
CrystalDome: A Projected Hemispherical Display with a Gestural Interface

Francis T. Marchese, Jonas Borjesson, Josh Rose
Department of Computer Science, Pace University, New York, NY 10038

fmarchese@pace.edu

Abstract

CrystalDome is an inexpensive alternative to a
volumetric display based on video projector
technology that supports omni-directional viewing
(Figure 1). It can show mapped spherical surfaces,
such as globes, and scenes composed of three-
dimensional objects. In the latter case, an algorithm
was developed to perform hidden surface elimination
in the hemisphere’s reference frame. Participants can
sit around the hemisphere, which is built into a low
table. Sensors capture hand movements near the
hemisphere for adjustment of the position, orientation
and size of the objects that are projected from below
onto the inside of the display.

1. Introduction

Volumetric dome displays [1], such as the Felix 3D
[2] or Actuality Systems’ Perspecta Spatial3D Display
[3], provide 360 degree see-through views of three-
dimensional data. The advantages of such systems are
two-fold. First, they provide a viewer with the ability
to interrogate structural data from all angles by
allowing circumnavigation of the display. Second,
they support collaboration, because viewers can
assemble around the display, making it a focal-point
for discussion. The disadvantages of these systems are
that they are expensive, are not designed to display
surface maps such as globes, and they render shaded
surfaces poorly.

We have recently built an inexpensive alternative to
a volumetric dome display based on video projector
technology called CrystalDome that supports omni-
directional viewing (Figure 1). It can show mapped
spherical surfaces, such as globes, and scenes
composed of three-dimensional objects. The
hemisphere is built into a low table to support seated
viewing from all sides. In addition, interaction with
the display is through hand motion. Sensors capture
hand movements near the hemisphere to permit

relaxed adjustment of the position, orientation and size
of the objects without touching the display.

There have been a number of recent approaches to
building spherical and hemispherical display systems.
ARC Science Simulations produces two commercially
available OmniGlobeTM [4] spherical display systems
of either 1.5 or 2.0 meter diameters that use internal
projectors and a convex mirror to cast images that fill
the sphere. ViBall [5] uses two external projectors to

Figure 1. CrystalDome display.

11th International Conference Information Visualization (IV'07)
0-7695-2900-3/07 $20.00 © 2007

create overlapping images that cover three-quarters of
a rotatable sphere, while Globe4D [6] employs a
single projector to direct a hemispherical map from
above onto a freely moving sphere. These systems are
designed for the display of two-dimensional content
such as maps. In contrast, the DOME (Digital Object
Media Environment) [7] hemispherical display is
designed for interactive rendering of three-
dimensional models. It uses six camera-calibrated
projectors to fill a 32 inch diameter hemisphere from
below. These projectors are attached to a PC rendering
cluster interconnected through a gigabit Ethernet
network. Each rendering client computes an image
segment that is blended into a complete image and
displayed.

A variety of interaction schemes have been
developed for dome and globe systems. Balakrishnan
et al. [8] have surveyed these issues for volumetric
displays. Specific applications include Grossman et al.
[9] who use motion tracking of the user's fingers on
and around the display's hemispheric enclosure to
support direct gestural interaction with the virtual
objects. Yasuhara et al. [10] have designed a mobile
PC application that controls a volumetric display from
a distance, while the DOME is controlled through
head-tracking devices attached to two collaborators.
For globe displays, ViBall can be controlled by either
mouse or hands-on movement of the sphere; and
Globe4D is designed for direct hands-on control.

CrystalDome differs from the above systems in two
ways. First, compared to the technologically heavy
DOME multi-projector rendering cluster, it is
technologically light, consisting of a single projector
combined with a PC running rendering software. As
such, it must be able to support omni-directional
viewing without special hardware, such as that utilized
in the DOME. Second, it takes a different approach to
interaction with the use of sensors instead of mice or
direct hands-on manipulation. Since CrystalDome is
designed to be the center of seated conversation, the
passing of a mouse among users was viewed as an
encumbrance, so the capture of an individual's hand
motion became a design requirement.

In the following section we present the technology
behind CrystalDome. This is followed by results and
discussion and finally suggestions for future work.

2. Technology

The hemispherical display consists of three
functional components: a microcontroller-sensor
system, a graphics-projection system, and interface

software that runs on the PC and translates sensor data
into application-specific controls.

