
On Requirements Visualization

Orlena C.Z. Gotel, Francis T. Marchese Stephen J. Morris
Department of Computer Science Department of Computing
Pace University, New York, USA City University, London, UK

ogotel@pace.edu, fmarchese@pace.edu sjm@soi.city.ac.uk

Abstract

This paper summarizes the typical objectives and

process of visualization and highlights the primary
areas in which visualization systems and artifacts have
been used to support requirements engineering activi-
ties to date. The paper suggests that the field has yet to
realize some of the benefits that can arise from a well
designed and task-oriented information visualization,
falling behind other areas of software engineering in
which visualization has been used to better effect. By
way of an exemplar, the paper proposes the need for a
way to visualize the multi-dimensional nature of re-
quirements to help bring about a shared and rapid
comprehension on the health of a project’s require-
ments, and so support various diagnostic activities and
decision making tasks during software development. It
examines how new ways to ‘see’ the requirements
could be developed, based on metaphor and mapping,
provides some samples, and outlines a research agenda
to explore a vision related to requirements sensing.

1. Introduction

Effective visualizations are designed artifacts. As
with all designed artifacts, there are stakeholders and
end goals that these visual artifacts are intended to sat-
isfy, along with defined processes that can help to
achieve these ends. This paper questions the limited
use of visualization in supporting requirements engi-
neering activities to date, as compared with other areas
of software engineering which appear to have received
more attention and been the subject of international
workshops and symposia in the area (e.g., the ACM
Symposium on Software Visualization series, running
since 2001, and the IEEE International Workshop on
Visualizing Software for Understanding and Analysis
series, running since 2002). There is undoubtedly much
scope to advance the state of both research and practice
in requirements engineering visualization.

This paper outlines a typical requirements compre-
hension problem that we suggest a carefully designed
visualization could assist with, that of gaining a quick

assessment on the ‘health’ of a set of requirements, a
task that can be impeded by the need to browse
through disjoint textual requirements documentation
and accompanying models. It is common practice
within other domains to reduce vast amounts of multi-
dimensional data to a single picture to promote rapid
situational awareness and enable decision making
tasks, as with the military Common Operational Pic-
ture (COP) [44]. Within the software domain, the
shared physical story wall that is at the heart of agile
software development processes is the nearest ap-
proximation to such a COP. This affords project stake-
holders with visual information about the changing
status of stories (aka requirements) along with the op-
tion of physical manipulation. Virtual variants of such
walls are now commonly developed and used [13, 30].
This paper builds upon the idea of shared visual com-
municative artifacts and sketches an initial concept for
producing requirements pictures.

The near term vision is of a system that automati-
cally maps data about requirements into visual arti-
facts, permitting stakeholders to actually ‘see’ the re-
quirements, gain awareness on requirements properties
and support high-level decision making activities. The
longer term vision is to provide stakeholders with a
way to ‘sense’ the essential characteristics of these
requirements in a more direct and engaging manner.

This paper is organized as follows. Section 2 pro-
vides some background to the theory and process of
visualization. Section 3 gives a brief synopsis of the
use of visualization in software and requirements engi-
neering. Section 4 describes how an effectively de-
signed visualization could provide assistance in under-
standing various properties about requirements in sup-
port of typical stakeholder decision making tasks. Sec-
tion 5 outlines how a visual metaphor and transforma-
tion system for generating requirements visualizations
could be developed. Section 6 presents three sample
visualizations. It explains their scope and intention,
along with the generation procedure. These point to the
infinite varieties of visualization that are possible in
this domain, so a research agenda to pursue and vali-
date this line of work is given in Section 7. The paper
is presented to stimulate workshop discussion.

Second International Workshop on Requirements Engineering Visualization (REV 2007)
978-0-7695-3248-6/07 $25.00 © 2007

2. Visualization

Visualization is defined as “the act of forming a
mental vision, image, or picture of (something not visi-
ble or present to the sight, or of an abstraction); to
make visible to the mind or imagination” [33]. Visuali-
zation is also a form of computing, the goal of which is
to arouse consciousness and insight. It transforms data
for easier assimilation by an individual’s sense of sight.
Visualization algorithms restructure numerical and
symbolic data in visually perceived forms. This means
that visualization must be concerned with those
mechanisms within humans and computers that allow
the perception, use and communication of sensory in-
formation. As such, visualization draws upon many
fields for its foundations, including: computer graph-
ics, computer vision, computer science, human com-
puter interaction, art and design, cognitive science and
artificial intelligence. In computer supported visualiza-
tion, complex data is mapped to perceptual representa-
tions in such a way as to maximize human understand-
ing and communication. Therefore, the goal of the
computer visualization process is to engender a deeper
understanding of information, physical phenomena or
the underlying processes related to them.

The visualization process, in its simplest form, is a
sequence of steps that include the gathering, process-
ing, pictorial rendering, analyzing and interpreting of
data. This is the traditional data flow model of visuali-
zation. More formally, each step in the visualization
process requires the design and transformation of a
model. For example, in the scientific visualization
process outlined by Earnshaw, there are three modeling
steps [15]. The first modeling step takes place at the
beginning of the visualization process in which a
physical model is created that defines how the real
world is to be viewed. This conceptual model sets a
framework for the design of experiments and interpre-
tation of data derived from them. In the second model-
ing step, the conceptual model is transformed into a
formal mathematical model. Such a model can be sub-
jected to rigorous transformation, analysis and proof.
In the final step, the mathematical model is trans-
formed into an approximation that is solvable by com-
puter. The result is a simulation whose output is evalu-
ated to test modeling assumptions, assess which physi-
cal phenomena are present in the data, and determine
what improvements are required to the physical and
mathematical models.

A clear correspondence exists between visualization
and software engineering processes in which domain,
design, and implementation models match up precisely
with their scientific analogs. Moreover, the essential
question asked about a computer simulation and a

software system is the same – how well does the im-
plementation model embody the underlying conceptual
representation?

