LabVIEW

Object-Oriented Design Patterns Technical Manual and Exercises

‘7 NATIONAL
' INSTRUMENTS

Solution Walk-through and PIUgIN EXAMPIEccceeiiiiiiee et ses ettt e s ee e e et e e s snta e e e st e e e entaeesnsaeesansaeeennes 3

Producer consumer Queued State Machine Without Classes.........cuieiuiiiiiiiiiiiiieiieeee e 6
State Pattern for Queued MessSage HandliNgooiiiiiiiiiiie ettt sr et saeees 8
Factory Method Design Pattern (Creating @ PIUSIN)cccuuiiiiiiiee ettt vee e et e e s are e s s e e e e nea e e e eannes 19
Sending Messages to PIugins USING USEr EVENTSc.uiiiiiiiiiiiii ettt sttt s 27
Object-Oriented Hardware ADSTraCtion LAYEr.......cooiiiiiiiiiiiiiei ettt ettt ettt et b e e ssee b s snee e 31
IMIOTE INFOIMALION ..ttt ettt ettt b et et s e s et e s bt e sbeesb e e bt e st e eae e ebeeebeesb e e be e beeanesanesnnes 35

To download a copy of this manual and the latest version of LabVIEW code referenced in the exercises, please visit:
http://bit.ly/nV5GXD

SOLUTION WALK-THROUGH AND PLUGIN EXAMPLE

GOAL

Understand and explore a working LabVIEW application that combines multiple design patterns that we will
explore individually in later exercises.

SCENARIO

This application is a high-level Ul framework that calls into an arbitrary number of plugins. The plugins could be
performing any number of tasks, including data acquisition tasks or general visualizations. The architecture is such
that separate developers could work on different sections of the application without interfering with one another
thanks to established APIs. In this first exercise we will change the set of plugins that are loaded by the framework
dynamically.

CONCEPTS COVERED

e Overview of application for demonstration
e Dynamic selection of plugins

SETUP

e Open the ‘Ul Plugin Solution.lvproj’ from the Ul Plugin Framework Solution Folder
e Launch ‘main.vi’ and click Run

e Ensure that the menu options show and launch correctly

e Press ‘Stop’ to terminate the application

11:51:08 AM |

Controller Type 1004 5-

Automatic 80
Generator Sine

Generater Rectangle 50-
Noise

Amplitude

-10.0-]

g
|| AvtomaticP 115102 115107

’r) 6.00 07/14/2011 07/14/2011

’ 204 Time
I Automatic D
I Jen 00+

204
Generator Frequency
. S -4.0-
I

TR
0 20 40 60 30 100
60}

w
k]
2
o
£
<

Rigidity 1 s 8.0

D |
02 03

Frequency

Mass 1 ’,}] 2.00

|| Menu | ¥ Load D sor

= =

1. Explore the application’s functionality

a.
b.

e.

Click the Run VI button
Click the Menu Button in the bottom left to show the menu

{ | Menu

The list in the menu is populated as a result of plugins that are detected and installed. Later in
this exercise you will change the plugins that are running without restarting the application. In
the exercise titled ‘Factory Method Design Pattern (Creating a Plugin)’ you'll see how to create
and install a plugin for this application using a standard factory design pattern.

Use the mouse to click and drag up and down on the menu. Point out that they’re looking at a
reusable Ul component that has been built using an XControl and was designed for use on a
touch-screen.

t

Data Cortelation
Diagnostics

FFT
Image Prpcesing

Report Ggn

Generate] Waveform

v

Click on Sound and Vibration, and explain that this is going to run one on the plugins.

NOTE: As this is a demonstration, many of the other plugins are not functional and may not display a Ul. This does

not negatively impact the ability to operate or use the rest of the application.

2. Demonstrate that the framework can communicate with plugins

a.

Click the Menu Button to open the menu. The showing plugin receives a message when the
menu appears, giving the plugin the option of performing a task. In this case, opening the menu
pauses the acquisition to conserve resources. Clicking the button again closes the menu and
send a message to the plugin, which then opts to resume the acquisition.

As we will see later on, all of these plugins are atomic, self contained applications that can be
developed and modified independently of the calling framework.

3. Load different plugins during run-time

d.

Click the Load button in the bottom left corner to open a file dialog that allows you to select the
location on disk of new plugins. The default location should be the root where all of these demos
are located.

Navigate into the folder entitled ‘Plugin Libraries.” Choose from any of the other available
libraries and select Current Folder in the bottom right corner.

Notice that the responsiveness of the Ul is not affected while the new plugins are being loaded
into memory.

After a few moments, a different set of plugins should be shown in the menu.

4. Show the Block Diagram

a.
b.
c.

Stop the application by clicking ‘Stop’

Switch to the block-diagram by pressing CTRL+E

This application communicates amongst multiple parallel processes using a combination of
producer consumer loops, queued state machines and a factory pattern. This code is built using
LabVIEW objects, so some elements may not be immediately recognized, but the same
underlying principles apply and we’ll look at both an OO and non-O0 implementation.

|1000'}E [[4] "Sliding Menu XControl": Value Change B
O u u
for sereensaver |30 H Plugin Handler Display Plugin.lvclass
: been tDUChEd?E | | B u =1
i Write Index of Plugin.vi Menu Toggle
- = Command.lvclass
|
g @ Error
0 Sendwvi Handler.vi
= SEHD
i~} £}
=} »> Ul Shifter Data Definition > > =em==fa]
Execute
Command.vi
Error Handler.vi
& | E..),.,
1= =0 A}
ueue Element Dequeue Element

PRODUCER CONSUMER QUEUED STATE MACHINE WITHOUT CLASSES

GOAL

This exercise will illustrate an alternate implementation of the Ul Framework that does not use classes. It's a
simple and quick demo to bridge to the object oriented example and demonstrate some of the potential
drawbacks of the classic enum/variant method to passing data.

