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Abstract

CrystalDome is  an  inexpensive  alternative  to  a  
volumetric  display  based  on  video  projector  
technology  that  supports  omni-directional  viewing 
(Figure  1).  It  can show mapped spherical  surfaces,  
such  as  globes,  and  scenes  composed  of  three-
dimensional objects. In the latter case, an algorithm 
was developed to perform hidden surface elimination  
in the hemisphere’s reference frame. Participants can 
sit around the hemisphere, which is built into a low  
table.  Sensors  capture  hand  movements  near  the  
hemisphere for adjustment of the position, orientation 
and size of the objects that are projected from below 
onto the inside of the display. 

1. Introduction

Volumetric dome displays [1], such as the Felix 3D 
[2] or Actuality Systems’ Perspecta Spatial3D Display 
[3], provide  360 degree see-through views of  three-
dimensional data. The advantages of such systems are 
two-fold. First, they provide a viewer with the ability 
to  interrogate  structural  data  from  all  angles  by 
allowing  circumnavigation  of  the  display.  Second, 
they  support  collaboration,  because  viewers  can 
assemble around the display, making it a focal-point 
for discussion. The disadvantages of these systems are 
that  they are  expensive,  are  not  designed to  display 
surface maps such as globes, and they render shaded 
surfaces poorly. 

We have recently built an inexpensive alternative to 
a  volumetric dome display based on video projector 
technology  called  CrystalDome  that  supports  omni-
directional  viewing  (Figure  1).  It  can show mapped 
spherical  surfaces,  such  as  globes,  and  scenes 
composed  of  three-dimensional  objects.  The 
hemisphere is built into a low table to support seated 
viewing from all  sides.  In  addition,  interaction with 
the display is  through hand motion. Sensors capture 
hand  movements  near  the  hemisphere  to  permit 

relaxed adjustment of the position, orientation and size 
of the objects without touching the display. 

There have been a number of recent approaches to 
building spherical and hemispherical display systems. 
ARC Science Simulations produces two commercially 
available OmniGlobeTM [4]  spherical display systems 
of either 1.5 or 2.0 meter diameters that use internal 
projectors and a convex mirror to cast images that fill 
the sphere. ViBall [5] uses two external projectors to 

Figure 1. CrystalDome display.
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create overlapping images that cover three-quarters of 
a  rotatable  sphere,  while  Globe4D  [6]  employs  a 
single  projector  to  direct  a  hemispherical  map from 
above onto a freely moving sphere. These systems are 
designed for  the  display of  two-dimensional  content 
such as maps. In contrast, the DOME (Digital Object 
Media  Environment)  [7]  hemispherical  display  is 
designed  for  interactive  rendering  of  three-
dimensional  models.  It  uses  six  camera-calibrated 
projectors to fill a 32 inch diameter hemisphere from 
below. These projectors are attached to a PC rendering 
cluster  interconnected  through  a  gigabit  Ethernet 
network.  Each  rendering  client  computes  an  image 
segment  that  is  blended  into  a  complete  image and 
displayed. 

A  variety  of  interaction  schemes  have  been 
developed for dome and globe systems. Balakrishnan 
et  al.  [8]  have  surveyed  these  issues  for  volumetric 
displays. Specific applications include Grossman et al. 
[9] who use motion tracking of the user's fingers on 
and  around  the  display's  hemispheric  enclosure  to 
support  direct  gestural  interaction  with  the  virtual 
objects. Yasuhara et al. [10] have designed a mobile 
PC application that controls a volumetric display from 
a  distance,  while  the  DOME  is  controlled  through 
head-tracking  devices  attached  to  two  collaborators. 
For globe displays, ViBall can be controlled by either 
mouse  or  hands-on  movement  of  the  sphere;  and 
Globe4D is designed for direct hands-on control. 

