
Agile Software Development
Jinjin Li

Technische Universitt Berlin
Berlin, Germany

E-mail:kimljj@mailbox.tu-berlin.de

Abstract—With the further development of computer technol-
ogy, the software development process has some new goals and
requirements. In order to adapt to these changes, people has
optimized and improved the previous method. At the same time,
some of the traditional software development methods have been
unable to adapt to the requirements of people. Therefore, in re-
cent years there have been some new lightweight software process
development methods, That is agile software development, which
is widely used and promoted. In this paper the author will firstly
introduces the background and development about agile software
development, as well as comparison to the traditional software
development. Then the second chapter gives the definition of agile
software development and characteristics, principles and values.
In the third chapter the author will highlight several different
agile software development methods, and characteristics of each
method. In the fourth chapter the author will cite a specific
example, how agile software development is applied in specific
areas.Finally the author will conclude his opinion. This article
aims to give readers a overview of agile software development
and how people use it in practice.

I. INTRODUCTION

Before we know the definition of agile software develop-
ment, what’s exactly agile software development, let’s first
look at its origins and development, as well as its achievements
in the field of computer technology.

A. Background and progress

Software Engineering gives the procedures and practices
to be followed in the software development and acts as a
backbone for computer science engineering techniques[1].

Software development process is a structure imposed on
the development of a software product[2],which based on the
theory of software engineering.People use it to implement a
variety of different software.

Software development methods are attempting to offer an
answer to the eager business community asking for lighter
weight along with faster and nimbler software development
processes[3].

The word agile software development comes from the
project management, so what is project management? What
is the definition of project management. As William R.
Duncanillam[4] in the book ”A Guide To The Project Man-
agement Body Of Knowledge” said, ”Project management is
the application of knowledge, skills, tools, and techniques
to project activities in order to meet or exceed customer’s
requirements and expectations from a project”. Every project
aim to product and delivery products or services to meet

customer requirements in the process, in the process people
will invest resources and then convert it to outputs of project.

Before the 1960s, computers had just put into practical use,
the software design was often only for a particular application
in the specified design and preparation. The scale of software
was relative small and usually didn’t have documentation,
rarely use a systematic metohd to development. Design and
programming was often equated.

In mid-1960s, large capacity, high speed computers have
enabled the rapid expansion of computer applications, the
quantity of software development has increased dramatically.
The Appearance of High-level programming language and
operating system, causing of changes in the way of computer
applications. Large amounts of data processing led to the birth
of first generation database management system. The software
systems became more and more complex and large, software
reliability problems were also more prominent. The original
personal design, personal method can no longer meet the
requirements, software need to change the mode of production.
”Software crisis” broke out[5].

Fig. 1. Process of software development

B. Traditional development methods

Software crisis has more or less promoted the maturity of
software engineering. In the 1990s, the software development
began to use repeated process with the documentation, based
on the theory of software engineering theoretical system. At
that time, some traditional models came out. Waterfall model
was as the representatives of the traditional software project
management and had occupied a very important position.

According to the waterfall model (as shown in Figure 2
is a model which was developed for software development;
that is to create software. It is called as such because the
model develops systematically from one phase to other in
a downward fashion, like a waterfall”[]. Waterfall model
emphasizes the software development cycle shown in figure



2. And the cycle stage of each step and should be planned
and the investment of time, manpower and the use of related
technologies in each step should be thoughtful deployed. In
the end of each step the results should be reviewed. When
customer is satisfied with results, then the next step can be
continued. Waterfall method is best suited to the the user
whose needs is fixed or results is predictable. Advantages and
disadvantages of waterfall model shown in figure 3.

Fig. 2. Waterfall Model

Structured Analysis and Structured Design (SASD)[6] is a
software development method that was put forward in the
1970s by Yourdon, Constantine. It emphasizes that divide
the whole project or task into a sub-projects or sub-tasks,
depicting the various relationships between sub-projects or
sub-tasks . This saves time and greatly improved efficiency.
SASD became one of the most popular software development
method in the 1980s, and then IBM also incorporated in this
approach to their software development process. Of course
some people have criticized for SASD, because it ignore the
participation of users.

Rational Unified Process (RUP) is ”a software engineering
process framework that captures many of the best practices
in modem software development in a form that is suitable
for a wide range of projects and organizations. It embeds
object-oriented techniques and uses the UML as the prin-
cipal notation for the several models that are built during
the development.”[6],was developed by the Rational Software
Corporation (acquired by IBM in 2003). It is also an iterative
style of development, it introduces a lot of success examples
in software development, so it is very suitable for large-scale
software development and project. RUP put focus on internal
and external communication and exchange of engineering,so

it is very valuable for projects which focus on the exchange.
Its disadvantage is that customers must have some knowledge
of UML, because this method owned by a company. RUP also
needs a lot of documentation.