SCENARIO

Clicking on a menu item invokes the ‘toggle menu’ item command, but enqueues the wrong data type, creating a

run-time error.

1. Introduce alternative implementation without classes

a. Open the Project entitled ‘Ul Framework (PC-QSM).lvproj’ in the ‘Ul Framework (PC-QSM)’
Folder.

b. Open main.vi and switch to the block diagram, which uses messages built with enums and
variants. The application is functionally equivalent, but it poses some additional risk due to the
lack of data encapsulation.

c. This framework will call into and run the same plugins as the one explored in the previous
exercise.

d. Switch to the front panel and run the application to illustrate that it works.

2. Generate a run-time error

a. Open the menu by clicking on the button in the bottom left, this is enqueing a message to the Ul
Display control state machine to run the toggle menu command.

b. This command also gets run when a menu item is clicked on; however, the message to toggle the
menu has been composed incorrectly in the “Sliding Menu XControl”: Value Change case.
Instead of a Boolean data type, it uses an integer. As a result, clicking on a menu item will send
an incorrect datatype at run-time, which cases an error.

= N

6 Error 91 occurred at Variant To Data in main.vi

Possible reason(s):

LabVIEW: The data type of the variant is not compatible
with the data type wired te the type input.

c. This can be avoided by encapsulating data with classes.
3. Examine the source of the error, as shown below:

[EF———————— (5 "Sliding Menu XControl": Value Change ~#—— ——————
Enum cast to variant
[NewVal
Enqueue
Element Error Handlervi
L i

__ Enqueue
i Element

&)

" Toggle menu” Vt

Toggle Menu
Actionavi

Error Handler.vi

Variant cast to boolean

STATE PATTERN FOR QUEUED MESSAGE HANDLING

GOAL

LabVIEW Classes provide an alternative implementation of what is typically referred to as a queue-driven state
machine for dispatching and executing commands. By representing the commands with a class hierarchy, we can
utilize encapsulation to ensure that data types are enforced at compilation and make it possible to add new
commands without modifying the calling code.

SCENARIO

In the first part of this exercise, we will execute an existing command by invoking the send method.

CONCEPTS COVERED

e Class hierarchy window
e Inheritance

e Dynamic Dispatch

e Accessor Methods

PART ONE: SENDING A MESSAGE

4. Explore the command hierarchies for both the Ul and Plugin State Machines
a. Navigate to the folder ‘Ul Framework Exercises, and open ‘Ul Framework Exercises.lvproj.’
b. This application has two separate class hierarchies that are used in separate command patterns.
Expand ‘Framework SubVls > User Interface > Ul Command Manager’ to show the class hierarchy
for the Ul Command state machine.

B3 Project Explorer - Ul Plugin Frameworkiuproj |(Eb i

Flle Edit View Project Operate Tools Window Help
S| %60 x| sl k| @&

Items | Files

B[} Framework SubVis

[Error Handling

- Main Type Definitions

[Plugin Handler

=+ [UserInterface

B @

W Ul Command Manager.lvelass

W Initialize Command.lvclass

Load SubPanel Command lvclass
Menu Teggle Command.hvclass
Populate Menu Command lvclass
Resize Menu Command.lvclass
Set Header Text Command.lvelass
Slide Panel Off Screen Cormmand.hvelass

Slide Panel On Screen Command hvclass
Stop Command.hvclass

Un-Load SubPanel Command.lvclass
) UIControl Definitions

& Ullmages

=l Ullnitialize.vi

00eECOeeT

a. Expand the contents of ‘U Command Manager.lvclass.” This is the parent class for all commands
for the Ul State Machine. It contains two methods and no data. The methods are Send
Command.vi and Execute Command.vi. ‘Send Command.vi’ is a static method we will use to
enqueue child classes and we will override ‘Execute Command.vi’ to customize the behavior of all
the child classes.

EI [} Ul Command Manager
E} @ Ul Command Manager.lvelass
! - @™ UI Command Manager.ctl

[#, Execute Command.vi
| Initialize Cormmand.hvclass
- W Load SubPanel Command.lvelz

B Menn Tannle Cammand hee

b. Right-click on Ul Command Manager.lvclass and select ‘Show Class Hierarchy’ to illustrate that
this is the parent class and that all the other commands inherit and from it.

43 LabVIEW Class Hierarchy =NEEl X
File Edit View Tools Window Help

|] |

LabVIEW Object (Ul Plugin Framework.lvproj/My Computer)
i

ur Cummandranager‘\v:\ass

i | T

imand.hvclass Populate Menu Command.lvclass Stop Command lvclass Initialize Command.lvclass Resize Menu Comm

< [r

Navigate to the block diagram of main.vi. The loop labeled ‘User Interface Display Control’ de-
gueues objects from this class hierarchy and runs the appropriate version of Execute
Command.vi.

=¥} > Ul Shifter Data Definition > > s===fa]

Execute
Command.wi

Error Handler.vi

B0

Dequeue Element

bl

=

Double-click on Execute Command.vi. Unlike a normal subVI, this subVI is dynamically
dispatched, which means the run-time engine decides which version of ‘execute command.vi’ to
run based on the object that is sent to the dynamic terminal. As a result, double-clicking on the
VI brings up a menu that lists all the instances of ‘Execute Command.vi’ that could potentially be
run during execution.