The microcontroller-sensor system was built with
three distance sensors attached to a Basic Stamp 2
microcontroller by Parallax Inc. [11]. Microcontrollers
are self-contained computers that possess multiple I/O
channels to control lights, motors, and sensors. They
can be programmed in languages such as Basic, Java,
and C. Once programmed, microcontrollers can run
unaided or communicate with a PC through a standard
serial or USB port. Three PING sonar sensors
manufactured by Parallax (range - 2cm to 3m (~.75" to
10')) were used to control input for x-axis, y-axis and
zoom. The microcontroller was programmed in Basic
to send sensor id and range data to the PC’s serial port.

Sensor data needed to be converted into mouse
movements or keyboard controls that could be
understood by application programs. There are two
possible approaches. The first is to modify the
application so it accepts sensor input; the second is to
create interface software to translate sensor data into a
form understandable by an application. We decided
upon the latter approach because many software
systems are only available as executables and those
that do provide source code may have designs that
require a significant amount of effort to learn and
modify.

An interface controller was designed to read sensor
data from the serial port, interpret it, issue commands
that are recognized by the application programs, and
keep track of the current system state. The system was
implemented in Processing.org [12 - 13], an open
source programming language and environment based
on Java, that is used for prototyping visually oriented
software and as a professional production tool.
Processing provides access to many class libraries
such as video and networking while hiding much of
the programming details. Our interface software took
advantage of a Processing class library that supports
serial port communication. In addition, Java's Robot
classes were included so that the interface system
could generate input events for mouse and keyboard
control as needed. These classes are part of Java’s
abstract window toolkit and provide methods such as
keyPress(), mouseMove(), and mousePress().

In operation, the interface controller works in two
possible ways. For mouse controlled software, it
translates the user’s hand motion toward and any from
each of the three sensors into left-right x cursor
movement, up-down y cursor movement, and in-out
zoom, respectively. For keyboard controlled software,

11th International Conference Information Visualization (IV'07)
0-7695-2900-3/07 $20.00 © 2007

the controller issues appropriate key-pressed
commands to generate the same mouse actions.

The third component of the hemispherical display
is the graphics-projection system. The projection
system employs a commodity video projector with
XGA resolution (1024 x 768) attached to a standard
video card that takes an image and projects it with the
aid of an angled planar mirror onto the underside of a
Plexiglas hemisphere that has been sprayed with a
light-diffusing coating (c.f. Figure 1). Any two-
dimensional spherical map projection (e.g. Google
Earth) that appears distended at the poles and
compressed at the equator will correctly map to the
hemisphere with no intermediate processing, but a
single point projection of a three-dimensional scene
will not.

The origin of this problem is in the view
dependency of each point on the surface of the
hemisphere. Specifically, every point on the dome’s
surface is a unique viewpoint in which the observer
looks into the hemisphere towards its center.
Therefore, the process of projecting a three-
dimensional object onto the surface of the hemisphere
must employ a 3D to 2D mapping that considers the
curvature of the sphere. There are a number of
possible approaches to the solution of this problem.

One approach is to use cube or environment
mapping [14]. In cube mapping, six cameras are
placed at some station point and six pictures are taken,
one each along a corresponding positive or negative
Cartesian axis direction. These are then assembled into
a cube and projected onto the surface of a sphere. This
method works well for immersive dome environments
such as planetariums or even multi-screen video
games where a viewer looks away from the center of
projection towards the outside world. However, with
the hemisphere, the viewer looks in the opposite
direction, toward the center of projection.

Ray tracing methods could be employed as an
alternative approach. Here, each pixel on the
hemisphere’s surface is the starting point for a ray that
terminates at the hemisphere’s origin. The advantage
of this approach is that it performs hidden surface
elimination and global illumination computations in
the hemisphere’s reference frame. The disadvantage is
that these computations are time consuming, requiring
a significant amount of additional graphical resources
and processing for real-time rendering.

Another possibility would be to configure a single
pixel camera utilizing a hardware-supported graphics
API such as OpenGL. The camera would be placed on
the surface of the hemisphere pointing towards its

origin. A picture would be taken at each pixel location
and assembled into an image. The advantage of this
method is that all hidden surface and illumination
computations are performed by the graphics hardware.
The disadvantage here is that for a commodity
projector’s resolution, it would take approximately
600K camera movements and individual snapshots per
frame.

Our approach was to distort the geometry of the
scene so that the points defining objects contained
within it are warped along radial paths from the
sphere’s center to viewpoints on its surface. In so
doing, the shapes of objects conform to the curvature
of the space defined by a spherical projection. As a
simple example consider the mapping of a rectangle to
a sphere’s surface as shown in Figure 2. Radial paths
are traced from the sphere’s origin, passing through
the red rectangle, distorting its surface points into a
warped grid (Figure 2a) shown on the sphere’s surface
(Figure 2b).