With the further development of software project manage-
ment, software project management began to emphasize self-
adaptive to face various requirements of the market. At that
time the traditional software project management has been
unable to meet all aspects of the requirements. And then agile
software development came out.

The word agile development was mentioned in the Agile
Manifesto since 2001. Later agile development achieved great
success. More and more people started to pay attention on
it and will to use agile development to complete their own
projects. Today, agile development has also very many types,
for example,Extreme Programming, Adaptive Software Devel-
opment, Lean Software Development and so on.

Fig. 3. Advantages and disadvantages of waterfall model

II. WHAT IS EXACTLY AGILE SOFTWARE DEVELOPMENT?
The concept of agile development was proposed in 2001 by

the agile team, and then many software development teams
and companies recognized and accepted it, and gradually been
widely used in many projects. Agile Software Development[7]
published the Agile Manifesto shwon in figure II at the same
time, on behalf of software development has entered a new
era.

Fig. 4. Manifesto for Agile Software Development



A. 12 principles behind the Agile Manifesto

1) Our highest priority is to satisfy the customer through

early and continuous delivery of valuable software: Agile
development is an iterative method using an incremental and
delivery of valuable software. Continuous delivery, reflecting
the continued iterative process of agile development. Through
the early delivery of valuable software in order to listen
to customers’advice as soon as possiblethe .That avoid to
deviation at the understanding of the users’ requirements.
The earlier error was found, smaller was the cost at the
correction of deviation. Customers can with this principle
fully experience software company’s efficiency and attention,
satisfaction.

2) Welcome changing requirements, even late in develop-

ment: Even in later time of development, agile development
is also willing to make the appropriate changes according to
requirments. When software really meet the needs of user
and market, is a valuable software. As agile development
has reserved the space in system design for changes, so
agile development can minimize costs arising from changes
in requirments.

3) Deliver working software frequently, from a couple of

weeks to a couple of months, with a preference to the shorter

timescale: Short period of iterations can ensure that the project
team to make cooperation more closely with customers. In
each new delivery, the project team will deliver improvements
to the software or add new features on basis of previous
delivery. And these improvements and new features must be
tested, can work and achieve the quality standards that can be
released.

4) Business people and developers must work together

daily throughout the project: Information in the transmission
process would inevitably lead to the case of distortion. When
business people describe the requirments of customers to the
developers, developers may have misunderstanding of the busi-
ness. Therefore, throughout the project development, business
and developers would need more frequently and meaningful
interaction to identify problems as early as possible. Project
team members work together every day, from the time and
space, to ensure that the communication between business and
developers are more convenient.

5) Build projects around motivated individuals.Give them

the environment and support they need, and trust them to get

the job done: Only with such a trust, motivation and support
full potential of all team members would be released.

6) The most efficient and effective method of conveying

information to and within a development team is face-to-face

conversation: In large team, in order to transfer knowledge
in the form of the document, it is more appropriate to
communicate with each other, he can make people accept both
knowledge and information at the same time. But the agile
team has normally only 7 to 10 people, the use of document
to communicate will waste a lot of time by writing the
document. Face to face conversation between team members
could transmit information more quickly and efficiently.

7) Working software is the primary measure of progress:

In agile development, each iteration is to deliver a working
software, so the measure of progress is no longer the number
of lines of code was written, the number of test cases was
implemented, but the number of software that was tested,
achieve release standards and can work.

8) Agile processes promote sustainable development. The

sponsors, developers, and users should be able to maintain

a constant pace indefinitely: In software companies, work
overtime is a very common thing. However, agile development
oppose to in the form of work overtime to complete iterative
tasks. Overtime will lead to team members to become fatigue,
boredom, it is difficult to ensure efficiency.

9) Continuous attention to technical excellence and good

design enhances agility: In agile development need to respond
positively to change, communicate with each other is also
important, people pay more attention to good design and
technology, better agile ability will become.

10) Simplicity–the art of maximizing the amount of work

not done–is essential: Anyone could be completely expected
changes in requirments accuratly. Agile teams advocate that
everyone should pay attention to what is the easiest way to
complete the current problems, rather than to build a future
software features that may be required. Agile development
does not advocated using complex technology to implement
software.

11) The best architectures, requirements, and designs

emerge from self-organizing teams: Self-organizing team is
able to positive communicate with each other to form a
common work ethic and culture.They do not need detailed
instructions, this let team members have more confidence.