10

-
i3 Choose Implementati

Select VI

" Ul Command Manager.lvclass:Execute Command.vi

------- Un-Load SubPanel Command.hclass:Execute Command.vi
------- Menu Teggle Command.hvclass:Execute Command.vi

------- Resize Menu Command.lveclass:Execute Command.vi

------- Initialize Command.lvclass:Execute Command.vi

------- Stop Command.ivelassiExecute Command.vi

------- Populate Menu Command.lvclass:Execute Command.vi

------- Slide Panel Off Screen Command.lveclass:Execute Command
------- Slide Panel On Screen Command.lvclass:Execute Command.
------- Load SubPanel Command.vclass:Execute Command.vi

------- Set Header Text Command.lvclass:Execute Command.vi

4 3 I

[Open] [Cancel] [Help]

Double-click on the first item in the list, which is the copy of ‘Execute Command.vi’ belonging to
the parent, Ul Command Manager.lvclass. View the connector pane of this icon and right-click on
the input terminal for the object. When a VI belongs to a class hierarchy, you can specificy that
the input terminal for the class is a Dynamic Dispatch Input, which enables children to override
this VI. Navigate to the options for ‘This Connection Is’ and ensure that ‘Dynamic Dispatch Input’
has been selected. Verify that the input terminal is set to Dynamic Dispatch Input (Required).

VI Properties
Edit Icon...
Show Icon

Find All Instances

Add Terminal

Remowve Terminal
Patterns

Rotate 90 Degrees

Flip Horizental

Flip Vertical

Disconnect All Terminals

Disconnect This Terminal

Required This Connection Is

Recommended
Optional

5. Send a command to ‘Toggle Menu’ when a user selects a menu item

a.

Return to the front panel of main.vi and run the application.

Click on the menu button to expand the list of plugins. Clicking on one of these items displays
that plugin’s front panel in the subPanel, but we currently have to go and manually click the
menu button to collapse this list. To automatically close the menu after a user has selected a
plugin, we’re going to dispatch an instance of ‘Menu Toggle Command.lvclass’ to the Ul Interface
Display Control.

Stop the application and switch to the block diagram.

11

d. Navigate to the case in the Event Structure labeled “Sliding Menu XControl”: Value Change.”
This case currently handles a user selecting an item from the menu and sends the command to
display the appropriate plugin based on the updated value of the control.

e [4] "Sliding Menu XContral": Value Chang® -]
g g

H Plugin Handler Display Plugin.vclass
7

Send.vi

e. Open the Project Explorer and navigate to ‘Framework SubVIs > User Interface > Ul Command
Manager > Ul Command Manager.lvclass.” We will be using ‘send command.vi’ to enqueue an
instance of ‘Menu Toggle Command.lvclass.” Perform the following steps to implement the new
command as shown:

1. Drag and drop a copy of Send Command.vi to the block diagram

2.Drag and drop a copy of Menu Toggle Command.lvclass to the block diagram
3. Connect the wire from the object to the input terminal of Send Command.vi
4. Connect the error wires

’lugin.vi Menu Toggle Command.lvclass
2.~ [
(s
Send.vi
B E\
™% /tﬂ

4,

f. Return to the front panel of main.vi and click the run button. Expand the menu and show that
selecting an item now closes the menu.

12

PART TWO: CREATING A NEw COMMAND

1. Create a new command to set the header of the display to show the name of the plugin that is running.
Note: It’s important to realize that this task will be accomplished without modifying the top level VI

a. Inthe LabVIEW Project Explorer, navigate to and expand ‘Framework SubVIs > User interface.’
The list of classes shown represents the commands that have currently been implemented.

= [Framework SubVis

& [Error Handling

- [Main Type Definitions
[_J Plugin Handler

= [} UserInterface

= [Ul Command Manager
- @ Ul Command Manager.lvclass
- @ Initialize Command.lvclass
- i Load SubPanel Command.lvclass
- @ Populate Menu Command.lvclass
- B Resize Menu Command.bvelass
- i Slide Panel Off Screen Command.lvelass
- @ Slide Panel On Screen Command.lvclass
- @ Stop Command.lvclass
& @ Un-Load SubPanel Command.lvclass
m. FXl 1T Cantral NefiniFinne

b. Right click on the ‘User Interface’ Folder and select ‘New > Class.” When prompted, select the
title ‘Set Header Text Command’ and click OK. The new class will appear in the Project Explorer.

c. To function properly as a command, this class will need to inherit the capabilities of the ‘Ul
Command Manager’ class. To specify this relationship, right click ‘Set Header
TextCommand.lvclass’ and select Properties.

d. In the Properties Dialog that appears for this class, select Inheritance from the list of Categories.
On the right side of the screen, select Change Inheritance.

3 DAQ Plugin vclass - Class Properties =
General Settings
protection Inhesitance Hierarchy
Documentation Class Name Class Description -
Trem Settings 5, LabVIEW Object The LabVIEW Object s 3 built-in LabVIEW class from w
Wire Appearance \
T a ;

| Chengelnheritance...

[“] Transfer all Must Override requirements to descendant classes

Data Value References - Restrictions On New and Delete

References of this class type are not resiricted by any ancestor class.

Restrict references of this class type to member Vs of this class

[Restrict references of descendant class types to member Vls of this class

e. The ‘Change Inheritance’ dialog will appear, which lists all of the Classes currently loaded in the
Project Explorer. Find and select ‘Ul Command Manager.lvclass,” and click Inherit from Selected.

13

ﬂ Change Inheritance E

All Classes in Project

- MNotify Plugin Slide Completed.buclass Selected Class
- MNotify Plugins of Menu Down.lvclass s
- MNotify Plugins of Menu Up.hvclass Ul Command Managerdvclass
Plugin Display ULvclass |
: Plugin Handler Initialize.lvclass Path
I Plugin Handler Launch Plugin.lvclass D:\Sales Resource DVD\Advanced OO Design
: Plugin Handler Stop.lvclass Pattemns\Ul Framewark Solution\Framework i
Plugin Load from Disk.lvclass e e e 2L
Plugin Load Next.lvclass Description
H Reload Plugins.lvclass -
Terminate Plugin Process.vclass
&
Populgte Menu Command.lvclass (Current =
Initiali ommand.lvclass
Load SubMgnel Command lvclass i
Menu Toggle Command.lvelass
Resize Menu [Command.lvclass Icon
Set Header Text.lveclass
Slide Panel Off Screen Command.lvclass (5%
Slide Panel On Screen Command.ivelass 2
Stop Command lvelass
- Un-Load SubPanel Command.lvclass . /
4| I, | ;/
L
I [Inherit From Selected] [Cancel l [Help]

The Change Inheritance dialog will close, returning to the Class Properties dialog. Click OK to
save the changes.

