
A System for Real-Time Transcoding and Delivery of Video to Smartphones

Lior D. Shefer and Francis T. Marchese
Pace University

Computer Science Department
NY, NY 10038

{shefer.lior@gmail.com, fmarchese@pace.edu}

Abstract—This paper presents a report of a system that
delivers customized video content to mobile devices.
Constructed from open source components, it can stream
transcoded video to mobile devices in real-time. In addition, it
allows publishers to add content into their video streams on-
the-fly. As a demonstration of this system's capabilities, an
application was designed to deliver transcoded Adobe Flash
content to Apple iPhones in real-time with the insertion of
randomly selected commercial content.

Keywords-mobile computing, multimedia, Adobe Flash,
Apple iPhone, video transcoding, open source.

I. INTRODUCTION
Access to online video content has increased

significantly. As of November of 2008, Americans spent
12.5% of their time online viewing videos [1], watching over
14 billion clips a month [2]. Fifty-seven percent of all
Americans now have high-speed Internet access at home, a
number that is expected to rise to ninety percent by 2012 [3].
With users increasingly connected to more powerful
networks, it is only natural to conclude that these users will
expect their mobile devices, particularly smartphones, to
deliver this same content at a similar level of quality.
However, there is a major stumbling block – Adobe Flash.

Adobe Flash is the standard format for delivering online
video content to traditional computers, because of its high-
quality/low bit rate (small file size) capabilities. Nearly 99%
of online users are able to view Flash files [4]. Due in part to
Flash’s significant power consumption, delivery of Flash
encoded videos to mobile devices, such as smart phones,
remains problematic [5]. Adobe itself has addressed this
challenge by partnering with processor manufacturers such
as Texas instruments to furnish versions of Adobe Flash
Player optimized for smartphones and internet devices based
on these chips [6], with a beta version of Flash Player 10 that
had been expected to appear in October 2009 [7]. But
Apple’s iPhone and recently introduced iPad will not run
Adobe’s Flash Player, even though both Apple and Adobe
have pledged to solve this problem. And given that the
iPhone owns nearly 50% of the United States smartphone
traffic [8], this remains a growing problem with no clear end
in sight [9].

In sum, the delivery of Internet-based video content to
mobile devices remains an open problem. The part of the
problem we consider here is the transcoding of video for
smartphones in order to address the question of who is
responsible for transforming video into a form understood by
the mobile device - the hardware manufacturer (e.g. Texas
Instruments), the software developer (e.g. Adobe), or the
smartphone manufacturer (e.g. Apple). It does this by
bypassing these stakeholders completely; building an
extensible platform based on a loosely coupled collection of
components founded on open source technologies.

The system prototype we present is called Vmoox
(wordplay on Video multiplexer), a customizable and
scalable video encoding and publishing system for a web
publisher that includes a smartphone client application.
Vmoox not only delivers video content to mobile devices in
real-time, but allows publishers as well to inject additional
content into video streams. The version of Vmoox
demonstrated here transcodes Adobe Flash for Apple
iPhones and injects random commercial content.

In the following section we will briefly cover the
problem background. Section 3 contains the system design.
Sections 4 and 5 present the implementation and a sample
session, followed by a discussion in Section 6.

II. BACKGROUND

Transcoding from Internet video to smartphone requires a
codec that a smartphone understands. Such a codec is the
H.264/AVC open standard codec developed by the ITU-T
Video Coding Experts Group [10]. The advantage of
H.264/AVC for smartphones is two-fold: a small file size
that contains high quality, MPEG-4 compressed video, and a
wide range of possible implementations that currently
include Research in Motion’s Blackberry, Palm’s Pre, and
HTC’s G1 with Google, and Apple’s iPhone.

