
1

Test Specification

Introduction

Goals and Objectives

GameForge is a graphical tool used to aid in the design and creation of video
games. A user with little or no experience with Microsoft DirectX and/or Visual C++
programming can construct his or her own basic 2D-arcade games. GameForge also
assists experienced programmers by generating the Microsoft DirectX code and
Microsoft Windows9x overhead necessary for basic game construction, allowing them to
concentrate on more detailed game design issues and implementation. The idea is to
limit the amount of actual code written by the user, while providing an interface that is
easy to use yet complex enough to remain functional.

The testing process for GameForge has a number of goals. The software will be
thoroughly tested for coding bugs and logic errors. In addition to testing for bugs,
GameForge will be tested to ensure that it is of the utmost quality. It will be expected
exhibit the following qualities: well-executed software, high production values, easy to
use interface with a common Windows ‘feel’, and a full featured engine with reasonable
performance on wide variety of machines.

Statement of Scope

GameForge will be tested on a number of levels, beginning with unit testing
(using white box testing methods), integration testing (using black box testing methods),
validation testing, and ending with high order system testing with a public beta.

A number of design principles will be validated during the testing process. The
interface should be easy to use. Data should read and write flawlessly from the database.
The creation wizards and level editor must be robust, and data must export flawlessly to
the game engine.

The game engine’s unaltered code should produce bug free results. Data files
created by the world builder must be read in flawlessly. The engine should also maintain
a reasonable frame rate on various machine speeds.

The help files must be robust and easy to navigate. Tutorials must be complete
and easy to understand. The manual must sufficiently compliment the help files. The
software should install easily and flawlessly, and the installation of DirectX 7.0a should
be part of the install. Uninstallation must completely uninstall only the files that are part
of GameForge.

2

Major Constraints

GameForge has a drop-dead delivery date of 4/17/00.

The minimum system requirements to run the software must adhere to the
following specifications:

§ 200 MHz CPU,
§ 32 MB RAM
§ 4 MB Video Card

Testing will only occur on systems with Windows 98, DirectX 7.0a (with the
DirectX SDK), and Microsoft VC++. Systems with other software configurations
will not be tested.

3

Test Plan

Software (SCIs) to be Tested

Interface Components to be Tested
w Level editor
w New World Wizard
w New Sprite Wizard
w Database Read/Write
w File exporter

 Engine Components to be Tested
w Object Handler / Engine Core
w Data Loaders
w Draw Handler
w Sound Handler
w Input Handler
w Text Handler
w Logic Handler

Help Components to be Tested
w Help Files Search
w Tutorials

Installation Components to be Tested
w Software Install Process
w Software Uninstall Process

Testing Strategy

Unit Testing

All unit testing will be done in White Box fashion. Testing will be
conducted using Basis Path testing methods, because of its simplicity and
high effectiveness. Loop testing will also be conducted to compliment the
Basis Path testing.

Individual engine components (Draw Handler, Sound Handler, etc.) will
be tested separately. Due to the GameForge engine’s modular design,
there is no need for test beds. All components can be tested through the
Object Handler. The following engine components will be unit tested:

§ Object Handler / Engine Core
§ Draw Handler
§ Sound Handler

4

§ Input Handler
§ Text Handler
§ Logic Handler
§ Data Loaders

The interface will be unit tested in five parts:

§ Level editor
§ New World Wizard
§ New Sprite Wizard
§ Database Read/Write
§ File exporter

Integration Testing

Because GameForge has a highly modular design, top-down and bottom-
up integration will occur simultaneously. However, the system will be
integrated incrementally, to control the amount of bugs that need to be
fixed at any given time. The engine will be integrated in the following
order: draw handling, input handling, sound handling, logic handling.
Tests will be conducted in a black box fashion.

Validation Testing

Combined engine components will be tested as a whole. To maintain
maximum control over the testing criteria, all data files will be made
specifically for testing purposes. The level builder will be tested to ensure
proper communication between the interface and the database. Testing
will be done in a black box fashion.