The new class will contain a control where the data members can be defined. Double click on the
control, ‘Set Header Text Command.ctl’

In the data cluster for the class, put a new string control and name it ‘Header Text.” This will be
the private data that only this command has access to.

© EI ™y
{3 cet Header Text Command.... El_‘g
Eile Edit View Project Operate Ioolsh_

Ell Class Private Dati |« '@L
33 |4'U¢J'I‘E ot

Header Text il

] |]

[T T ITT =
N A |
UI Plugin Framework.lvproj/My Computer| < 1] »

1

Before proceeding, ensure that the new ‘Set Header Text Command.lvclass’ class has been saved
to disk. A folder has already been created where it should be saved, here: ‘Ul Framework
Exercises\Framework SubVIs\User Interface\Ul Command Manager\UIl Set Header Text.” To do
this, return to the Project Explorer and click the toolbar icon for ‘Save All,” as shown below:

14

p
roject Explorer - LgIn Frarm
13 project Expl Ul Blugin F

J

File Edit View Project Oper

DX B X

Itemns Files

= &l Project: UI Plugin Framew
=k B My Computer
i [J Framework SubVls
EJ Images
E}r_ﬂ Parent Plugin Defini
@[Plugin Templat

j. Return to the front panel for ‘Set Header Text Command.ctl.” Right click on the border of the
string control and select the option to Create Accessor, as shown. This may take a moment, but
it will generate wrapper Vs that allow us to set and read this control value.

-
ﬁ Set Header Text Command.ctl [Private Data for Set He,

File Edit View Project Operate Tools Window

Class Private Dati | I 15pt Applicaticn

Header Text,

Visible tems

1IT Oy e

Ll

— Change to Indicator
Description and Tig...

Replace

Data Operations
Advanced

k. A configuration dialog will appear, prompting us to specify which methods we want to create.
Select ‘Read and Write’ from the drop-down, ensure ‘Create static accessor’ is selected, and
press ‘Create’. Two new VIs should now appear in the Project Explorer as shown:

- W Resize Menu Command.lvclass
= W@ Set Header Text Command.lvelass
i I Set Header Text Command.ctl

[# Write Header Text.vi

- i Slide Panel Off Screen Command.lvclass
G i@ Slide Panel On Screen Command.lvclass
A dll — v [

15

I. The final step is to create the new copy of Execute.vi, which will be run by the state machine
when this command is called. Right click on the ‘Set Header Text Command.lvclass’ and select
‘New > VI for Override.’

m. In the dialog that appears, select ‘Execute Command.vi.” LabVIEW will generate a VI as shown at
the top of the image below. Make the necessary changes to implement the state’s functionality.
An example is shown at the bottom of the image. The following are the recommended steps to
build it:

i. Delete the subVl in the generated code (parent copy of Execute Command.vi)

ii. Reconnect the User Interfaces References Wire

iii. Place an ‘Unbundle by Name,” wire in the User Interfaces References and select ‘Header
text’ reference

iv. Place the accessor created in previous steps to read the header text, ‘Read Header
Text.vi’ onto block diagram and wire according to image below.

v. Wire a False constant into the Stop Indicator
vi. Wire the reference to the header text to the property node
vii. Wire the output of ‘Read Header Text.vi’ to the value of the property node

=
—_

ser Interface References Out

f

L

User Interface References et Header Text Command out

g

Set Header Text Cormmand in

w
[=]
=}

%

=
=

m
E
a
a
c
S

error in (no error)
¥

g

E Mo Error 'H : User Interface References Out
User Interface References [[55% o= J.,,,,., Y1)

: Header Text

Read Header Text.vi

Set Header Text in |[05 Moo Set Header Text out

: Stop?
EI . -~

| = Str §
b Text. Text

error out

=]

error in (no error) [[£et K’

n. Once again, save everything and close the windows that are currently open.
o. Finally, we must call this command from the appropriate location as we did in the earlier
example for the toggle menu command. In this case, we will call it when the plugin handler

16

receives a request to load a plugin. Navigate to ‘Framework SubVIs > Plugin Handler > Plugin
Display Ul.lvclass > Execute.vi.’
p. On the block diagram, scroll to the location where this command will be sent from, as shown

below:
EEnabIed 'E
PLACE THE COMMAND TO
MODIFY THE HEADER HERE
el
T
|- N,

g. Build the command by implementing the following code

PLACE THE COMMAND TO
MODIFY THE HEADER HERE

Set Header Text.lvclass

] i
. = n

Write Header Text.vi

oo

Send Command.wvi
ZEHD

NOTE: Be sure that the static copy of ‘Send Command.vi’ is the method belonging to the parent class, ‘Ul
Command Manager.lvclass,” as shown in the following image:

17

Project Explorer - Ul Fra

[File Edit
Mo Sa| XD X||ER|E- 5| %% I
Items Filez

= [l Project: Ul Framework Solution.vproj -
2 B My Computer
= [} Framework SubVls
Q Error Handling
& [J Main Type Definitions
G-[J Plugin Handler
= [} UserlInterface
= [Ul Command Manager
=) UI Command Manager.lvclass
UI Cormmand Manager.ctl

View Project Operate Tools Window Help

- @ Initialize Cornmand.lvclass
Load SubPanel Command . lvclass

Populate Menu Command.lvclass
Resize Menu Command.hvclass

m

Slide Panel On Screen Command.velass
Stop Command.lvclass

Menu Toggle Command.lvclass
Un-Load SubPanel Command.lveclass

[
[
o
. Slide Panel Off Screen Command.vclass
[
[
o
]

r. Save all the changes and open and run main.vi. When a plugin is clicked, the header will now be
populated with the same string that is used to identify the plugin in the menu.