A number of commercial solutions are available for
transcoding video that include Flash [11] - [17]. However,
these systems consider only a part of a video content
publishers workflow. For example, these systems do not
address the issue of smartphone ‘apps.’ It remains the
publisher’s responsibility to develop and deploy ‘apps’ for
each mobile platform. Indeed, smaller publishers may not
even have the requisite resources to develop ‘apps’ in-house
or be able to provide the support necessary for maintaining

2010 14th International Conference Information Visualisation

1550-6037/10 $26.00 © 2010 IEEE

DOI 10.1109/IV.2010.75

484

Information Visualisation

1550-6037/10 $26.00 © 2010 IEEE

DOI 10.1109/IV.2010.75

494

2010 14th International Conference Information Visualisation

1550-6037/10 $26.00 © 2010 IEEE

DOI 10.1109/IV.2010.75

494

and delivering their video content. In addition, smartphone
technology and the ‘apps’ that run on them are still in their
early stages of development. Apple released its iPhone in
July 2007 and Google’s Nexus One was introduced in
January 2010. Add to this that video encoding schemes along
with the means of video delivery remain areas of active
research [18] [19], particularly for the delivery of high-
definition video content [20] [21] [22]. Thus, the challenges
facing organizations that wish to deliver a diversity of
smartphone content range from start-up costs to continued
development, and the long term maintenance of these
systems – costs that small and modest size organizations may
not reasonably be able to bear.

One natural solution to this problem is to create a
complete system that addresses both the consumer and
content provider. Such a system should be open, flexible,
and have the ability to add, delete, or adapt components at
will. There are number of ways in which to do this. At one
extreme is to build the system from scratch; at the other is to
design the system so that a collection of independent parts
may be integrated to meet the requirements of the
stakeholders. This latter approach was taken, creating a
system from pre-existing, open-source technologies.

III. SYSTEM DESIGN

Vmoox is designed as a loosely coupled collection of
modules. Different modules in the system interact with each
other through the API regardless of how each component has
been implemented. This design improves the software’s
maintainability and readability as well as opening up Vmoox
to third parties who may use Vmoox in combination with
their own software applications.

The two main services which Vmoox provides are a
publisher service interface and a video transcoding service.
The publisher service interface is an API that enables
publishers to initialize accounts, retrieve data from their
websites, distribute video content to mobile devices, and
perform updates as needed. The video transcoding service
performs offline and real-time encoding transformations of
Flash to H.264/AVC videos. It is designed to support the
publisher service interface as part of an offline initialization
setup and update, as well as real-time on-demand encoding
requests. This is accomplished by Vmoox’s five core
components (Fig. 1):

1. Video publisher service interface (VPSI).
2. Video Encoding Service (VES) that performs

offline and real-time encoding and thumbnail
creation.

3. Web service layer that powers both native and web
application layers employing VES for real-time
encoding.

4. Service engine that provides pre-roll video content
before each video clip plays.

5. Front-end application that enables users to consume
publisher’s video content on a mobile device.

We will discuss each component in turn.

A. Video Publisher Service Interface
The Video Publisher Service Interface (VPSI) enables

web publishers to distribute their video content on mobile
devices. It retrieves data from a publisher via an API to
initialize accounts and perform updates when new content is
available. As part of account initialization, VSPI generates a
Vmoox internal user Id that identifies the video’s owner and
its meta-data. This information is stored in XML format
within Vmoox’s database and includes the following fields:
video_id, image_url, tz_image_url, splash_image_url,
video_url, tease_txt, can_syndicate, and vid_duration.

Once an Id is provided, the publisher may begin
initializing an account that integrates its data within the
Vmoox system. Integration is customizable so that videos
may stream from either the publisher’s or Vmoox’s data
center. If an external integration has been defined, the
Vmoox publisher service will upload the original video
content to its own server and pass the video to the Video
Encoding Service (VES) so as to immediately create
thumbnails and initiate a partial H.264/AVC encoding.

Finally, as part of the initializing process, the publisher
receives its own customized iPhone application.

B. Video Encoding Service
The Video Encoding Service (VES) performs offline and

real-time encoding transformations. Its core functionality is
to transform Adobe Flash-based video content into
H.264/AVC encoding so mobile users can consume this
content. VES supports both the publisher service interface as
part of the offline initialization setup and update process, as
well as real-time on demand encoding requests. The offline
encoding service receives the original Flash based video
content and decides which part of the original content should
be encoded. As an initial setup, the video is divided into
three minute “chapters” and the first chapter (i.e., three
minute section) of each video is immediately transcoded,
although this variable is configurable. (More information on
chapter division and the decision to transcode only the first
three minutes of each video is provided in the discussion
section of this paper.)

