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Parallel Computing and Programming
Enviroments

e MapReduce
e Hadoop
e Amazon Web Services



What is MapReduce?

e Simple data-parallel programming model

e Forlarge-scale data processing
» Exploits large set of commodity computers
» [EXxecutes process in distributed manner
» Offers high availability

e Pioneered by Google
» Processes 20 petabytes of data per day

e Popularized by open-source Hadoop project
» Used at Yahoo!, Facebook, Amazon, ...



What is MapReduce used for?

e At Google:
» Index construction for Google Search
> Atrticle clustering for Google News
» Statistical machine translation

e At Yahoo!:

> “Web map” powering Yahoo! Search
» Spam detection for Yahoo! Mail

e At Facebook:

» Data mining
> Ad optimization
> Spam detection



Motivation: Large Scale Data Processing

Many tasks composed of processing lots of
data to produce lots of other data

Want to use hundreds or thousands of CPUs

.. but this needs to be easy!

MapReduce provides

>

YV V V VY

User-defined functions

Automatic parallelization and distribution
Fault-tolerance

/O scheduling

Status and monitoring



What is MapReduce used for?

e Inresearch:

Astronomical image analysis (Washington)
Bioinformatics (Maryland)

Analyzing Wikipedia conflicts (PARC)
Natural language processing (CMU)
Particle physics (Nebraska)

Ocean climate simulation (Washington)

YV V VYV V V V VY



Distributed Grep

e — Jdrep —
e —— Jrep — Al
— BEy —— grep — — cat — |

Split data [Ee| (=T REE

grep is a command-line utility for searching plain-text data sets for lines
matching a regular expression.

cat is a standard Unix utility that concatenates and lists files



Distributed Word Count
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Map+Reduce

Partitioning Result

Function

e Map: e Reduce:
» Accepts input > Accepts
key/value pair intermediate
> Emits intermediate key/value™ pair
key/value pair > Emits output

key/value pair
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Architecture overview

Master node

________________________________________________

Slave node N




GFS: underlying storage system

Goal

> (global view
» make huge files available in the face of node failures

Master Node (meta server)
> Centralized, index all chunks on data servers

Chunk server (data server)

> File is split into contiguous chunks, typically 16-
64MB.

> Each chunk replicated (usually 2x or =x).
Try to keep replicas in different racks.
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GFS architecture

Chunkserver Chunkserver 2 Chunkserver N
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Functions in the Model
e Map

» Process a key/value pair to generate intermediate
key/value pairs

e Reduce
» Merge all intermediate values associated with the
same key
e Partition

» By default : hash (key) mod R
> Well balanced
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Programming Concept

e Map

> Perform a function on individual values in a data
set to create a new list of values

» Example: square x = x * x
map square [1,2,3,4,5]
returns [1,4,9,16,25]

e Reduce

> Combine values in a data set to create a new
value

> Example: sum = (each elem in arr, total +=)
reduce [1,2,3,4,9]
returns 15 (the sum of the elements)
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Compute Cluster
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Map worker
Input split
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A Simple Example

o Counting words in a large set of documents

string value : :
( 9 ) The map function emits each word w

plus an associated count of occurrences
(Just a “1” is recorded in this
pseudo-code)

/lkey: document name

/Ivalue: document contents

for each word w in value
Emitintermediate(w, “1”’);

(string key, iterator values)
llkey: word The reduce function sums together all
Ilvalues: list of counts counts emitted for a particular word
int results = 0;
for each v in values
result += Parselnt(v);
Emit(AsString(result));
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A Word Counting Example on <Key, Count> Distribution

_ Most people Intermediate (key, val) pairs
1gnore most poetry

(most, 1) (ignore, 1) Unique keys
(people, 1) (ignores, 1) i

(ignore, 1) (most, 1) (ignore, 1) —Pp»,
(most, 1) (most, 1) (ignores, 1)
(poetry, 1) (most, 1) o A

) (most, 1,1,1,1) —Pp|
(people, 1,1)

(most, 1)  Sort (most, 1) Group
(poetry. 1) (people, 1)

(ignores, 1) (people, 1) (poetry, 1.1)
(most, 1) (poetry, 1)

(people, 1) (poetry, 1)

MapReduce
Most poetry library

ienores most people

Copyright © 2012, Elsevier Inc. All rights reserved. 18

(ignore, 1)
(ignores, 1)
(most, 4)
(people, 2)
(poetry, 2)




How Does it work?

