
Chapter 23 – Project planning

Chapter Summary

Topics covered

• Software pricing

• Plan-driven development

• Project scheduling

• Agile planning

• Estimation techniques

Project planning

• Project planning involves breaking down the work
into parts and assign these to project team
members, anticipate problems that might arise
and prepare tentative solutions to those
problems.

• The project plan, which is created at the start of a
project, is used to communicate how the work
will be done to the project team and customers,
and to help assess progress on the project.

Planning stages

• At the proposal stage, when you are bidding for a
contract to develop or provide a software system.

• During the project startup phase, when you have
to plan who will work on the project, how the
project will be broken down into increments, how
resources will be allocated across your company,
etc.

• Periodically throughout the project, when you
modify your plan in the light of experience gained
and information from monitoring the progress of
the work.

Proposal planning

• Planning may be necessary with only outline
software requirements.

• The aim of planning at this stage is to provide
information that will be used in setting a price
for the system to customers.

Software pricing

• Estimates are made to discover the cost, to the
developer, of producing a software system.
– You take into account, hardware, software, travel,

training and effort costs.

• There is not a simple relationship between the
development cost and the price charged to the
customer.

• Broader organisational, economic, political and
business considerations influence the price
charged.

Factors affecting software pricing

Factor Description

Market opportunity A development organization may quote a low price because

it wishes to move into a new segment of the software

market. Accepting a low profit on one project may give the

organization the opportunity to make a greater profit later.

The experience gained may also help it develop new

products.

Cost estimate

uncertainty

If an organization is unsure of its cost estimate, it may

increase its price by a contingency over and above its

normal profit.

Contractual terms A customer may be willing to allow the developer to retain

ownership of the source code and reuse it in other projects.

The price charged may then be less than if the software

source code is handed over to the customer.

Factors affecting software pricing

Factor Description

Requirements volatility If the requirements are likely to change, an organization

may lower its price to win a contract. After the contract is

awarded, high prices can be charged for changes to the

requirements.

Financial health Developers in financial difficulty may lower their price to

gain a contract. It is better to make a smaller than normal

profit or break even than to go out of business. Cash flow

is more important than profit in difficult economic times.

Plan-driven development

• Plan-driven or plan-based development is an approach
to software engineering where the development
process is planned in detail.
– Plan-driven development is based on engineering project

management techniques and is the ‘traditional’ way of
managing large software development projects.

• A project plan is created that records the work to be
done, who will do it, the development schedule and
the work products.

• Managers use the plan to support project decision
making and as a way of measuring progress.

Plan-driven development – pros and
cons

• The arguments in favor of a plan-driven approach are
that early planning allows organizational issues
(availability of staff, other projects, etc.) to be closely
taken into account, and that potential problems and
dependencies are discovered before the project starts,
rather than once the project is underway.

• The principal argument against plan-driven
development is that many early decisions have to be
revised because of changes to the environment in
which the software is to be developed and used.

Project plans

• In a plan-driven development project, a project plan
sets out the resources available to the project, the
work breakdown and a schedule for carrying out the
work.

• Plan sections
– Introduction
– Project organization
– Risk analysis
– Hardware and software resource requirements
– Work breakdown
– Project schedule
– Monitoring and reporting mechanisms

Project plan supplements

Plan Description

Quality plan Describes the quality procedures and standards that

will be used in a project.

Validation plan Describes the approach, resources, and schedule used

for system validation.

Configuration management plan Describes the configuration management procedures

and structures to be used.

Maintenance plan Predicts the maintenance requirements, costs, and

effort.

Staff development plan Describes how the skills and experience of the project

team members will be developed.

The planning process

• Project planning is an iterative process that starts
when you create an initial project plan during the
project startup phase.

• Plan changes are inevitable.
– As more information about the system and the project

team becomes available during the project, you
should regularly revise the plan to reflect
requirements, schedule and risk changes.

– Changing business goals also leads to changes in
project plans. As business goals change, this could
affect all projects, which may then have to be re-
planned.