Once chapters have been produced and the first three
minutes transcoded, VES creates thumbnails and a playlist of

Figure 1. Vmoox architecture

Publisher vmoox
publisher
service

interface

Offline encoding
and Publishing vmoox

DB

Encoding Engine JSON/P API Ad Service
Engine

Video
Encoding
Decision

Algorithm

485495495

chapter names with respective durations. The offline
encoding and publishing service concludes by updating the
Vmoox database. From here on the iPhone application is
ready for use.

C. Web Service Layer
The Vmoox web service supports both web-based and

native iPhone applications (Fig. 2). The web service provides
video information for the following search criteria supplied
by the user:

a. List of randomly selected video’s meta-data such
as: title, description, duration, and image.

b. Relevant meta-data for a given video Id.
c. List of videos' meta-data that contain a given

keyword in the video title and/or description – this
supports the search functionality.

d. List of videos’ media URLs for a given video Id.
e. Media service URL for a given video Id. A service

module appends pre-roll video content before
serving the publisher content.

The Web Service works in the following way. When a
user selects a video file from the smartphone app an HTTP
GET request is sent to the Web Service. The Web service
then retrieves a list of chapters for the video and pre-roll
content (e.g. ads). This list is returned to the app.

In a synchronous process, VES determines which of the
chapters have been transcoded and transcodes the chapters
that have not. Chapters that have already been transcoded are
saved in the system and marked as such to avoid transcoding
content more than once per video.

D. Service Engine
The Vmoox web service provides a video’s meta-data

and H.264 media playlist links for each video Id. As part of a
video’s play-list, the system includes a link to a pre-roll
video. The system stores a reference to publishers of pre-roll
content to ensure the correct association between video and
content. The system offers some intelligence for serving pre-
roll content that insures the same content will not repeat
during the same user session.

The service engine can inject any kind of video content.
For example, if the Flash videos supported an educational

institution’s delivery of teaching materials, then timely
announcements could be sent along with the video feed.
Another use is as a revenue generator. Publishers can include
appropriate pre-roll ads as part of their video content. As
illustrated in Fig. 2, when a request to get videos’ media
URLs enters the Vmoox web service, the web service issues
an addition request to the ad serving engine to receive the
proper ad(s).

E. Front-end Application
Vmoox supplies each web publisher with its own

customized smartphone application that is a front-end to the
Vmoox system, enabling users to consume the publisher’s
content on their mobile devices. The design of the front-end
application represents a consideration of several key
structural attributes: mode of delivery, customizability, and
conformance to the model-view controller (MVC) design
pattern.

Publishers have the ability to receive either a native
smartphone application (specific to a particular device) or a
web application that runs in the browser of any device. Both
platforms share the majority of the code base, that is the
Vmoox Web Service is dedicated to these platforms, while
Vmoox’s other modules such as VEDA and the transcoder
are platform independent.

Each publisher is able to customize the front-end
application’s appearance to fit its own brand identity, target
audience, and as functionality. Some publishers may prefer
to control the order of videos presented, while others may
prefer a random selection. Another requirement is the ability
to control the amount and subject matter of pre-roll ads
before each video.

Finally, the front-end application’s architecture uses the
MVC design pattern. The benefit of using the MVC design
pattern is the ability to create independence among
components. Data access code, business logic code, and
presentation code are all separated. This allows the creation
of different views for different publishers according to their
specific needs. Maintaining low coupling between different
types of classes, or the decoupling of data access, business
logic, and presentation code make classes easier to maintain
and reuse.

