Distributed and Cloud Computing
K. Hwang, G. Fox and J. Dongarra

Chapter 1: Enabling Technologies and Distributed System Models
Data Deluge Enabling New Challenges

(Courtesy of Judy Qiu, Indiana University, 2011)
From Desktop/HPC/Grids to Internet Clouds in 30 Years

- HPC moving from centralized supercomputers to geographically distributed desktops, desksides, clusters, and grids to clouds over last 30 years
- R/D efforts on HPC, clusters, Grids, P2P, and virtual machines has laid the foundation of cloud computing that has been greatly advocated since 2007
- Location of computing infrastructure in areas with lower costs in hardware, software, datasets, space, and power requirements – moving from desktop computing to datacenter-based clouds
Interactions among 4 technical challenges: Data Deluge, Cloud Technology, eScience, and Multicore/Parallel Computing

(Courtesy of Judy Qiu, Indiana University, 2011)
Clouds and Internet of Things

HPC: High-Performance Computing
HTC: High-Throughput Computing
P2P: Peer to Peer
MPP: Massively Parallel Processors

Computing Paradigm Distinctions

- Centralized Computing
 - All computer resources are centralized in one physical system.

- Parallel Computing
 - All processors are either tightly coupled with central shard memory or loosely coupled with distributed memory.

- Distributed Computing
 - Field of CS/CE that studies distributed systems. A distributed system consists of multiple autonomous computers, each with its own private memory, communicating over a network.

- Cloud Computing
 - An Internet cloud of resources that may be either centralized or decentralized. The cloud apples to parallel or distributed computing or both. Clouds may be built from physical or virtualized resources.
Technology Convergence toward HPC for Science and HTC for Business: *Utility Computing*

(Courtesy of Raj Buyya, University of Melbourne, 2011)
Technologies for Network-based Systems

33 year Improvement in Processor and Network Technologies

![Graph showing the improvement in processor speed and network bandwidth over 33 years, with key milestones including Intel Core i7 990x, Intel Core 2 QX9770, AMD athlon FX-60, and various Ethernet technologies from 1978 to 2011.](image-url)
Modern Multi-core CPU Chip

Multicore processor

Core 1
L1 cache

Core 2
L1 cache

... ...

Core n
L1 cache

L2 cache

L3 cache/DRAM
Multi-threading Processors

• Four-issue superscalar (e.g. Sun UltraSparc I)
 - Implements instruction level parallelism (ILP) within a single processor.
 - Executes more than one instruction during a clock cycle by sending multiple instructions to redundant functional units.

• Fine-grain multithreaded processor
 - Switch threads after each cycle
 - Interleave instruction execution
 - If one thread stalls, others are executed

• Coarse-grain multithreaded processor
 - Executes a single thread until it reaches certain situations

• Simultaneous multithread processor (SMT)
 - Instructions from more than one thread can execute in any given pipeline stage at a time.
Each row represents the issue slots for a single execution cycle:
- A filled box indicates that the processor found an instruction to execute in that issue slot on that cycle;
- An empty box denotes an unused slot.
33 year Improvement in Memory and Disk Technologies
Architecture of a Many-Core Multiprocessor GPU interacting with a CPU Processor
NVIDIA Fermi GPU
GPU Performance

Bottom – CPU - 0.8 Gflops/W/Core (2011)
Middle – GPU - 5 Gflops/W/Core (2011)
Top - EF – Exascale computing (10^18 Flops)
Interconnection Networks

- SAN (storage area network) - connects servers with disk arrays
- LAN (local area network) – connects clients, hosts, and servers
- NAS (network attached storage) – connects clients with large storage systems
Datacenter and Server Cost Distribution

Customer spending ($B) vs. Millions installed servers

- Physical server installed base (Millions)
- Logical server installed base (Millions)
- Power & cooling expense
- Management cost
- Server spending

Virtualization management gap
Virtual Machines

- Eliminate real machine constraint
 - Increases portability and flexibility
- Virtual machine adds software to a physical machine to give it the appearance of a different platform or multiple platforms.

