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Abstract — A long term strategy is offered for conserving 

software-based digital art in perpetuity based on software 

engineering practice. Software engineering is a rigorous, 

formalized practice approach to preservation that engages all 

stakeholders, including: artists, curators, and conservators; 

offering a breadth of methodologies and degrees of rigor that 

may be adapted by organizations of all sizes. In this paper the 

focus is on the software engineering maintenance process, and 

how it converts digital art into formats that should make it 

preservable and displayable in the deep future.  
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I. INTRODUCTION  

Museum visitors today can regularly view 500 year old art 
by Renaissance masters. Museum visitors 500 years in the 
future should be afforded the same opportunity for software-
based artwork created today. Any conservation strategy that 
attempts to address issues related to the perpetual maintenance 
of digital artwork must contend with its ephemeral nature, the 
impermanence of the technological substrates upon which it is 
based, and its place within a museum collection that inevitably 
will grow in size and diversity over centuries. Because 
museums collect more artwork than can be possibly exhibited 
at any time, all art must be expected to revolve from storage 
into galleries in accord with curatorial discretion, with the 
exception of works that either define a museum’s collection or 
are critical to the art canon. Given that decades may pass 
before artworks are reinstalled, it is probable that attempts to 
do so will fail because such works will have reached technical 
obsolescence.  

Our solution to this problem is based on software 
engineering, the formal process of applying a systematic, 
disciplined, quantifiable approach to problem analysis, system 
and software design, its development, operation, and 
maintenance [1]. Software engineering emphasizes both the 
software as product, and the processes that create and maintain 
it. Specifically, the software engineering process transforms 
existing artisanal preservation procedures into a schematized 
process integrable into traditional art conservation practice. 
Software engineering plays an essential role in software 
development within the aerospace, high technology, and 
financial service industries. Since its processes are extensions 
of the standard business life-cycle [2], its tools and techniques 

may be integrated into a museum’s conservation practice. 
Software engineering can engage all stakeholders including 
artists, curators, conservators, installers, maintainers, museum 
directors, art historians, and viewers; and can reflect and 
integrate this process into a museum’s current best practices. 

Here we focus on the software engineering maintenance 
process [3]. Software maintenance is the "process of modifying 
a software system or component after delivery to correct faults, 
improve performance or other attributes, or adapt to a changed 
environment" [4]. It is this software engineering process that 
makes it possible for existing products to continue to be used. 
Maintenance is the longest process in the software engineering 
lifecycle, typically consuming up to 80% of the total effort 
expended on a software product that may exhibit decades of 
use. We consider how a mainstream strategy may be used to 
convert a digital artwork into formats that should make it 
preservable and displayable in the deep future as part of its 
maintenance. 

II. LEGACY SYSTEMS AND MAINTENANCE 

When a museum acquires a digital artwork it is assumed 
that the work will be exhibited as is, with no further 
enhancements. This work and its conceptual and technological 
foundations are now frozen in time. In effect, it is a legacy 
system [5]. From a software maintenance perspective, legacy 
systems are considered to be socio-technical in nature, 
recognizing that the human factor is integral to the system’s 
function. The components of a legacy system may be 
envisioned as a stack of encapsulated layers, with each layer 
depending on the layer immediately below for its resources, 
and interfacing with that layer. The highest layer is the Artistic 
Experience which directly engages the viewer. Below is the 
Artistic Software itself, that generates this experience. The 
Artistic Software layer relies on the services supplied by the 
Support Software layer to run (e.g. operating system, database 
managers, networking protocols, etc.). And the Hardware layer 
provides all physical components required by the layers above 
(e.g. CPU, video card, network adapter, sensors, actuators, 
etc.). 

In principle, it should be possible to replace a layer in the 
system leaving the other layers unchanged. However, in 
practice, this simple encapsulation rarely succeeds. Changes to 
one layer of the system may require subsequent modifications 
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to layers both above and below the altered level. At the 
Hardware level, it is often impossible to maintain hardware 
interfaces to the Support Software level when a fundamental 
change in hardware is prescribed. Similarly, a required 
redeployment of the artwork from one operating system to 
another (say, Microsoft Windows to UNIX) would engender 
major changes to the application software itself. Given that 
software interfaces, formats, and protocols continually evolve; 
resources will either disappear or become redistributed; and 
computer hardware is guaranteed to become obsolete; at the 
very least, software-based artwork will need to be adapted to 
accommodate changes that arise for components within these 
layers.  

