” in Proceedings of the 2nd Euromicro
Conference on Software Maintenance and Reengineering (CSMR 98),
March 8–11, 1998 (Washington, DC: IEEE Computer Society, 1998),
pp. 128 - 134.

[6] B.P. Lientz and E.B. Swanson, Software Maintenance Management,
Boston, MA: Addison-Wesley Longman Publishing Co., Inc., 1980.

[7] P. Selfridge and R. Brachman, “Supporting a knowledge-based Software
information system with a large code database, in Proceedings of the
AAAI-90 Workshop on Knowledge-Base Management, 1990.

[8] N.H. Madhavji, J. Fernandez-Ramil, and D. Perry, Software Evolution
and Feedback: Theory and Practice. John Wiley & Sons, 2006.

[9] D. Rowe, J. Leaney, and D. Lowe, “Defining systems evolvability - a
taxonomy of change,” International Conference and Workshop:
Engineering of Computer-Based Systems, 1994, pp. 541-545.

[10] P. Laurenson, “Authenticity, change and loss in the conservation of
time-based media installations,” Tate Papers, Autumn (2006). Retrieved
June 30, 2013 from http://www.tate.org.uk/research/publications/tate-
papers/authenticity-change-and-loss-conservation-time-based-media.

[11] A. Depocas, J. Ippolito, and C. Jones, eds, Variable Media Approach,
Guggenheim Museum Publications and The Daniel Langlois Foundation
for Art, Science, and Technology, 2003.

[12] ERPANET, “The archiving and preservation of born-digital art
workshop,” Briefing Paper for the ERPANET Workshop on
Preservation of Digital Art, 2004. Retrieved June 30, 2013 from
http://www.erpanet.org/events/2004/glasgowart/briefingpaper.pdf.

[13] T.A. Yeung, S. Carpendale and S. Greenberg, “Preservation of art in the
digital realm,” in The Proceedings of iPRES2008: The Fifth
International Conference on Digital Preservation, (London: British
Library, 2008).

[14] E. Walker, "Tech views," Jour. Softw.Tech, vol. 8, no. 3, pp. 1- 3, 2005.

[15] E.J. Chikofsky and J.H. Cross, “Reverse engineering and design
recovery: a taxonomy,” IEEE Software, vol. 7, no. 1, pp. 13-17, 1990.

[16] C. Larman, Applying UML and Patterns: An Introduction to Object
Oriented Analysis and Design and Iterative Development, 3rd ed., Upper
Saddle River, NJ: Prentice Hall, 2005.

[17] P. Dugerdil, “Using RUP to reverse engineer a legacy system,” The
Rational Edge, IBM, September 2006.

[18] P. Kruchten, “Architectural blueprints — the ‘4+1’ view model of
software architecture,” IEEE Software, vol. 12, no. 6, November 1995,
pp. 42-50.

[19] J. F. Dumas and J.C. Redish, A Practical Guide to Usability Testing,
Westport, CT : Greenwood Publishing Group Inc., 1993.

[20] B.W. Boehm. “Software risk management: principles and practices,”
IEEE Softw., vol. 8, no. 1, January 1991, 32-41.

184