Benefits
- Cross platform compatibility
- Increase Security
- Enhance Performance
- Simplify software migration
Initial Hardware Model

- All applications access hardware resources (i.e. memory, i/o) through system calls to operating system (privileged instructions)

Advantages
- Design is decoupled (i.e. OS people can develop OS separate of Hardware people developing hardware)
- Hardware and software can be upgraded without notifying the Application programs

Disadvantage
- Application compiled on one ISA will not run on another ISA.
 - Applications compiled for Mac use different operating system calls then application designed for windows.
- ISA’s must support old software
 - Can often be inhibiting in terms of performance
- Since software is developed separately from hardware… Software is not necessarily optimized for hardware.
Virtual Machine Basics

- Virtual software placed between underlying machine and conventional software
 - Conventional software sees different ISA from the one supported by the hardware

- Virtualization process involves:
 - Mapping of virtual resources (registers and memory) to real hardware resources
 - Using real machine instructions to carry out the actions specified by the virtual machine instructions
Three VM Architectures

(a) Physical machine
- Operating system (OS)
- Hardware

(b) Native VM
- Application
- Guest OS
- VMM
- Hardware

(c) Hosted VM
- Guest apps
- Guest OS
- VMM
- Hardware

(d) Dual-mode VM
- Guest apps
- Guest OS
- VMM
- Host OS
- Hardware

Nonprivileged mode in user space
Privileged mode in system space
System Models for Distributed and Cloud Computing

Table 1.2 Classification of Distributed Parallel Computing Systems

<table>
<thead>
<tr>
<th>Functionality, Applications</th>
<th>Multicomputer Clusters [27, 33]</th>
<th>Peer-to-Peer Networks [40]</th>
<th>Data/Computational Grids [6, 42]</th>
<th>Cloud Platforms [1, 9, 12, 17, 29]</th>
</tr>
</thead>
<tbody>
<tr>
<td>Architecture, Network Connectivity and Size</td>
<td>Network of compute nodes interconnected by SAN, LAN, or WAN, hierarchically</td>
<td>Flexible network of client machines logically connected by an overlay network</td>
<td>Heterogeneous clusters interconnected by high-speed network links over selected resource sites.</td>
<td>Virtualized cluster of servers over datacenters via service-level agreement</td>
</tr>
<tr>
<td>Control and Resources Management</td>
<td>Homogeneous nodes with distributed control, running Unix or Linux</td>
<td>Autonomous client nodes, free in and out, with distributed self-organization</td>
<td>Centralized control, server oriented with authenticated security, and static resources</td>
<td>Dynamic resource provisioning of servers, storage, and networks over massive datasets</td>
</tr>
<tr>
<td>Applications and network-centric services</td>
<td>High-performance computing, search engines, and web services, etc.</td>
<td>Most appealing to business file sharing, content delivery, and social networking</td>
<td>Distributed supercomputing, global problem solving, and datacenter services</td>
<td>Upgraded web search, utility computing, and outsourced computing services</td>
</tr>
<tr>
<td>Representative Operational Systems</td>
<td>Google search engine, SunBlade, IBM Road Runner, Cray XT4, etc.</td>
<td>Gnutella, eMule, BitTorrent, Napster, KaZaA, Skype, JXTA, and .NET</td>
<td>TeraGrid, GriPhyN, UK EGEE, D-Grid, ChinaGrid, etc.</td>
<td>Google App Engine, IBM Bluecloud, Amazon Web Service(AWS), and Microsoft Azure,</td>
</tr>
</tbody>
</table>
A Typical Cluster Architecture

SAN, LAN, NAS Networks
(Ethernet, Myrinet, InfiniBand, etc.)

Gateway

The Internet

I/O devices
Disk arrays
Computational or Data Grid
A Typical Computational Grid

Figure 1.17 An example computational Grid built over specialized computers at three resource sites at Wisconsin, Caltech, and Illinois. (Courtesy of Michel Waldrop, “Grid Computing”, IEEE Computer Magazine, 2000. [42])
Peer-to-Peer (P2P) Network

- A distributed system architecture
- Each computer in the network can act as a client or server for other network computers.
- No centralized control
- Typically many nodes, but unreliable and heterogeneous
- Nodes are symmetric in function
- Take advantage of distributed, shared resources (bandwidth, CPU, storage) on peer-nodes
- Fault-tolerant, self-organizing
- Operate in dynamic environment, frequent join and leave is the norm
Peer-to-Peer (P2P) Network

Overlay network - computer network built on top of another network.