The largest expenditure of effort during maintenance is the 
discovery process in which the source code is searched to 
exposes domain knowledge and an implementation strategy. 
Domain knowledge describes the environment in which the 
program functions, and provides a context for understanding 
the various characteristics of the software. Artistic theory and 
practice upon which the artwork is founded is such an example. 
Implementation strategy represents the way the system has 
been built, encompassing code-level knowledge (e.g. theories 
of data structures and algorithms) as expressed in the 
programming language used for the artwork. Because the code 
contains all data representations, and the fine details of its 
processing capabilities, extracting conceptual information is 
difficult, because each logical grouping of code must be 
interrogated to understand its purpose. Indeed, source code 
analysis requires maintainers to spend up to 60% of their time 
searching for the knowledge required to effectively conserve 
the software [7]. The interweaving of domain knowledge with 
implementation strategy makes understanding, maintaining, 
adapting, reusing and evolving the software difficult, time-
consuming, error-prone, and hence expensive. 

Software evolves as part of maintenance practice [8]. 
Evolving software is characterized by an increasing complexity 
that arises from the inevitable modification of its configuration 
over time to accommodate change. Complexity is exhibited in 
two ways. Design complexity, in which the artwork’s overall 
configuration exhibits a composition, arrangement, and 
interconnection among its component parts that is poorly 
designed. As an example, consider a poorly designed 
architectural plan for a house in which rooms are oddly sized 
and arranged, making their utility and accessibility difficult. 
And code complexity, in which a program is difficult to 
understand. Here the programming logic may contain too many 
variables and control paths, or reveal obscure programming 
language constructs; making the code difficult to trace. For 
software that began its life inadequately designed and coded, 
enormous maintenance costs are possible, because these 
systems cannot easily support change [9].  

In general, there are four types of maintenance that digital 
artwork may undergo [6]. Perfective maintenance improves 
software functionality in response to requested changes. 
Corrective maintenance corrects errors identified within the 
software. Adaptive maintenance alters the software in response 
to changes within the software environment. And preventative 
maintenance updates software to improve its future 
maintainability without changing its functionality. Preventative 

maintenance offers the prospect of transforming a digital 
artwork into a format that will improve its maintainability. The 
goal is to define the artwork independent of its implementation, 
that is, to represent the artwork at a conceptual level higher 
than source code. There are two key advantages. First, the 
artwork is completely defined at a level of abstraction that 
supports investigation of “what” the system does and “how” it 
does it without resorting to sifting through source code that 
may be poorly documented. For adaptive maintenance of an 
artwork, this means a more efficient method for not only 
finding components of the artwork that require modification, 
but also understanding their function. Second, it places the 
artwork’s conceptual model and design in a time-independent 
state. When the museum received the original artwork, it was 
implemented in the technology of its time. This placed it in a 
time-dependent state that diminishes its ability to be adaptable 
to the technology of a distant future time period, because its 
design and implementation become less compatible with future 
technological advances as time progresses. In contrast, a time-
independent representation can be translated into whatever 
technology is available that befits its implementation, because 
its overall structural and behavioral schemes, and processing 
details (e.g. data structures, algorithms) are specified in a 
collection of representations that are devised for human 
understanding; and not bound to any technological substrate. 
Just as an architectural design of a home can be constructed 
employing a variety of building materials, these conceptual 
representations of software may be transformed into 
functioning software employing programming languages.  

For the preventive maintenance process to be successful it 
must work from an expanded definition of software that not 
only includes source code, executable programs, and data, but 
also analysis and design documents; operations, system, 
installation, and implementation manuals; and any other 
documentation relevant to its functionality. Such a breadth of 
documentation improves the probability of the preventive 
maintenance process recovering the software’s conceptual 
foundation and domain knowledge. This process is applicable 
to the conservation of software-based art as well, because the 
goal of contemporary digital art conservation practice is to 
capture an artwork’s essential properties, so it may be 
understood, maintained, and displayed at a future date [10] by 
employing an extended set of documentation [11] – [13]. This 
expanded notion of an artwork’s identity as a collection of 
concepts and artifacts mirrors preventative maintenance, and is 
the starting point for a formal identification and documentation 
employing the principles and practices from reverse 
engineering.  