IV. IMPLEMENTATION

Vmoox was built with Java and runs on an Apple
MacBook Pro powered by an Intel dual-core processor with
4GB of RAM. Vmoox’s sample smartphone app was created
for the iPhone employing Apple's iPhone SDK OS 3.0 [23].
VPSI, VEDA, the Vmoox Web Service, and the smartphone
web application were all implemented utilizing the open
source frameworks Hibernate [24], MySQL [25], Xstream
[26], JSON [27], FFmpeg and libavcode [28], and GWT
[29].

Hibernate is an object-relational mapping library for the
Java language that provides a framework for mapping an
object-oriented domain model to a traditional relational
database and provides data query and retrieval facilities to

Figure 2. Vmoox's web service interface.

Vmoox DB

Request
Type

Get media ad
URL by video

ID

Get Random
Videos’ meta -

data List

Get Videos’
meta-data by

keyword

Get Videos’
media URLs by

ID

Get Videos’
meta-data by

ID

Ad service
algorithm

Web Service

iPhone

486496496

MySQL, the relational database management system used by
Vmoox.

Xstream is an open source library that serializes Java
objects to XML and JSON, and vise versa. When designing a
web service it is often necessary to implement several end-
points to services. For example, some clients may prefer to
interact with the service’s data through XML, while other
types of applications may prefer JSON or pure Java objects
through RPC or SOAP. XStream provides an abstraction
layer on top of a business logic rules layer by separating
business rules and presentation simplifying web service
design through loose coupling. The main advantages of
Xstream are its ease of use, uncomplicated object mapping,
and performance. Xstream provides an abstraction layer on
top of object serialization. Common use-cases are easy to
implement and use. Most objects can be serialized without
need for specifying mappings. Xstream serialization is fast
and requires low memory consumption. Vmoox's web
service uses XStream to afford clients a JSON/JSONP
RESTful [30] service. Vmoox web service responds to a
HTTP GET request by generating a java object using
Hibernate. XStream then serializes these Java objects into
JSONP and posts them back to the request.

JSON/JSONP is a lightweight protocol that enables
developers to easily connect to Vmoox’s web service and to
use Vmoox’s data in their own applications. JSON is a data
format that naturally fits browser data consumption because
it is a subset of JavaScript and can be easily parsed by a
browser.

FFmpeg is a cross-platform framework to record,
convert, and stream audio and video. It contains libavcodec,
a library of codecs for encoding and decoding video and
audio data. Vmoox uses FFmpeg and libavcodec to transcode
Flash video files to H.264/AVC, create thumbnails of video
files, generate chapters within the original video files, and
obtain information about the files themselves.

GWT, the Google Web Toolkit, is designed for building
and optimizing complex browser-based applications. The
GWT SDK supplies a set of core Java APIs and Widgets that
support writing AJAX applications in Java and then
compiling these sources into optimized JavaScript that runs
across all browsers, including mobile browsers for Android
and the iPhone. Vmoox's iPhone app was implemented using
GWT following the MVC design pattern.

V. SAMPLE SESSION
Using CNN as a sample publisher and a native iPhone

application as the sample client implementation, the
sequence of steps that constitute the Vmoox service
workflow are as follows:

CNN provides Vmoox with an XML file containing its
videos and their meta-data as well as pre-roll content along
with pairing criteria (i.e., which ads should be paired with
which content). Vmoox’s publisher service interface imports
CNN’s original Flash files onto its server and logs the meta-
data in the Vmoox database. The video encoding service
divides each video into three minute chapters, transcodes the
first chapter, and creates a thumbnail for each video. At this

point a native iPhone application is delivered to the client as
per client design criteria. A user downloads the application
and selects a video from the Featured View list (Fig. 3a).
This is the first view a user sees upon launching the app and
includes the latest (or preferred) video content from the
publisher. When the user selects a video by clicking on the
video image or the blue arrow directly to its right, the iPhone
app sends an HTTP GET request to the Vmoox server which
responds in turn with a JSON/JSONP list of chapters (Fig.
3b). Meanwhile, the video encoding service decides which
chapters need transcoding and begins transcoding the ones
that do. Video content is then paired with pre-roll content as
per client specifications. Clicking on the video thumbnail in
the Video View (Fig. 3b) initiates the video - playing the
pre-roll content (Fig. 4a) and video (Fig. 4b).