12) At regular intervals, the team reflects on how to become

more effective, then tunes and adjusts its behavior accordingly:

When the projects is during the progress, not only the require-
ments may change, but also there are many uncertain factors,
such as changes in team members, According to a predefined
plan to work is difficult to achieve agility. It requires in a
certain time intervals, the team need to reflect on their work,
and make appropriate adjustments.

Of course,just like Scott Ambler in his book
wrote[8],”These principles form a foundation of common
sense upon which you can base successful software
development efforts.” That means these priciples are the
foudation of succeed, they are not enough to let your project
or software to work.

B. Differences between the agile development and traditional

development

So What is exactly agile software development and the
What is the differences between it and traditional software
development model ?Before giving the definition, we firstly
compare differences between the agile development and tra-
ditional development based on Agile Manifesto.It is not dif-
ficult to summarize that there are two points[?] which agile
devolopment obviously emphasis on.The one is adaptability,
the another one is teamwork.



Fig. 5. Differences between the agile development and traditional develop-
ment

1) Adaptability: The difference to traditional model, agile
development take more emphasis on adaptability, rather than
the predictability of traditional model. The person who choose
the traditional development mode , when starting a project,
always think of a very detailed and complete documentation.
They will analyze the entire development process and details
of each sub-process for example, how many times or how
many people will be invested in, finally the results are written
in the document. The most important thing is that the docu-
ment can not be change after it once was identified. All project
developers are requird to strictly follow the document.When
someone want to change the document or timeplan, that is
not allowed. Although this development model also has its
advantages when the demand from the beginning to the end did
not change. But gradually people also found many problems.

Firstly, the part of the design document takes a lot of time,
because a very comprehensive documentation required all the
details of the project have been implemented. In this way
to create a documentation in itself is no problem, but this
development efficiency will be lower. Most of the modern
project hope that in whole phase the demand didn’t change, it
is unrealistic, too many incentives will cause the changes in
requirments.

Agile willing to accept changes, even in the latter prozess of
software development. Its own methods of system design and
system builders can quickly respond to changes in customer
demand. It ensure that the results of the last iteration is the
customer’s really needs, and it meets changes of market.
Differs from the waterfall model, agile development fully
comply with plan. Agile development would at the beginning
of a project to develop a rough plan, providing more space to
changes of project.

Secondly, If there is no real users that participate in require-
ments definition process, the definition may be difficult to meet
the needs of end-user’s work habits. Even if the requirements
is defined, and then show it to the end user, let them to
confirm the result, but there is a risk that demand would be
changed. The reason is that everything is imaginary until the
user can run the system, because users could not understand
programming, when there is something unreasonable, he can
not see it. Let’s assume that the user had already carefully
participated in confirmation of requirments and most of the

requirments were identified in this stage, but some non-
functional requirements have no way to show the user, such
as performance, smooth operation and so on. It’s just like
that someone give an iPhone manual and an andorid phone
manual, let you to evaluate which cell phone is better. Besides
the beautiful look and user interface of iPhone, you can not
really imagine which execellent advantages does iPhone has
that make so many young people to seek after it. Until you
actually hold it in your hand when using and experience the
thrill of the iPhone’s smooth operation. Then you can feel on
iPhone what is exactly distinguishes.

Agile development is not completely closed, the develop
team seek positive communication with customers, even to
understand the changing needs of customers. Cooperation with
the customer does not stay in the contract negotiations, but
more concerned about the investigation in customer-related
business of software products and technical aspects.

Thirdly, traditional model would completely separate code
and design, it is unrealistic for many projects. However, if
the demand in the project later with a greater risk have to be
changed, so do it early in more detail may be inappropriate. So,
assuming that demand can be determined, but can design also
be determined? My understanding is that in case when we are
very familiar with the technology in the area is possible. But
how should the technology of one field is very familiar with?
Like some small companies which just implement some office
systems (OS), they have implemented a OS for company A,
When they also implemented a similar system for company
B, The used technology is almost the same, but there are
some similarities and only small differences in the business.
However, when a company want to develop a projects in a
unfamiliar field. Before you investe many people into the
features of pre-design, you would find it hard to refine the
design. Pre-desig for the project usually takes a long time.
Completing design refinement at the beginning of a project
may lead to backfire.

Agile will be divided into multiple sub-projects, the com-
pletion of each project is a small phased achievements. By
using visualize, actionable phased achievements instead of
comprehensive documentation. Let customers to have a more
intuitive feel about the prozess of development and put forward
a more accurate advice on the software in the next step.
Agile development focus on that in a short time to deliver
valuable software to customer to make them satisfied and
during development ongoing delivery of runable software. The
time for delivery should be as short as possible.