The key step in visualization is the transformation
of data into a graphical representation. Haber and
McNabb have proposed a model in which this is car-
ried out by a sequence of three classes of transforma-
tions [20]. First, data enrichment or enhancement op-
erators process raw data through numerical analysis or
image processing techniques such as interpolation or
filtering. Second, visualization mapping constructs an
imaginary object (an imaginary object with some ex-
tent in space and time) called an abstract visualization
object (AVO) and maps data onto attribute fields of an
AVO. Fields include geometry, color, tint, reflectance,
surface texture and others. Transfer functions define
the mapping from raw data to AVO and take many
forms. The simplest is a linear mapping that preserves
quantitative information. The third transform is render-
ing. The rendering transform operates on the AVO to
produce a displayable image.

How an AVO appears depends on the domain in
which the visualization is performed. For example, in
scientific visualization, representations of natural phe-
nomenon as numeric data and mathematical models are
manipulated to bring more insight to the phenomenon.
There is typically a one-to-one mapping between a
computer generated image and the underlying concep-
tual model leading to visualizations that attempt to
render faithfully that model. So an AVO, such as a ball-
and-stick molecular model or topographic relief map,
will be a ‘faithful’ realization, rendering or reification
of the underlying conceptual model, built to represent
symbolically a particular domain and to be testable
with data from that domain. In contrast, information
visualizations typically render abstract data that is not
necessarily linked to a physical substrate (e.g., distribu-
tion of library books by call number, web searches by
age and gender, location of nucleotide sequences in the
genome, etc.) [41]. In these cases, information visuali-
zation designers rely on creating AVOs that directly
connect with the viewer’s visual perceptual skills by
judiciously selecting and integrating color, shape and
texture to create a Gestalt, a unified arrangement of
elements that convey a coherent message.

Fundamental to AVO design is the ability of a
viewer to construct a mental model, the visual attrib-
utes of which represent data in a definable way. There-
fore, the problem facing a visualization designer is the
creation or selection of an appropriate representation or
sets of representations that, according to Robertson,
“can provide the key to critical and comprehensive
appreciation of the data, thus benefiting subsequent
analysis, processing, or decision making" [35]. As
such, the designer must answer several questions:

Second International Workshop on Requirements Engineering Visualization (REV 2007)
978-0-7695-3248-6/07 $25.00 © 2007

� What mental models most effectively carry various
kinds of information?

� Which definable and recognizable visual attributes
of these models are most useful for conveying spe-
cific information either independently or in con-
junction with other attributes?

� How can we most effectively induce chosen mental
models in the mind of an observer?

� How can we provide guidance on choosing appro-
priate models and their attributes to a human or
automated display designer?

This is a particularly challenging problem for repre-
senting complex knowledge, such as that created dur-
ing a software development lifecycle, that must inte-
grate information with “insights, experiences, atti-
tudes, values, expectations, perspectives, opinions and
predictions” [17]. It is usually solved by invoking a
cartographic paradigm [16], but the field remains open
for innovation.

Moreover, there is a major jump from ‘data’ to ‘in-
formation’ involving, however one likes to define it,
some significant changes in semantics, purpose and
use. Associated with this transition is a fundamental
change in the range of visual symbols used for repre-
sentation, which may become purely arbitrary, at least
until conventions become established. At the extreme
position of generalization, or subjectivity, are the visual
forms used to represent ad hoc ‘conceptual models’
generated within particular domains to hypothesize
new informational entities and the relationships be-
tween them.

3. Requirements Engineering Visualization

Information visualization has predominantly been
used within software engineering to support the latter
phases of the development lifecycle. For example, to
depict program call graphs, to visualize source code
and to assist with overall program comprehension [3,
25]. Visualizations have also been developed to support
testing and debugging activities, and this includes a
number of interesting approaches for visualizing bug
databases [11, 24]. More recently, visualizations have
been developed to show the community contributions
underlying the evolution of open source software de-
velopment projects [32]. Many typical project man-
agement activities are also supported by elaborate vis-
ual renderings, notably in the form of dashboards that
display information about project progress and related
performance metrics, using a variety of pie charts, bar
charts, graphs and dials [19]. Similar ideas pertaining
to requirements measures have found their way into
commercial requirements management tools [4].

Given that requirements engineering is that aspect
of software engineering that frequently demands in-
tense communication amongst multiple stakeholders in
order to uncover and agree upon the needs for a new
system development or for a system upgrade, and
given the apparent communicative value of a ‘good’
visual representation, it is surprising that first Interna-
tional Workshop on Requirements Engineering Visu-
alization was only held in 2006. A cursory survey of
the requirements engineering literature prior to that
date reveals that visualization has mainly been used to
support three aspects of requirements engineering prac-
tice: (1) to convey the structure of and relations be-
tween an evolving set of requirements and other soft-
ware artifacts, to support the organization of require-
ments and the management of change; (2) to assist with
requirements elicitation sessions and related analysis
activities; and (3) to model subsets of the requirements
or special properties of these requirements for particu-
lar analytical purposes.

(1) Structure and relationships. Commercial re-
quirements management tools have been using repre-
sentations in symbolic visual forms for many years to
depict the hierarchic structure of requirements docu-
ments and to make explicit the numerous interrelations
between the requirements therein. Such visualizations
generally take the form of simple tree structures or
more complex connected graphs, the purpose being to
assist in the collaborative writing, organization and use
of requirements documents [2]. Also, requirements
traceability matrices are regularly created to convey
linkages between artifacts and support change impact
analysis [14].

However, the state of the art does not appear to have
advanced much over two decades. For example, the
visual conventions incorporated in one of the earlier
tools (DOORS), inspired by the classic visualization
tome of Tufte1 [42], are still evident in the tool’s inter-
face today. From a management and control perspec-
tive, such tools now provide a way to display require-
ments metrics visually (e.g., the number of changed or
implemented requirements), but this is largely by
adopting the dashboard approach in which there is of-
ten little conceptual correlation between the data being
represented and the representations themselves.
Whether the various visual mechanisms employed
within these tools actually help stakeholders form a
deeper understanding of the requirements and proc-
esses related to them is debatable. It is clearly not ob-
vious how well these have been designed for use.

(2) Elicitation support. Visual prototypes, story-
boards and mock-ups are frequently used in require-

1 Personal communication with one of the DOORS originators in the
early 1990’s (note that DOORS is now owned by Telelogic) [39].