Our rendering algorithm does not project all points
to the sphere’s surface – this would flatten the scene
entirely; but rather, moves each point a fraction (λ) of
the distance to the sphere’s surface along the radial
vector defined by the sphere’s center O and the point’s
starting position P. For λ = 0, the point remains
unchanged; conversely, for λ = 1, the object is
completely flattened. In order to apply λ uniformly to
every object in the scene, each object is assigned its
own concentric sphere, the radius of which is defined
by its maximum radial extent from the origin. In
addition, and for more generality, an ellipsoid is used
as the bounding space instead of a sphere. The
ellipsoid provides additional control over shape of the
space, allowing adjustment of three radial dimensions
as opposed to the sphere’s one.

Figure 2. Projection of red rectangle to a
sphere: a) radial projections, b) polygon net

on sphere surface.

11th International Conference Information Visualization (IV'07)
0-7695-2900-3/07 $20.00 © 2007

After object warping has been carried out, a single-
point perspective projection is performed from the
sphere’s apex. Hidden surface elimination follows.
Because the C++ application employs the OpenGL
API, rendering algorithms are executed in hardware.

3. Results and Discussion

A number of mapping applications were run on
CrystalDome including Google Earth [15] as well as
the 3D rendering program we designed to demonstrate
the warping algorithm. A portion of the Earth’s
northern hemisphere rendered by Goggle Earth is
displayed in Figure 3. A 3D scene composed of
quadrics is shown in Figure 1.

A Goggle Earth map is projected as-is, without
any intermediate processing. As can be seen from
Figure 3, the map regions near the equator that would
normally be compressed in the two-dimensional map
projection are stretched over the surface as it would
appear on a globe.

Figure 4 shows close-up pictures of a 3D scene
projected onto the CrystalDome with and without
spatial warping. The top portion of the figure displays
how the image appears on the computer monitor,
while the lower images record what is projected onto
the dome. The unwarped images are displayed on the
left and warped images on the right of the figure. First,
notice the warped image on the computer monitor.
This distorted space is comparable to that produced by
the spherical nonlinear perspective projection of Yang
and coworkers' [16]. Notice also how the torus is
distended in the unwarped dome projection, while the
warped version (λ = 0.5) correctly projects the torus's

circular form. However, the pentagonal object in the
warped dome projection should have straight edges;
instead these edges appear as arcs. This problem
results from using the predefined quadrics built into
OpenGL. Our algorithm only warps the object's
control points, leaving OpenGL to do the rest. As a
result, the object's straight edges are projected as arcs
on the dome surface. The clear solution is to not
construct scenes from geometric objects defined in the
graphics API; instead, have the application software
define graphical objects so it may control their degree
of tessellation and hence the the number of surface
points to be warped [17].

The sensor system was set up so all three sensors
were aligned along the edge of the dome framework
(c.f. Figure 5). Left and right sensors controlled
rotation, while the center sensor controlled zoom. It
was found that in order for the sensors to provide
smooth motion control with a variety mouse driven
software, it was necessary to calibrate the interface
software for each system to accommodate different
mouse speeds and sensitivities. This was the case as

Figure 4. Dome display without image
warping (left) and with image warping (right).

Figure 3. CrystalDome display of Google
Earth.

11th International Conference Information Visualization (IV'07)
0-7695-2900-3/07 $20.00 © 2007

well with the 3D rendering program that was
controlled by keyboard commands.

Overall, the hemispherical display worked
remarkably well for rendering three-dimensional
scenes. The projection algorithm creates a clear sense
of depth within the display. Indeed, an animated scene
gives the feeling that objects are floating within a glass
sphere. The system is less successful at producing a
sense of transparency and depth, characteristics
intrinsic to true volumetric displays, but objects
rendered in the hemisphere maintain a better sense of
solidity, light and shadow.

4. Future Work

There are a number of areas in which this research
may be extended. For example, CrystalDome's
original design called for sensors to be placed in such
a way as to allow multiple users seated around the
display to control the movement of its contents. As
such, the number of sensors, their placement, and the
types of gestural interactions employed to control
CrystalDome remain to be optimized. In addition, the
three-dimensional scene that was used to demonstrate
the spatial warping algorithm was limited to a few
kinds of geometric objects. In order for CrystalDome
to be useful in a wide range of visualization
applications, it must support additional geometric
primitives such as polygon meshes and nurbs. In so
doing, the algorithm must render spatially warped
objects with a sufficient degree of tessellation to map
properly to the hemisphere, but not overly tessellated
to waste resources. These are areas of continued
research.