Input
files

User program
.-....-""-______MEOrke_r__ _--________.-"' s e

Output

(5) Map

FIGURE 6.6
Control flow implementation of MapReduce.

[Courtesy of Yahoo! Pig Tutonal [54])

° Map invocations are distributed across multiple machines by automatically
partitioning the input data into a set of M spilits.
° Reduce invocations are distributed by paritioning the intermediate key space into R

pieces using a hash function: hash(key) mod R.
» R and the partitioning function are specified by the programmer.
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MapReduce : Operation Steps

When the user program calls the MapReduce function, the
following sequence of actions occurs :

1) The MapReduce library in the user program first splits the
input files into M pieces — 16 megabytes to 64 megabytes
(MB) per piece. It then starts up many copies of program on a
cluster of machines.

2) One of the copies of program is master. The rest are workers
that are assigned work by the master.

20

20



MapReduce : Operation Steps

3) A worker who is assigned a map task :
= reads the contents of the corresponding input split

= parses key/value pairs out of the input data and passes each
pair to the user - defined Map function.

The intermediate key/value pairs produced by the Map function
are buffered in memory.

4) The buffered pairs are written to local disk, partitioned into R
regions by the partitioning function.

The location of these buffered pairs on the local disk are
passed back to the master, who forwards these locations to the
reduce workers.

21
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MapReduce : Operation Steps

5) When a reduce worker is notified by the master about
these locations, it reads the buffered data from the local
disks of the map workers.

When a reduce worker has read all intermediate data, it
sorts it by the intermediate keys so that all occurrences
of the same key are grouped together.

6) The reduce worker iterates over the sorted
intermediate data and for each unique intermediate key,
it passes the key and the corresponding set of
intermediate values to the user’s Reduce function.

The output of the Reduce function is appended to a
final output file.

22
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MapReduce : Operation Steps

/) When all map tasks and reduce tasks have been
completed, the master wakes up the user program.

At this point, MapReduce call in the user program
returns back to the user code.

After successful completion, output of the mapreduce
execution is available in the R output files.

- 23



Logical Data Flow in 5 Processing
Steps in MapReduce Process

Intermediate (key, val) pairs

Unique keys

(keyl, val)
(key8, val) (keyl, val)
(key2, val) (keyl1, val)

(keyl, [val, val...])

(key2, val)

(keys, val) (key8, [val, val...])
(key8 (key8, val)
(key5

keyl, v
s MapReduce

librar

(Key, Value) Pairs are generated by the Map function over multiple available Map Workers
(VM instances). These pairs are then sorted and group based on key ordering. Different key-
groups are then processed by multiple Reduce Workers in parallel.

Copyright © 2012, Elsevier Inc. All rights reserved. 24



Locality issue

e Master scheduling policy

» Asks GFS for locations of replicas of input file blocks

» Map tasks typically split into 64MB (== GFS block
size)

» Map tasks scheduled so GFS input block replica are
on same machine or same rack

e Effect

» Thousands of machines read input at local disk
speed

>  Without this, rack switches limit read rate

25



Fault Tolerance

e Reactive way

> Worker failure
Heartbeat, Workers are periodically pinged by master
NO response = failed worker

If the processor of a worker fails, the tasks of that worker
are reassigned to another worker.

> Master failure
Master writes periodic checkpoints

Another master can be started from the last checkpointed
state

If eventually the master dies, the job will be aborted

26



Fault Tolerance

e Proactive way (Redundant Execution)

» The problem of “stragglers” (slow workers)
Other jobs consuming resources on machine
Bad disks with soft errors transfer data very slowly
Weird things: processor caches disabled (!!)