2) Teamwork: The goal of traditional process management
is to ensure that the process within the organization as ex-
pected execute and the defined process is strictly adhered
to. Document-centric process tend to define people’s roles as
interchangeable, reliable machine parts.

Agile software process is people-centered rather than
process-centric.They believe that individuals and their inter-
actions important than processes and tools. Practice is the
life of methodology[9]. A key point of Agile development
is let people to accept a process rather than impose a pro-



cess. Developers must have the right to make all decisions
of the technical aspects. Process is the second point, so it
should be minimized. The center of Agile development is to
establishment project team with positive staff. Give them the
necessary environment and support, having full of confidence
to their work. In the project group, the most useful and most
effective way of communication is face to face conversation.
It embodies the principles of human-centered.

This form of oral communication compared to document-
centric that the interaction is more faster and efficient to
transmit the information and sovle the problem. It requires also
during the entire project development, developers and business
people should always be together. Focusing on communication
between team members, this is the embodiment of agile
development project. The end of research for business people
is not to write a requirement analysis and then send it to
developers. But should more effectively communicate with
developers to ensure that developers understand the business
correctly.

After we have a full understanding of agile development
und also understood the difference between it and traditional
development, now we give the definition of agile development.
Agile software development is a capability that can rapidly
response to changing needs of the software, which focus on
rapid delivery of high quality software, and achieve customer
satisfaction[9].

III. WHICH AGILE SOFTWARE DEVELOPMENTS ARE
BEING WIDELY USED

We know from the previous chapter’s introduction, agile
development is a way that with a human-centered, focusing
on iterative, step by step to development approach. In agile
development, software project is split into several subprojects,
the subprojects will be developed in a certain period. In
other words, agile development divide a large project into the
small projects that multiple interrelated, but can also be run
independently, and then separately completed.

The initial concept of agile development is agile process,
including Extreme Programming, Scrum, Lean Development,
and so on. Extreme Programming is a plan for the project
management practices, Scrum is an agile project management
framework.

A. Extreme Programming

Extreme Programming is a lightweight software develop-
ment methodology.Extreme Programming is from practice,
it is also a summary of the practice, its main feature is
to adapt to changes in the environment and requirment and
give full play to the subjective initiative of the developers.
Extreme Programming commitment to reduce software project
risk, improve responsiveness to business changes, increase
productivity during development, the software development
process to increase the fun, I believe that is enough to attract
everyone.

In Extreme Programming, at first the four variables are
introduced, cost, time, quality and scope, by studying the inter-
action between variables, we can get a beeter thorough analysis

of project development.In order to successfully implement
Extreme Programming, Extreme Programming has defined
four values and twelve principles. Extreme Programming is
a very large knowledge base, each of which is a scholarship
worth studying.

Extreme Programming was proposed by Kent Beck in 1996.
It is the development methodology that suitable for small
and medium team and rapid changes in demand. It developed
software that should meet the changing needs of customer, it
is the goal of Extreme Programming. Extreme Programming
is similar to spiral development, which divide the develop-
ment process into a relatively simple cycle. Through positive
communication, feedback and a range of other methods, de-
velopers and customers can have a very clear understanding of
software development progress, change, problem to be solved
and the potential difficulties, and adjust development process
according to the actual situation in time.

Compared with the traditional way of project development,
Extreme Programming emphasis on that do the best by its
list of methods and ideas, other Extreme Programming are
not advocated, flatly ignored. A strict implementation of
Extreme Programming project, its development process should
be efficient and fast, able to do one week in 40-hour instead
of delay in project progress.

Fig. 6. Components of Extreme Programming

1) Extreme Programming Process: Extreme Programming
consists of four components: values, principles, practices and
behavior. Principles from the value; the values and principles
are based on 12 practices; 12 practices associated with the
four main software development activities. Figure 6 shows
the dependencies between them, this four-part behavior is
throughout the entire life cycle[10].



2) Extreme Programming Values: Extreme Programming
provides a global, values-driven development process view.
To achieve high iterative process, the team need to have four
values: communication, simplicity, feedback and courage[9].

Communication. A tacit understanding is the biggest chal-
lenge of the development team need to face, the most effective
way to solve the problemto is to strengthen communication.

Simplicity. There is often a feedback in iterative, so that
developers do not need to plan the expansion of system design,
only need to consider the simplest possible solution and try
to simplify the steps to complete the work. At a later stage, if
necessary, and then make a change, this avoids the resources
spent on the program that is complex and not meet real needs
of customer.