GameForge will be closely examined to ensure conformity with the
System Requirements Specification. Noted criteria being examined are:
ease of use and Principle of Least Astonishment regarding the interface, as
well as a reasonable performance level, understandable code, and
sufficient AI routines for the engine.

High-Order Testing

The High-Order testing will be performed on the complete, integrated
system. “In-house” beta testing will take place at this time and PA
Software staff members will attempt to construct fully functional games
using GameForge. The software will be stress tested and performance
tested.

Parties outside PA Software will be asked to help with the final testing
phase: public beta testing. Each beta tester will be given a copy of the

5

software, and the preliminary help files (these will not be completed until
immediately prior to GameForge’s final build.) Beta testers will be
expected to submit bug reports and any opinions they may have
concerning the software (especially the interface layout.)

Testing Resources and Staffing

Resources

No special resources are required beyond those already needed for
development.

Staffing

Test Team Leader – Jonathan Schmoll
Unit Testing Coordinator – Ken Nelson
Integration Testing Coordinator – Matthew Forster
System Testing Coordinator – Bill Lord
Beta Testing Coordinator – Jonathan Schmoll

Test Work Products

Frame Rate Counter

In order to monitor the number of frames the engine is capable of
producing per second, an additional piece of software was developed. The
frame rate counter is a valuable tool in determining system performance.

Test Record Keeping

Microsoft Excel will be used to evaluate immediate test results. After the results
have been evaluated, they will be submitted to a Microsoft Access database for
storage.

A test log is kept to monitor the tests that have been applied. An error, or ‘bug’
log is kept to monitor any problems that have arisen during testing. Also, a beta
tester report form exists to aid beta testers in organizing their communication with
PA Software. Examples of these forms can be found under the “Test Record
Keeping and Test Log” heading later in the document.

6

Test Metrics

Function Point: this metric will be used when calculating statistics pertaining to
the complete testing process.

Bang Metric: this metric will be used to provide an indication of the number of
test cases required.

Cyclomatic Complexity: this metric will be used to target modules as candidates
for extensive unit testing. Modules with high cyclomatic complexity are likely to
be more error-prone.

Breadth of Testing: this metric provides an indication of testing completeness.

Depth of Testing: this metric provides a measure of the percentage of independent
basis paths covered by the testing versus the total number of basis paths in the
program.

Fault Profiles: this metric is used to prioritize and categorize uncovered errors.

Frames per second: this metric is used to gauge the performance of the game
engine.

Testing Tools and Environment

Microsoft Visual Basic and Visual C++ are used as testing tools as well as the
testing environment. Test data files will be constructed for unit and integration
testing. A Frame Rate Counter is also used in determining program performance.
There are no other special tools or hardware.

Test Schedule

7

Test Procedure

Software (SCIs) to be Tested

Interface Components to be Tested
w Level editor
w New World Wizard
w New Sprite Wizard
w Database Read/Write
w File exporter

 Engine Components to be Tested
w Object Handler / Engine Core
w Data Loaders
w Draw Handler
w Sound Handler
w Input Handler
w Text Handler
w Logic Handler

Help Components to be Tested
w Help Files Search
w Tutorials

Installation Components to be Tested
w Software Install Process
w Software Uninstall Process

Testing Procedure

Unit Test Cases (Interface)

Testing Procedure for Component: Interface Level Editor
The level editor will be tested in a white box fashion. Pre-
constructed sprites will be loaded into the level and all editor
functions will be tested.

Stubs and/or Drivers for Component: Interface Level Editor
w None.

Test Cases for Component: Interface Level Editor
w Pre-constructed sprites will be loaded into the tree-view control

and then placed into the level editor.
w Views will be rotated between sprites, backgrounds, and

collision areas using the ‘view layer’ command.

8

w The property view of loaded sprites will be checked using the
right-click menu.

w The mini-map will be used to quickly access various sections
of a level.

Purpose of Tests for Component: Interface Level Editor
The purpose of these tests is to ensure correct operation of all
controls in the interface, as well as verifying proper placement of
backgrounds, sprites, and collision areas.

Expected Results for Component: Interface Level Editor
The interface is expected to perform within design specifications.