» When computation almost done, reschedule in-
progress tasks

> Whenever either the primary or the backup
executions finishes, mark it as completed

27



Fault Tolerance

e Input error: bad records
» Map/Reduce functions sometimes fail for particular
Inputs

» Best solution is to debug & fix, but not always
possible

» On segment fault
Send UDP packet to master from signal handler
Include sequence number of record being processed

» Skip bad records

If master sees two failures for same record, next worker is
told to skip the record

28



Status monitor

MapReduce status: MR _Indexer-beta6-large-2003 10 28 00 03

Started: Fri Now 7 09:51:.07 2003 -- up 0 hr 37 min 01 sec

1707 workers; 1 deaths

Type Shards | Done |Active Input(NEB) Done(Ib[B)|0utput(1\.IB)
- 13853|13853 0| 878934.6| 878934, 6| 523495

Percent Conpleted

'nl

Reduce Shard

Counters
'Variable
i FIappF d

index-hits

docs-

3JH8 330

29



Points need to be emphasized

e No reduce can begin until map is complete

e Master must communicate locations of
Intermediate files

e [asks scheduled based on location of data

e |f map worker fails any time before reduce
finishes, task must be completely rerun

e MapReduce library does most of the hard work
for us!

30



Other Examples

Distributed Grep:
»  Map function emits a line if it matches a supplied pattern.

» Reduce function is an identity function that copies the supplied
intermediate data to the output.

Count of URL accesses:
» Map function processes logs of web page requests and outputs <URL, 1>,

> Reduce function adds together all values for the same URL, emitting <URL,
total count> pairs.

Reverse Web-Link graph; e.g., all URLs with reference to http://dblab.usc.edu:
»  Map function outputs <tgt, src> for each link to a tgt in a page named src,

> Reduce concatenates the list of all src URLS associated with a given tgt
URL and emits the pair: <tgt, list(src)>.

Inverted Index; e.g., all URLs with 585 as a word:

» Map function parses each document, emitting a sequence of <word,
doc _ID>,

» Reduce accepts all pairs for a given word, sorts the corresponding doc_IDs
and emits a <word, list(doc_ID)> pair.

>  Set of all output pairs forms a simple inverted index.

31



MapReduce Implementations

MapReduce

1, Google Phoenix @ stanford GPU.

2, Apache Hadoop Mars@HKUST

Ky


http://en.wikipedia.org/wiki/Image:Us-nasa-columbia.jpg
http://en.wikipedia.org/wiki/Image:E6750bs8.jpg
http://en.wikipedia.org/wiki/Image:6600GT_GPU.jpg

Hadoop . software platform originally developed by Yahoo

enabling users to write and run applications over vast
distributed data.

Attractive Features in Hadoop :

B Scalable : can easily scale to store and process petabytes of
data 1in the Web space

B Economical : An open-source MapReduce minimizes the
overheads in task spawning and massive data communication.

B Efficient: Processing data with high-degree of parallelism
across a large number of commodity nodes

B Recliable : Automatically maintains multiple copies of data to
facilitate redeployment of computing tasks on failures

Copyright © 2012, Elsevier Inc. All rights reserved. 33 1
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Typical Hadoop Cluster

<—» § gigabit

<—» 1 gigabit

e 40 nodes/rack, 1000-4000 nodes in cluster
e 1 Gbps bandwidth within rack, 8 Gbps out of rack

e Node specs (Yahoo terasort):
8 x 2GHz cores, 8 GB RAM, 4 disks (=4 TB?)

34

Image from http://wiki.apache.org/hadoop-data/attachments/HadoopPresentations/attachments/YahooHadooplIntro-apachecon-us-2008.pdf



Typical Hadoop Cluster
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Challenges

Cheap nodes falil, especially if you have many
1. Mean time between failures for 1 node = 3 years
2. Mean time between failures for 1000 nodes = 1 day
3. Solution: Build fault-tolerance into system

Commodity network = low bandwidth
1. Solution: Push computation to the data

Programming distributed systems is hard

1. Solution: Data-parallel programming model: users
write “map” & “reduce” functions, system distributes
work and handles faults
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Hadoop Components

e Distributed file system (HDFS)

> Single namespace for entire cluster
> Replicates data 3x for fault-tolerance

e MapReduce framework

» [Executes user jobs specified as “map” and
‘reduce” functions

» Manages work distribution & fault-tolerance

37



Hadoop Distributed File System

e Files splitinto 128MB
blocks Namenode

e Blocks replicated across
several datanodes (usually
3)

e Single namenode stores
metadata (file names, block
locations, etc) 3,
e Optimized for large files,

