
How to Make a Domain

Model

Tutorial

What is a Domain Model?

• Illustrates meaningful conceptual classes

in problem domain

• Represents real-world concepts, not

software components

• Software-oriented class diagrams will

be developed later, during design

A Domain Model is Conceptual,

not a Software Artifact

Sale

amt

item

SalesDatabase

Sale

Double amt;

Item item;

void print()

Conceptual Class: Software Artifacts:

vs.

What’s the

difference?

Domain Model Relationships

Domain Model

Use Case Model

Interaction Diagrams

Glossary

Dynamic Behavior

Functional Requirements

Conceptual Class Diagram

Classes, attributes, associations

Domain

objects

Define terms

What do you learn about when and how to create these models?

Why do a domain model?

• Gives a conceptual framework of the things in

the problem space

• Helps you think – focus on semantics

• Provides a glossary of terms – noun based

• It is a static view - meaning it allows us

convey time invariant business rules

• Foundation for use case/workflow modelling

• Based on the defined structure, we can

describe the state of the problem domain at

any time.

Features of a domain model
• Domain classes – each domain class denotes a type

of object.

• Attributes – an attribute is the description of a named

slot of a specified type in a domain class; each

instance of the class separately holds a value.

• Associations – an association is a relationship

between two (or more) domain classes that describes

links between their object instances. Associations can

have roles, describing the multiplicity and participation

of a class in the relationship.

• Additional rules – complex rules that cannot be

shown with symbolically can be shown with attached

notes.

Domain classes?

 • Each domain class denotes a type of object. It
is a descriptor for a set of things that share
common features. Classes can be:-

• Business objects - represent things that are
manipulated in the business e.g. Order.

• Real world objects – things that the business
keeps track of e.g. Contact, Site.

• Events that transpire - e.g. sale and
payment.

How to Identify Domain Classes

• Reuse an existing domain model

 There are many published, well-crafted domain

models.

• Use a conceptual class category list

 Make a list of all candidate conceptual classes

• Identify noun phrases

 Identify nouns and phrases in textual descriptions of a

domain (use cases, or other documents)

Conceptual Class Category List

• Physical or tangible objects

• Register, Airplane

• Specifications, or descriptions of

things

• ProductSpecification,

FlightDescription

• Places

• Store, Airport

• Transactions

• Sale, Payment, Reservation

• Transaction items

• SalesLineItem

• Roles of people

• Cashier, Pilot

• Containers of other things

• Store, Hangar, Airplane

• Things in a container

• Item, Passenger

• Computer or electro mechanical

systems

• CreditPaymentAuthorizationSy

stem, AirTrafficControl

• Catalogs

• ProductCatalog, PartsCatalog

• Organizations

• SalesDepartment, Airline

Where identify conceptual classes

from noun phrases (NP)

• Vision and Scope, Glossary and Use Cases are
good for this type of linguistic analysis

• However:

• Words may be ambiguous or synonymous

• Noun phrases may also be attributes or
parameters rather than classes:

 If it stores state information or it has multiple
behaviors, then it’s a class

 If it’s just a number or a string, then it’s
probably an attribute

e.g. From NPs to classes or attributes

 The ATM verifies whether the customer's card number and PIN are correct.

 S V O O O
If it is, then the customer can check the account balance, deposit cash, and withdraw cash.

 S V O V O V O

 Checking the balance simply displays the account balance.

 S O V O

 Depositing asks the customer to enter the amount, then updates the account balance.

 S V O V O V O
Withdraw cash asks the customer for the amount to withdraw; if the account has enough cash,

 S O V O O V S V O

 the account balance is updated. The ATM prints the customer’s account balance on a receipt.

 O V S V O O

Analyze each subject and object as follows:
• Does it represent a person performing an action? Then it’s an actor, ‘R’.

• Is it also a verb (such as ‘deposit’)? Then it may be a method, ‘M’.

• Is it a simple value, such as ‘color’ (string) or ‘money’ (number)?
 Then it is probably an attribute, ‘A’.

• Which NPs are unmarked? Make it ‘C’ for class.

