
Sequence Diagram Tutorial

From:

UML Distilled, Third Edition, Chapter 4
M. Fowler

Use Cases and Scenarios
• A use case is a collection of interactions between external actors and a

system

• In UML, a use case is “the specification of a sequence of actions, including

variants, that a system (or entity) can perform, interacting with actors of

the system.”

• Typically each use case includes a primary scenario (or main course of

events) and zero or more secondary scenarios that are alternative courses

of events to the primary scenario.

• In RUP (Rational Unified Process), user requirements are captured as use

cases that are refined into scenarios.

• Then: A scenario is one path or flow through a use case that describes a

sequence of events that occurs during one particular execution of a system.

UML Sequence Diagrams

• Describe the flow of messages, events, actions
between objects

• Show concurrent processes and activations

• Show time sequences that are not easily depicted in
other diagrams

• Typically used during analysis and design to
document and understand the logical flow of your
system

 Emphasis on time ordering! Emphasis on time ordering!

Sequence Diagram Key Parts

• participant: object or entity that acts in the diagram

– diagram starts with an unattached "found
message" arrow

• message: communication between participant
objects

• the axes in a sequence diagram:

– horizontal: which object/participant is acting

– vertical: time (down -> forward in time)

Sequence Diagram (make a phone call)

Caller Phone Recipient

Picks up

Dial tone

Dial

Ring notification

Ring

Picks up

Hello Hello

Representing Objects

Squares with object type, optionally preceded by "name :"
– write object's name if it clarifies the diagram

– object's "life line" represented by dashed vert. line

messages (method calls) indicated by arrow to
other object

– write message name and arguments above arrow

Messages Between Objects

Messages, continued

messages (method calls) indicated by arrow to other object

– dashed arrow back indicates return

– different arrowheads for normal / concurrent
(asynchronous) calls

Lifetime of objects
creation: arrow with 'new' written
above it

– notice that an object created
after the start of the scenario
appears lower than the
others

deletion: an X at bottom of object's
lifeline

– Java doesn't explicitly delete
objects; they fall out of scope
and are garbage-collected

Indicating method calls

• activation: thick box over object's life line; drawn when object's method is
on the stack

– either that object is running its code,
or it is on the stack waiting for another object's method to finish

– nest activations to indicate recursion

Activation

Nesting

Selection and loops

frame: box around part of diagram
to indicate if or loop

– if -> (opt)
[condition]

– if/else -> (alt)
[condition], separated by
horizontal dashed line

– loop -> (loop)
[condition or items to loop
over]

Sequence diagram from use case scenario

Why not just code it?

• Sequence diagrams can be somewhat close to the code level.

• So why not just code up that algorithm rather than drawing it as a
sequence diagram?

– a good sequence diagram is still a bit above the level of the real code
(not all code is drawn on diagram)

– sequence diagrams are language-agnostic (can be implemented in
many different languages

– non-coders can do sequence diagrams

– easier to do sequence diagrams as a team

– can see many objects/classes at a time on same page (visual
bandwidth)

Sequence Diagram Exercise

Let's do a sequence diagram for the following poker casual use
case, Start New Game Round :

 The scenario begins when the player chooses to start a new round in the UI.
The UI asks whether any new players want to join the round; if so, the new
players are added using the UI.

 All players' hands are emptied into the deck, which is then shuffled. The
player left of the dealer supplies an ante bet of the proper amount. Next each
player is dealt a hand of two cards from the deck in a round-robin fashion; one
card to each player, then the second card.

 If the player left of the dealer doesn't have enough money to ante, he/she
is removed from the game, and the next player supplies the ante. If that
player also cannot afford the ante, this cycle continues until such a player is
found or all players are removed.

Poker
sequence
diagram

Sequence Diagram Question

Consider the possible poker use case, Betting Round :

 The scenario begins after the Start New Round case has completed. The UI
asks the first player for a bet. That player chooses to either bet a given
amount, or check (no bet).

 The next player is asked what to do. If the prior player placed a bet, the
next player must either match ("see") it, or match it plus add an additional bet
("raise"), or choose not to match and exit the round ("fold"). This continues
around the table until an entire pass is made in which all players have either
matched all other players' bets or folded.

 If the next player doesn't have enough money to match the current bet, the
player is allowed to bet all of their money. But they can then win only up to
the amount they bet; the rest is a "side pot" among the more wealthy players
remaining in the round.

Why is it hard to diagram this case as a sequence
diagram?

Poker Sequence Diagram 2