.
sequential reads

: Datanodes
e Files are append-only

38



Cluster

> 4

JobTracker TaskTracker

MapReduce
angnie =

NamaMode

TaskTracker

MNode 1

> -
Blocks

FIGURE 6.11

HOFS and MapReduce architecture in Hadoop.
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Secure Query Processing with
Hadoop/MapReduce

Query Rewriting and Optimization Principles defined and
implemented for two types of data

(i) Relational data: Secure query processing with HIVE
(ii) RDF Data: Secure query processing with SPARQL

Demonstrated with XACML Policies (content, temporal,

association)

Joint demonstration with Kings College and U. of Insubria
First demo (2010): Each party submits their data and policies
Our cloud will manage the data and policies

Second demo (2011): Multiple clouds

Copyright © 2012, Elsevier Inc. All rights reserved.



Higher-level languages over
Hadoop: Pig and Hive



Motivation

e Many parallel algorithms can be expressed by
a series of MapReduce jobs

e But MapReduce is fairly low-level: must think
about keys, values, partitioning, etc

e (Can we capture common “job building blocks"?

42



Started at Yahoo! Research
Runs about 30% of Yahoo!'s jobs
Features:

>
>
>

Expresses sequences of MapReduce jobs
Data model: nested “"bags” of items

Provides relational (SQL) operators (JOIN, GROUP
BY, etc)

Easy to plug in Java functions
Pig Pen development environment for Eclipse

43



An Example Problem

Suppose you have I
user data in one file, *
page view data in |

another, and you need
to find the top 5 most

Joinannane.
visited pages by users =
aged 18 - 25.

Onder by s
Tk rps

44
Example from http://wiki.apache.org/pig-data/attachments/PigTalksPapers/attachments/ApacheConEurope09.ppt



In MapReduce
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In Pig Latin

Users
Filtered

Pages
Joined
Grouped =
Summed

Sorted =
Top>5

Top5

(name, age);

Users
age >= 18 age <= 25;
(user, url);
Filtered name, Pages user;
Joined url;
Grouped group,
(Joined) clicks;
Summed clicks ;
Sorted 5;

46
Example from http://wiki.apache.org/pig-data/attachments/PigTalksPapers/attachments/ApacheConEurope09.ppt



Ease of Translation

Notice how naturally the components of the job translate into Pig Latin.

l \Atqf*Users =
Filter by age — -Filtered =

| y \\Pages =

Join on name -Joined =

l_/'Gr‘ouped =
| Summed = .. ()..
l-/Sor‘ted =

-

|

47
Example from http://wiki.apache.org/pig-data/attachments/PigTalksPapers/attachments/ApacheConEurope09.ppt



Ease of Translation

Notice how naturally the components of the job franslate into Pig Latin.

Users =

Filtered =

Pages =

Joined =

Grouped = -
Summed = .. ()..
Sorted =

Top5 =

Example from http://wiki.apache.org/pig-data/attachments/PigTalksPapers/attd8ments/ApacheConEurope09.ppt



Hive

e Developed at Facebook
e Used for majority of Facebook jobs

e “Relational database” built on Hadoop
Maintains list of table schemas

SQL-like query language (HQL)

Can call Hadoop Streaming scripts from HQL

Supports table partitioning, clustering, complex
data types, some optimizations

Vv V VYV VY

Hive

49



Sample Hive Queries

* Find top 5 pages visited by users aged 18-25:

SELECT p.url, COUNT(1) as clicks

FROM users u JOIN page views p ON (u.name = p.user)
WHERE u.age >= 18 AND u.age <= 25

GROUP BY p.url

ORDER BY clicks

LIMIT 5;

+ Filter page views through Python script:

SELECT TRANSFORM(p.user, p.date)
USING 'map_script.py'’

AS dt, uid CLUSTER BY dt

FROM page views p;

50



Amazon Elastic MapReduce

Provides a web-based interface and command-

line tools for running Hadoop jobs on Amazon
EC2

Data stored in Amazon S3

Monitors job and shuts down machines after
use

Small extra charge on top of EC2 pricing

If you want more control over how you Hadoop
runs, you can launch a Hadoop cluster on EC2
manually using the scripts in src/contrib/ec2

51



Elastic MapReduce Workflow

Create a New Job Flow Cancel | x

O

DEFINE JOB FLOW

Creating a job flow to process your data using Amazon Elastic MapReduce is simple and qguick. Let's begin by giving your job flow a name
and selecting its type. If you don't already have an application you'd like to run on Amazon Elastic MapReduce, samples are available to
help yvou get started.