The project planning process

Project scheduling

• Project scheduling is the process of deciding how the
work in a project will be organized as separate tasks,
and when and how these tasks will be executed.

• You estimate the calendar time needed to complete
each task, the effort required and who will work on the
tasks that have been identified.

• You also have to estimate the resources needed to
complete each task, such as the disk space required on
a server, the time required on specialized hardware,
such as a simulator, and what the travel budget will be.

Project scheduling activities

• Split project into tasks and estimate time and
resources required to complete each task.

• Organize tasks concurrently to make optimal
use of workforce.

• Minimize task dependencies to avoid delays
caused by one task waiting for another to
complete.

• Dependent on project managers intuition and
experience.

Milestones and deliverables

• Milestones are points in the schedule against
which you can assess progress, for example,
the handover of the system for testing.

• Deliverables are work products that are
delivered to the customer, e.g. a requirements
document for the system.

The project scheduling process

Scheduling problems

• Estimating the difficulty of problems and
hence the cost of developing a solution is
hard.

• Productivity is not proportional to the number
of people working on a task.

• Adding people to a late project makes it later
because of communication overheads.

• The unexpected always happens. Always allow
contingency in planning.

Schedule representation

• Graphical notations are normally used to
illustrate the project schedule.

• These show the project breakdown into tasks.
Tasks should not be too small. They should
take about a week or two.

• Bar charts are the most commonly used
representation for project schedules. They
show the schedule as activities or resources
against time.

Tasks, durations, and dependencies

Task Effort (person-

days)

Duration (days) Dependencies

T1 15 10

T2 8 15

T3 20 15 T1 (M1)

T4 5 10

T5 5 10 T2, T4 (M3)

T6 10 5 T1, T2 (M4)

T7 25 20 T1 (M1)

T8 75 25 T4 (M2)

T9 10 15 T3, T6 (M5)

T10 20 15 T7, T8 (M6)

T11 10 10 T9 (M7)

T12 20 10 T10, T11 (M8)

Activity bar chart

Staff allocation chart

Agile planning

• Agile methods of software development are iterative
approaches where the software is developed and
delivered to customers in increments.

• Unlike plan-driven approaches, the functionality of
these increments is not planned in advance but is
decided during the development.
– The decision on what to include in an increment depends

on progress and on the customer’s priorities.

• The customer’s priorities and requirements change so
it makes sense to have a flexible plan that can
accommodate these changes.

Agile planning stages

• Release planning, which looks ahead for
several months and decides on the features
that should be included in a release of a
system.

• Iteration planning, which has a shorter term
outlook, and focuses on planning the next
increment of a system. This is typically 2-4
weeks of work for the team.

Planning in XP

Story-based planning

• The system specification in XP is based on user stories that reflect the
features that should be included in the system.

• The project team read and discuss the stories and rank them in order of
the amount of time they think it will take to implement the story.

• Release planning involves selecting and refining the stories that will reflect
the features to be implemented in a release of a system and the order in
which the stories should be implemented.

• Stories to be implemented in each iteration are chosen, with the number
of stories reflecting the time to deliver an iteration (usually 2 or 3 weeks).

Key points

• The price charged for a system does not just depend on its estimated
development costs; it may be adjusted depending on the market and
organizational priorities.

• Plan-driven development is organized around a complete project plan that
defines the project activities, the planned effort, the activity schedule and
who is responsible for each activity.

• Project scheduling involves the creation of graphical representations the
project plan. Bar chartsshow the activity duration and staffing timelines,
are the most commonly used schedule representations.

• The XP planning game involves the whole team in project planning. The
plan is developed incrementally and, if problems arise, is adjusted.
Software functionality is reduced instead of delaying delivery of an
increment.

Estimation techniques

• Organizations need to make software effort and cost
estimates. There are two types of technique that can
be used to do this:
– Experience-based techniques The estimate of future effort

requirements is based on the manager’s experience of
past projects and the application domain. Essentially, the
manager makes an informed judgment of what the effort
requirements are likely to be.

– Algorithmic cost modeling In this approach, a formulaic
approach is used to compute the project effort based on
estimates of product attributes, such as size, and process
characteristics, such as experience of staff involved.