Feedback. Developers and customers need to communicate
constantly and through continuous, clear feedback, when they
meet problems in EXtreme Programming project. At the same
time, the software developers need to quickly implement some
functionality, presentation to customers, get customers’ high
quality, accuracy feedback on the current progress.

Courage. Once an error or changes in requirment occur,
developers may need to drop some previous work and then
reimplement. In this case, the developers undoubtedly need
for courage. Ignored for the past mistakes is to against the the
principles of high-iterative process. Courage can be likened to
playing the maze game, when the wrong way was founded,
the developers must immediately turn back, this does not mean
just a waste of the time, but rather the price to find a maze’s
exit.

Extreme Programming is actually driven by these four
values. In other words, if you want to achieve an Extreme
Programming practice, and did not get the four values, then it
will lose the meaning of Extreme Programming.

3) Extreme Programming Principels: Built on the basis of
the values of Extreme Programming, there are five key princi-
ples to guide software development: quality work, incremen-
tal change, rapidfeedback, assume simplicity and embracing
change[9].

Auality work refers to the quality of work and product can
not be ignored, developers can not give up the software quality
because of the development progress, and make concessions.

Incremental change. Developers should through a series of
small changes to solve a problem. In the planning, develop-
ment and design process, this principle should be adopted .

Rapid feedback. Developers through the short iterative cy-
cles to get feedback and quickly check the current product if
it meets customer requirements.

Assume simplicity. Try to solve each issue with the simplest
way. This means that developers only need to considered
the problem within the current iteration. Design should be
as simple as possible, just to meet the needs of the current
iteration.

Embracing change. In solving pressing problems, adopt
an tolerant strategy. Developers need to understand customer
needs are constantly changing, so the features and functions of
the priority needs are constantly changing. To embrace change,

developers need to solve pressing problems, and often make
appropriate adjustments to changes in reruirements.

4) Extreme Programming Activities: Traditional software
development consists of four main activities: requirements,
design, coding and testing. The four activities of Extreme
Programming have the same name with these, but their es-
sentially is different. The following is brief description of the
four activities of Extreme Programming[9].

Listening. Extreme Programming is based on communica-
tion. It depends not so much on formal written document.
Developers not only need to listen to customer requirements,
but also the development team needs to listen to opinions
from other people of team. Developers need grasp good
communication skills.

Designing. Extreme Programming has a rather novel point
of view, the design is followed for the development of the
project. Design is no longer a static or a project phase, but
instead of a dynamic process. It is no longer the task the
developer.

Coding. In Extreme Programming, many of the practices
such as pair programming, code refactoring, test driven de-
velopment are focus on programming, to get high-quality
program. Extreme Programming developer s considered code
as interesting text, rather than the encrypted text which difficult
to understand. So the meaning of the code should be obvious,
that means with high readability to make the other team
members can understand the logic, algorithms and processes.

Testing. In Extreme Programming, Test is one not easy
to perform[11].Good test is the key to ensure the quality of
software product. Extreme Programming test is run through
the entire development process. From the beginning the code
could be tested,the most of the issues of software should be
resolved at an early stage, rather than to wait until a later
stage. In this way developed software’s quality is guaranteed,
the development costs will be reduced.

5) Extreme Programming Practices: 12 Extreme Program-
ming practices is summed up by the developer of Extreme
Programming, it reflects well the principles of Extreme
Programming[12].

Planning game. The purpose of the Planning Game is to
guide the product into delivery[13]. In the project planning
stage, you need to get the user’s needs. The way how Extreme
Programming get the requirements from customers is different
form traditional way. In Extreme Programming customers
get story card from developer and then write down all their
requirements on the cards. Developers predict the time that
required to achieve on each card, and then According to
the priority from users and the estimated time developers
would select the the tasks which in first iteration of should be
completed. After the first iteration and the result will compare
with the original story card. Before the start of the next
iteration, the user can modify the user card, and then start
the next iteration.

Simple design. Extreme Programming consider code should
be designed as simple as possible, just meet the requirements
of the current function. Traditional software development is a



top-down design, emphasizing the design first, before you start
writing the code, there must be a perfect model. In contrast,
in Extreme Programming developers according to the present
requirements to work hard to find the simplest design.

Small releases. Extreme Programming emphasizes that ev-
ery 3 weeks should give an iterative version of the distribution
system to the user. It also gives customers more opportunities
to communicate with developers. Customers will provide
feedback based on this small release, telling developers where
are problems, which would allow developers in the next release
to make adjustments in time.