Figure 3. Two views of the iPhone application: a) Featured View, b)
Video View.

Figure 4. A video being played with a) pre-roll ad, b) video content
from CNN.com.

487497497

VI. DISCUSSION
The Vmoox application was tested over a 10 Mbit

wireless network with an iPod touch as a client. The iPhone
app was tested using Apple’s iPhone simulator running on
the Vmoox host computer. In the latter case, the
simultaneous processes of pulling video content from CNN,
its real-time transcoding, monitoring of all processes, and
playing on the simulator showed no degradation in video
delivery. In the former case, no visible latency was detected.
If this had been so, it would have been an issue with the
network, not Vmoox.

While the CNN native iPhone application works well as
a prototype, some changes to the design of the Vmoox
system will need to be made as individual publishers
purchase the service. Each client has a unique set of
requirements and both the application and service will be
modified slightly in each case to fit those.

One of the major components of the Vmoox prototype is
the Video Encoding Service that divides videos into 3-
minute chapters. This time span is adaptable, given a client
needs and specifications. Here the decision to segment video
files into 3 minute chapters comes from a desire to minimize
waste of server space and computational resources by only
performing a full transcode on files which are actually
viewed. An initially transcoded segment provides a time
buffer with which to avoid any wait time on the viewer’s
end. Simply put, while the user watches the first 3 minutes of
the clip, the remainder of the clip is transcoded in the
background. In the future, Vmoox’s efficiency may be
improved further by including a “stop transcode” feature that
would identify when a user has stopped viewing a clip so the
system may be instructed to cease transcoding any remaining
chapters. Such an enhancement would be significant because
recent research has shown that the average duration of video
consumption on mobile devices is 3.2 minutes [31].

Data collected by publishers regarding their individual
audiences may impact the way the Vmoox service interacts
with a publisher’s content (e.g. CNN viewers might have a
lower or higher average view time, calling for an adjustment
to chapter lengths). As such, we believe that customizability
is essential to Vmoox’s potential for success.

Finally, Vmoox's customizability is expressed in its
simple, loosely coupled modular design that ensures
enhancement and scalability. For example, a multimedia
analytics module could be easily added that tracks mobile
users behavior as they access this streaming content. In
addition, all Vmoox's components could themselves be
farmed out to Cloud services. For example, Vmoox could
use Encoding.com's transcoding cloud as it back-end because
Vmoox's design encapsulates all its processes within it class
design. As such, the only data that other processes see are
data that are communicated through its well defined
interfaces.

REFERENCES

[1] S. Radwanick, “The 2008 digital year in review,” comScore
Whitepaper, January 30, 2009.

[2] Nielsen, Inc., “Television, internet and mobile usage in the U.S,”
A2/M2 Three Screen Report, 1st Quarter, 2009.

[3] Nielsen, Inc., “An overview of home internet access in the U.S.,
December, 2008. http://blog.nielsen.com/nielsenwire/wp-content/
uploads/2009/03/overview-of-home-internet-access-in-the-us-jan-
6.pdf, accessed May 3, 2010.

[4] S. Jespers, “Flash video market share continues to grow,” February 5,
2009. http://www.webkitchen.be/2009/02/05/flash-videomarketshare-
continues-to-grow/, accessed May 3, 2010.

[5] R. Hansen, “Browser power consumption,” SecTheory, December 1,
2008. http://www.sectheory.com/browser-power-consumption.htm,
accessed May 3, 2010.

[6] Texas Instruments, “Adobe and Texas Instruments bring flash and
AIR to OMAP™ Platform,” 2009. http://focus.ti.com/
pr/docs/preldetail.tsp?sectionId=594&prelId=sc09045, accessed May
3, 2010.

[7] M. Perez, “Flash coming to smartphones in October,”
InformationWeek, June 23, 2009. http://www.informationweek.com/
news/personal_tech/ smartphones/showArticle.jhtml?articleID=
218100917, accessed May 3, 2010.