Experience-based approaches

• Experience-based techniques rely on judgments based
on experience of past projects and the effort expended
in these projects on software development activities.

• Typically, you identify the deliverables to be produced
in a project and the different software components or
systems that are to be developed.

• You document these in a spreadsheet, estimate them
individually and compute the total effort required.

• It usually helps to get a group of people involved in the
effort estimation and to ask each member of the group
to explain their estimate.

Algorithmic cost modelling

• Cost is estimated as a mathematical function of
product, project and process attributes whose
values are estimated by project managers:
– Effort = A  SizeB  M

– A is an organisation-dependent constant, B reflects the
disproportionate effort for large projects and M is a multiplier
reflecting product, process and people attributes.

• The most commonly used product attribute for cost
estimation is code size.

• Most models are similar but they use different values for A, B
and M.

Estimation accuracy

• The size of a software system can only be known
accurately when it is finished.

• Several factors influence the final size
– Use of COTS and components;
– Programming language;
– Distribution of system.

• As the development process progresses then the
size estimate becomes more accurate.

• The estimates of the factors contributing to B and
M are subjective and vary according to the
judgment of the estimator.

Estimate uncertainty

The COCOMO 2 model

• An empirical model based on project experience.

• Well-documented, ‘independent’ model which is not tied to a
specific software vendor.

• Long history from initial version published in 1981 (COCOMO-
81) through various instantiations to COCOMO 2.

• COCOMO 2 takes into account different approaches to
software development, reuse, etc.

COCOMO 2 models

• COCOMO 2 incorporates a range of sub-models that produce
increasingly detailed software estimates.

• The sub-models in COCOMO 2 are:
– Application composition model. Used when software is composed

from existing parts.

– Early design model. Used when requirements are available but design
has not yet started.

– Reuse model. Used to compute the effort of integrating reusable
components.

– Post-architecture model. Used once the system architecture has been
designed and more information about the system is available.

COCOMO estimation models

Application composition model

• Supports prototyping projects and projects where there is
extensive reuse.

• Based on standard estimates of developer productivity in
application (object) points/month.

• Takes CASE tool use into account.

• Formula is

– PM = (NAP  (1 - %reuse/100)) / PROD

– PM is the effort in person-months, NAP is the number of application
points and PROD is the productivity.

Application-point productivity

Developer’s

experience

and capability

Very low Low Nominal High Very high

ICASE maturity

and capability

Very low Low Nominal High Very high

PROD

(NAP/month)

4 7 13 25 50

Early design model

• Estimates can be made after the requirements
have been agreed.

• Based on a standard formula for algorithmic
models
– PM = A  SizeB  M where

– M = PERS  RCPX  RUSE  PDIF  PREX  FCIL 
SCED;

– A = 2.94 in initial calibration, Size in KLOC, B varies
from 1.1 to 1.24 depending on novelty of the
project, development flexibility, risk management
approaches and the process maturity.

Multipliers

• Multipliers reflect the capability of the
developers, the non-functional requirements,
the familiarity with the development platform,
etc.
– RCPX - product reliability and complexity;
– RUSE - the reuse required;
– PDIF - platform difficulty;
– PREX - personnel experience;
– PERS - personnel capability;
– SCED - required schedule;
– FCIL - the team support facilities.

The reuse model

• Takes into account black-box code that is
reused without change and code that has to
be adapted to integrate it with new code.

• There are two versions:
– Black-box reuse where code is not modified. An

effort estimate (PM) is computed.

– White-box reuse where code is modified. A size
estimate equivalent to the number of lines of new
source code is computed. This then adjusts the
size estimate for new code.

Reuse model estimates 1

• For generated code:

– PM = (ASLOC * AT/100)/ATPROD

– ASLOC is the number of lines of generated code

– AT is the percentage of code automatically
generated.

– ATPROD is the productivity of engineers in
integrating this code.

Reuse model estimates 2

• When code has to be understood and
integrated:

– ESLOC = ASLOC * (1-AT/100) * AAM.