- Nodes in the overlay can be thought of as being connected by virtual or logical links, each of which corresponds to a path, perhaps through many physical links, in the underlying network.
- For example, distributed systems such as cloud computing, peer-to-peer networks, and client-server applications are overlay networks because their nodes run on top of the Internet.
<table>
<thead>
<tr>
<th>System Features</th>
<th>Distributed File Sharing</th>
<th>Collaborative Platform</th>
<th>Distributed P2P Computing</th>
<th>P2P Platform</th>
</tr>
</thead>
<tbody>
<tr>
<td>Attractive</td>
<td>Content distribution of MP3 music, video, open software, etc.</td>
<td>Instant messaging, collaborative design and gaming</td>
<td>Scientific exploration and social networking</td>
<td>Open networks for public resources</td>
</tr>
<tr>
<td>Applications</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Operational</td>
<td>Loose security and serious online copyright violations</td>
<td>Lack of trust, disturbed by spam, privacy, and peer collusion</td>
<td>Security holes, selfish partners, and peer collusion</td>
<td>Lack of standards or protection protocols</td>
</tr>
<tr>
<td>Problems</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Example Systems</td>
<td>Gnutella, Napster, eMule, BitTorrent, Aimster, KaZaA, etc.</td>
<td>ICQ, AIM, Groove, Magi, Multiplayer Games, Skype, etc.</td>
<td>SETI@home, Geonome@home, etc.</td>
<td>JXTA, .NET, FightingAid@home, etc.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
The Cloud

- Historical roots in today’s Internet apps
 - Search, email, social networks
 - File storage (Live Mesh, Mobile Me, Flicker, …)

- A cloud infrastructure provides a framework to manage scalable, reliable, on-demand access to applications

- A cloud is the “invisible” backend to many of our mobile applications

- A model of computation and data storage based on “pay as you go” access to “unlimited” remote data center capabilities
Basic Concept of Internet Clouds

- **Cloud computing** is the use of computing resources (hardware and software) that are delivered as a service over a network (typically the Internet).
- The name comes from the use of a cloud-shaped symbol as an abstraction for the complex infrastructure it contains in system diagrams.
- Cloud computing entrusts remote services with a user's data, software and computation.
The Next Revolution in IT
Cloud Computing

- Classical Computing
 - Buy & Own
 - Hardware, System Software, Applications often to meet peak needs.
 - Install, Configure, Test, Verify, Evaluate
 - Manage
 - ..
 - Finally, use it
 - $$$$.....$(High CapEx)

- Cloud Computing
 - Subscribe
 - Use
 - $ - pay for what you use, based on QoS

(Courtesy of Raj Buyya, 2012)
Cloud Service Models (1)

Infrastructure as a service (IaaS)

- Most basic cloud service model
- Cloud providers offer computers, as physical or more often as virtual machines, and other resources.
- Virtual machines are run as guests by a hypervisor, such as Xen or KVM.
- Cloud users deploy their applications by then installing operating system images on the machines as well as their application software.
- Cloud providers typically bill IaaS services on a utility computing basis, that is, cost will reflect the amount of resources allocated and consumed.
- Examples of IaaS include: Amazon CloudFormation (and underlying services such as Amazon EC2), Rackspace Cloud, Terremark, and Google Compute Engine.
Cloud Service Models (2)

Platform as a service (PaaS)

- Cloud providers deliver a computing platform typically including operating system, programming language execution environment, database, and web server.
- Application developers develop and run their software on a cloud platform without the cost and complexity of buying and managing the underlying hardware and software layers.
Cloud Service Models (3)

Software as a service (SaaS)

- Cloud providers install and operate application software in the cloud and cloud users access the software from cloud clients.

- The pricing model for SaaS applications is typically a monthly or yearly flat fee per user, so price is scalable and adjustable if users are added or removed at any point.