Metaphor. System metaphor is through the system’s descrip-
tion let all developers have a very clear outline of the project to
help everyone understand the system’s basic elements and their
relationships. Because developers are not familiar with the
term of the business, customers also do not understand.term
of software development. Through these metaphors to enhance
understanding between customers and developers to avoid
misunderstanding.

Pair Programming. It means that there are two developers
in each small group, the one of role is driver and the another
is navigator, they can chang their role with each other during
programming. Two programmers to do ”a programmer’s work”
seem inefficient, but in fact is just on the contrary. In addition
to providing better code and tests, it also provided for the
transfer of knowledge in the team. Everyone can also learn
new knowledge from each other. Work will become fun.

Coding standards. In order to be able to understand each
other developers must follow a common coding standard when
whey write code. In Extreme Programming the document
should be minimized, better understanding code are considered
as the best documentation.

Coneetiveownership. No one can have any part of the code
alone. All the code are released into the version of repository.
Anyone has the right to modify code and does not require any
other person’s permission.

Continuous integration. It means that put continuously the
complete modules together. Purpose is to get the ongoing
customer’s feedback, and to early detect errors. Traditional
method works as follows: perform big-bang integration after
all code were written, and then spend a long time to correct
the problem. Obviously continuous integration is conducive to
detect problems early. Integration should be done many times
a day.

Refactoring. It is a process that improve the code has been
done. It optimize the code’s internal structure, when in case
that the external behavior does not change. Its purpose is to
improved software design and code quality and maintainabil-
ity.

Testing. Extreme Programming emphasizes test should be
written before the start of coding. The tests are mainly
performed is unit testing and functional testing.

On-site customer. Extreme programming requires at least
one representative of the customers in the entire development
cycle responsible for ensuring requirements, answering ques-
tions and writing functional testing. Experience has shown

that if a customer is on site, can improve the accuracy and
efficiency of the development.

40 hours a week. Extreme programming requires developers
to work every day for no more than eight hours working time
per week does not exceed 40 hours, no overtime continuously
for more than two weeks, so as not to affect efficiency. Smooth
development process ensure that programmers can continue
to complete the task, team can continue to deliver release to
its customers. Continue to work for a long hours will kill
efficiency, fatigue developers will make more mistakes.

B. Scrum

Scrum is proposed by Ken Schwaber and Jeff
Sutherland[14], seeking full play to object-oriented
development approach, is also a improvement of iterative
object-oriented method. Scrum is from Rugby (in the game
each player should keep the overall judgments of the court,
and through collective action, struggling to achieve the same
goal–victory). Scrum was practiced for the first time in
Easel (1993), is suitable for software development, which
requirements are difficult to predict[15]. Scrum’s meeting,
sprint, backlog, Scrum Master, Scrum Team have been used
by PLOP as the standard of Organizational and Process
Pattern[16].

Fig. 7. Scrum process

Scrum’s basic idea is: To develop software like new products
development, you can not at the beginning define the final
product specifications. Process requires research, creativity,
attempt and error, so there is no process can guarantee a
fixed success of the project. Scrum has a clear ultimate goal,
familiar with the best sampel model and technology, which are
necessary for the development process. With a high autonomy
and flexibility, closer communication and cooperation to solve
the challenges. Ensure that every day, every stage has a clear
increment. Therefore, Scrum is ideal for product development
projects.

Scrum development process is usually an iterative cycle of
2-4 weeks[14],shown in figur 7. Each iteration cycle is called
a Sprint, a new products start with customer requirement.
Development team must make every effort to deliver results in
each cycle. Team hava a meeting for 15 minutes a day to view



each member’s progress and plans, in order to understand the
difficulties and try to figur out, then make decesion to arrange
the next day’s tasks.

1) Role: Only three roles in Scrum: Scrum master, Scrum
team and Product Owner

Scrum master is a little different from project manager.
His duty is to help Scrum team to handle the things besides
developing, such as arranging and hosting meetings with
customers, management. Scrum master is to guide the team,
rather than control them. He is also a interface between
development team and external.

Scrum team is self-organization, that means everyone in the
team can disscus that which task is by whom, each member has
the same responsibility and authority. The size of each Scrum
team is between 5 and 9 person. What is the specific structure
within the team has not been defined, but the actual project
team determine the size and complexity of the structure.

Product owner is responsible for all requirements, ROI
(Return Of Investment), project Objectives and the entire
project. He is also responsible for updating product backlog
and the order of requirements’ priority.