[8] E. Schonfeld, “iPhone makes up 50 percent of smartphone web traffic
in U.S., Android already 5 percent,” TechCrunch,
http://www.techcrunch.com/2009/03/24/iphone-now-50-percent-of-
smartphone-web-traffic-in-the-us/, Mar 24, 2009. accessed May 3,
2010.

[9] MacWorld, “Adobe preps full flash player for smartphones,”
http://www.techcrunch.com/2009/03/24/iphone-now-50-percent-of-
smartphone-web-traffic-in-the-us/, accessed May 3, 2010.

[10] T. Wiegand, G.J. Sullivan, G. Bjontegaard, and A. Luthra,
“Overview of the H.264/AVC video coding standard,” IEEE
Transactions on Circuits and Systems for Video Technology, vol. 13,
2003, pp. 560-576.

[11] Sorenson Media, “Sorenson360,” http://www.sorensonmedia.com/
video-delivery-network/, accessed May 3, 2010.

[12] Encoding.com. http://www.encoding.com/, accessed May 3, 2010.
[13] RipCode. “TransAct,” http://www.ripcode.com/, accessed May 3,

2010.
[14] Panvidea, http://www.panvidea.com/, accessed May 3, 2010.
[15] HD Cloud, http://hdcloud.com/, accessed May 3, 2010.
[16] Ankoder, http://www.ankoder.com, accessed May 3, 2010.
[17] Hey!Watch, http://heywatch.com, accessed May 3, 2010.
[18] Z. Yetgin and G. Seckin, “Progressive download for multimedia

broadcast multicast service,” IEEE MultiMedia, vol. 16, no. 2 (Apr.-
June), 2009, pp. 76-85.

[19] J. Zhou, Z. Ou, M. Rautiainen, T. Koskela, and M. Ylianttila, “Digital
television for mobile devices,” IEEE MultiMedia, vol. 16, no. 1 (Jan.-
Mar), 2009, pp. 60-71.

[20] M. Budagavi, and M. Zhou, “Next generation video coding for
mobile applications: industry requirements and technologies,” Proc.
SPIE Visual Communications and Image Processing (VCIP), San
Jose, Jan. 2007.

[21] C-W Ku, C-C. Cheng,G-S. Yu, M-C. Tsai, and T-S. Chang, “A high-
definition H.264/AVC intra-frame codec IP for digital video and still
camera applications,”, IEEE Transactions on Circuits and Systems for
Video Technology, vol.16, no.8 (Aug.), 2006, pp.917-928.

[22] M. Budagavi and M. Zhou,“Video coding using compressed
reference frames,” IEEE International Conference on Acoustics,
Speech and Signal Processing, ICASSP 2008 (March 31 -April 4),
pp.1165-1168,

[23] iPhone SDK 3.0, “Developing for iPhone OS 3.0,”
http://developer.apple.com/iphone/, accessed May 3, 2010.

[24] Hibernate, “Relational persistence for Java and .NET,”
https://www.hibernate.org/., accessed May 3, 2010.

[25] MySQL, “The world's most popular open source database.”
http://www.mysql.com/, accessed May 3, 2010.

488498498

[26] M. Fitzgerald, “Serializing Java objects with Xstream,” August 18,
2004, http://www.xml.com/lpt/a/1462.

[27] D. Crockford, D. “Introducing JSON.” http://www.json.org/.
Accessed May 3, 2010.

[28] Ffmpeg, http://ffmpeg.org/, accessed May 3, 2010.
[29] GWT, “Write AJAX apps in the Java language, then compile to

optimized JavaScript,” .http://code.google.com/webtoolkit/
overview.html, accessed May 3, 2010.

[30] S. Tilkov, “A brief introduction to REST,” InfoQ, Dec 10, 2007.
http://www.infoq.com/articles/rest-introduction.

[31] comScore Press Release. “U.S. online video viewing surges 13
percent in record-setting december,” February 4, 2009.
http://www.comscore.com/Press_Events/Press_Releases/2009/2/
US_Online_Video_Viewing_Sets_Record.

489499499