18

FACTORY METHOD DESIGN PATTERN (CREATING A PLUGIN)

GOAL

‘Factory Method Pattern’ refers to a well-know object-oriented pattern for creating objects at run-time. These
objects are typically derived from a parent, and they extend the functionality for the specific object through the
use of inheritance.

SCENARIO

We have an application that runs and displays applications that are loaded at run-time as plugins. In this case, the
plugins typically consist of a user interface that allows the user to perform an arbitrary and independent task.
After running the plugin framework, the menu displays the names of all the plugins that were found on disk.
Clicking on any item displays the front panel and sends a message to the plugin that its user interface is showing.
In this scenario, we want to take a simple data acquisition application and turn it into a plugin that this application
can run and load.

DESCRIPTION

The VI that we want to use in the plugin has already been created. In this demonstration, the VI will be added to a
new object we create such that it will be launched by the framework. The framework will send user events to the
plugin for communication purposes. After registering these events with the plugin, we will be able to understand
and act upon these events.

CONCEPTS COVERED

e Dynamically loading classes
e Defining and creating a new child of a class hierarchy

SETUP

e The plugin that we will require uses the DAQmx API. Make sure it is installed
e Ensure a device (Dev0) has been simulated and appears as shown below in Measurement Explorer.

4 £33 My System
. [g] Data Neighborhood

4 g8 Devic aces
MI PCle-6320 "Devl”

2 Metwork Devices
- [E8 MI-IMAQdx Devices
- P PXI System (Unidentified)
- Serial & Parallel
, @ Historical Data
. 44 Scales
- & Software
- [l IVT Drivers

19

private and public methods that are called by
of them can be overridden to customize the

1. Introduce the Plugin Template Class

a. From the root of this hands-on, open ‘Project Libraries> Measurement Tasks” and launch the
Plugins.lvproj to see the Project Explorer containing all the plugins.

b. Navigate to ‘Parent Plugin Definition > Plugin Template > Generic Plugin.’

c. Right-click on ‘Generic Plugin.lvclass’ and select Show Class Hierarchy. This illustrates that all the
plugins currently running in the framework are children of this generic plugin definition. Close
this window.

d. The class, ‘Generic Plugin.lvclass’ contains all the
the framework to interact with a plugin. Some
behavior of a plugin, such as the run and stop functionality.

L g e
o
- Ifg" Generic Plugin.ctl
= [Dynamic Methods
- |#l Configure Plugin.vi
[#l Runwi
& Stopwi
&-[J Framework Methods
- [l Protected Methods
&) UserInterface
- [l Events
& [J Template Type Definitions
G- AP
.. |@l DETT Record Run Debug Info.vi
2. Introduce the application that we will be creating a plugin from

a.

A simple data acquisition application is included in the Plugins project for the sake of creating a

new plugin. In the Project Explorer, navigate to the folder labeled ‘DAQ’ and you should see a vi

entitled ‘Acquire Data.vi’

-
b Project Explorer - Plugins.lvproj

o B[S |

Eile

el=1- IR

Edit View Project Operate Tools

X ||| 8 ¥ |

Window Help

@ o

Items | Files |

= @; Project: Plugins.lvprej
= B My Computer

B [30 Cube

F+[J Simple Plugin

B [Sound and Vibration

=g~

=, Acquire Data.vi

| Acquire Enum States.ctl

B FFT
[Sound Gen
- [Data Correlation

' G+ [Image Processing
[
i

t- [J Diagnostics
i-) Report Gen
=] @ Generic Plugin.hvclass
Pl Canaric Dhonin o+

b.

Close the Ul Plugin

Framework Project and any other open projects that call these classes (this

will un-lock the plugin classes so that you can modify inheritance)

20

c.
d.
e.

In the Plugins project, open the folder ‘DAQ’
Open the application and click the run button.
Click Start to begin the acquisition.

Note: this front panel has been designed to scale and resize all the controls appropriately. This will be important
when loading into a framework as a plugin with variable width and height parameters. To see how this has been
configured, use the mouse to grab the bottom right corner and resize the panel.

f.

Click Pause to temporarily stop the acquisition.

0 100 260 300 400 00 600 700 830 900 1000 1100 1200 1300 o
Time

System Start Button System Pause Button System Stop Button
B sun WN Pause © stop

Click Stop to terminate execution of the VI.

Switch to the block diagram to see how the application has been implemented. A simple
producer consumer pattern is used to dispatch commands from Ul interaction to the consumer,

which is a simple queued state machine that controls the DAQ task.

3. Create an Object that will store and run this VI

a.

C.

In the Project Explorer, navigate to the folder that contains the data acquisition application,

which should be ‘Plugins > DAQ.’

Right click on the folder and select ‘New > Class.” When prompted, enter ‘DAQ Plugin’ as the
name for the class. Click OK and ‘DAQ Plugin.lvclass’ should now appear under the ‘DAQ’ folder

in the Project Explorer.

{a Mew Class

2]

Please enter a name for your new class:

DAC Plugin

OK

] [Cancel

To function properly as a plugin, this class will need to inherit the capabilities of the Generic

Plugin class that we looked at in section 1.

Plugin.lvclass’ and select Properties as shown below.