Second International Workshop on Requirements Engineering Visualization (REV 2007)
978-0-7695-3248-6/07 $25.00 © 2007

ments elicitation and analysis sessions to help explore
requirements with stakeholders, to clarify understand-
ing and to help reach shared agreement. These visual
artifacts can be as crude as hand-drawn sketches on
paper napkins through to elaborate interactive experi-
ences provided via dedicated prototyping and scenario
presentation tools. One of the earliest systems analysis
and design methodologies took a different approach
and was centered on the initial creation of a shared
visualization called a ‘Rich Picture’ [8]. This was a
freehand sketch intended to describe and understand a
complex problem situation prior to undertaking any
subsequent analysis. This captured a situation, pro-
voked thinking and remained as a grounding artifact
throughout the development process for all stake-
holders. Where the term ‘requirements visualization’
tends to be used interchangeably with tool-supported
prototyping [46], this can lead to visual artifacts play-
ing a more transient and throw-away role.

(3) Modeling. A focus of requirements engineering
research is to provide a visualization of requirements
specified in a formal language, to facilitate validation
activities and to increase their general accessibility
[40]. Visual modeling also forms a central component
of emerging requirements engineering approaches,
such as with the strategic dependency and rationale
models of the i* framework [51]. Recent research has
been examining ways to use visual and spatial cues
within these i* models to highlight non-functional
quality attributes and to support trade-off analysis [18].

The various diagrams and models of the Unified
Modeling Language (UML) clearly provide for visual
representations of standard requirements information
and regularly feature in requirements documentation.
Current requirements engineering research is seeking
improved ways to convey visually how such models
implement and realize requirements [26]. Although the
UML constitutes a major advance in terms of agreed
conventions for the form and syntax of particular
groups of visual symbols (the chosen set of UML dia-
grams), there is still a need to integrate their disparate
underlying models. This is particularly the case with
requirements because of the difficulties associated with
the transition between a ‘consequent model’ of some
antecedent subject, such as requirements, and a ‘prece-
dent model’ of some subsequent object, such as an im-
plemented system [31].

What is common to the existing use of visualization
in support of requirements engineering activities is the
rare focus on the design of the visualization as a pri-
mary artifact, an example being the UML use case dia-
gram, with a clear understanding of the stakeholders
and their goals. Equally, little supporting data has been
gathered to determine how useful these visualizations
actually are. We suggest that the visual artifacts that are

evident in this domain are rarely designed explicitly to
help stakeholders ‘see’ requirements and their proper-
ties more clearly (in the context of Berger [5]). Without
a framework through which to compare and measure
the effectiveness of visualizations there is little impetus
to seek out new and better approaches. The role of
visualization in the requirements engineering field falls
a long way behind other areas in which information
visualization has been successfully exploited [7].

4. Visualizing Requirements

Despite the supposed popularity of visual modeling
languages, requirements still tend to be written in a
textual and narrative format [1, 27]. This is the case
even when they take the form of user stories, as per the
more agile approaches to software development [10].
Requirements documents typically provide a brief
natural language description of each requirement, ac-
companied by data to characterize various attributes
about it and so provide for its context. Such meta-data
generally includes attributes such as priority, source,
test case, cost, rationale, etc. In this way, requirements
are rarely stand-alone descriptions; rather, they are
multi-dimensional clusters of data. Whether these data
are held within a table, spreadsheet or database, the
accessibility and use of the fuller contextual informa-
tion can be challenging, raising the matter of whether
their very specification is often only a proforma. The
research question is -- how to present these meta-data
such that the information that is needed for particular
stakeholders and their decision making tasks literally
‘pops out’ [47] of a designed communicative artifact?

We suggest that a visualization system could take a
set of requirements represented in this traditional tex-
tual and attribute-rich form, supplemented by the struc-
tured UML diagrams often used to augment these de-
scriptions, and render them visible in such a way as to
promote shared comprehension of the full set of re-
quirements under study and provoke insight on a num-
ber of requirements-related queries (as per recent tools
that reveal patterns of change and negotiation within
collaboratively authored documents [45]). This relies
upon any such visualization being up to date, so an
underlying assumption is the existence of through-life
traceability (which is outside the scope of this current
paper). For instance, a customer may want to assess the
relative cost, priority and risk of different requirements
at a glance to be aware of quick win areas and to de-
termine where effort is being expended as a project
advances. A requirements engineer may want to ensure
that all the requirements are grounded in authoritative
and representative sources, and establish that all the
constituencies have a voice in the requirements, to

Second International Workshop on Requirements Engineering Visualization (REV 2007)
978-0-7695-3248-6/07 $25.00 © 2007

form an assessment of coverage and stability. A devel-
oper may want to be cognizant of those requirements
with many underpinning assumptions or to understand
where dynamic changes are occurring to help decide
where to focus effort next.

Most requirements engineering resources that offer
advice on how to write quality requirements include
criteria that are desirable for individual requirements
and criteria for sets of requirements as a whole [1, 12,
27, 49]. For example, individual requirements should
be: required – a stakeholder exists who wants or values
the requirement; correct – the requirement expresses a
valid and desired result; unambiguous - the require-
ment can only be interpreted in one way; verifiable - a
test exits to check whether the requirement has been
met; understandable - non-specialists can understand
the requirement; and traceable – the origins and targets
of the requirement are clear. In addition, the entire set
of requirements should be: complete - all the require-
ments are specified, with no information missing; con-
sistent - no internal conflicts; and modifiable - able to
be changed. While such criteria are regularly cited as
desirable, there is no current way to form an assess-
ment on these qualities in a quick and straightforward
observational way. For example, to gain insight on
credibility (i.e., reliable sources), feasibility (i.e., some
combination of cost, priority, risk and assumptions)
and evolvability (i.e., operational traceability). Multi-
dimensional clusters of requirements data hold the
means to make such assessments, but trawling docu-
ments or running database queries to gain requisite
information takes time, as well as addresses each as-
pect in a partial and hence disconnected way. The re-
search question becomes -- can we demonstrate the
degree to which requirements have a number of impor-
tant quality dimensions simultaneously, and in a visual
way, using these meta-data? The work that has been
done on the visualization of multi-dimensional data-
bases is relevant to answering this question (e.g., [38]).