2) Sprint: Sprint is usually a 30-day cycle. During a sprint
people do development and test. After the end of a Sprint, the
another one will begein till all of the tasks were finished, this
process is a iteration. At the end of each sprint, should be
able to demonstrate a working product. If some work is not
done at the end of sprint, then they should be written back
to the Product Backlog in order to discuss them in the next
Sprint Planning Meeting. If the sprint task is completed before
the end, with the help of product owner some tasks would be
selected from the product backlog into Sprint Backlog.

Sprint Planning Meeting will be divided into two parts. In
the first part Scrum master, Scrum team, management, Product
owner discuss what and how will task developed in next Sprint.
Only Scrum master and Scrum team participate in the second
part. Participants refine the selected task into several small
steps, then write Sprint Backlog.

There is a Review meeting in the end of each Sprint for
Product Owner. In the meeting Scrum team show in the Sprint
what have they done. The merits of the solution should be
described and analyzed at the meeting. Results of presentation
would be compared with goals identified in the Sprint Planning
Meeting to determine whether the development team have
complete their tasks. At the meeting, the customer can have
the opportunity to change the direction of future product
development.

After Review Meeting there is a retrospective meeting.
Purpose is to summarize the Sprint. Each participant should
answer the following two questions: What is good in previous
Sprint and what could be improved in next Sprint.

3) Scrum advantages and limitations: In the process of the
project, all project team members have a very strong sense that
Scrum brought many positive changes such as: Adapt quickly
to changes in requirements and released on time, improve
efficiency and reduce risk and product quality.

What are the limitations of that Scrum? There are two

points. It Support not so good for distributed development en-
vironment and lack of support for large and complex software.

IV. A REAL EXAMPLE OF AGILE SOFTWARE
DEVELOPMENT

The railway of Netherlands transported 1.2 million passen-
gers every day. They use a new information system, provide
more accurate information on the train, reducing human inter-
vention. AgileDo have developed the PUB distribution system,
it controls the information display and audio broadcasting of
all stations[17].

A. Start

Someone tried to develop this PUB system with Waterfall
model. Just like the way of Waterfall, they have written a
detailed documentation and given it to developers. After 3
years, this project was cancelled, developers haven’t finished
it because of some reasons, maybe changs in requirement or
something unexpected. Then the railway company employed
AgileDo to develop it.

The project started with a 3 weeks preparation phase that
prepare everything they need in sprint. One project manager,
one architect and one Scrum master were responsible for this
phase. They have choose two business analysts as project
owner who with experiences on PUB, because they found it
not enough for one people to be owner in this project.

Project manager will decide the priorty of tasks in each
sprint. But he was often absent. Therefore, the manager had
modified the priority for several times on the day he was
absent. Ideally, every person who has the final decision on
the priority should participate in sprint planning meeting.

B. Group work

This project have 7 member. They had formulated some
rules in Wiki which show how the team member works
together, for example, about development tools, work time,
quality etc. With Wiki the members can have a better consen-
sus. When someone want to modify or update something, they
must write it in Wiki. It’s good when new menber join in.

In the first few iterations they had build, tested and verfied
the user stories. That makes customer very satisfied. After
several iterations they had expanded the project. The indian
member came back to India, then the project had two Scrum
team, every team had 5 people, the 2 team shared a tester.
Then the project was divided into 3 teams, each had a tester.
Each team had dutch and indian.

How each team contace with each other? Firstly, They
used Skype to have one to one or whole meeting. To ensure
the progress of meeting can be successful holded, they had
used UPS. Pair programming was builded with the member
who comes from the same country. They felt that no matter
with which tools the partner in pair programming should sit
together.

They used Scrumworks to make record about sprint process
and who had finish something. When they disscus something
with product owner, Scrumworks is very helpful and useful.



Thet had met some problems. For example, product owner
can’t speak english. According to Scrum, plan meeting was
divided into 2 parts. In the first part, product owner tell the
user story only to dutch member, then they discuss the user
story together and estimate it with skype. After sprint was
showed in Netherlands, the member in Netherlands will write
a report to the team in India.

C. Team for architecture

They also need to know the non-functional requirements
from user. Although the product owner was familiar with the
core functional requirements, but he didn’t know well about
the security, log, usability and so on. So they need build a
team to contact with the other department in company. Their
job is only pay attention to architecture and non-functional
requirements, then change it into user story in backlog.

D. Requirements management

The product owner was responsible for requirement doc-
umentatin and backlog, because the user requires a deteiled
documentation. Usually the team just need the user story in
backlog and product owner can explain it, that is enough.

This documentation is also useful for external tester.

E. Test

They had made a test after each sprint to ensure they can
hand out the runnable software. The external tester hadn’t
found many bugs.