21

To specify this relationship, right click ‘DAQ

ugin Design Pattern.vi
ugins
3D Cube
DAQ
- =) Acquire Datawvi
-1 Acquire Enum States.ctl

DAQPluginlvelass

- WETDAQP Mew 3

Dumb Plugin

MRI Demog g

Simple Plugi Add »
Sound and V

Plugins.aliasq 5o to Parent Class

Plugins.vips Show Class Hierarchy

Plugins.lvpro,

Avatarini e »
main.vi Find »
Sliding Menu Li

Dependencies Show Error Window
Build Specificati Unit Tests ,

Find Project Items...

Arrange By 3
Expand All
Collapse All

Remove from Project

[Properties ____|

d. In the Properties Dialog that appears for this class, select Inheritance from the list of Categories.
On the right side of the screen, select Change Inheritance.

i
3 DAQ Plugin vclass - Class Properties =
General Settings
protection Inhesitance Hierarchy
Documentation Class Name Class Description -
Trem Settings S LabVIEW Object The LsbVIEW Object = a built-in LsbVIEW class from w

Wire Appearance \
; N ;

Chengelnheritance...

[“] Transfer all Must Override requirements to descendant classes

Data Value References - Restrictions On New and Delete

References of this class type are not resiricted by any ancestor class.

Restrict references of this class type to member Vs of this class

[Restrict references of descendant class types to member Vls of this class

e. The ‘Change Inheritance’ dialog will appear, which lists all of the Classes currently loaded in the
Project Explorer. Find and select ‘Generic Plugin’ and click Inherit from Selected.

22

- SEERREEE)

All Classes in Project

- LabVIEW Object - Selected Class
- 4 DAQ Plugin.lvclass (Current Class) MName
S Generic Plugin.lvelass
- Dumb Plugin.lvelass 1 Path
------- MRI Demo.lvclass Ch\Users\ekerny\Desktop Ul Plugin Frameworkl
------- Simple Plugin.lvclass Parent Plugin Definition\Plugin Template',

------- Sound and Vibration.hclass £=mocio Rlesis booloos

=} Plugin Handler Command.lvclass
------- Motify Plugin Slide Completed.lvclass -
------- Motify Plugins of Menu Down.lvclass
------- Motify Plugins of Menu Up.lvclass
------- Plugin Display ULlvclass

------- Plugin Handler Initialize.lvclass

------- Plugin Handler Launch Plugin.hvclass
------- Plugin Handler 5top.lvclass

Description

m

Plugin Load from Disk.lvclass m Icon
------- Plugin Load MNext.vclass B
= Ul Command Manager.lvclass
------- Initialize Command.lvclass 2

------- Load SubPanel Command.lvclass
------- Menu Teggle Command.lvclass

....... Danulate Mann Cammmand heclare

4 I ¢

[Inherit From Selected] [Cancel] [Help]

— — -/

The Change Inheritance dialog will close, returning to the Class Properties dialog. Click OK to
save the changes.

Before proceeding, ensure that the new ‘DAQ Plugin.lvclass’ class has been saved to disk. To do
this, return to the Project Explorer and select File > Save All.

When prompted, save the lvclass file in the same directory as the ‘Acquire Data.vi,” which should
be [root]\Plugins\DAQ, where [root] refers to the directory of the Project. DO NOT SAVE IT
ANYWHERE ELSE AS THIS IS THE DIRECTORY THAT THE FRAMEWORK WIL LOOK IN

Hold shift to select ‘Acquire Data.vi’ and ‘Acquire Enum States.ctl.” Click and drag them under
the ‘DAQ Plugin Class.lvclass’ file to make it a member of this class. It should appear as shown
below:

= DN
= ﬁ DAQ Plugin.vclass
: - 8" DAQ Plugin.ctl

Right-click on the Class and select ‘New > VI for Override.” This will allow customization of
behaviors that were defined by the parent ‘Generic Plugin.lvclass’ for the specific purpose of
‘DAQ Plugin.lvclass’ class.

We can override the behaviors of multiple methods, including ‘Run,” ‘Stop,” and ‘Configure,’
which allows us to completely customize what this plugin does for each. In this example, we are
going to customize the implementation of ‘Confiure Plugin.vi.’” Select ‘Configure Plugin.vi’ and
select OK.

23

n.

- -
3 Mew Override l_‘-_‘ El éj

Select a method to override:
Configure Plugin.vi -
Run.wi
Stop.vi

Mote: The Mew Override dialog box does not list
unsaved VIs. You can override a VIfrom a ancestor
class only if the VT has dynamic terminals on the
connector pane and you have saved the VI to disk.

[OK H Cancel][Help]

L -

— -

LabVIEW will generate a new VI named ‘Configure Plugin.vi.” Switch to the block diagram and
delete the subVI that appears (it’s the parent’s copy of Configure Plugin.vi).

Open Quick-Drop by pressing CTRL + Space. Type ‘Write Ul Reference.vi. This VI is the private
data modifier that allows us to store a reference to the VI we want this plugin to run. Drop it on

the block diagram and connect it. Finally, place ‘Static VI Reference’ from the application palette
to build the block diagram shown below:

AcquireDatain \write UT Reference.vi Acquire Data out

Static VI Reference
FI

l?

error in (no error) error out

=

In the Project Explorer, select ‘Acquire Data.vi,” which is the VI we want this plugin to run. Drag
and drop it into the Static VI Reference.