- Examples of SaaS include: Google Apps, innkeypos, Quickbooks Online, Limelight Video Platform, Salesforce.com, and Microsoft Office 365.
Service-oriented architecture (SOA)

- SOA is an evolution of distributed computing based on the request/reply design paradigm for synchronous and asynchronous applications.
- An application's business logic or individual functions are modularized and presented as services for consumer/client applications.
- Key to these services - their loosely coupled nature;
 - i.e., the service interface is independent of the implementation.
- Application developers or system integrators can build applications by composing one or more services without knowing the services' underlying implementations.
 - For example, a service can be implemented either in .Net or J2EE, and the application consuming the service can be on a different platform or language.
SOA key characteristics:

- **SOA services have self-describing interfaces in platform-independent XML documents.**
 - Web Services Description Language (WSDL) is the standard used to describe the services.

- **SOA services communicate with messages formally defined via XML Schema (also called XSD).**
 - Communication among consumers and providers or services typically happens in heterogeneous environments, with little or no knowledge about the provider.
 - Messages between services can be viewed as key business documents processed in an enterprise.

- **SOA services are maintained in the enterprise by a registry that acts as a directory listing.**
 - Applications can look up the services in the registry and invoke the service.
 - Universal Description, Definition, and Integration (UDDI) is the standard used for service registry.

- **Each SOA service has a quality of service (QoS) associated with it.**
 - Some of the key QoS elements are security requirements, such as authentication and authorization, reliable messaging, and policies regarding who can invoke services.
Layered Architecture for Web Services

<table>
<thead>
<tr>
<th>Base hosting environment</th>
<th>Higher level services</th>
</tr>
</thead>
<tbody>
<tr>
<td>Protocol HTTP FTP DNS ...</td>
<td>Service context</td>
</tr>
<tr>
<td>Presentation XDR ...</td>
<td>Service Internet</td>
</tr>
<tr>
<td>Session SSH ...</td>
<td>Bit level Internet</td>
</tr>
<tr>
<td>Transport TCP UDP ...</td>
<td></td>
</tr>
<tr>
<td>Network IP ...</td>
<td></td>
</tr>
<tr>
<td>Data link/Physical</td>
<td></td>
</tr>
</tbody>
</table>

- Application specific services/grids
- Generally useful services and grids
 - Workflow
- Service management
- Service discovery and information
- Service Internet transport ➔ Protocol
- Service Interfaces
Cloud Computing Challenges: Dealing with too many issues (Courtesy of R. Buyya)
The Internet of Things (IoT)

Smart Earth: An IBM Dream
Opportunities of IoT in 3 Dimensions

(courtesy of Wikipedia, 2010)
<table>
<thead>
<tr>
<th>Distributed OS Functionality</th>
<th>AMOEBA developed at Vrije University [46]</th>
<th>DCE as OSF/1 by Open Software Foundation [7]</th>
<th>MOSIX for Linux Clusters at Hebrew University [3]</th>
</tr>
</thead>
<tbody>
<tr>
<td>History and Current System Status</td>
<td>Written in C and tested in the European community; version 5.2 released in 1995</td>
<td>Built as a user extension on top of UNIX, VMS, Windows, OS/2, etc.</td>
<td>Developed since 1977, now called MOSIX2 used in HPC Linux and GPU clusters</td>
</tr>
<tr>
<td>Distributed OS Architecture</td>
<td>Microkernel-based and location-transparent, uses many servers to handle files, directory, replication, run, boot, and TCP/IP services</td>
<td>Middleware OS providing a platform for running distributed applications; The system supports RPC, security, and threads</td>
<td>A distributed OS with resource discovery, process migration, runtime support, load balancing, flood control, configuration, etc.</td>
</tr>
<tr>
<td>OS Kernel, Middleware, and Virtualization Support</td>
<td>A special microkernel that handles low-level process, memory, I/O, and communication functions</td>
<td>DCE packages handle file, time, directory, security services, RPC, and authentication at middleware or user space</td>
<td>MOSIX2 runs with Linux 2.6; extensions for use in multiple clusters and clouds with provisioned VMs</td>
</tr>
<tr>
<td>Communication Mechanisms</td>
<td>Uses a network-layer FLIP protocol and RPC to implement point-to-point and group communication</td>
<td>RPC supports authenticated communication and other security services in user programs</td>
<td>Using PVM, MPI in collective communications, priority process control, and queuing services</td>
</tr>
</tbody>
</table>
Separates user data, application, OS, and space – good for cloud computing.
Parallel and Distributed Programming