The test had two parts, unit testing and acceptance testing.
They did unit testing with JUnit and Clover. The target was
that 80

They had a trouble to test a complex client. It is more harder
than server site. So they did test manual. But the test time
become longer and longer, the even worse thing is, the external
tester founded bugs only in this part. This problem would be
solved with auto testing. So they advise that it deserve to do
auto testing, espacially in later time of project.

F. Result

Customer was very satisfied with the result. The improtant
thing was that they discuss with customer how to improve the
software.

Customer found a audit outsourcing company to audit the
software. The conculusion was maintainability of the system
is very good and the source code was with a very high quality.

G. Experience

It is difficult to find a product owner with wealth of
knowledge about requirement and also know how to set the
priority. The project team need at least one product owner,
espacially in big project. To ensure the project will be finished
on schedule, it need a good backlog and estimation. Although
the software development process does not require a lot of
documentations, but the customer may need. Scrum is also
suitable for distributed development. Before the project start
a meeting should be holded to let all the member have a
consensus.

V. AGILE SOFTWARE DEVELOPMENT IN UNIVERSITY

Programmers, or people who do something refers to project
management. Is that a truth that peoople could really un-
derstand or use agile software development only only have
participated in specialized training or gone through some real
agile development? The answer is no. The university student
have already got the chance to experience what will Agile
Software Development bring to them.

Project has already become to one of favorite course in
many universities. Becasse in project student could learn some
thing practical and useful. Just like the student in majority
in Computer Science and Technology, they can apply their
knowledge in project and learn experience, rather than write
”hello world” in their own mind. As university apply the
project more mature, people are think about how could they
make it better.

University School professors and teachers began to think, in
addition to technical factors, how could they improve project
efficiency and increase student’s communication between each
other, so that they can learn from each other, have a good
understanding of each other. Ultimately it will improve the
quality of project products, reduce errors, save time.

VI. CONCLUSION

Agile Software Development have brought us many many
good things in software development. The most intuitive is
the improved quality of products, improved efficiency of
developers and less errors. But we can not ignore its limita-
tions. Especially in distributed development and large projects
Agile Software Development can still not good show the
its advantages. In my opinion, Agile is an attitude which is
positive, efficient, and cooperative.

ACKNOWLEDGMENT

I would like here to thank my superviser Ulrich Bareth, he
helped me a lot by writting this paper.

REFERENCES

[1] D. N. M. S. V. TAPASKAR, “Enacted software development process
based on agile and agent methodologies,” International Journal of

Engineering Science and Technology, vol. 3, no. 11, 2007.
[2] D. D. Jamwal, “Analysis of software development models,” IJCST,

vol. 1, no. 2, 2010.
[3] J. R. J. W. Pekka Abrahamsson, Outi Salo, “Agile software development

methods - review and analysis,” VTT Elektroniikka, 2002.
[4] W. R. Duncanillam, A Guide To The Project Management Body Of

Knowledge, 1996.
[5] W. Royce, Software Project Management:A Unified Framework, 1998.
[6] P. Kruchten, “Introduction to the rational unified process,” Proceedings

of the 24th International Conference on Software Engineering, p. 703,
2002.

[7] K. B. Marten Folwer, James A.Highsmith, Manifesto for Aigle Software
Development, http://agilemanifesto.org/, 11 2011.

[8] S. Ambler, Agile Modeling:Effective Practices for eXtreme Programming

and the Unified Process. Wiley Computer Publishing, 2004.
[9] J. Highsmith, Agile Software Development Ecosystems. Addison

Wesley, 2002.
[10] M. L. Back R. J., Hirkman P., “Evaluating the xp customer model and

design by contract,” in Euromicro Conference, 2004, pp. 318–325.
[11] D. Karlstrm, “Introducing extreme programming an experience report.”

Proceedings 3rd Conference on extreme programming XP 2002, 2002.



[12] K. Beck, “Embracing change with extreme programming,” IEEE, pp.
70–77, 1999.

[13] M. G. M. Frank, “Introducing agile methods: Three years of experience,”
IEEE, pp. 334–341, 2004.

[14] K. Schwaber, Agile Project Management with Scrum. Microsoft Press,
2004.

[15] J. Sutherland, “Agile can scale: Inventing and reinventing scrum in five
companies,” Cutter IT Journal, 2001.

[16] Y. S. K. S. J. S. Mike Beedle, Martine Devos, “Scrum: An extension
pattern language for hyperproductive software development,” in PLoP:

The 1998 Pattern Languages of Programs Conference, 1998.
[17] A. Yuan, A real example about Agile Software Development, AgileDo,

2009.