24

it [30 Cube

Static VI Reference ;-
i - 4 DAQ
‘:'? | et - . =+ @ Acquire Data.lvclass
H _h—__—__'——a—____, ﬁ"' Acquire Data.ctl

C

Iﬂ Acquire Enum States.ctl
|!'g. Configure Plugin.vi
- [Dumb Plugin
S @ Dumb Plugin.hvclass

o. The finished code should look like the diagram below:

Acquire Datain \write UI Reference.vi Acquire Data out

Acquire[a I

Data.lvclass:Acquire
Data.vi||oas aes

error in (no error) error out

p. You can also modify the value of the string that will appear in the menu and in the header by

modifying the code as shown:

Acquire Data in rite Ul Reference.vi Write Button Textvi Acquire Data out

_ . . Button Text
Acqu!re 2 L | Acquire Waveform |
Data.lvclass:fcquire

Data.vi||oan aee
_

error in (no error) error out

g. Return to the Project Explorer and click the ‘Save All’ button again.

. Open the Project, Ul Plugin Framework.lvproj
s. Open main.vi and run the application. The menu should now be populated with one additional

item to represent the newly created plugin. Click on it and verify that it appears in the subpanel

as shown below:

25

e
13 mainui

FYA. O TS W N

Acquire Waveform

‘ System Waveform Graph Devl/aid | System Waveform Graph Devl/aid |/
5 400-
I 2004
3] o-
24
200~
1]

Amplitude
Amplitude

| ' ' | ' | ' | ' ' ' ' | '
0 100 200 300 400 500 600 700 &00 900 1000 1100 1200 1300 1] 1 2 3
Time

.
v
o
-
o
o
5

System Start Button System Pause Button System Stop Butten

[st | [[lPase] [© swp |

26

SENDING MESSAGES TO PLUGINS USING USER EVENTS

GOAL

We want to send basic commands to the plugin that are then handled in such a way to minimize the work being
done in the background. By doing so, we can ensure that the application continues to run smoothly as the user
navigates between multiple objects.

SCENARIO

We want to configure the newly created Acquire Measurement.vi application to pause the acquisition and display
when it is not being shown, or when a user opens the menu.

DESCRIPTION

Sending messages to plugins is a common challenge for plugins, as it represents a scenario in which you may need
to broadcast the same information to N objects. In this case, sending individual messages to every recipient is
generally inefficient and difficult. This exercise will use user events to broadcast information to plugins, who can
then choose to act upon it as they see fit.

CONCEPTS COVERED

e Dynamic event registration
e User APIs

27

1. Handle the user event ‘Menu Open,” which should terminate execution of the plugin.

d.

e.

Open the Plugin project and close the Ul Plugin Framework Project

In the Project Explorer for Plugins.lvproj, navigate to ‘Plugins > DAQ > Acquire Data.vi’ and open
the block diagram.

Right-click on the border of the event structure and select Show Dynamic Events Terminal,
which will add the following input terminal to the structure:

Event Handler and Message Produ«

|[3] "Systemn Stop Button™ Value Ch

Systern Stop Button
=

+ Terminate *

In the Project Explorer, navigate to ‘Parent Plugin Definition > Plugin Template > API’ and explore
the folder.

I3 Project Explorer - Plugins.lvproj @Eléj

Eile Edit View Project Operate Tools Window Help
EE IR Y E

ltems | Files

= &l Project: Plugins.hvproj

= B My Computer
3D Cube
Durnb Plugin
MRI Demo
Simple Plugin
Sound and Vibration
DAQ
Generic Plugin.lvclass
W&" Generic Plugin.ctl
i Dynamic Methods
Framework Methods
Protected Methods
User Interface
Events

FYalalafafala

- B
Toneee

Template Type Definitions

5 [APL
@@g Info.wi

-"&" Dependencies
- ’% Build Specifications

i,

Initialize Plugin.vi will register all the necessary events that this plugin needs to respond to. Place
it on the block diagram of the plugin and connect it as shown:

28

Event Handler and Message P

— — T [2] "System Stop Button”
Initialize Plugin.vi

i
hark ‘EE] System Stop Button

[+ Terminate |

[E]

‘ Flush Queue

Dbtain Queue

f. Navigate to the case in the Event Structure that handles “System Pause Button”: Value Change.
Note that this case currently handles the user pressing ‘Pause’ on the front panel.

g. Toadd the user event to this case, right-click and select ‘Edit Events Handled by this Case”

h. Click Add Event

ral L 3

’ + Add Event ”)‘ Remove] Click OK to ac
specifier to be

Leck front panel (defer processing of user actions) until th

i. The middle list-box contains all the items that can serve as an event source. The user events
have been added to this list because of the inputs to the dynamic events terminal. Note that
there are multiple user events that we can chose from:

Event Sources

<Application: -

<This VI=

Dynamic
<5Shutdown Event>: User Even
<Panel Showing Event=: User
<Panel Hidden Event=: User E
<Menu Open Event>: User Eve
<Menu Closed Event>: User B
<5lide Complete Event=: User

m

=+ Panes
- Pane
Paned 4
Pane
by Splitters
Splitter
Splitter 3
[t Controls v
] 1 P

j. Select ‘Menu Open Event’ and click OK.
k. When the message that the menu is open is fired, this plugin now handles it by stopping the
acquisition.

29

Make sure that the front-panel has been closed and return to main.vi. Run the application and
launch the plugin. Show that opening the menu now pauses the acquisition.

30

OBJECT-ORIENTED HARDWARE ABSTRACTION LAYER

GOAL

Demonstrate the use of an object-oriented design pattern to abstract hardware in an instrument control
application. The goal of this abstraction is to make it simple to incorporate new hardware into an existing
application without making modifications to the software framework.

SCENARIO

The problem with many test systems is that the overall system must be in operation longer than the
individual system components are supported. Sometimes the device being tested has an active service
life measured in decades, while many test instruments are obsolete and no longer supported after five
years or less. Other times, the device being tested has an active service life measured in months. Both of
these are examples of life-cycle mismatch.