Job Flow Name*: My Job Flow

The name can be anything you like and doesn't need to be unigue. It's a good idea to name the job flow something
descriptive.

Type*: (® Streaming
A Streaming job flow allows you to write single-step mapper and reducer functions in a language other than java.

() Custom Jar

& custorn jar on the other hand gives you more complete control over the function of Hadoop but must be a
compiled java program. Amazon Elastic MapReduce supports custom jars developed for Hadoop 0.18.3.

() Pig Program
Pig is a SQL-like languange built on top of Hadoop. This option allows you to define a job flow that runs a Pig script,
or set up a job flow that can be used interactively via 55H to run Pig commands.

() sample Applications

Select a sample application and click Continue. Subsequent forms will be filled with the necessary data to create a
sample Job Flow.

!. Word Count (Streaming) .H ?.ﬂ.n'u:urd cpunt is @ Python application that cu:u!Jnts OCCUrrences of each word
in provided documents. Learn more and view license




Elastic MapReduce Workflow

Create a New Job Flow Cancel [x

SPECIFY PARAMETERS

Specify Mapper and Reducer functions to run within the Job Flow. The mapper and reducers may be either (i} class names referring to a
mapper or reducer class in Hadoop or (ii} locations in Amazon S3. (Click Here for a list of available tools to help you upload and download
files from Amazon $3.} The format for specifying a location in Amazon S3 is bucket__name/path_name. The location should point to an
executable program, for example a python program. Extra arguments are passed to the Hadoop streaming program and can specify things
such as additional files to be loaded into the distributed cache.

Input Location®: elasticmapreduce/samples/wordcount/input

The URL of the Amazon 53 Bucket that contains the input files.

Output Location*: <yourbucket>/wordcount/output/2009-08-19

The URL of the Amazon 53 Bucket to store output files. Should
be unigue.

Mapper*: elasticmapreduce/samples/wordcount/wordSplitter.py

The mapper Amazon s3 location or streaming command to
execute.

Reducer®: aggregate

The reducer Amazon s3 location or streaming command to
execute.

Extra Args:




Elastic MapReduce Workflow

Create a New Job Flow

CONFIG E ANCES

Enter the number and type of EC2 instances you'd like to run your job flow on.

Number of Instances*: 4

» the limit request form.

ter (learn more about instance types).

¥ Show advanced options

Continue * Required field
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amazon
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Home - Resources = AWS Management Console BETA Amazon Elastic MapReduce

Amazon
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Solutions

Resources

Contact Us 2 Create an AWS Account

Support Your Account

Welcome, Rad Lab | Settings | Sign Out

rs
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‘Uiewing:'. All L :i

Name

i3 Create New Job Flow || G Terminate

State Creation Date

My Job Flow 2009-08-19 14:50 PDT

i STARTING

1 Job Flow selected
iy Id: J-46IL0YQ7 ZPH1
My Job Flow

STARTING

Name:

State:

Last State Change Reason:
Availability Zone:

Starting instances
us-east-1b

Elapsed Time

0 hours 0 minutes

Creation Date:
Start Date:
End Date:

Instance Count:

[11 Show/Hide | Refresh || & Help
1 to 1 of 1 Job Flows
MNormalized Instance Hours

]

2009-08-19 14:50 PDT

. Y
-
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Conclusions

e MapReduce programming model hides the complexity of
work distribution and fault tolerance

e Principal design philosophies:
> Make it scalable, so you can throw hardware at problems

> Make it cheap, lowering hardware, programming and admin
costs

e MapReduce is not suitable for all problems, but when it
works, it may save you quite a bit of time

e Cloud computing makes it straightforward to start using
Hadoop (or other parallel software) at scale
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Resources

Hadoop: http://hadoop.apache.org/core/

Pig: http://hadoop.apache.org/pig

Hive: http://hadoop.apache.org/hive

Video tutorials: http://www.cloudera.com/hadoop-training

Amazon Web Services: hitp://aws.amazon.com/

Amazon Elastic MapReduce guide:
http://docs.amazonwebservices.com/ElasticMapReduce/lat
est/GettingStartedGuide/
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