5. Getting to ‘See’ Requirements

Software is a complex dynamical system. So is a
human. Each is composed of a collection of objects
(classes vs. organs) designed to fulfill a specific and
typically orthogonal set of requirements that communi-
cate through a well defined network of pathways.
When a doctor needs to investigate the health of a pa-
tient, an interview goes only so far. A formal diagnosis
requires a physical examination in which a patient’s
anatomical (structural) and physiological (behavioral)
features are visually and haptically inspected and
monitored. The doctor looks for what and where
changes have occurred since the last examination (the

baseline), measuring the patient’s height, weight, tem-
perature, pulse, blood pressure, and changes in color,
texture and density. Further quantitative and more de-
finitive measures include blood tests, electrocardio-
grams, radiological imaging (e.g., X-ray and magnetic
resonance) and histological analyses (e.g., biopsies).
Indeed, what is significant is that many medical tests
either involve a direct visual analysis or create images
as part of test procedures.

We see the medical metaphor as a possible starting
point for constructing analogous visual representations
within the requirements visualization process, thus
enhancing the visual richness and communication
abilities of text and UML. A system’s UML descrip-
tions already define its anatomy and physiology and, as
such, provide a first approximation of a map of the
arrangement and interconnection of classes (organs).
Each conceptual class, like an organ, may require dif-
ferent kinds of tests. But, if a query produces data that
can be charted (e.g., pie chart of the distribution of
development cost estimates), then the image reduces to
a cartographic style map with a chart located at each
class position. Such maps are the grist for GIS (Geo-
graphical Information Systems) and spatial database
systems; and the visualization problem reduces to the
selection of graphical elements that best display the
data components and their relationships (Bertin [6]).

However, this naïve mapping may be insufficient
for a number of reasons. First, embedded charts may be
difficult to see and quickly interpret within the com-
plex UML forest. Therefore, the visualization system
that creates this mapping must support representations
that minimize visual complexity to allow perception of
important features. As an example, think of a chest X-
ray. It is a fuzzy, gray scale image that filters out nearly
all structural detail and hence, the structural complex-
ity within the chest cavity. Yet, physicians can quickly
diagnose respiratory problems such as lung cancer,
tuberculosis and pneumonia just by briefly scanning
this image (perhaps having integrated multiple such
sources of data). Second, although the data may be
either multi-dimensional or quantitative in nature, all
that may be required for perception is an image that
conveys a key scalar attribute. For example, tempera-
ture is an attribute of the dynamics systems such as
fluids (e.g., boiling water) or a gauge of the health of
an individual (e.g., fever). In this case, the design of
the visualization focuses on the monitoring of attrib-
utes as opposed to their in-depth study. Such practice is
routine in medicine, with scalar and simple vector
quantities such as temperature, respiration, and heart
monitors recorded and displayed.

Third, attributes may be quantifiable but difficult to
convey succinctly. For example, multi-spectral images
of the earth or scientific simulations of systems with

Second International Workshop on Requirements Engineering Visualization (REV 2007)
978-0-7695-3248-6/07 $25.00 © 2007

thousands of degrees of freedom cannot be adequately
represented by directly mapping them to geometry and
color. Significant reductions in scale and remapping
must be performed before the data may be visualized.
Finally, some concepts do not have a direct graphical
mapping. Concepts such as love, ambiguity, under-
standability and correctness must be transformed into a
representation that communicates the concept’s sense
and value. In sum, regardless of the nature and com-
plexity of the concepts that define a system, it may be
necessary to transform them into another conceptual
form so as to make them more readily perceptible. This
transformational process amounts to finding a meta-
phor that aptly represents and communicates the in-
formation to be perceived.

A metaphor is “something regarded as representa-
tive or suggestive of something else, especially as a
material emblem of an abstract quality, condition, no-
tion, etc.; a symbol, a token” [33]. Metaphors make an
analogy between the attributes of a known sign or
symbol and the comparable attributes of what is to be
represented. In short, a metaphor takes what we know
and connects it with what we want to know. Metaphors
are the foundation for the creation of many models that
are fundamental to science and engineering [22]. The
power of a good metaphor is that it makes an immedi-
ate and instinctive visceral connection with the viewer
and triggers an instantaneous response [29]. The adver-
tising industry goes to great lengths to find just the
right metaphors [34].

Metaphor selection for visualization may be a chal-
lenging process, given the kinds of data to be visual-
ized, the goals of the visualization and the target audi-
ence. One approach to selection has been proposed by
Eppler and Burkhard in their analysis of knowledge
visualization [17]. Inspired by real-world objects and
systems, their metaphors fall into four generic groups:
1. Natural phenomena: mountain, iceberg, tree, water-

fall, volcano, river, cave, etc.
2. Man-made objects: balance, ladder, wheel, road,

bridge, funnel, umbrella, bucket, lever, etc.
3. Activities: climbing, walking, reaching, driving,

eating, fishing, harvesting, juggling, pouring, etc.
4. Abstract concepts: family, peace, law, chaos, etc.

These metaphors run the gamut from simple (e.g.,
lever, bridge) to complex (e.g., law, chaos), presenting
their own challenges of implementation. Yet, many are
already used within the software industry, including
tree (data structures), bucket (sorting), waterfall (soft-
ware engineering lifecycle), iceberg (maintenance) and
hill climbing (optimization algorithms).

Whatever the selection, we believe that for a meta-
phor to be a useful mapping, it should be intuitively
recognizable and understandable, simple to implement,

support binary decision making, as well as provide the
ability to assess a degree of change in state informa-
tion. A potential example is the oscillator. Oscillators
are objects or systems that demonstrate a systematic
variation or fluctuation in a property about a central
value. Pendulums and masses on springs are two sim-
ple examples. Oscillators may be used to model a wide
variety of phenomena including electromagnetic
waves, molecular vibrations, population dynamics,
climate changes, and planetary motions, to name but a
few. None of these systems share the same physics of
scale, yet all may be modeled using an understandable
metaphor that becomes the underlying conceptual
model for defining, quantifying and visualizing these
phenomena.

Metaphor selection creates an additional step in the
visualization process. It is now composed of three parts
that begins with the selection of a suitable metaphor to
represent each attribute or concept, followed by the
creation of an AVO, and ending with instantiation of
the AVO in an appropriate medium. As an example,
consider an artist who wants to create an artwork rep-
resenting his love for his wife. He selects a typical
metaphor for love - a red heart. He sketches out a de-
sign for an AVO of the heart that defines its size, shape,
color and texture. He then paints the heart with oils on
canvas. Later his wife, who is a choreographer, decides
to craft a dance signifying her love for her husband.
Instead of using a heart, she uses cupid as one of many
metaphors in her production. Her AVOs specify the
kinds of dancers, how they are dressed, their move-
ments and the scene in which they perform. A producer
and director then instantiate this work as a perform-
ance. What these two examples demonstrate is that
there may be more than one useful metaphor for de-
scribing a concept, and metaphor selection may depend
on the type of AVO constructed. For example, although
leaping hearts (yet another metaphor) may make for an
interesting performance, dancing cupids may work
better in the context of total AVO design. Yet, cupids
dancing with hearts plays into the subject of redun-
dancy, an important tool for reinforcing communica-
tion; specifically, where multiple channels are used to
convey critical information (e.g., flashing lights and
sirens). Thus, there is all the more reason to include
multiple metaphors when necessary.

Issues of interaction and dynamics among AVOs re-
turn us to the map. The UML diagram with which we
began Section 5 is static and displays no information
about the collaboration among requirements. It may be
transformed into a dynamical representation by invok-
ing a molecular model metaphor (like those supported
by physical chemistry modeling software [48]). A mo-
lecular model represents molecules as a graph in three-
dimensions in which vertices represent the location of

Second International Workshop on Requirements Engineering Visualization (REV 2007)
978-0-7695-3248-6/07 $25.00 © 2007

atoms and edges represent bonds. Atomic attributes
such as size or charge may be mapped onto AVOs as
spheres of appropriate size and color. Bonds between
atoms may be represented as cylinders in which strong
bonds are short and weak bonds are long. Molecules
vibrate, their atoms moving in synchrony. These dy-
namics are usually displayed as animations (oscilla-
tions). By analogy, the size of each class’s underlying
requirements determines it size; the type, its color; and
the strength of the coupling between requirements un-
derlying different classes by the distance between
them. If classes work in concert to convey and/or to
satisfy a requirement, they can be shown to vibrate in a
synchronous way; if not, they may be displayed as
moving randomly. In both cases, the amplitude of mo-
tion may be tied to the rate or degree of change that a
class’s requirements have undergone over time.

6. Sample Requirements Visualizations

In this section, we outline three approaches to
visualization, drawing upon the ideas in the previous
sections. Since we are interested in the multi-
dimensional nature of requirements (i.e., the use of
their meta-data), we base our examples on require-
ments that have been pre-specified using the Volere
requirements shell (requirements that can be found
within the Robertsons’ text [36]). Here, a textual re-
quirements description is augmented by twelve addi-
tional attributes (as described in the text below).

6.1 Symbolic Approach

The Footprint Visualization (Figure 1) is designed
to assist the simple assessment of each individual re-
quirement in terms of the presence of all the specified
attributes, a form of completeness, and the presence of
any apparently inflated attributes, an approximation of
complexity. Both factors should indicate the need for
further specific examination and, more generally
within a set of requirements, its state of development.
Using this visualization, every requirement has its own
unique shape, a fact that may lead to the recognition of
‘healthy’ prints and also support diagnostic activities.

11110 00011 5 6006 26

007

008

009

010

21

Figure 1. Footprint Visualization.

In the Volere requirements shell, all attributes are
initially void and at least five may be vulnerable to
inflated entries: list of events/use cases, description,
rationale, fit criterion and list of conflicts. Two other
attributes, supporting materials and history, may also
be vulnerable. In Table 1, attributes 3,4,5,7 and 11 are
associated with symbols which may expand in order
that they may represent content whose size is not fixed.

Table 1. Volere attributes and representation.

Attribute Type Content Symbol
1 requirement

number
number 000 square

2 requirement
type

number 00 square

3 event/use
case list

references 000-000-000-
...

linked ovals

4 description text abc... expanding circle
5 rationale text abc... expanding circle
6 source reference

or text
000/abc... square/expanding

circle
7 fit criterion text abc... expanding circle
8 customer

satisfaction
range 1,2,3,4,5 upward vertical

arrow
9 customer dis-

satisfaction
range 1,2,3,4,5 downward verti-

cal arrow
10 priority range not specified upward vertical

arrow
11 conflicts list references 000-000-000-

...
linked squares

12 supporting
materials

references 000-000-000-
...

linked circles

13 history text, list or
references

abc.../000-
000-000-...

expanding circle
/linked circles

The visualization shows the values associated with

each attribute set out as a row of symbols arranged in
the simplest form of 'rectilinear network' as classified
by Bertin [6]. A single drawn outline encloses all the
symbols and creates a more amorphous form which
swells and contracts according to symbol sizes and also
contains voids where attributes have no value. In the
classification of Bertin, this outline would also be a
'network' but one of 'irregular arrangement' without
explicit distinction between 'component' and 'relation-
ship'. This outline readily transforms into a single
shaded shape punctured where void attributes occur, a
form of ‘footprint’. Using this approach, a single re-
quirement from page 159 of the Robertsons’ text [36]
is mapped into the visualization of Figure 1. The sym-
bols in Figure 1 have been generated as follows:

1. Requirement number (110)
2. Requirement type (11)
3. Event/use case list (006)-(007)-(008)-(009)-(010)
4. Description (11 words)
5. Rationale (21 words)
6. Source (5 words)
7. Fit criterion (26 words)
8. Customer satisfaction (3)
9. Customer dissatisfaction (5)
10. Priority (not given)
11. Conflicts list (000)
12 Supporting materials (void)
13 History (6 words)

Second International Workshop on Requirements Engineering Visualization (REV 2007)
978-0-7695-3248-6/07 $25.00 © 2007

6.2 Iconic Approach

The Smiley Faces Visualization (Figure 2) is de-
signed to enable a crude assessment on whether certain
data are present for requirements, another form of qual-
ity checking. A face is generated for each requirement
attribute and each requirement is represented by a row
of faces in a table. Note that only four attributes are
displayed for space reasons. Different attributes are not
mapped to distinct features on a single face because
facial glyphs designed in such a way can be a slow
visualization to read [28]. Only the mouth is used here.

74

110

Value Source Rationale FitReq

75

74

110

Value Source Rationale FitReq

75

Figure 2. Smiley Faces Visualization.

Two shapes are used to reflect the type of the re-

quirement. A circle is used for functional requirements
and a pentagon is used for non functional requirements
(since some of these requirements have sharp edges).
The attributes we focus on are: Value - a combination
of customer satisfaction and dissatisfaction. If the val-
ues align (i.e., extremely pleased if the requirement is
implemented and extremely displeased if not), the
mouth smiles. If uninterested, the mouth is straight. If
these two values are conflicted in any way, there is a
problem to resolve and the mouth frowns (obviously
the case with all the requirements above). Source –
where the source is a named individual within a stake-
holder group the mouth smiles; where one of these
pieces of data is missing, the mouth is straight; where
no data is provided, the mouth frowns. Rational and Fit
Criteria – the presence or absence of these data is sig-
naled by a smile or a frown respectively. By coupling
the expression of the mouth with the color of the icon
(yellow for happy, grey for ambivalent, blue for un-
happy), we provide for redundant coding. Whilst a
simple mapping, it is straightforward to read off
(quickly) those requirements to pay more attention to.

6.3 Metaphorical Approach

The Volcanic World Visualization (Figure 3) uses a
simple metaphor to convey information pertaining to
the stability of a set of requirements. It focuses on

mapping a subset of the attributes into the visualization
to help answer the questions: “Which requirements are
likely to blow? Where are the impending storms?” It is
designed to illustrate the open-ended possibilities for
requirements visualization that are yet to be explored.

#75 #110

Stakeholders

Stakeholder groups

Reqs

Events/use cases

#74 #75 #110

Stakeholders

Stakeholder groups

Reqs

Events/use cases

#74

Figure 3. Volcanic World Visualization.

Each requirement is represented as an island with a

small volcano. If there are dependencies between re-
quirements, the islands are connected with causeways
or clustered, dependent on the nature of the depend-
ency. The type of the requirement is not signified in the
visualization but this could be achieved by the shape or
color of the volcano. The size of the volcano is propor-
tional to the amount of supporting material, implying
there may be effort associated with understanding the
requirement (climbing a paper mountain).

A cloud over the volcano signifies a named source
(dotted line). The more frequently a source appears in a
collection of requirements the larger the cloud be-
comes. Clouds get larger as air becomes unstable,
eventually forming thunder clouds. A thunder cloud
would reflect the dominance of an individual source
and an impending storm if they were to leave the pro-
ject. The overarching planetary system reflects the
stakeholder groups that the sources belong to. A planet
grows in size as a group’s voice becomes strongly
heard in the requirements, until it overshadows the
world. It is straightforward to read off from this visu-
alization whether one stakeholder or group is dominat-
ing the requirements and whether another group is not
represented at all. These are sources of instability.

The history of a requirement is not represented here,
but this attribute is also relevant to the stability of a
requirement. Lots of change generally signifies volatil-
ity and we propose to represent this by motion. Magma
within a volcano erupts based on the movement of tec-
tonic plates. The events or use cases that need the re-
quirement are these tectonic plates and, as they move,
rumblings may occur within the volcano.

Second International Workshop on Requirements Engineering Visualization (REV 2007)
978-0-7695-3248-6/07 $25.00 © 2007

7. Discussion and Research Agenda

The ideas presented in this paper are preliminary
and conceptual, and presented to stimulate discussion
about possible directions for research in requirements
visualization. Our vision is of a visualization system
that automatically maps textually written multi-
dimensional requirements (and perhaps data from ac-
companying UML diagrams) into visual artifacts, per-
mitting stakeholders to actually ‘see’ the requirements
and gain awareness on properties to support high-level
decision making. The longer term vision is to provide
stakeholders with a way to ‘sense’ the essential charac-
teristics of these requirements in a more direct and
engaging manner to support diagnostic activities.

There are a number of steps that are required to de-
velop this research and realize our near-term vision,
notwithstanding the need to be clear about our use of
the term ‘multi-dimensional’. Multi-dimensional re-
quirements refer to the multiple components (attrib-
utes) of content (meaning) associated with require-
ments or groups of requirements. While lists of ‘useful’
requirements meta-data abound, there is a need to ana-
lyze the most adopted in practice and understand the
stakeholder tasks for which these are both required and
used. It is possible that many are given default values
or merely specified to comply with standards, thus
providing little analytical value. It is necessary to un-
derstand the insight that use of these values actually (or
could potentially) provide prior to designing a suitable
visualization process. Choice of meta-data and tasks is
thus the first task. Multi-dimensional is also used in the
context of multiple visual forms and mapped to the
multi-dimensional requirements elements noted above.
While some suggestions have been made in this paper,
suitable visual forms for each of these elements would
need to be investigated rigorously via empirical study.

We plan to build a prototype based upon the out-
comes of the above research steps and to compare the
designed visual artifacts with requirements represented
in the more traditional form. We will evaluate the im-
pact of a shared communicative artifact that provides
for situational awareness on a small set of representa-
tive stakeholder tasks (to be identified). We anticipate
that issues of dimensionality and scale (i.e., number of
requirements to feature in the visualization) can be
addressed through filtering mechanisms and considered
selection of preattentive cues [9, 21], to focus the visu-
alization according to task and salient attributes. We
envisage that this research will lead to visual cues or
patterns that can help to ascertain the ongoing health of
a project’s requirements and so inform better practice.

This paper has outlined a vision for using visualiza-
tion techniques in the field of requirements engineer-

ing. It has outlined the process of constructing a visu-
alization system and suggested an approach based on
metaphor and mapping. It has also provided some sim-
ple examples that show the many directions such work
could take. Merely looking is a passive form of en-
gagement with requirements. We claim that there is a
need for research that will lead to stakeholders seeing
requirements and, ultimately, to experiencing require-
ments [23, 37, 43, 50], especially if they are to make
quick and informed judgments about them.