– ASLOC and AT as before.

– AAM is the adaptation adjustment multiplier
computed from the costs of changing the reused
code, the costs of understanding how to integrate
the code and the costs of reuse decision making.

Post-architecture level

• Uses the same formula as the early design model
but with 17 rather than 7 associated multipliers.

• The code size is estimated as:

– Number of lines of new code to be developed;

– Estimate of equivalent number of lines of new code
computed using the reuse model;

– An estimate of the number of lines of code that have
to be modified according to requirements changes.

• This depends on 5 scale factors (see next slide). Their
sum/100 is added to 1.01

• A company takes on a project in a new domain. The client has
not defined the process to be used and has not allowed time
for risk analysis. The company has a CMM level 2 rating.
– Precedenteness - new project (4)

– Development flexibility - no client involvement - Very high (1)

– Architecture/risk resolution - No risk analysis - V. Low .(5)

– Team cohesion - new team - nominal (3)

– Process maturity - some control - nominal (3)

• Scale factor is therefore 1.17.

The exponent term

Scale factors used in the exponent computation
in the post-architecture model

Scale factor Explanation

Precedentedness Reflects the previous experience of the organization with this type of

project. Very low means no previous experience; extra-high means that

the organization is completely familiar with this application domain.

Development flexibility Reflects the degree of flexibility in the development process. Very low

means a prescribed process is used; extra-high means that the client

sets only general goals.

Architecture/risk resolution Reflects the extent of risk analysis carried out. Very low means little

analysis; extra-high means a complete and thorough risk analysis.

Team cohesion Reflects how well the development team knows each other and work

together. Very low means very difficult interactions; extra-high means

an integrated and effective team with no communication problems.

Process maturity Reflects the process maturity of the organization. The computation of

this value depends on the CMM Maturity Questionnaire, but an

estimate can be achieved by subtracting the CMM process maturity

level from 5.

• Product attributes
– Concerned with required characteristics of the software product being

developed.

• Computer attributes

– Constraints imposed on the software by the hardware platform.

• Personnel attributes

– Multipliers that take the experience and capabilities of the people
working on the project into account.

• Project attributes
– Concerned with the particular characteristics of the software

development project.

Multipliers

The effect of cost drivers on
effort estimates

Exponent value 1.17

System size (including

factors for reuse and

requirements volatility)

128,000 DSI

Initial COCOMO estimate

without cost drivers

730 person-months

Reliability Very high, multiplier = 1.39

Complexity Very high, multiplier = 1.3

Memory constraint High, multiplier = 1.21

Tool use Low, multiplier = 1.12

Schedule Accelerated, multiplier = 1.29

Adjusted COCOMO

estimate

2,306 person-months

The effect of cost drivers on effort
estimates

Exponent value 1.17

Reliability Very low, multiplier = 0.75

Complexity Very low, multiplier = 0.75

Memory constraint None, multiplier = 1

Tool use Very high, multiplier = 0.72

Schedule Normal, multiplier = 1

Adjusted COCOMO

estimate

295 person-months

Project duration and staffing

• As well as effort estimation, managers must estimate the
calendar time required to complete a project and when staff
will be required.

• Calendar time can be estimated using a COCOMO 2 formula
– TDEV = 3  (PM)(0.33+0.2*(B-1.01))

– PM is the effort computation and B is the exponent computed as
discussed above (B is 1 for the early prototyping model). This
computation predicts the nominal schedule for the project.

• The time required is independent of the number of people
working on the project.

Staffing requirements

• Staff required can’t be computed by diving the
development time by the required schedule.

• The number of people working on a project
varies depending on the phase of the project.

• The more people who work on the project,
the more total effort is usually required.

• A very rapid build-up of people often
correlates with schedule slippage.

Key points

• Estimation techniques for software may be
experience-based, where managers judge the
effort required, or algorithmic, where the effort
required is computed from other estimated
project parameters.

• The COCOMO II costing model is an algorithmic
cost model that uses project, product, hardware
and personnel attributes as well as product size
and complexity attributes to derive a cost
estimate.