<table>
<thead>
<tr>
<th>Model</th>
<th>Description</th>
<th>Features</th>
</tr>
</thead>
<tbody>
<tr>
<td>MPI</td>
<td>A library of subprograms that can be called from C or FORTRAN to write parallel programs running on distributed computer systems [6,28,42]</td>
<td>Specify synchronous or asynchronous point-to-point and collective communication commands and I/O operations in user programs for message-passing execution</td>
</tr>
<tr>
<td>MapReduce</td>
<td>A Web programming model for scalable data processing on large clusters over large data sets, or in Web search operations [16]</td>
<td>Map function generates a set of intermediate key/value pairs; Reduce function merges all intermediate values with the same key</td>
</tr>
<tr>
<td>Hadoop</td>
<td>A software library to write and run large user applications on vast data sets in business applications (http://hadoop.apache.org/core)</td>
<td>A scalable, economical, efficient, and reliable tool for providing users with easy access of commercial clusters</td>
</tr>
</tbody>
</table>
Grid Standards and Middleware:

<table>
<thead>
<tr>
<th>Grid Standards</th>
<th>Major Grid Service Functionalities</th>
<th>Key Features and Security Infrastructure</th>
</tr>
</thead>
<tbody>
<tr>
<td>OGSA Standard</td>
<td>Open Grid Service Architecture offers common grid service standards for general public use</td>
<td>Support heterogeneous distributed environment, bridging CA, multiple trusted intermediaries, dynamic policies, multiple security mechanisms, etc.</td>
</tr>
<tr>
<td>Globus Toolkits</td>
<td>Resource allocation, Globus security infrastructure (GSI), and generic security service API</td>
<td>Sign-in multi-site authentication with PKI, Kerberos, SSL, Proxy, delegation, and GSS API for message integrity and confidentiality</td>
</tr>
<tr>
<td>IBM Grid Toolbox</td>
<td>AIX and Linux grids built on top of Globus Toolkit, autonomic computing, Replica services</td>
<td>Using simple CA, granting access, grid service (ReGS), supporting Grid application for Java (GAF4J), GridMap in IntraGrid for security update.</td>
</tr>
</tbody>
</table>
Dimensions of Scalability

- Size – increasing performance by increasing machine size
- Software – upgrade to OS, libraries, new apps.
- Application – matching problem size with machine size
- Technology – adapting system to new technologies
System Scalability vs. OS Multiplicity

Scalability (No. of processors or cores in a system)

Multiplicity of OS images in a system

SMP

NUMA

Cloud

Cluster

Grid

P2P
System Availability vs. Configuration Size:

- **High (100%)**
- **Low (0)**

- **Small**
 - SMP
 - NUMA
 - Cloud
 - Cluster

- **Large (10^6)**
 - Grid
 - P2P network

System size (# processor cores)
Operational Layers of Distributed Computing System

Application layer
- DNA sequence alignment
- Event simulation and analysis
- High energy physics
- Weather forecasting

Middleware layer
- Resource broker
- Secure access
- Task analyzer
- Task scheduler
- Communication service
- Information service
- Reliability control

Resource layer
- Server
- Laptop
- Supercomputer
- Telescope
- Desktop

Network layer
- Router
- Switch
- Copper
- Fiber optic
Security: System Attacks and Network Threads

- Loss of confidentiality
 - Information leakage
 - Eavesdropping
 - Traffic analysis
 - EM/RF Interception
 - Indiscretions of personnel
 - Media scavenging
 - Intercept/alter
 - Repudiation

- Loss of integrity
 - Integrity violation
 - Penetration
 - Masquerade
 - Bypassing controls
 - No authorization
 - Physical intrusion

- Loss of availability
 - Denial of service
 - DoS
 - Trojan Horse
 - Trapdoor
 - Service spoofing
 - Resource exhaustion
 - Integrity violation
 - Theft
 - Replay

- Improper authentication
 - Illegitimate use
 - Resource exhaustion
 - Integrity violation
Four Reference Books:

