
Fostering Asynchronous Collaborative Visualization

Francis T. Marchese and Natasha Brajkovska
Department of Computer Science, Pace University, New York, NY 10038

fmarchese@pace.edu

Abstract

A novel asynchronous collaborative visualization
system for the chemical sciences has been created as a
mash-up between an interactive visualization program
and a wiki. The system supports features such as
annotation, information foraging, and visualization
session playback. Building the system from predefined
disparate components was a simple process. Yet, as an
integrated whole, the system displays an unexpected
synergy beyond the sum of its parts.

1. Introduction

Computer-supported collaborative visualization
typically employs a synchronous collaboration
paradigm in which multiple users meet during a
predetermined agreed upon time to work in concert
within a WYSIWIS (What You See Is What I See)
environment. Because synchronous collaboration is
such a powerful idiom for bringing groups of
individuals together over a distance, nearly all of the
research in this field has focused on building and
characterizing synchronous collaborative visualization
systems [1]. However, asynchrony is an essential part
of group process. Edwards and coworkers [2] have
pointed out that, in an asynchronous setting,
collaboration occurs at different times because users
neither require interactive coordination nor real-time
notification of updates to shared artifacts. Many work
practices favor asynchrony, where individuals exploit
time and space to work at their own convenience. In
addition, time and scheduling constraints may conspire
against synchrony, making it difficult to collaborate,
particularly where time zones must be spanned.
Technology may constrain synchronous collaboration
because of limited access to resources such as network
bandwidth or videoconferencing systems. As a result,
and out of necessity, much collaborative scientific
research is asynchronous, with data sharing and
discussion following the path of least resistance -
email.

The ubiquity of email and the reliance placed on it
for communication have made it the de facto
asynchronous collaborative medium. Yet, email
systems are inadequate for sharing artifacts that
include text, complex data, charts, imagery, screen-
captures, and video – all of which are part-and-parcel
of the research process, This has lead Viégas and
Wattenberg [3] to argue for what they call
communication-minded visualization, visualization
systems designed to support communication and
collaborative analysis. To demonstrate their thesis and
to investigate the social mechanisms that support
asynchronous collaboration, Heer, Viégas and
Wattenberg created sense.us, a prototype web
application for social visual data analysis that supports
view sharing, discussion, graphical annotation, and
social navigation [4]. They found that users not only
explored the data directly but also used the comments,
exploratory trails, and graphical annotations inserted
by other users to investigate the data in different ways.
What is clear from their results is that despite the fact
that asynchronous collaboration decouples the
research artifacts from the discussion, an
asynchronous visualization system that persists-in-
time can maintain the coupling between commentary
and artifact to a sufficient degree that it can be an
extremely useful collaborative tool.

Viégas and Wattenberg contend that asynchronous
communication of visualization discoveries and
processes is an area where there is an opportunity to
make important contributions to visualization research
[3]. We agree! We know of only two systems that
have been built specifically to support asynchronous
collaborative visualization. The first is DecisionSite
Posters by Spotfire, Inc. [5]. This system is a web-
based client that resides within an information
visualization package. It was designed specifically to
support asynchronous sharing of visualizations so that
interactive snapshots of analyses could be captured
and sent to collaborators for further analysis. The
second system is sense.us; as we noted above, sense.us
is a demonstration. Therefore, we have built an
asynchronous collaborative visualization system for
chemical applications. It was created as a mash-up, if

Proceedings of the Eleventh International Conference on Information Visualization: IV'07 (July 2007)

you will, by integrating two technologies, - an
interactive three dimensional visualization program
and a wiki [6]. The interactive visualization program
provides the means for interrogating data in real-time
while the wiki supports asynchronous sharing and
commentary. Besides building a useful asynchronous
collaboratory for molecular visualization, the purpose
of this research was two-fold: to investigate how well
such a system meets the requirements for an
asynchronous visualization system and to scope out
the design issues for implementing such a system.

In the following section we lay out the background
to the problem. Section 3 contains the system design
with a scenario of use presented in section 4. Section 5
includes a discussion and conclusions.

2. Background

Independence may be the most important issue
underlying asynchronous work [2] in which
collaborators function independently while working on
shared artifacts. In these situations communication
about the collaboration is less frequent than it is in
synchronous work. For example, when authors
collaborate to create a manuscript, coordination is
infrequent, only synchronizing for integration of parts
or reorganizing the context in which the manuscript is
being created. Moreover, when a shared artifact is
manipulated, it is not necessary for each collaborator
to instantly know any changes that have been made by
others. And it could actually be disruptive to the work
process if an author must continually address each
updated artifact.

With these issues in mind, Edwards and coworkers
[2] suggest the following general characteristics of a
software system that supports asynchronous
collaboration while maintaining work independence.
First, it should insulate collaborators so they can
continue working regardless of the actions taken by
coworkers. Second, it should support replication of
data in order to separate the actions of users from their
colleagues in such a way as to provide performance,
fault tolerance, and the ability to locally integrate
changes before releasing them to the world at large.
Third, it should support disconnected use, so users are
able to view, update, and add to their own private
replicas of data even when they are not on the
network. Fourth, it should support automatic
resolution of conflicts to help reduce the need for
coordination.

In addition, Viégas and Wattenberg propose that
asynchronous visualization systems should support
features such as annotation, information foraging, and
visualization session playback [4]. Annotation should
allow users to select objects and add some kind of
information. Information foraging should allow users
to study the data in their own way, in total or in part,
and provide a means to communicate discoveries
quickly and easily. A playback feature should allow
users to edit a session sequence (e.g. a sequence of
snapshots), picking out only a few key frames and
discarding any false starts or superfluous navigation.
Alternatively, a more robust playback mechanism
could be employed that follows Manohar and
Prakash’s replay by re-execution paradigm [7]. In their
approach, a series of input events is recorded that
shows the exact sequence of steps necessary to create
the effect of WYSNIWIST (What You See Now, Is
What I Saw Then). When it is time to replay a session,
each input event is faithfully re-executed. Their
method has two benefits. Because only input events
are recorded, recorded sessions are small in size and
thus easier to exchange among collaborators; and
because input events are re-executed, the re-execution
approach allows for interactive replay.

Another important issue that should be considered
is version control. It has been noted that for
hypermedia systems the advantages of versioning
include: historical revisions, security and exploratory
productions, distributed and asynchronous
collaborations, emergent forms of collaborations, work
flow support, efficiency and scalability [8]. In an open
editability model, such as that supported by a wiki,
documents can be modified at will. This has lead Di
Iorio and Vitali to argue that versioning becomes
necessity in order “to trace the contributions of the
different authors of different sources, to outline
differences between documents, to restore old
changes, to revise modifications, and to differentiate
all the personal interventions.” [9]

Mindful of these issues, we have built our
asynchronous collaborative visualization system. In
the following section we will discuss its design.

3. System Design

The asynchronous collaborative visualization
system that we built is composed of only two parts: an
interactive molecular visualization program and a
wiki.

Proceedings of the Eleventh International Conference on Information Visualization: IV'07 (July 2007)

Molecular visualization was selected as the
application domain because molecular visualization
environments typically integrate data generation,
visualization, and analysis [10]. These systems must
render a vast array of graphical representations not
found in mainstream visualization systems to support
visual analysis of data generated for molecular
structure and dynamics by both theory and
experiment. In addition, the builders of a number of
molecular visualization systems have considered
issues of annotation and recording. In the Kinemage
(Kinetic Image) molecular visualization system [11],
an ASCII input file contains source data, annotated
display lists for visualization scenarios, and
accompanying descriptive comments. These files can
be shared, edited, appended to, and evolve over time.
And ChimeTM , a browser plug-in by Elsevier MDL
[12] can read script files containing a sequence of
transformations that change molecular representations,
styles, and execute geometric transformations. Hence,
Chime scripts can be used in a replay by re-execution
mode.

Wiki selection can be daunting. There exist
literally hundreds of wiki engines that have been
written in a wide variety of programming and scripting
languages [17]. However, JSPWiki was chosen for the
wiki component of our system [18]. It is a WikiWiki
engine built around standard J2EE components (Java,
servlets, JSP). The reasons for selection are that it is a
mature and stable Wiki with simple formating rules,
is easy to install, provides a simple authentication
mechanism, supports RCS-based version control,
allows file attachments to a page, and can be extended
using plug-ins.