CrystalDome differs from the above systems in two 
ways.  First,  compared  to  the  technologically  heavy 
DOME  multi-projector  rendering  cluster,  it  is 
technologically light, consisting of a single projector 
combined with a PC running rendering software. As 
such,  it  must  be  able  to  support  omni-directional 
viewing without special hardware, such as that utilized 
in the DOME. Second, it takes a different approach to 
interaction with the use of sensors instead of mice or 
direct  hands-on  manipulation.  Since  CrystalDome is 
designed to be the center of seated conversation, the 
passing  of  a  mouse  among users  was viewed as  an 
encumbrance, so the capture of an individual's  hand 
motion became a design requirement. 

In the following section we present the technology 
behind CrystalDome. This is followed by results and 
discussion and finally suggestions for future work.

2. Technology

The  hemispherical  display  consists  of  three 
functional  components:  a  microcontroller-sensor 
system,  a  graphics-projection  system,  and  interface 

software that runs on the PC and translates sensor data 
into application-specific controls. 

The microcontroller-sensor system was built  with 
three  distance  sensors  attached  to  a  Basic  Stamp  2 
microcontroller by Parallax Inc. [11]. Microcontrollers 
are self-contained computers that possess multiple I/O 
channels to control lights, motors, and sensors. They 
can be programmed in languages such as Basic, Java, 
and C.  Once  programmed,  microcontrollers  can  run 
unaided or communicate with a PC through a standard 
serial  or  USB  port.  Three  PING  sonar  sensors 
manufactured by Parallax (range - 2cm to 3m (~.75" to 
10')) were used to control input for x-axis, y-axis and 
zoom. The microcontroller was programmed in Basic 
to send sensor id and range data to the PC’s serial port. 

Sensor  data  needed  to  be  converted  into  mouse 
movements  or  keyboard  controls  that  could  be 
understood  by  application  programs.  There  are  two 
possible  approaches.  The  first  is  to  modify  the 
application so it accepts sensor input; the second is to 
create interface software to translate sensor data into a 
form understandable  by  an  application.  We decided 
upon  the  latter  approach  because  many  software 
systems are only available  as  executables  and those 
that  do  provide  source  code  may  have  designs  that 
require  a  significant  amount  of  effort  to  learn  and 
modify. 

An interface controller was designed to read sensor 
data from the serial port, interpret it, issue commands 
that are recognized by the application programs, and 
keep track of the current system state. The system was 
implemented  in  Processing.org  [12  -  13],  an  open 
source programming language and environment based 
on Java, that is used for prototyping visually oriented 
software  and  as  a  professional  production  tool. 
Processing  provides  access  to  many  class  libraries 
such as video and networking while hiding much of 
the programming details. Our interface software took 
advantage of a Processing class library that supports 
serial  port  communication.  In addition,  Java's  Robot 
classes  were  included  so  that  the  interface  system 
could generate input events for  mouse and keyboard 
control  as  needed.  These  classes  are  part  of  Java’s 
abstract window toolkit and provide methods such as 
keyPress(), mouseMove(), and mousePress().

In operation, the interface controller works in two 
possible  ways.  For  mouse  controlled  software,  it 
translates the user’s hand motion toward and any from 
each  of  the  three  sensors  into  left-right  x cursor 
movement,  up-down  y cursor  movement,  and  in-out 
zoom, respectively. For keyboard controlled software, 
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the  controller  issues  appropriate  key-pressed 
commands to generate the same mouse actions. 

The third component of the hemispherical display 
is  the  graphics-projection  system.  The  projection 
system  employs  a  commodity  video  projector  with 
XGA resolution (1024 x 768) attached to a standard 
video card that takes an image and projects it with the 
aid of an angled planar mirror onto the underside of a 
Plexiglas  hemisphere  that  has  been  sprayed  with  a 
light-diffusing  coating  (c.f.  Figure  1).  Any  two-
dimensional  spherical  map  projection  (e.g.  Google 
Earth)  that  appears  distended  at  the  poles  and 
compressed at  the equator  will  correctly map to the 
hemisphere  with  no  intermediate  processing,  but  a 
single  point  projection  of  a  three-dimensional  scene 
will not. 