8. References
[1] Alexander, I.F. and Stevens, R. Writing Better Require-
ments, Addison-Wesley, 2002.
[2] Austin, M., Mayank, V. and Shmunis, N. PaladinRM:
Graph-based Visualization of Requirements Organized for
Team-based Design, Systems Engineering Journal, Vol. 9,
Issue 2, May 2006, pp.129-145.
[3] Ball, T. and Eick, S.G. Software Visualization in the
Large, IEEE Computer, Vol. 29, Issue 4, April 1996, pp.33–
43.
[4] Baxter, P. and Tavassoli, D. Management Dashboards and
Requirements Measurement, Telelogic White Paper, Version
1, 1 June 2006.
[5] Berger, J. Ways of Seeing, British Broadcasting Company
and Penguin Books, 1972.
[6] Bertin, J. Semiology of Graphics; translated by W.J. Berg.
Madison, Wisconsin: University of Wisconsin Press, 1983.
[7] Card, S.K., Mackinlay, J.D. and Shneiderman, B. Read-
ings in Information Visualization: Using Vision to Think,
Morgan Kaufmann Publishers, Inc., 1999.
[8] Checkland, P.B. Systems Thinking, Systems Practice, John
Wiley and Sons Ltd., 1981.
[9] Chernoff, H. Using Faces to Represent Points in K-
Dimensional Space Graphically, Journal of the American
Statistical Association, 68 (342), 1973, pp. 361–368.
[10] Cohn, M. User Stories Applied: For Agile Software De-
velopment, Addison-Wesley Professional, 2004.
[11] D’Ambros, M., Lanza, M. and Pinzger, M. A Bug’s Life:
Visualizing a Bug Database, Proc. 4th International Work-
shop on Visualizing Software for Understanding and Analysis
(VISSOFT 2007), Banff, Canada, 24-25 June 2007, pp.113-
120.
[12] Davis, A.M. Software Requirements: Analysis and
Specification, Prentice-Hall, Inc., 1990.
[13] Delgadillo, L. and Gotel, O. Story-Wall: A Concept for
Lightweight Requirements Management, Proc. 15th IEEE
International Requirements Engineering Conference (RE
2007), Delhi, India, 15-19 October 2007 (to appear).
[14] Duan, C. and Cleland-Huang, J. Visualization and
Analysis in Automated Trace Retrieval, Proc. 1st Interna-
tional Workshop on Requirements Engineering Visualization
(REV 2006), Minneapolis, Minnesota, USA, 11 Sept. 2006.
[15] Earnshaw, R.A. An Introductory Guide to Scientific
Visualization, Springer-Verlag, 1992.
[16] Eppler, M. Making Knowledge Visible Through Knowl-
edge Maps, in C.W. Holsapple (Ed.), Handbook on Knowl-
edge Management, Berlin: Springer-Verlag, 2002, pp.189-
206.

Second International Workshop on Requirements Engineering Visualization (REV 2007)
978-0-7695-3248-6/07 $25.00 © 2007

[17] Eppler, M. and Burkhard, R. Knowledge Visualization,
2004 (available from http://www.knowledgemedia.org
/modules/pub/view.php/knowledgemedia-67).
[18] Ernst, N.A., Yu, Y. and Mylopoulos, J. Visualizing Non-
Functional Requirements, Proc. 1st International Workshop
on Requirements Engineering Visualization (REV 2006),
Minneapolis, Minnesota, USA, 11 September 2006.
[19] Few, S. Information Dashboard Design: The Effective
Visual Communication of Data, O’Reilly, 2006.
[20] Haber, R.B. and McNabb, D.A. Visualization Idioms: A
Conceptual Model for Scientific Visualization Systems, in
Visualization in Scientific Computing, G.M. Nielson, B.
Shriver and L.J. Rosenblum (Eds.), IEEE Computer Society
Press, 1990.
[21] Healy, C.G., Booth, K.S. and Enns, J.T. High-Speed
Visual Estimation Using Preattentive Processing, ACM
Transactions on Human-Computer Interaction, Vol. 3, No. 2,
1996, pp.107-135.
[22] Hesse, M.B. Models and Analogues in Science, Notre
Dame, IN: University of Notre Dame Press, 1966.
[23] Hornecker, E. and Buur, J. Getting a Grip on Tangible
Interaction: A Framework on Physical Space and Social In-
teraction, Proc. SIGCHI Conference on Human Factors in
Computing Systems, Montréal, Québec, Canada, 22–27 April
2006. R. Grinter, T. Rodden, P. Aoki, E. Cutrell, R. Jeffries
and G. Olson, (Eds.), CHI 2006, ACM Press, New York, NY,
USA, pp.437-446.
[24] Jones, J.A., Harrold, M.J. and Stasko, J. Visualization of
Test Information to Assist Fault Localization, Proc. 24th In-
ternational Conference on Software Engineering (ICSE
2002), Orlando, Florida, USA, May 2002, pp.467-477.
[25] Knight, C. and Munro, M. Virtual but Visible Software,
Proc. 4th IEEE International Conference on Information
Visualization, London, UK, 19-21 July 2000, pp.198–205.
[26] Konrad, S., Goldsby, H., Lopez, K. and Cheng, B.H.C.
Visualizing Requirements in UML Models, Proc. 1st Interna-
tional Workshop on Requirements Engineering Visualization
(REV 2006), Minneapolis, Minnesota, USA, 11 Sept. 2006.
[27] Kovitz, B.L. Practical Software Requirements: A Man-
ual of Content and Style, Manning Publications Co., 1998.
[28] Lee, M.D., Reilly, R.E. and Butavicius, M.A. An Em-
pirical Evaluation of Chernoff Faces, Star Glyphs, and Spa-
tial Visualizations for Binary Data, Proc. Australasian Sym-
posium on Information Visualisation, Adelaide, 2003.
[29] Marchese, F.T. OpGlyph: A Tool for Exploring Op Art
Representation of Height Field and Vector Field Data, Proc.
Working Conference on Advanced Visual Interfaces (AVI
2002), Trento, Italy, May 2002, ACM, pp.103-107.
[30] Morgan, R. and Maurer, F. MasePlanner: A Card-Based
Distributed Planning Tool for Agile Teams, Proc. IEEE In-
ternational Conference on Global Software Engineering
(ICGSE 2006), Florianopolis, Brazil, 16-19 October 2006,
pp.132-138.
[31] Morris, S.J. and Gotel, O.C.Z. Model or Mould? A Chal-
lenge for Better Traceability, Proc. International Workshop
on Modeling in Software Engineering (MiSE 2007),
Minneapolis, Minnesota, USA. ACM, May 2007.
[32] Ogawa, M., Ma, K-L., Bird, C., Devanbu, P. and Gour-
ley, A. Visualizing Social Interaction in Open Source Soft-
ware Projects, Proc. 6th International Asia-Pacific Sympo-