• Verbs can also be classes, for example:
Deposit is a class if it retains state information

R

R

M

M

A A

A

A

A A

A

A A

A A

A A

A

C

C

R

M

R

Consider the following problem description, analyzed for Subjects, Verbs, Objects:

C

Steps to create a Domain Model

1. Identify candidate conceptual classes

2. Draw them in a UML domain model

3. Add associations necessary to record

the relationships that must be retained

4. Add attributes necessary for information

to be preserved

5. Use existing names for things,

the vocabulary of the domain

13

Monopoly Game domain model

(first identify concepts as classes)

Monopoly Game

Player Piece

Die Board

Square

Monopoly Game domain model

Larman, Figure 9.28

Class names
• Class Name creates the vocabulary of our analysis

 Use nouns as class names, think of them as simple agents

 Verbs can also be made into nouns, if they are maintain state

 E.g., “reads card” suggests CardReader, managing bank cards

• Use pronounceable names:

 If you cannot read aloud, it is not a good name

• Use capitalization to initialize Class names and demarcate multi-word
names

 E.g., CardReader rather than CARDREADER or card_reader

 Why do most OO developers prefer this convention?

• Avoid obscure, ambiguous abbreviations

 E.g., is TermProcess something that terminates

 or something that runs on a terminal?

• Try not to use digits within a name, such as CardReader2

 Better for instances than classes of objects

Associations
• A link between two classes (“has a”)

 Typically modeled as a member reference

 Notation from Extended Entity Relation (EER) models

• A Person works for a Company

• Role names and multiplicity at association ends

• Direction arrow to aid reading of association name

Person Company

employee employer

works for

Association Name

Role

0..* 1

Adding Association

• An association is a relationship between

classes that indicates some meaningful

and interesting connection.

• In the UML, associations are defined as

“the semantic relationship between two or

more classifiers that involve connections

among their instances.”

Structure (association) analysis

• Lines connecting classes

• In UML, simple line is an association
 Decorations for multiplicity, role names, constraints

• Aggregations and composition:
 Arrow denotes navigability

 A black-filled diamond denotes a composition

• a part, unique to this whole

 A white-empty diamond denotes an aggregation

• a part, but not unique to this whole

http://www.cse.lehigh.edu/~glennb/oose/figs/agg6-6.jpg
http://www.cse.lehigh.edu/~glennb/oose/figs/agg6-6.jpg
http://www.cse.lehigh.edu/~glennb/oose/figs/agg6-6.jpg

Common Associations

• A is subpart/member of B. (SaleLineItem-Sale)

• A uses or manages B. (Cashier –Register, Pilot-

airplane)

• A communicates with B. (Student -Teacher)

• A is transaction related to B. (Payment -Sale)

• A is next to B. (SaleLineItem-SaleLineItem)

• A is owned by B. (Plane-Airline)

• A is an event related to B. (Sale-Store)

Roles and Multiplicity

• Each end of an association is called a role.

• Multiplicity defines how many instances of

a class A can be associated with one

instance of a class B.

• e.g.: a single instance of a Store can be

associated with “many”(zero or more) Item

instances.

Some examples of Multiplicity

Adding Attributes

• An attribute is a logical data value of an object.

• Include the following attributes in a domain

model: Those for which the requirements

suggest a need to remember information.

• An attribute can be a more complex type whose

structure is unimportant to the problem, so we

treat it like a simple type

• UML Attributes Notation: Attributes are shown in

the second compartment of the class box

Point of Sale System (POS) [1]

Basic Flow:

1. Customer arrives at a POS checkout with

goods and/or services to purchase.

2. Cashier starts a new sale.

3. Cashier enters item identifier.

4. System records sale line item and presents

item description, price, and running total.

Price calculated from a set of price rules.

Cashier repeats steps 2-3 until indicates done.

Point of Sale System (POS) [2]

5. System presents total with taxes calculated.

6. Cashier tells Customer the total, and asks for

payment.

7. Customer pays and System handles payment.

8. System logs the completed sale and sends sale

and payment information to the external

accounting (for accounting and commissions)

and Inventory systems (to update inventory).

9. System presents receipt.

10.Customer leaves with receipt and goods (if

any).

POS: Domain Model