The  origin  of  this  problem  is  in  the  view 
dependency  of  each  point  on  the  surface  of  the 
hemisphere.  Specifically,  every point  on the  dome’s 
surface is  a unique viewpoint in which the observer 
looks  into  the  hemisphere  towards  its  center. 
Therefore,  the  process  of  projecting  a  three-
dimensional object onto the surface of the hemisphere 
must employ a 3D to 2D mapping that considers the 
curvature  of  the  sphere.  There  are  a  number  of 
possible approaches to the solution of this problem. 

One  approach  is  to  use  cube  or  environment 
mapping  [14].  In  cube  mapping,  six  cameras  are 
placed at some station point and six pictures are taken, 
one each along a corresponding positive or negative 
Cartesian axis direction. These are then assembled into 
a cube and projected onto the surface of a sphere. This 
method works well for immersive dome environments 
such  as  planetariums  or  even  multi-screen  video 
games where a viewer looks away from the center of 
projection towards the outside world. However, with 
the  hemisphere,  the  viewer  looks  in  the  opposite 
direction, toward the center of projection. 

Ray  tracing  methods  could  be  employed  as  an 
alternative  approach.  Here,  each  pixel  on  the 
hemisphere’s surface is the starting point for a ray that 
terminates at the hemisphere’s origin. The advantage 
of  this  approach  is  that  it  performs  hidden  surface 
elimination  and  global  illumination  computations  in 
the hemisphere’s reference frame. The disadvantage is 
that these computations are time consuming, requiring 
a significant amount of additional graphical resources 
and processing for real-time rendering. 

Another possibility would be to configure a single 
pixel camera utilizing a hardware-supported graphics 
API such as OpenGL. The camera would be placed on 
the  surface  of  the  hemisphere  pointing  towards  its 

origin. A picture would be taken at each pixel location 
and assembled into an image. The advantage of this 
method  is  that  all  hidden  surface  and  illumination 
computations are performed by the graphics hardware. 
The  disadvantage  here  is  that  for  a  commodity 
projector’s  resolution,  it  would  take  approximately 
600K camera movements and individual snapshots per 
frame. 

Our approach was to distort the geometry of the 
scene  so  that  the  points  defining  objects  contained 
within  it  are  warped  along  radial  paths  from  the 
sphere’s  center  to  viewpoints  on  its  surface.  In  so 
doing, the shapes of objects conform to the curvature 
of the space defined by a spherical projection. As a 
simple example consider the mapping of a rectangle to 
a sphere’s surface as shown in Figure 2. Radial paths 
are traced from the sphere’s  origin,  passing through 
the red rectangle,  distorting its  surface points into a 
warped grid (Figure 2a) shown on the sphere’s surface 
(Figure 2b). 

Our rendering algorithm does not project all points 
to the sphere’s surface – this would flatten the scene 
entirely; but rather, moves each point a fraction (λ) of 
the distance  to  the  sphere’s  surface  along the radial 
vector defined by the sphere’s center O and the point’s 
starting  position  P.  For  λ  =  0,  the  point  remains 
unchanged;  conversely,  for  λ  =  1,  the  object  is 
completely flattened. In order to apply λ uniformly to 
every object in the scene, each object is assigned its 
own concentric sphere, the radius of which is defined 
by  its  maximum  radial  extent  from  the  origin.  In 
addition, and for more generality, an ellipsoid is used 
as  the  bounding  space  instead  of  a  sphere.  The 
ellipsoid provides additional control over shape of the 
space, allowing adjustment of three radial dimensions 
as opposed to the sphere’s one. 

Figure 2. Projection of red rectangle to a 
sphere: a) radial projections, b) polygon net 

on sphere surface. 
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After object warping has been carried out, a single-
point  perspective  projection  is  performed  from  the 
sphere’s  apex.  Hidden  surface  elimination  follows. 
Because  the  C++  application  employs  the  OpenGL 
API, rendering algorithms are executed in hardware.