sium on Visualization (APVIS 2007), Sydney, Australia, 5-7
February, 2007, pp.25-32.
[33] Oxford English Dictionary, 1989.
[34] Reichert, T. and Lambiase, J. (Eds.). Sex in Advertising:
Perspectives on the Erotic Appeal, Lawrence Erlbaum, 2002.
[35] Robertson, P.K. A Methodology for Choosing Data Rep-
resentations, IEEE Computer Graphics and Applications,
Vol. 11, No. 3, May 1991, pp.56-68.
[36] Robertson, S. and Roberson, J. Mastering the Require-
ments Process, ACM Press, 1999, p.9, p.157, p.159 (also,
http://www.systemsguild.com/GuildSite/Robs/Template.html).
[37] Salisbury, K., Conti, F. and Barbagli, F. Haptic Render-
ing: Introductory Concepts, IEEE Computer Graphics Appli-
cations, Vol. 24, No. 2, 2004, pp.24-32.
[38] Stolte, C., Tang, D. and Hanrahan, P. Polaris: A System
for Query, Analysis, and Visualization of Multidimensional
Relational Databases, IEEE Transactions on Visualization
and Computer Graphics, Vol. 8, No. 1, January-March 2002,
pp.52-65.
[39] Telelogic. DOORS, http://www.telelogic.com/corp/
products/doors/index.cfm (accessed August 2007).
[40] Teyseyre, A. A 3D Visualization Approach to Validate
Requirements, Proc. Congreso Argentino de Ciencias de la
Computación, Argentina, October 2002.
[41] Tory, M. and Moller, T. Rethinking Visualization: A
High-Level Taxonomy, Proc. IEEE Symposium on Informa-
tion Visualization (INFOVIS 2004), IEEE Computer Society,
Washington DC, USA, 10-12 October 2004, pp.151-158.
[42] Tufte, E.R. Envisioning Information, Graphics Press,
1990.
[43] Ullmer, B. and Ishii, H. Emerging Frameworks for Tan-
gible User Interfaces, IBM Systems Journal, Vol. 39, No. 3
and 4, 2000, pp.915-931.
[44] United States Joint Forces Command Glossary,
http://www.jfcom.mil/about/glossary.htm (accessed August
2007).
[45] Viégas, F.B., Wattenberg, M. and Dave, K. Studying
Cooperation and Conflict between Authors with history flow
Visualizations, Proc. SIGCHI 2004, ACM Press, Vienna,
Austria, 2004, pp575-582.
[46] Wadhwa, S. Visualizing Requirements, Requirements
Quarterly: The Newsletter of the Requirements Engineering
Specialist Group of the British Computer Society, RQ42,
December 2006.
[47] Ware, C. Information Visualization: Perception for De-
sign, Morgan Kaufmann Publishers, 2004.
[48] Wavefunction, Inc. Spartan Software. http://www.wave-
fun.com/products/spartan.html (accessed September 2007).
[49] Wiegers, K.E. Writing Quality Requirements, Software
Development, Vol. 7, No. 5, May 1999.
[50] Wisneski, G., Ishii, H., Dahley, A., Gorbet, M., Brave,
S., Ullmer, B. and Yarin, P. Ambient Display: Turning Archi-
tectural Space into an Interface between People and Digital
Information, Proc. 1st International Workshop on Coopera-
tive Buildings (CoBuild 1998), Darmstadt, Germany, 25-26
February 1998.
[51] Yu, E. Towards Modelling and Reasoning Support for
Early-Phase Requirements Engineering, Proc. 3rd IEEE In-
ternational Symposium on Requirements Engineering (RE
1997), Annapolis, Maryland, USA, 6-8 January 1997,
pp.226-235.

Second International Workshop on Requirements Engineering Visualization (REV 2007)
978-0-7695-3248-6/07 $25.00 © 2007

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (None)
 /CalCMYKProfile (None)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.6
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 36
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 2.00333
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 36
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 2.00333
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 36
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.00167
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /JPN <FEFF3053306e8a2d5b9a306f300130d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f00200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e007400730020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d0061002000760069007300750061006c0069007a006100e700e3006f0020006500200069006d0070007200650073007300e3006f00200061006400650071007500610064006100730020007000610072006100200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e00300020006500200070006f00730074006500720069006f0072002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650072002000650067006e006500640065002000740069006c0020007000e5006c006900640065006c006900670020007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e007400650072006e00650020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e00200064006900650020006700650073006300680069006b00740020007a0069006a006e0020006f006d0020007a0061006b0065006c0069006a006b006500200064006f00630075006d0065006e00740065006e00200062006500740072006f0075007700620061006100720020007700650065007200200074006500200067006500760065006e00200065006e0020006100660020007400650020006400720075006b006b0065006e002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200071007500650020007000650072006d006900740061006e002000760069007300750061006c0069007a006100720020006500200069006d007000720069006d0069007200200063006f007200720065006300740061006d0065006e0074006500200064006f00630075006d0065006e0074006f007300200065006d00700072006500730061007200690061006c00650073002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f006900740020006c0075006f006400610020006a0061002000740075006c006f00730074006100610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e0020006500730069006b0061007400730065006c00750020006e00e400790074007400e400e40020006c0075006f00740065007400740061007600610073007400690020006c006f00700070007500740075006c006f006b00730065006e002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a0061002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e007400690020005000440046002000610064006100740074006900200070006500720020006c00610020007300740061006d00700061002000650020006c0061002000760069007300750061006c0069007a007a0061007a0069006f006e006500200064006900200064006f00630075006d0065006e0074006900200061007a00690065006e00640061006c0069002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000700061007300730065007200200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f600720020007000e5006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b0072006900660074002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
 /ENU (Use these settings with Distiller 7.0 or equivalent to create PDF documents suitable for IEEE Xplore. Created 29 November 2005. ****Preliminary version. NOT FOR GENERAL RELEASE***)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