III. REVERSE ENGINEERING  

Reverse engineering is a maintenance strategy in which a 
system is analyzed to identify its component parts, and the 
interrelationships among those parts for the purpose of either 
creating representations of the system in another form or 
representations at a higher level of abstraction [14][15]. 
Reverse engineering commonly involves recovering system 
design. Its goal as a maintenance strategy is to capture an 
artwork’s identity, and transform it into a maintainable 
collection of representations that embody its functional, design, 
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interface, and environmental requirements. Fundamental to 
reverse engineering are the creation and maintenance of 
documentation to support software evolution, communication, 
preservation of system and institutional memory, and processes 
such as system auditing. Here, documentation supplies 
comprehensive information about an artwork’s capabilities, 
architecture, design details, features, and limitations.  

The documentation used here is associated with the 
Rational Unified Process (RUP) [16], a general object oriented 
software engineering methodology that has been used to 
reverse engineer legacy systems [17]. Its documentation 
encompasses the following five components: Functional, 
Architecture/Design, Technical, End User, and Supplementary 
Materials. Functional Requirements are the artwork’s 
conceptual foundation that communicates what it is supposed 
to do. The Architecture/Design component provides an 
overview of the software that includes a definition of how it 
relates to its environment, and construction principles used in 
design of the software components. It is typically organized as 
a collection of diagrams or charts to show its parts and their 
interconnections. Technical documentation encompasses 
source code, algorithms, and interface documents. End User 
documents include installation, maintenance, and user manuals. 
And Supplementary Materials contains anything else related to 
the system, including: legal documents, design histories, 
interviews, scholarly books, installation plans, drawings, 
models, documentary videos, websites, etc. Taken as whole, 
this documentation supports both abstract and detailed 
descriptions of static artwork structure and its dynamic 
processes, providing a diversity of representations to satisfy all 
stakeholders. 

RUP documentation is the basis for a theoretical model that 
is used to both examine software’s architecture and formally 
deconstruct it. Software architecture represents the highest-
level abstraction of a software system’s structure. It can be 
defined as the set of constructs needed to reason about the 
software system, comprising its component parts, the relations 
between them, and the properties of both components and 
relations. The approach used here relies on the well-known 
“4+1 View Model” of Kruchten [18].  

The “4+1 View Model” consists of logical, process, 
physical, and development views (c.f. Fig. 1). The logical view 
represents the functional requirements — a collection of 
conceptual classes or abstractions that define and characterize 
the actions the artwork performs. The process view captures the 
artwork’s behavior, exposing its distribution of tasks and their 
synchrony. Crucial to a process view is its display of a thread 
of control that reveals the sequential communication between 
process tasks, enabling a process to generate a particular 
behavior. Logical and process views comprise the 
Architecture/Design documentation, and are in the form of 
UML (Unified Modeling Language) class diagrams that fix an 
artwork’s static structure as a collection of basic, 
interconnected building blocks; and sequence diagrams, that 
convey the messages passed between the user and the system, 
and among objects within the system [16]. The physical view 
describes the mapping(s) of the software onto the hardware 
taking into account the system’s non-functional requirements. 
Non-functional requirements, sometimes called quality 

attributes, are not system features, but instead required system 
characteristics. They represent important aspects of the system 
such as performance, security, usability, adaptability, 
compatibility, and legal concerns. The development view 
describes the static organization of the software in its 
development environment, focusing on the organization of 
software modules within the software development 
environment. If an artwork’s source code exists, then it 
constitutes most of the Technical documentation, and 
contributes to the development view. 

Scenarios represent the “plus one” view, binding together 
the four architectural components. Scenarios describe how one 
or more entities (e.g. artwork viewers) interact with a system 
by enumerating the steps, events, and/or actions which occur 
during engagement. Scenarios may be considered abstract 
representations of the most important system requirements, 
because at a high level they specify what the system is 
expected to do. Scenarios, along with process and logical 
views are transformed into the development view as part of the 
software development by coding them in appropriate 
programming languages. This is a forward engineering process 
where software is packaged naturally into subsystems that are 
organized into a hierarchy of layers, each layer providing a 
narrow and well-defined interface to the layers above it.  