There are a number of ways of inserting a Java
applet into a wiki. Creating a plugin is one possibility.
Another is to allow the wiki to execute HTML code
including Javascript. This method is suggested for
intranet installations only. That said, we will use the
latter method for our demonstration.

Figure 1 displays a snapshot from our wiki that
contains a molecular visualization and associated text.
A two column HTML table has been used to arrange
Jmol with the body text embedded within an HTML
frame. Beyond technology, the essential issue is that
narrative and visualization should coexist within close
proximity so as the text is read, the graphical
representations may be manipulated.

Jmol was selected for the program to embed within
the wiki [13-14]. Jmol is a free, open-source molecule
viewer for chemistry and biochemistry that runs on
multiple platforms, including Windows, Mac OS X,
and Linux/Unix systems. The software consists of
three parts, all written in Java: the Jmol application
that runs on the desktop; the Java development toolkit
(JmolViewer) - a set of Java “classes” that can be
integrated into other Java applications to provide
molecular visualization and analysis of chemical
structure; and the Jmol applet that can be integrated
into web pages. This is the visualization component of
our system.

4. Sample Scenario

Figure 1 depicts the starting point for
asynchronous collaboration. A scientist has created a
wiki entry that contains a molecule and descriptive
text within which is embedded Jmol commands linked
to interface buttons. The scientist began with an
HTML file incorporating Javascript code. This is
inserted into a new wiki page by a copy and paste.
Then a file is uploaded as an attachment to the wiki
page that contained the coordinates of the molecule to
be displayed.

Besides its extensive visualization capabilities,
Jmol has two attributes that are essential to our
collaborative system. Like Chime, it can read scripts,
thus providing a means for session feedback. Also, it
possesses a Javascript interface so it may be controlled
by means of user interface objects (e.g. buttons, check
boxes, etc.) that are embedded within the descriptive
text. With a button click, a script command is sent to
the applet that in turn updates the display. The power
of such an interface is that it allows for the embedding
of replay by re-execution scripts within the narrative
commentary to tightly bind descriptive text and image.
We have discussed the importance of this issue
previously [15]. Examples of how Jmol may be used
in this way is found in the work of the biology
students at Kenyon College [16].

With the document in place, Jmol may be used to
directly interact with the data by moving the mouse
over the image. A right-click of the mouse opens a
pop-up menu, providing access to all Jmol's features.
Alternatively, the scientist can read the descriptive text
and click on the embedded buttons to load Jmol scripts
that focus attention on the data components that the
narrative addresses. In so doing, the commentary and
visualization maintain a tight binding (c.f. reference 15
for a discussion). In addition, at any time in the
viewing process, it remains possible for the scientist to
manipulate the graphical representation.

Proceedings of the Eleventh International Conference on Information Visualization: IV'07 (July 2007)

Later, a second scientist explores the wiki page.
She right-clicks on Jmol opening a console to input
script commands on-the-fly. The console allows her to
view the command history as well. She can copy-and-
paste between the history and script input fields,
working with different combinations of script
commands. When she is done, she can either enter a
comment, edit the document to include her new
scripts, or download the molecule structure file to
refine the data analysis on her local machine that is
disconnected form the network. Here she can use her
version of the Jmol Java application for visualization.
Finally, she can upload her new commentary to the
wiki.

Over time each scientist can review the document's
history by using the wiki's version control system.
Specifically, it can display how the document has
evolved as each successive change and addition has

been made. Each version in the history can be loaded
and explored at any time.

Figure 1. View of the molecular visualization wiki with Jmol (left) and embedded UI buttons
(right) that launch Jmol scripts from the commentary.

4. Discussion and Conclusions

In Section 2 we set two goals for this project: to
investigate how well a wiki-visualization program
mash-up meets the requirements for an asynchronous
collaborative visualization system, and to scope out
the design issues for implementing such a system. We
discussed nine general characteristics that an
asynchronous collaborative visualization system
should possess. They include:

1. Isolation of work practices.
2. Support for replication of data.
3. Automatic resolution of conflicts.
4. Version control.
5. Interactive real-time visualization.

Proceedings of the Eleventh International Conference on Information Visualization: IV'07 (July 2007)

6. Playback by means of replay by re-execution.
7. Support for disconnected use.
8. Information foraging.
9. Annotation.

Our system meets all these goals. The first four goals
are met by JSPWiki; goals five through seven by the
Jmol applet and application. Both JSPWiki and Jmol
support information foraging: the wiki by means of
text, and the visualization program by means of
graphics. Although annotations may appear to fall
entirely under the wiki's purview, the embedding of
Jmol scripting commands within the document's body
creates a tight dynamic annotation in which a
sequence of Jmol commands can be used to display
the data in such a way as to focus attention on the data
attributes that the commentary addresses. Even if Jmol
did not support LiveConnect [19], the API that
furnishes JavaScript with the ability to call methods of
Java classes using the existing Java infrastructure, the
requirements for annotation are met either by attaching
a Jmol script to the wiki page or embedding them as a
comment. This script can be cut and pasted into Jmol's
console and subsequently executed. Ideally, direct
annotation within the graphical window should be
supported, something that is found in the sense.us
system. But few systems do this. And those that do,
typically do it as image captures (for example, see the
CAV system [20]). Thus, this area is ripe for
exploration.

From a design perspective, the ability to easily
insert a graphical application into a wiki to create
instantly an asynchronous collaborative visualization
system is an empowering notion. It means that the
need for specialized software designed to support
collaborative visualization is mitigated because the
wiki becomes the foundation for sharing. More
complex asynchronous collaborative visualization
systems may be constructed by embedding additional
graphical modules. For example, our system could
have been extended by adding an interactive charting
applet to display xy graphs and statistical plots,
complementary data representations that support
scientific research. It means as well that any
visualization applet employing today's specialized
hardware such as 3D stereographic displays,
videowalls, or other multi-display technology can
become integrated into an asynchronous collaboratory.
This is particularly important, because visualization
systems are not able to display, annotate, and format
the large body of descriptive text required to
thoroughly document research. What this research

demonstrates is that these systems can be integrated
into the scientific communication and collaboration
process by embedding them within a wiki.

The quality of the synergy between wiki and
visualization software depends on how well the
visualization software handles annotation, playback,
and most importantly LiveConnect. Indeed, what we
have demonstrated by using Jmol is that the Javascript
to Java communication strongly couples the text-based
wiki with graphical application to provide a level of
synchronized, dynamical text-image collaborative
communication not seen in most other systems. We
see this as an opportunity for further development of
asynchronous collaborative visualization systems -
specifically, the enhancement of wikis to better
accommodate applets and the extension of applets to
accommodate LiveConnect or similar technology.

Finally, our collaborative visualization software is
constructed from two modules that have been used
extensively as independent systems (vide supra).
However, the usability of the system as a whole
remains to be tested. Since the goals of this research
project were to scope out the issues in designing and
building such a system, and those goals essentially has
been met, we will now move onto this next segment of
the research project.

References

[1] I.J. Grimstead, D.W. Walker, and N.J. Avis,
"Collaborative visualization: a review and taxonomy,"
In Ninth IEEE International Symposium on
Distributed Simulation and Real-Time Applications,
(Oct. 2005), pp. 61-69.

[2] W.K. Edwards, E.D. Mynatt, K. Petersen, M.J.
Spreitzer, D.B Terry, and M.M. Theimer, “Designing
and implementing asynchronous collaborative
applications with Bayou,” In Proceedings of the 10th
Annual ACM Symposium on User interface Software
and Technology (Banff, Alberta, Canada, October 14 -
17, 1997). UIST '97. ACM Press, New York, NY, pp.
119-128.

[3] F.B. Viégas and M. Wattenberg, “Communication-
minded visualization: a call to action,” IBM Systems
Journal 45, 4, 2006, pp. 801-812.

[4] J. Heer, F.B. Viégas, and M. Wattenberg, "Voyagers
and voyeurs: supporting asynchronous collaborative
information visualization," In Proceedings of CHI
2007, ACM Conference on Human Factors in
Computing Systems, 2007.