3. Results and Discussion

A number of mapping applications were run on 
CrystalDome including Google Earth [15] as well as 
the 3D rendering program we designed to demonstrate 
the  warping  algorithm.  A  portion  of  the  Earth’s 
northern  hemisphere  rendered  by  Goggle  Earth  is 
displayed  in  Figure  3.  A  3D  scene  composed  of 
quadrics is shown in Figure 1.

A Goggle Earth map is  projected as-is,  without 
any  intermediate  processing.  As  can  be  seen  from 
Figure 3, the map regions near the equator that would 
normally be compressed in the two-dimensional map 
projection are stretched over the surface as it  would 
appear on a globe.

Figure 4 shows close-up pictures of a 3D scene 
projected  onto  the  CrystalDome  with  and  without 
spatial warping. The top portion of the figure displays 
how  the  image  appears  on  the  computer  monitor, 
while the lower images record what is projected onto 
the dome. The unwarped images are displayed on the 
left and warped images on the right of the figure. First, 
notice  the  warped  image  on  the  computer  monitor. 
This distorted space is comparable to that produced by 
the spherical nonlinear perspective projection of Yang 
and  coworkers'  [16].  Notice  also  how  the  torus  is 
distended in the unwarped dome projection, while the 
warped version (λ = 0.5) correctly projects the torus's 

circular form. However, the pentagonal object in the 
warped dome projection should have straight  edges; 
instead  these  edges  appear  as  arcs.  This  problem 
results  from using the predefined quadrics built  into 
OpenGL.  Our  algorithm  only  warps  the  object's 
control  points,  leaving OpenGL to do the rest.  As a 
result, the object's straight edges are projected as arcs 
on  the  dome  surface.  The  clear  solution  is  to  not 
construct scenes from geometric objects defined in the 
graphics API;  instead, have the application software 
define graphical objects so it may control their degree 
of  tessellation and  hence  the  the number  of  surface 
points to be warped [17].

The sensor system was set up so all three sensors 
were aligned along the edge of the dome framework 
(c.f.  Figure  5).  Left  and  right  sensors  controlled 
rotation, while the center  sensor  controlled zoom. It 
was  found  that  in  order  for  the  sensors  to  provide 
smooth  motion control  with a  variety  mouse  driven 
software,  it  was  necessary  to  calibrate  the  interface 
software  for  each  system to  accommodate  different 
mouse speeds and sensitivities. This was the case as 

Figure 4. Dome display without image 
warping (left) and with image warping (right).

Figure 3. CrystalDome display of Google 
Earth.
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well  with  the  3D  rendering  program  that  was 
controlled by keyboard commands.  

Overall,  the  hemispherical  display  worked 
remarkably  well  for  rendering  three-dimensional 
scenes. The projection algorithm creates a clear sense 
of depth within the display. Indeed, an animated scene 
gives the feeling that objects are floating within a glass 
sphere. The system is less successful at producing a 
sense  of  transparency  and  depth,  characteristics 
intrinsic  to  true  volumetric  displays,  but  objects 
rendered in the hemisphere maintain a better sense of 
solidity, light and shadow. 

4. Future Work

There are a number of areas in which this research 
may  be  extended.  For  example,  CrystalDome's 
original design called for sensors to be placed in such 
a  way as  to  allow multiple  users  seated around the 
display to  control  the movement of  its  contents.  As 
such, the number of sensors, their placement, and the 
types  of  gestural  interactions  employed  to  control 
CrystalDome remain to be optimized. In addition, the 
three-dimensional scene that was used to demonstrate 
the  spatial  warping  algorithm was  limited  to  a  few 
kinds of geometric objects. In order for CrystalDome 
to  be  useful  in  a  wide  range  of  visualization 
applications,  it  must  support  additional  geometric 
primitives such as polygon meshes and nurbs.  In so 
doing,  the  algorithm  must  render  spatially  warped 
objects with a sufficient degree of tessellation to map 
properly to the hemisphere, but not overly tessellated 
to  waste  resources.  These  are  areas  of  continued 
research.
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