The process of recovering an artwork’s character alternates 
between reverse and forward engineering activities in a spiral 
fashion. First an artwork’s attributes are recovered through 
reverse engineering, then validated and tested through forward 
engineering until the model’s design coalesces into a consistent 
whole (c.f. [17]). The process proceeds as follows: evaluate the 
scope of the reverse engineering project; construct the abstract 
models (here the “4+1 View Model”); and recover the 
architecture of the software. Once the problem’s scope has 
been determined, use cases are identified related to a viewer’s 
engagement with the artwork. Use cases represent the distinct 
system behaviors associated with one or more actors external 
to the system. They are the analysis model’s foundation, 
helping define the artwork’s architecture, and the starting point 
for recovering user scenarios, also called use case scenarios, 
which represent the fine structure of behaviors. Use cases and 
scenarios are found in an artwork’s Supplementary Materials, 
where its temporal designs may have been depicted in 
storyboards, videos, and such. Otherwise, use cases and 
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Fig. 1. “4+1 View Model” 
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scenarios may be captured through observation of artwork 
engagement. This precise dialog between artwork and viewer 
may be extracted employing formal usability techniques [19]. 
Finally, recovery of an artwork’s architecture proceeds from an 
initial architectural design of its structure and behaviors based 
on use cases. It is validated through program implementation, 
where each use case is tested to understand the sequence of 
coding steps required for successful deployment.  

IV. DISCUSSION AND CONCLUSIONS  

This paper has put forward a strategy for conserving 
software-based digital art, grounded in standard software 
engineering practices. It employs the Rational Unified Process 
(RUP) to transform a digital artwork into a model that is 
independent of technology and time. As such, it addresses the 
biggest challenge facing conservators – the legacy dilemma, 
where it is expensive and risky to replace a legacy system, and 
expensive to maintain it too. It does so by generating a model 
that can be consulted and referenced throughout the artwork’s 
extended lifetime. This model may be used for either 
understanding what parts of the work need to be adapted to 
new technologies, so it may be displayed in the near future; or 
completely reconstructed outright in the technology of the 
distant future. In this way, software engineering methods 
address the “migration” approach to software preservation, 
where the software object is adapted to the next software or 
hardware platform. And, once an artwork is transformed into 
the “4+1 View Model,” any discovery process need not be 
subjected to the time intensive task of sifting through source 
code to gather knowledge about “what” or “how” the software 
system performs a task. Instead, consulting the conceptual 
model affords significant savings in maintenance effort.  

The RUP methodology possesses two distinct advantages 
over the code-to-code translation process. First, Dugerdil’s 
[17] procedure works from a worst case scenario where the 
original software developers are no longer available to provide 
information, and no reliable documentation exists – including 
source code. This is a genuine possibility, given that many 
artists will not release source code to museums. As such, 
digital artwork reengineering must proceed from a 
combination of interrogation of the functioning artwork and 
exploration of RUP’s Supplementary Materials. Second, 
Dugerdil’s procedure and similar approaches have already 
been shown to work in information system reengineering, so 
the process of creating an appropriate maintenance strategy for 
digital art conservation becomes an act of adapting a standard 
technique instead of creating anew. 

Perpetual maintenance of only one artwork has been 
considered. But museums are expected to conserve hundreds 
or thousands more from different eras, where each individual 
artwork embodies the technology of its time. Translation of 
these artworks into time-independent representations such as 
Kruchten’s “4+1 View Model” via RUP allows groups of 
artworks to be assessed as a whole. Such an approach provides 
bases for formal software risk management [20] and the 
development of evolvable conservation strategies for 
collections as a whole.  

Finally, conservation of an artwork’s hardware should be 
addressed. An artwork’s hardware requirements are extracted 
as part of RUP. Given that the long term conservation of 
computer hardware remains problematic, RUP documentation 
would be essential to the redesign and construction of an 
artwork’s hardware in the distant future. This approach 
remains open for exploration. 
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