Proceedings of the Eleventh International Conference on Information Visualization: IV'07 (July 2007)

[5] DecisionSite Posters, [cited Mar. 10, 2007], available
from World Wide Web: <
http://www.spotfire.com/products/decisionsite_posters
.cfm >.

http://www.spotfire.com/products/decisionsite_posters.cfm
http://www.spotfire.com/products/decisionsite_posters.cfm

Proceedings of the Eleventh International Conference on Information Visualization: IV'07 (July 2007)

[6] B. Leuf and W. Cunningham, The Wiki Way: Quick
Collaboration on the Web, Addison-Wesley Longman
Publishing Co., Inc. 2001.

[7] N.R. Manohar and A. Prakash, “Replay by re-
execution: A paradigm for asynchronous collaboration
via record and replay of interactive multimedia
sessions,” SIGOIS Bull. 15, 2 (Dec. 1994), pp. 32-34.

[8] F. Vitali, “Versioning hypermedia,” ACM Comput.
Surv. 31, 42s (Dec. 1999), pp. 24-30.

[9] A. Di Iorio, and F. Vitali, “From the writable web to
global editability,” In Proceedings of the Sixteenth
ACM Conference on Hypertext and Hypermedia
(Salzburg, Austria, September 06 - 09, 2005).
HYPERTEXT '05. ACM Press, New York, NY, pp.
35-45.

[10] F.T. Marchese, J. Mercado, and Y. Pan, “Adapting
single-user visualization software for collaborative
Use,” In Proceedings of the Seventh International
Conference on Information Visualization: IV’03
(London, July), IEEE Press, 2003, pp. 252-257.

[11] D.C. Richardson and J.S. Richardson, “The kinemage:
a tool for scientific communication,” Protein Sci. 1, 1
(Jan. 1992), pp. 3-9.

[12] Elsevier MDL Chime, [cited Mar. 10, 2007], available
from World Wide Web:
<http://www.mdl.com/products/framework/chime/ >.

[13] A. Herráez, "Biomolecules in the computer: Jmol to
the rescue," Biochemistry and Molecular Biology
Education 34, 4, 2006, pp. 255-261.

[14] Jmol, [cited Mar. 10, 2007], available from World
Wide Web: < http://jmol.sourceforge.net/>.

[15] F.T. Marchese, “Dynamically binding image to text
for information communication,” In Proceedings of
the Eighth International Conference on Information
Visualization: IV’04 (London, July 2004), IEEE Press,
pp. 707-712.

[16] Biomolecules at Kenyon, [cited Mar. 10, 2007],
available from World Wide Web:
<http://biology.kenyon.edu/BMB/chime.htm>.

[17] Wiki Engines, [cited Mar. 10, 2007], available from
World Wide Web:
<http://c2.com/cgi/wiki?WikiEngines/ > .

[18] JSPWiki, [cited Mar. 10, 2007], available from World
Wide Web: < http://jspwiki.org/wiki/>.

[19] LiveConnect, [cited Mar. 10, 2007], available from
World Wide Web: < http://devedge-
temp.mozilla.org/library/manuals/2000/javascript/1.3/
guide/lc.html >.

[20] S.E. Ellis and D.P. Groth, “A collaborative annotation
system for data visualization,” In Proceedings of the
Working Conference on Advanced Visual interfaces
(Gallipoli, Italy, May 25 - 28, 2004). AVI '04, ACM
Press, New York, NY, pp. 411-414.

http://www.mdl.com/products/framework/chime/
http://jmol.sourceforge.net/
http://biology.kenyon.edu/BMB/chime.htm
http://c2.com/cgi/wiki?WikiEngines/
http://jspwiki.org/wiki/
http://devedge-temp.mozilla.org/library/manuals/2000/javascript/1.3/guide/lc.html
http://devedge-temp.mozilla.org/library/manuals/2000/javascript/1.3/guide/lc.html
http://devedge-temp.mozilla.org/library/manuals/2000/javascript/1.3/guide/lc.html

	1. Introduction
	References