Testing Procedure for Component: New World Wizard
The New World wizard will be tested in a white box fashion. The
wizard will be stepped through and all functions will be tested.

Stubs and/or Drivers for Component: New World Wizard
w None.

Test Cases for Component: New World Wizard
w The wizard will be stepped through and all controls will be

tested.

Purpose of Tests for Component: New World Wizard
The purpose of these tests is to ensure correct operation of all
controls in the wizard.

Expected Results for Component: New World Wizard
The interface is expected to perform within design specifications.

Testing Procedure for Component: New Sprite Wizard
The New Sprite wizard will be tested in a white box fashion. The
wizard will be stepped through and all functions will be tested.

Stubs and/or Drivers for Component: New Sprite Wizard
w None.

Test Cases for Component: New Sprite Wizard
w Various data configurations will be entered into the attribute

pages of the wizards to test for impossible combinations that
are still allowed.

w Sprite animations will be created from test bitmaps.

9

Purpose of Tests for Component: New Sprite Wizard
The purpose of these tests is to ensure correct operation of all
controls in the wizard, and the proper creation of sprite objects.

Expected Results for Component: New Sprite Wizard
The interface is expected to perform within design specifications.

Testing Procedure for Component: Database Read / Write
The database will be tested in a white box fashion. A sample
database will be loaded into the database.

Stubs and/or Drivers for Component: Database Read / Write
w None.

Test Cases for Component: Database Read / Write
w An attempt will be made to load the data into the tree view.
w Sprites placed in the level editor will be verified with the

corresponding data in the database.

Purpose of Tests for Component: Database Read / Write
The purpose of these tests is to ensure correct read and write
operations made by the database.

Expected Results for Component: Database Read / Write
The database is expected to perform within design specifications.

Testing Procedure for Component: File Exporter
The file exporter will be tested in a white box fashion. A
completed database will be exported to data files. Data format will
be examined.

Stubs and/or Drivers for Component: File Exporter
w None.

Test Cases for Component: File Exporter
w A completed database will be exported to data files.
w A working engine prototype will be tested with these files.

Purpose of Tests for Component: File Exporter
The purpose of these tests is to ensure correct data output by the
database.

Expected Results for Component: File Exporter
The database is expected to perform within design specifications.

10

Unit Test Cases (Engine)

Testing Procedure for Component: Object Handler / Engine Core
The Object Handler will be tested in a white box fashion. It will
be tested with various forms of data to determine data flow through
the software architecture (data must be passed into the proper
components.)

Stubs and/or Drivers for Component: Object Handler / Engine Core
w The required Windows code is used as a test bed.

Test Cases for Component: Object Handler / Engine Core
w Test data will be pushed through the Object Handler.

Purpose of Tests for Component: Object Handler / Engine Core
The purpose of these tests is to ensure correct data flow through
the system.

Expected Results for Component: Object Handler / Engine Core
The component is expected to perform within design
specifications.

Testing Procedure for Component: Data Loader
The Data Loader will be tested in a white box fashion. It will be
read in various test data files and pass them to the Object
Handlerto determine data flow through the software architecture.

Stubs and/or Drivers for Component: Data Loader
w The Object Handler is used as a test bed.

Test Cases for Component: Data Loader
w Test data will be pushed through the Object Handler.

Purpose of Tests for Component: Data Loader
The purpose of these tests is to ensure correct data flow through
the system.

Expected Results for Component: Data Loader
The component is expected to perform within design
specifications.

11

Testing Procedure for Component: Draw Handler
The Draw Handler will be tested in a white box fashion. It will
receive data from the Object Handler, and will be examined while
executing the received commands. Surfaces must be created and
destroyed properly.

Stubs and/or Drivers for Component: Draw Handler
w The Object Handler is used as a test bed.
w The Data Loader is used to parse information from the data

files into the Object Handler.

Test Cases for Component: Draw Handler
w Surfaces will be created and blitted to the screen using the

Draw Handler.
w Surfaces will be moved and scaled.

Purpose of Tests for Component: Draw Handler
The purpose of these tests is to ensure proper drawing of sprites.

Expected Results for Component: Draw Handler
The component is expected to perform within design
specifications.