SETUP

In order for all of the included instrument drivers to work, it’s important to ensure that you’ve downloaded and
installed the correct instrument drivers. In LabVIEW, go to Help > Find Instrument Drivers and make sure the
following appear in the list:

e Fluke 884X Series
e Tktds3xx
e ag33xxx

For the sake of this demo, it’s also important that it not have been run since the project was opened, as we will
show the instrument drivers coming into memory for the first time using the VI Hierarchy Window. Ensure that
the class hierarchy appears as shown below before proceeding. If it does not, simply close front panel of the top-
level VI and re-open it.

I8 LabVIEW Class Hierarchy a & S | B |l

File Edit View Tools Window Help

L) [a] <[216 24

~

LabVIEW Object (HAL.lvproj/My Computer)

Meter.lvclass Scopelvclass Signal Generationlvclass Switch.lvclass

31

1. Provide a brief explanation of the application and how it works.

a. Open the Project, ‘HAL.lvproj’

b. Expand the ‘Test Code’ folder and open the Main Test App.vi

c. Expand the Device-Specific Software Plugin Class, DSSP.lvclass. This is the parent for all device
plugins and defines high-level generic functionality. In this case, the only methods of this class
are ‘Close Instrument’ and ‘Initialize Instrument.’

d. Right-click on ‘DSSP.lvclass’ and select ‘Show Class Hierarhcy.” Prior to running the application,
only one layer of children will be visible, as shown in the image. Keep this window open and
carefully positioned so that it can be seen next to the front panel of Main Test App.vi. If viewing
on a projector with 1024 resolution, try to replicate the configuration shown below (taken on a
monitor with 1024 x 768):

View Tools Window Help

2in
(m} File Edi
-

e
LabVIEW Object (HAL Ivproj/My Computer) =
Select XML Config File
Simulated Instruments.xml

Filter Limit Test Parameters
Filter Error Limits (+/- V)

nvelass switchMi| Number of Steps
7 s

Start Frequency (>1K Hz)
1000 |5

02} I : : I .
Stop Frquency (<50k Hz) 1000 10000 ZWDFQ’! “"30000 40000 50000
50000 |+ quency
| Limit Test Passed?
LED Test Parameters
Uoger LED Lt) LED Test Results
1635 |5
Actual LED Voltage (V) LED Test Passed?
| Lower LED Limit v) 0

163 |

10:47 AM

S
. N
a0

e. Show the block diagram of the application to review the operations that this application will be
conducting.

f. The first VI is ‘Initialize All Devices.vi’ which is built on top of a factory design pattern that
produces objects to represent the three devices based on the XML file that it is pointed to. Open
this VI and look at the block diagram.

32

This VI outputs four objects: one for a signal generator, one for a scope, one for a meter and
finally one for a switch. The actual class that defines the various methods appropriate to each
decide will be loaded at run-time in the four parallel factory design patterns.
instrument.vi will be dynamically dispatched based on the object that is loaded.

The initialize

[b oottt eom v ok hagrem oo L biproy Wy Computer [=]
- -

[L e Bt [pwee ot fedow fee H

& |4 !I_;,. i‘_lhj" 19y i s F ol -|| o |q. |E'.‘l-| 4 Rk 2

el

Four factory patterns are used w _;::.',__

load the appropriate instrument

object at run-time

Dynamically

dispatched at run-time

?g / _—

Fill, Feprin, Wy e

Set a breakpoint just before the case structure of this block diagram. This will make it easier to
illustrate how and when the classes come into memory.

Close (do not save) InitializeAllDevice.vi and return to the block diagram of the top-level VI. After
the devices have all been initialized, they are then passed to other functions to complete the test
sequence. In this case, a frequency sweep (which utilizes both the signal generator and the
scope), an LED test (which needs only the voltmeter) and then finally, the instruments are closed.
Switch to the front panel and use the ring control to select ‘Simulated Instruments.xml’ and run
the application (make sure the VI Hierarhcy window can be seen).

When the execution reaches the breakpoint, turn on highlight execution, ensure you can see the
class hierarchy and run the code. The class hierarchy will populate the new objects as children of
their generic parents as each factory pattern executes.

33

Repeat this process for the other enum operations. The resultant class hierarchy will appear as
shown:

r EI ™
_ =
3 v oo iy o

File Edit View Tools Window Help
ih~]

»

— e B

Simulated DMM.lvclass

— &

Fluke DMM.Ivclass

— &

NI DMM.vclass

o

[y Computer) DSSP.Ivclase Scopelvclass Simulated Scope.lvclass

— @

Tek 2k Scope.lvclass

- E R

NI Digitizer.lvclass

m

.

Signal Generation.hvclass Sirmulated Sig Gen.lvclass
—
Ag Sig Gen.lvclass
i
] n | »
e — u P

34

MORE INFORMATION

DowNLOAD SOURCE CODE, MANUAL AND SLIDES

e http://bit.ly/nV5GXD

ONLINE RESOURCES

e ni.com/largeapps — find best practices, online examples and a community of advanced LabVIEW users
e ni.com/softwareengineering — download evaluation software and read more about the tools in this guide

CUSTOMER EDUCATION CLASSES

e Managing Software Engineering with LabVIEW
o Learn to manage the development of a LabVIEW project from definition to deployment
o Select and use appropriate tools and techniques to manage the development of a LabVIEW
application
o Recommended preparation for Certified LabVIEW Architect exam
e Advanced Architectures in LabVIEW
o Gain exposure to and experience with various architectures for medium to large LabVIEW
applications
o Learn how to select an appropriate architecture based on high-level requirements
o Recommended preparation for Certified LabVIEW Architect exam
e Object-Oriented Design and Programming in LabVIEW
o Design an application using object-oriented design principles
o Implement a basic class hierarchy using LabVIEW classes
o Modify an existing LabVIEW application to replace common patterns with LabVIEW objects

35