References

[1] G.E. Favalora, “Volumetric 3D displays and
application infrastructure,” IEEE Computer 38, 8,
2005, pp. 37-44.

[2] K. Langhans, D. Bezecny, D. Homann, D. Bahr, K.
Oltmann, K. Oltmann, C. Guill, E. Rieper, and G.
Ardey, "FELIX 3D Display: An interactive tool for
volumetric imaging," Stereoscopic Displays and
Virtual Reality Systems IX, Proceedings of SPIE, vol.
4660, San Jose, CA, 2002.

[3] W-S. Chun, J. Napoli, O.S. Cossairt, R.K. Dorval,
D.M. Hall, T.J. Purtell II, J.F. Schooler, Y. Banker,
and G.E. Favalora, “Spatial 3-D infrastructure:
display-independent software framework, high-Speed
rendering electronics, and several new displays,”
Stereoscopic Displays and Virtual Reality Systems
XII, A.J. Woods, M.T. Bolas, J.O. Merritt, I.E.
McDowall (eds.), Proceedings of SPIE-IS&T
Electronic Imaging, SPIE vol. 5664, 2005, pp. 302-
312.

[4] OmniGlobeTM, ARC Science Simulations, [cited Feb.
21, 2007], available from World Wide Web:
<http://www.arcscience.com/omni.htm >.

[5] S. Kettner, C. Madden, and R. Ziegler, “Direct
rotational interaction with a spherical projection”,
Interaction: System, Practice and Theory, ACM
SIGCHI, 2004.

[6] R. Companje, N. van Dijk, H. Hogenbirk, and D.
Mast, “Globe4D: time-traveling with an interactive
four-dimensional globe,” In Proceedings of the 14th
Annual ACM international Conference on Multimedia
(Santa Barbara, CA, USA, October 23 - 27, 2006).
ACM Press, New York, NY, pp. 959-960.

[7] S. Webb and C. Jaynes, “The DOME: A portable
multi-projector visualization system for digital
artifacts”, IEEE Workshop on Emerging Display
Technologies, Bonn, Germany, 2005.

[8] R. Balakrishnan, G.W. Fitzmaurice, and G.
Kurtenbach, “User interfaces for volumetric displays,”
Computer 34, 3 (Mar. 2001), pp. 37-45.

[9] T. Grossman, D. Wigdor, and R. Balakrishnan,
“Multi-finger gestural interaction with 3D volumetric
displays.” In Proceedings of UIST ’04, (October 24–
27, 2004) , Santa Fe, New Mexico, pp. 61-70.

[10] Y. Yasuhara, N. Sakamoto, N. Kukimoto, Y. Ebara,
and K. Koyamada, “Interactive controller for 3D
contents with omni-directional display,” In
Proceedings of ICPADS, 2005, pp. 167-171.

[11] Basic Stamp Microcontroller, Parallax, Inc., [cited
Feb. 21, 2007], available from World Wide Web:
<http://www.parallax.com/html_pages/products/basics
tamps/basic_stamps.asp >.

[12] C. Reas and B. Fry, “Processing: programming for the
media arts. AI Soc. 20, 4 (Aug. 2006), pp. 526-538.

[13] Processing, [cited Feb. 21, 2007], available from
World Wide Web: < http://processing.org/ >.

Figure 5. Sensor system on top of dome
frame with operator's hand over left sensor.

11th International Conference Information Visualization (IV'07)
0-7695-2900-3/07 $20.00 © 2007

[14] N. Greene, “Environment mapping and other
applications of world projections.” IEEE Comput.
Graph. Appl. 6, 11 (Nov. 1986), pp. 21-29.

[15] Google Earth, [cited Feb. 21, 2007], available from
World Wide Web: < http://earth.google.com/ >.

[16] Y. Yang, J.X. Chen, and M. Beheshti, “Nonlinear
perspective projections and magic lenses: 3D view

deformation,” IEEE Comput. Graph. Appl. 25, 1 (Jan.
2005), pp. 76-84.

[17] T.K. Heok and D. Daman, “A review on level of
detail,” In Proceedings of the International
Conference on Computer Graphics, Imaging and
Visualization (Cgiv'04), (July 26 - 29, 2004). IEEE
Computer Society, Washington, DC, pp. 70-75.

11th International Conference Information Visualization (IV'07)
0-7695-2900-3/07 $20.00 © 2007