Testing Procedure for Component: Sound Handler
The Sound Handler will be tested in a white box fashion. It will
receive data from the Object Handler, and will be examined while
executing the received commands. Buffers must be created and
destroyed properly.

Stubs and/or Drivers for Component: Sound Handler
w The Object Handler is used as a test bed.
w The Data Loader is used to parse information from the data

files into the Object Handler.

Test Cases for Component: Sound Handler
w Sound Buffers will be created and played using the Sound

Handler.
w Sounds will be stopped during play and looped for continuous

play.

Purpose of Tests for Component: Sound Handler
The purpose of these tests is to ensure proper playing of sounds.

12

Expected Results for Component: Sound Handler
The component is expected to perform within design
specifications.

Testing Procedure for Component: Input Handler
The Input Handler will be tested in a white box fashion. It will
receive data from the Object Handler, and will be examined while
executing the received commands. Input devices must function
properly

Stubs and/or Drivers for Component: Input Handler
w The Object Handler is used as a test bed.
w The Data Loader is used to parse information from the data

files into the Object Handler.

Test Cases for Component: Input Handler
w Sprites will be controlled using the keyboard, mouse, and a

joystick.

Purpose of Tests for Component: Input Handler
The purpose of these tests is to ensure proper player control.

Expected Results for Component: Input Handler
The component is expected to perform within design
specifications.

Testing Procedure for Component: Text Handler
The Text Handler will be tested in a white box fashion. It will
receive data from the Object Handler, and will be examined while
executing the received commands. Text must be displayed
properly.

Stubs and/or Drivers for Component: Text Handler
w The Object Handler is used as a test bed.
w The Data Loader is used to parse information from the data

files into the Object Handler.

Test Cases for Component: Text Handler
w Various text will be displayed to the screen.

Purpose of Tests for Component: Text Handler
The purpose of these tests is to ensure proper displaying of text.

13

Expected Results for Component: Text Handler
The component is expected to perform within design
specifications.

Testing Procedure for Component: Logic Handler
The Logic Handler will be tested in a white box fashion. It will
receive data from the Object Handler, and will be examined while
executing the received commands. All game logic must function
properly.

Stubs and/or Drivers for Component: Logic Handler
w The Object Handler is used as a test bed.
w The Data Loader is used to parse information from the data

files into the Object Handler.

Test Cases for Component: Logic Handler
w Enemies will be attributed with various AI routines.
w Various combinations of world attributes will be set (gravity,

friction, etc.)

Purpose of Tests for Component: Logic Handler
The purpose of these tests is to ensure proper functionality of game
logic.

Expected Results for Component: Logic Handler
The component is expected to perform within design
specifications.

Unit Test Cases (Help / Tutorials)

Testing Procedure for Component: Help File Search
The Help File Search will be tested in a white box fashion. The
help file search engine will be tested for completeness and
functionality.

Stubs and/or Drivers for Component: Help File Search
w None.

Test Cases for Component: Help File Search
w The help data will be search for various pieces of information.

Purpose of Tests for Component: Help File Search
The purpose of these tests is to ensure robust and functional
searching of help information.

14

Expected Results for Component: Help File Search
The component is expected to perform within design
specifications.

Testing Procedure for Component: Tutorials
The Tutorials will be tested in a white box fashion. The tutorials
will be tested for ease and completeness.

Stubs and/or Drivers for Component: Tutorials
w None.

Test Cases for Component: Tutorials
w The available tutorials will be followed step by step.

Purpose of Tests for Component: Tutorials
The purpose of these tests is to verify that the tutorials are
complete, correct, and easy to use.

Expected Results for Component: Tutorials
The component is expected to perform within design
specifications.

Unit Test Cases (Software Installation)

Testing Procedure for Component: Installation and Uninstall
The software installation process will be tested in a black box
fashion. The installation of all files and registry entries will be
tested. All files must be removed upon uninstallation of the
software.

Stubs and/or Drivers for Component: Installation and Uninstall
w None.

Test Cases for Component: Installation and Uninstall
w The software (incomplete) will be installed using Wise

InstallMaster 8.0.
w The software (incomplete) will be uninstalled using Wise

InstallMaster 8.0.

Purpose of Tests for Component: Installation and Uninstall
The purpose of these tests is ensure proper installation and removal
of all necessary files.

15

Expected Results for Component: Installation and Uninstall
The installation package is expected to perform within design
specifications.

Integration Testing

Testing Procedure for Integration

The system will be integrated incrementally, to control the amount
of bugs that need to be fixed at any given time. The engine will be
integrated in the following order: draw handling, input handling,
sound handling, logic handling.

The system will be tested for errors in a black box fashion, after
each component is integrated

Stubs and Drivers Required

w The Object Handler is used as a test bed.
w The Data Loader is used to parse information from the data

files into the Object Handler.

Test Cases and Their Purpose

w Each component will be attached to the Object Handler in the
order specified above.

Expected Results

The system is expected to integrate without major flaws.

Validation Testing

Testing Procedure for Validation

The features and functionality in the final system will be cross-
referenced with the Software Requirements Specification
document to verify that the software demonstrates conformity with
the requirements.

Test Cases and Their Purpose

w Features corresponding to the design requirements will be
evaluated.

16

Expected Results

The software will perform within the specifications of the Software
Requirements document.

Pass/Fail Criterion for All Validation Tests

Features corresponding to the design document requirements do
not need to coincide verbatim with the requirements. Instead, it is
important that they retain the spirit of the requirements.

High-Order Testing (System Testing)

Recovery Testing

No Recovery testing will occur. While system failures are
undesirable, termination of the program in the event of a crash is
acceptable.

Security Testing

No Security testing will occur. There are no security issues with
GameForge.

Stress Testing

The world builder and the engine will be loaded with abnormally
high sprite counts (with attributes and sounds) to determine how
much GameForge can handle.

Performance Testing

The engine will be loaded with an increasing number of sprites
while the frame rate is monitored using the Frame Rate Counter.

17

Alpha/Beta Testing

Alpha testing will occur in-house. Members of the test team will
attempt to construct a complete, working game using GameForge.
Games will be constructed with and without the aid of the tutorials.

Beta testing will be semi-public. Select individuals outside of PA
Software will be asked to participate in beta testing GameForge.
Individuals will be selected based on their lack of programming
knowledge, and their experience with image processing. Testers
will be expected to submit bug reports, as well as their opinions
concerning performance and interface layout.

Pass/Fail Criterion for All Validation Tests

Features corresponding to the design document requirements do
not need to coincide verbatim with the requirements. Instead, it is
important that they retain the spirit of the requirements.

18

Testing Resources and Staffing

Testing Resources

No special resources are required for testing beyond those already needed for
development.

Test Staff

Test Team Leader – Jonathan Schmoll
Unit Testing Coordinator – Ken Nelson
Integration Testing Coordinator – Matthew Forster
System Testing Coordinator – Bill Lord
Beta Testing Coordinator – Jonathan Schmoll

19

Test Work Products

Frame Rate Counter

In order to monitor the number of frames the engine is capable of producing per
second, an additional piece of software was developed. The frame rate counter is
a valuable tool in determining system performance.

20

Test Record Keeping and Test Log

Test Record Keeping

Microsoft Excel will be used to evaluate immediate test results. After the results
have been evaluated, they will be submitted to a Microsoft Access database for
storage.

A test log is kept to monitor the tests that have been applied. An error, or ‘bug’
log is kept to monitor any problems that have arisen during testing. Also, a beta
tester report form exists to aid beta testers in organizing their communication with
PA Software.

The report format for beta testers is below:

Beta Tester Report Form

Name ________________________________

Defect Report Enhancement Report
Was the defect found in the interface or the
engine?

Will the proposed enhancement occur in the
interface or the engine?

Specifically, where in the interface or engine
did the defect occur?

Specifically, what module of the interface or
engine would you like to see the enhancement
made?

Is the defect reproducible? If so how?

Does the defect crash the system?

Additional Comments:

Is the enhancement a cosmetic or a functional
enhancement?

Give us the details of your enhancement:

21

Test Log

The following is an example of the test log format:

TEST LOG (Unit Testing)
Date Test Type System Module Coordinator Results
2-11 Unit Testing World

Builder
Mini-map Matt Mini-map working to specification.

2-17 Unit Testing World
Builder

Player Death Ken Player death working but player bullets
kill player.

2-19 Unit Testing World
Builder

TreeView Control Matt TreeView control loads database
information correctly, but needs further
error checking.

3-2 Unit Testing World
Builder

TreeView
Control/Level
Editor

Matt Sprites dragged and dropped to the level
editor are not visible, though accurately
stored in database.

3-2 Unit Testing World
Builder

Layer Selection
Box

Ken/Matt Correct layer is identified, but not all
sprites from each layer are displayed
properly.

3-2 Unit Testing World
Builder

New World
Wizard

Matt Information is correctly placed in
database, controls such as text boxes,
combo boxes needs better error checking
against invalid user input.

3-2 Unit Testing World
Builder

New Sprite
Wizard

Ken/Matt Sprite’s attributes are correctly input into
the database, but need to be checked for
invalid combinations.

3-5 Unit Testing World
Builder

New Sprite
Wizard

Bill Bitmaps are loaded properly, but
animation frames cannot be deleted once
added.

3-5 Unit Testing World
Builder

Sprite Animation
Form

Jon Individual frames jump during
animation cycle in animation box.

3-7 Unit Testing World
Builder

File Exporter Jon Data in database is converted into data
files correctly.

3-14 Unit Testing World
Builder

New World
Wizard

Bill Transparent color is working properly.

3-14 Unit Testing World
Builder

New Level
Wizard

Matt Need error checking for invalid input.

3-18 Unit Testing World
Builder

New Level
Wizard

Matt Data is entered properly into database.

3-30 Unit Testing World
Builder

New Sprite
Wizard

Matt Sounds are attached to sprites properly.

2-19 Unit Testing Engine Object Handler Ken Data pushes through object handler
properly. Code needs to be optimized
for efficiency.

2-19 Unit Testing Engine Data Loader Ken Engine reads data files from World
Builder properly. Need END attribute
for each sprite.

2-19 Unit Testing Engine Draw Handler Ken Draw surfaces are created properly.
Unacceptable memory usage. Surfaces
must be released thoroughly.

2-21 Unit Testing Engine Draw Handler Ken Draw surfaces swap animations
properly.

2-23 Unit Testing Engine Sound Handler Jon Sounds of different formats are not
playing properly. Increase functionality

22

to include multiple formats
simultaneously.

2-25 Unit Testing Engine Input Handler Ken Joystick support not working properly
with current engine architecture. Fix
this.

3-1 Unit Testing Engine Input Handler Ken Keyboard working properly. Escape key
kills surfaces properly.

3-3 Unit Testing Engine Logic Handler Ken Collision detection not working properly
for large sprites.

3-3 Unit Testing Engine Logic Handler Ken Gravity is not working correctly, but
cannot be used with jumping. Jumping
algorithm needs improving.

3-3 Unit Testing Engine Logic Handler Ken Bouncing causes player to lose control.
3-3 Unit Testing Engine Logic Handler Ken Shooting animations are incorrect.
3-4 Unit Testing Engine Logic Handler Ken Large moving sprites pass through

smaller sprites.
3-4 Unit Testing Engine Logic Handler Ken Any sprite death kills player, regardless

of interaction with player.
3-5 Unit Testing Engine Logic Handler Ken Player Health is not updating correctly.
3-6 Unit Testing Engine Text Handler Ken Score is not displayed properly.
3-6 Unit Testing Engine Logic Handler Ken Bullets do not effect sprites at all.

Bullets stop in mid air.
3-7 Unit Testing Engine Logic Handler Ken Jumping shoots player off top of screen.
3-7 Unit Testing Engine Logic Handler Ken Player can float when the jump button is

held down.
3-7 Unit Testing Engine Draw Handler Ken Color blit not displaying correct RGB

value.
3-10 Unit Testing Engine Sound Handler Ken Get status not returning correct value.
3-23 Unit Testing Engine Data Loader Ken Constant Crashing fixed.

